Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	

Geometry of the dynamics of an entangled quantum system

David Viennot

Institut UTINAM (UMR CNRS 6213)

Workshop I-QUINS on the geometry of entanglement March 15th 2019 Sevenans

Institut UTINAM (UMR CNRS 6213)

(人間) トイヨト イヨト

Geometry of the dynamics of an entangled quantum system

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	

1 Geometry of quantum dynamics

- Decomposition of quantum dynamics
- The base space
- The principal bundle and its connection
- Adiabatic quantum dynamics

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
• 0 00000				
Decomposition of quantum dynar	nice			

The Schrödinger equation

$$\imath \hbar \dot{\psi} = H(t)\psi$$

 $\psi \in \mathcal{H}$ a Hilbert space $(\dim \mathcal{H} = n)$; $H \in \mathcal{L}(H)$ (self-adjoint). But :

- $\|\psi\| = 1$ (probabilistic interpretation)
- the phase of ψ has no meaning (only a phase difference).

Too many unphysical informations into \mathcal{H} !

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
000000				
ecomposition of guantum dvnamics				

The decomposition

■ $P = |\psi\rangle\langle\psi|$ ($||\psi|| = 1$) rank-1 projection (normalized state without phase).

$$\imath\hbar\dot{P} = [H(t), P]$$

• Cyclic dynamics : P(T) = P(0). Let $\tilde{\psi}(t) \in \mathcal{H}$, be an arbitratry normalized state such that $|\tilde{\psi}\rangle\langle\tilde{\psi}| = P$ and $\tilde{\psi}(T) = \tilde{\psi}(0)$.

$$i\hbar\dot{\psi} = H(t)\psi \iff \psi(t) = e^{-i\hbar^{-1}\int_0^t \lambda(t')dt'} e^{-\int_0^t A(t')dt'}\tilde{\psi}(t)$$

with $\lambda = \langle \tilde{\psi} | H | \tilde{\psi} \rangle$ and $A = \langle \tilde{\psi} | \frac{d}{dt} | \tilde{\psi} \rangle$. The phase difference between $\psi(0)$ and $\psi(T)$, $e^{-\int_0^T A(t')dt'}$ (geometric phase), is physically meaningful ¹.

1. Y. Aharonov & J. Anandan, Phys. Rev. Lett. 58, 1593 (1987)

Institut UTINAM (UMR CNRS 6213)

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
000000				

The base space

The projective manifold

$$\begin{split} \psi \in \mathcal{H} &\simeq \mathbb{C}^n. \ \|\psi\| = 1 \Rightarrow \psi \in S^{2n-1}. \\ \psi &\sim e^{i\varphi} \psi \left(|\psi\rangle \langle \psi| = |e^{i\varphi} \psi\rangle \langle e^{i\varphi} \psi| \right) \Rightarrow P \in S^{2n-1} / \sim \simeq \mathbb{C}P^{n-1}. \end{split}$$

Example : for a 2-level system, $\mathbb{C}P^1 = S^2$ (the Bloch sphere) : $|\psi\rangle = \cos \theta |0\rangle + e^{i\varphi} \sin \theta |1\rangle$, (θ, φ) are local coordinates onto S^2 .

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
000000				
The principal bundle and its conn	ection			

U(1)-bundle

Consider all possible arbitrary phases

$$\begin{split} &\{e^{\imath\varphi}\psi,|\psi\rangle\langle\psi|=P\in\mathbb{C}P^{n-1}\}_{\varphi\in[0,2\pi[}.\\ \Rightarrow \text{At each point }P\in\mathbb{C}P^{n-1}\text{, we attach a copy of }U(1)\text{ as manifold (a fibre).} \end{split}$$

The set of all fibres constitutes the manifold S^{2n-1} as a fiber space locally diffeomorph to $\mathbb{C}P^{n-1} \times U(1)$.

To restore the arbitrary character of the phases, we consider U(1) (as a group) acting onto S^{2n-1} as "translations" along the fibres. The whole structure is a principal U(1)-bundle \mathcal{P} :

$$U(1) \rightarrow S^{2n-1} \\ \downarrow \pi \\ \mathbb{C}P^{n-1}$$

with
$$\pi(\psi) = |\psi\rangle\langle\psi|$$
.

Geometry of the dynamics of an entangled quantum system

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
0000000				
The principal bundle and its conn	action			

The Berry-Simon connection

 $\tilde{\psi}$ s.t. $\pi(\tilde{\psi}) = P$ and $\tilde{\psi}(T) = \tilde{\psi}(0)$, is an arbitrary section of \mathcal{P} above the path \mathcal{C} into $\mathbb{C}P^{n-1}$ (defined by $i\hbar \dot{P} = [H, P]$).

Let $A \in \Omega^1 \mathbb{C}P^{n-1}$ be defined by $A(P) = \langle \tilde{\psi} | d | \tilde{\psi} \rangle$ (Berry-Simon gauge potential). The geometric phase is $e^{-\oint_{\mathcal{C}} A}$ (holonomy of the horizontal lift of \mathcal{C} in the fibres).

 $e^{-\oint_{\mathcal{C}}A} = e^{-\iint_{\mathcal{S}}F}$ with $\partial \mathcal{S} = \mathcal{C}$, $F = dA \in \Omega^2 \mathbb{C}P^{n-1}$ (Berry-Simon curvature). (A, F) are the local data which define the connective structure of \mathcal{P} .

Gauge change : $\tilde{\psi}' = e^{\imath \varphi} \tilde{\psi} \Rightarrow A' = A + \imath d\varphi$ and F' = F.

Institut UTINAM (UMR CNRS 6213)

Geometry of the dynamics of an entangled quantum system

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
0000000				
Adiabatic quantum dynamics				

Adiabatic approximation

 $i\hbar\dot{\psi} = H(x(t))\psi$

 $x \in M$ (control manifold). Adiabatic theorem : $P(s) = P_{\lambda}(x(s)) + \mathcal{O}(\frac{1}{T})$ (s = t/T) with $H(x)\phi_{\lambda}(x) = \lambda(x)\phi_{\lambda}(x)$ ($P_{\lambda} = |\phi_{\lambda}\rangle\langle\phi_{\lambda}|$)².

$$U(1) \rightarrow \mathcal{P} \ \downarrow \ M$$

with gauge potential :

$$A(x) = \langle \phi_{\lambda} | \frac{d}{dx^{\mu}} | \phi_{\lambda} \rangle dx^{\mu} \in \Omega^{1} M$$

2. B. Simon, Phys. Rev. Lett. 51, 2167 (1983)

David Viennot

Geometry of the dynamics of an entangled quantum system

Institut UTINAM (UMR CNRS 6213)

< □ > < 🗇

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
000000				
Adiabatic quantum dynamics				

Interests

- Analogy with classical field theory : ψ(T) = e^{-f_C A}ψ(0) is the transport along C of a charged particle living in M where F = dA is a magnetic field. Crossings points x_{*} ∈ M where λ(x_{*}) is locally degenerate with another eigenvalue, appear as magnetic monopoles ³.
- Adiabatic quantum control : find C in M in order to the horizontal lift of C be the control target⁴.
- Adiabatic quantum computation (AQC) : find C in M in order to the horizontal lift of C be a quantum computation⁵ (example : quantum annealing⁶).
 This application can be extended to the non-adiabatic case : holonomic quantum computation (HQC).
- 3. F. Wilczeck & A. Zee, Phys. Rev. Lett. 52, 2111 (1984)
- 4. U. Boscain etal, arXiv :1102.3063 (2011)
- 5. E. Farhi etal, arXiv :quant-ph/0001106 (2000)
- 6. S. Morita & H. Nishimori, arXiv :0806.1859 (2008) < = > < = > < =

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	

2 Dynamics of an entangled quantum system

- Mixed state
- Phases ?
- The base space

David Viennot Geometry of the dynamics of an entangled quantum system Institut UTINAM (UMR CNRS 6213)

Image: Image:

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
	• 00 000			
Mixed state				

Density matrix

$$i\hbar\dot{\psi} = (H_S(t)\otimes 1_E + 1_S\otimes H_E(t) + V_{int}(t))\psi$$

with $\psi \in \mathcal{H}_S \otimes H_E$, $H_S \in \mathcal{L}(\mathcal{H}_S)$, $H_E \in \mathcal{L}(\mathcal{H}_E)$, $V_{int} \in \mathcal{L}(\mathcal{H}_S \otimes \mathcal{H}_E)$ (V_{int} modifies the entanglement between S and E during the dynamics).

$$\rho = \mathrm{tr}_E |\psi\rangle \langle \langle \psi |$$

We are interested only by the state of S (we forget the informations concerning E). ρ is pure $(\operatorname{tr}\rho^2 = 1) \iff \psi$ is a separable state. ρ is mixed $(\operatorname{tr}\rho^2 < 1) \iff \psi$ is an entangled state. ρ is maximaly mixed $(\operatorname{tr}\rho^2 = \frac{1}{n}) \iff \psi$ is a "Schrödinger cat".

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
	00000			

Mixed state

David Viennot

C^* -module structure

$\begin{array}{c|c} \textbf{Closed system} \\ \lambda\psi, \ \lambda \in \mathbb{C}, \ \psi \in \mathcal{H} \\ \text{field } \mathbb{C} \\ \text{Hilbert space } \mathcal{H} \\ \langle \phi | \psi \rangle \in \mathbb{C} \\ \|\psi\|^2 \in \mathbb{R}^+ \end{array} \qquad \begin{array}{c} \textbf{Entangled system} \\ A \otimes 1_E \psi, \ A \in \mathcal{L}(\mathcal{H}_S), \ \psi \in \mathcal{H}_S \otimes \mathcal{H}_E \\ C^* \text{-algebra } \mathfrak{a} = \mathcal{L}(\mathcal{H}_S) \\ C^* \text{-module } \mathcal{H}_S \otimes \mathcal{H}_E \\ \langle \phi | \psi \rangle_* = \operatorname{tr}_E | \psi \rangle \langle \langle \phi | \in \mathfrak{a} \\ \|\psi\|_*^2 = \rho \in \mathcal{D}(\mathcal{H}_S) \end{array}$

<日 → < 目 → < 目 → 目 のへ(Institut UTINAM (UMR CNRS 6213)

Geometry of the dynamics of an entangled quantum system

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
	00000			
and the second				

Operator valued geometric phases

In the litterature :

- Uhlmann geometric phase (based on transition probabilities)⁷: *ψ* = 1_S ⊗ ℙe^{-∫A}ψ with dρ = Aρ + ρA (but a large class of generators are also possible⁸). ρ = ρ̃
- Sjöqvist geometric phase (based on interferometry) ⁹ : $\psi = \mathbb{P}e^{-\int \eta} \otimes 1_E \tilde{\psi}$ with $\eta = \sum_j P_j W^{\dagger} dW P_j \sigma^{-1}$ with $\rho = W W^{\dagger}$, σ diagonal matrix of $\operatorname{Sp}(\rho)$ and P_j the associated eigenprojections. $\rho = \tilde{\rho}$.

• C*-geometric phase (based on the C* inner product)¹⁰: $\psi = \mathbb{P}e^{-\int \mathfrak{A}} \otimes \mathbb{1}_E \tilde{\psi}$ with $\mathfrak{A} = \langle \tilde{\psi} | d\tilde{\psi} \rangle_* \| \tilde{\psi} \|_*^{-2}$. $\rho = \mathbb{P}e^{-\int \mathfrak{A}} \tilde{\rho} (\mathbb{P}e^{-\int \mathfrak{A}})^{\dagger}$.

- 7. A. Uhlmann, Rep. Math. Phys. 24, 229 (1986)
- 8. J. Dittman, G. Rudolph, J. Math. Phys. 33, 4148 (1992)
- 9. E. Sjöqvist etal, Phys. Rev. Lett. 85, 2845 (2000)
- 10. D. Viennot & J. Lages, J. Phys. A 44, 365301 (2011) C

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
	000000			
al 2				

3 notions of phases in the C^* -module

 $g \in \mathfrak{a}$ is a

- phase by invariance if $\|g\psi\|_*^2 = \|\psi\|_*^2$
- phase by equivariance if $\|g\psi\|_*^2 = g\|\psi\|_*^2g^{-1}$
- \blacksquare phase with respect to the Hamiltonian if $Hg\psi=gH\psi$

If $\mathfrak{a} = \mathbb{C}$, then the three definitions are the same. Three definitions of the cyclicity : $\rho(T) = \rho(0)$, $\rho(T) = g\rho(0)g^{-1}$ (isospectral density matrices) or $\rho(T) = g\rho(0)g^{\dagger}$ (with [H(0),g] = 0 and H(0) = H(T) for example).

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
	000000			
The base space				

The base space

 $\mathcal{D}(\mathbb{C}^n)$ manifold of density matrices or $\Sigma(n)$ simplex of possible specta? In fact : $\mathcal{D}(\mathbb{C}^n) \to \Sigma(n)$ is a fibre bundle, but this one is not locally trivial, it is stratified ¹¹ :

11. I. Bengtsson & K. Zyczkowski, Geometry of quantum states (Cambridge University

Institut UTINAM (UMR CNRS 6213)

Geometry of the dynamics of an entangled quantum system

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
	00000			
The base space				

The base space as a category

Let \mathscr{M} be the category defined by $\operatorname{Obj} \mathscr{M} = \mathcal{D}(\mathbb{C}^n)$ and $\operatorname{Morph} \mathscr{M} = G \times \mathcal{D}(\mathbb{C}^n)$ (with G the group of phases by equivariance or w.r.t. the Hamiltonian); with the source, the target and the identity maps defined by

$$s(g,\rho) = \rho; \quad t(g,\rho) = g\rho g^{\dagger}, \quad \mathrm{id}_{\rho} = (1_S,\rho)$$
$$(g',g\rho g^{\dagger}) \circ (g,\rho) = (g'g,\rho)$$

g is then not viewed as phase (gauge) change but as an arrow of the base category.

Institut UTINAM (UMR CNRS 6213)

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	

3 The categorical bundle

- Fibers
- Connections
- The adiabatic case

David Viennot Geometry of the dynamics of an entangled quantum system Institut UTINAM (UMR CNRS 6213)

◆□ > ◆圖 > ◆ 圖 > ◆ 圖 >

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
		• 0 000		
Elhava				

Groups acting on the fibres

- G group of phases by equivariance, acting on the left.
- *H* group of phases by invariance, acting on the left.
- K group of phases by invariance, acting on the right.

 ${\mathscr G}$ groupoid on the left with ${\rm Obj}{\mathscr G}=G, \, {\rm Morph}{\mathscr G}=G\rtimes H$ and

$$s(g,h) = g; \quad t(g,h) = gh; \quad id_g = (g,1_S)$$

 $(gh,h') \circ (g,h) = (g,hh')$
 $(g',h')(g,h) = (g'g,g^{-1}h'gh)$

Geometry of the dynamics of an entangled quantum system

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
		0000		
eth and				

The fibred structure

 \mathscr{P} cannot be defined as a manifold, it is just defined as a category. The structure is a "stratified categorical composite principal bi-bundle" ¹²

12. D. Viennot, J. Geom. Phys. 133, 42 (2018)

David Viennot

Geometry of the dynamics of an entangled quantum system

Institut UTINAM (UMR CNRS 6213)

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
		00000		
e				

The gauge potentials

• $\mathfrak{A} \in \Omega^1(\Sigma, \mathfrak{g})$ (C^* -geometric phase generator) : left gauge potential

$$\tilde{\psi}' = g \otimes k \tilde{\psi} \Rightarrow \mathfrak{A}' = g \mathfrak{A} g^{-1} + dg g^{-1} + g \eta_k g^{-1} \quad (\eta_k = \langle \tilde{\psi} | k^{-1} dk | \tilde{\psi} \rangle_* \tilde{\rho}^{-1})$$

■ $A \in \Omega^1(\text{Obj}\mathcal{M}, \mathfrak{k})$ (Uhlmann phase generator) : right object gauge potential

$$\tilde{\psi}' = g \otimes k \tilde{\psi} \Rightarrow \mathfrak{A}' = k^{-1} \mathfrak{A} k + k^{-1} dk + k^{-1} \eta_g k \quad (\eta_g = \langle \tilde{\psi} | dgg^{-1} | \tilde{\psi} \rangle_* \tilde{\rho}^{-1})$$

■ $\eta_{\rightarrow} \in \Omega^1(Morph\mathscr{M}, \mathfrak{k})$ (Uhlmann generator transformation) : right arrow gauge potential

$$\tilde{\psi}' = h \otimes k\tilde{\psi} \Rightarrow \eta'_{\rightarrow} = (h_{\tilde{\psi}}k)^{-1}\eta_{\rightarrow}h_{\tilde{\psi}}k + (h_{\tilde{\psi}}k)^{-1}d(h_{\tilde{\psi}}k) + \eta_{h_{\tilde{\psi}}k}$$

 $A + \eta_{\rightarrow}$ is the Sjöqvist phase generator (for some η_{\rightarrow}). The connective structure presents also left/right fake/true curvatures and curvings.

イロト イポト イヨト イヨト

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
		00000		
- I II I II				

Non-commutative eigenvalues

$$H(x)\phi_{\Lambda}(x) = \Lambda(x) \otimes 1_E \phi_{\Lambda}(x), \qquad [\Lambda(x) \otimes 1_E, H(x)]\phi_{\Lambda}(x) = 0$$

with
$$H(x) = H_S(x) \otimes 1_E + 1_S \otimes H_E(x) + V_{int}(x)$$
, $\phi_{\Lambda} \in \mathcal{H}_S \otimes \mathcal{H}_E$, $\Lambda \in \mathfrak{a}$.

G is the group of phase w.r.t. *H* (leaving invariant $ker(H - \Lambda \otimes 1_E)$), *K* is the group of unitary operators of *E* leaving invariant H(x).

$$\mathscr{G} \Rightarrow \mathscr{P} \leftarrow K$$

$$\downarrow$$
 M

M being the manifold of all configurations of x^{13} .

13. D. Viennot & J. Lages, J. Phys. A 44, 365301 (2011) .

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
		00000		
- I I I I I				

he adiabatic case

Adiabatic theorem for density matrix

$$\begin{split} \rho(s) &= g_{\Lambda\mathfrak{A}}(s)\rho_{\Lambda}(x(s))g_{\Lambda\mathfrak{A}}(s)^{\dagger} + \mathcal{O}\left(\max\left(\frac{1}{T},\epsilon\right)\right)\\ \rho_{\Lambda} &= \|\phi_{\Lambda}\|_{*}^{2} \text{ and } g_{\Lambda\mathfrak{A}} = \mathbb{T}e^{-\imath\hbar^{-1}T\int_{0}^{s}\Lambda(t')dt}\mathbb{P}e^{-\int_{\mathcal{C}}\mathfrak{A}},\\ \mathfrak{A} &= \langle\phi_{\Lambda}|d|\phi_{\Lambda}\rangle_{*}\rho_{\Lambda}^{-1}.^{\mathbf{14}}\\ s &= t/T \text{ and } \inf_{s}\min_{b\neq a}|\mu_{b}-\mu_{a}| = \mathcal{O}(\epsilon) \text{ with } \{\mu_{a}\}_{a} = \operatorname{Sp}(H_{S}). \end{split}$$

David Viennot

A

Geometry of the dynamics of an entangled quantum system

Institut UTINAM (UMR CNRS 6213)

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	

4 Applications

- Adiabatic quantum control hampered by entanglement
- Decoherence phenomenons
- Quantum black holes

David Viennot Geometry of the dynamics of an entangled quantum system <日本 4 注→ 4 注→ 注 のへの Institut UTINAM (UMR CNRS 6213)

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications *	
			• 0 00000	

Adiabatic quantum control hampered by entanglement

Interpretation of the connective structure

- $$\begin{split} \mathfrak{A} &= \langle \phi_{\lambda} | d | \phi_{\lambda} \rangle_{*} \rho_{\lambda}^{-1} \text{ (left gauge potential).} \\ A &= \langle \phi_{\lambda} | P_{\lambda} d | \phi_{\lambda} \rangle_{*} \rho_{\lambda}^{-1} \text{ (reduced left gauge potential), } P_{\lambda} \text{ is the orthogonal projection onto } \ker(H \lambda \mathbf{1}_{S} \otimes \mathbf{1}_{E}). \end{split}$$
 - $B = d\mathfrak{A} \mathfrak{A} \wedge \mathfrak{A}$ (curving) : tr_S ($\rho_{\lambda}(x)B(x)$) measures of the entanglement entropy increase induced by variations in the neighbourhood of x.
 - $F = dA A \land A B$ (fake curvature) : tr_S ($\rho_{\lambda}(x)F(x)$) measures the non-adiabaticy in the neighbourhood of x.

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
			000000	
A DE LA SECONDE				

Charts of the curving

Average curvings $(tr(\rho_a B_a))$ for STIRAP control of a 3-level atom entangled with another one ¹⁵.

Geometry of the dynamics of an entangled quantum system

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
			0000000	
Decoherence phenomenons				

True decoherence

True decoherence : irreversible fall of the quantum state purity $(tr\rho^2)$ induced by the entanglement of S with a very large environment B (thermal bath for example), $\rho = tr_B |\psi_{S \otimes B}\rangle \langle\!\langle \psi_{S \otimes B} |$. Master equation :

$$i\hbar\dot{\rho} = [H_S,\rho] - \frac{i}{2}\sum_k \gamma^k \{\Gamma_k^{\dagger}\Gamma_k,\rho\} + i\sum_k \gamma^k \Gamma_k\rho \Gamma_k^{\dagger}$$

Schmidt purification procedure : $\psi \in \mathcal{H}_S \otimes \mathcal{H}_E$ where $\dim \mathcal{H}_E = \dim \mathcal{H}_S$ (*E* is an anchor system) with $\operatorname{tr}_E |\psi\rangle\rangle\langle\!\langle\psi| = \rho$.

$$\imath\hbar\dot{\psi} = \left(H_S \otimes 1_E - \frac{\imath}{2}\sum_k \gamma^k \Gamma_k^{\dagger} \Gamma_k \otimes 1_E + \frac{\imath}{2}\sum_k \gamma^k \Gamma_k \otimes \Gamma_k^{\ddagger}(\psi)\right)\psi$$

where Γ_k^\ddagger is a nonlinear operator built with $\Gamma_k^\dagger.$ ¹⁶

16. D. Viennot, J. Geom. Phys. 133, 42 (2018)

David Viennot

Geometry of the dynamics of an entangled quantum system

Institut UTINAM (UMR CNRS 6213)

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
			00 000 00	
Decoherence phenomenons				

Fake decoherence

Fake decoherence : irreversible fall of the state purity $(\mathrm{tr}\rho^2)$ induced by averaging effect on a lot of copies of S, $\rho = \lim_{N \to +\infty} \frac{1}{N} \sum_{n=1}^{N} |\psi_{S_n}\rangle \langle \psi_{S_n}|.$ The different copies are in different states $\{\psi_{S_n}\}_n$ because of random initial conditions and/or a Hamiltonian $H_S(\varphi^t(x_0))$ which depends on a chaotic or stochastic classical flow $\varphi^t : \Gamma \to \Gamma$ (classical noises). Schrödinger-Koopman representation : $\psi \in \mathcal{H}_S \otimes L^2(\Gamma, d\mu(x)).$ ¹⁷

$$i\hbar\dot{\psi} = (H_S(x) - i\hbar 1_S \otimes F^{\mu}(x)\partial_{\mu})\psi$$

 $(\dot{\varphi}(x_0) = F(\varphi(x_0))).$

 $\rho = \operatorname{tr}_{L^2(\Gamma, d\mu(x))} |\psi\rangle \langle \langle \psi |$

17. D. Viennot & L. Aubourg, J. Phys. A 51, 335201 (2018)

Geometry of the dynamics of an entangled quantum system

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
			0000000	
Decemenene abenemenene				

Quasienergy states

 \Rightarrow definition of ergodic geometric phases in the chaotic sea (usual cyclic geometric phases in the islands of stability). 18

18. D. Viennot & L. Aubourg, J. Phys. A 51, 335201 (2018)

Geometry of the dynamics of an entangled quantum system

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications *
			0000000
- II I I I			

Quantum black hole : BFSS matrix model

Matrix model theory (String M-theory in non-perturbative sector) :

Event Horizon = thermalized D2-brane, i.e. stack of quantum bosonic strings. Test particle = fermionic string linking the D2-brane to a probe D0-brane

D2-brane = non-commutative manifold described by (X^1, X^2, X^3) ("space coordinate" operators of the manifold), $X^i \in \mathcal{L}(\mathbb{C}^N)$ (N-1 is the number of strings of the stack).

Non-commutative Klein-Gordon and Dirac equations :

$$\ddot{X}^i - [X^j, [X^i, X_j]] = 0$$

$$\imath |\dot{\psi}\rangle = \sigma_i \otimes (X^i - x^i) |\psi\rangle$$

 $\psi \in \mathbb{C}^2 \otimes \mathbb{C}^N$ (state of the fermionic string). \Rightarrow entanglement between the spin of the fermionic string and the D2-brane (event horizon).¹⁹ 19. D. Viennot & L. Aubourg, Class. Quant. Grav. **35**, 135007 (2018)

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	
			0000000	
Our strong black balan				

Categorical bundle

$$\sigma_i \otimes X^i \phi_{\Lambda}(x) = \Lambda(x) \otimes \mathbb{1}_{\mathbb{C}^N} \phi_{\Lambda}(x), \quad \Lambda(x) = x^i \sigma_i$$

$$\begin{split} \mathfrak{A} &= \langle \phi_\Lambda | d | \phi_\Lambda \rangle_* \rho_\Lambda^{-1} \text{ (left gauge potential).} \\ A &= \langle \phi_\Lambda | P_\Lambda d | \phi_\Lambda \rangle_* \rho_\Lambda^{-1} \text{ (reduced left gauge potential).} \\ \text{The differential manifold } M_\Lambda \text{ of all points } x \text{ for which } x^i \sigma_i \text{ is a} \\ \text{non-commutative eigenvalue is the emergent "classical" event horizon.} \\ \text{Let } f &= d \mathrm{tr}_{\mathbb{C}^2}(\rho_\Lambda \mathfrak{A}), \text{ and } \theta = f^{-1} \left(f_{ij} \theta^{jk} = \delta_i^k \right); \text{ then} \\ dt^2 &- \theta^{ik} \theta^{jl} g_{kl} dx_i dx_j \text{ is the space-time metric } (g_{kl} \text{ is the metric of } M_\Lambda \\ \text{induced by its embedding into } \mathbb{R}^3). \\ \text{The curving } B &= d\mathfrak{A} - \mathfrak{A} \land \mathfrak{A} - F \ (\mathcal{F} = dA - A \land A), \text{ is the Kalb-Ramon} \\ (\text{Neveu-Schwarz-Neveu-Schwarz) field (torsion potential / axion field).} \\ \text{Dilaton field in the gauge structure ???}^{20} \end{split}$$

Institut UTINAM (UMR CNRS 6213)

^{20.} work in progress...

Geometry of quantum dynamics [Dynamics of an entangled quantum system	The categorical bundle	Applications	*

5 Conclusion

æ

David Viennot Geometry of the dynamics of an entangled quantum system Institut UTINAM (UMR CNRS 6213)

イロト イポト イヨト イヨト

Geometry of quantum dynamics	Dynamics of an entangled quantum system	The categorical bundle	Applications	*

Conclusion

Forthcoming works :

- Decoherence : make more easy the computation of the quasienergy states.
- Quantum black hole : finish the study of the geometric structure.
- General theory : generalize AQC with entangled (or noised) quantum systems.
- Open question : relation between categorical geometry, non-commutative geometry and algebraic geometry (works of Frédéric).

