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Decomposition of quantum dynamics

The Schrödinger equation

ı~ψ̇ = H(t)ψ

ψ ∈ H a Hilbert space (dimH = n) ; H ∈ L(H) (self-adjoint).
But :

‖ψ‖ = 1 (probabilistic interpretation)
the phase of ψ has no meaning (only a phase difference).

Too many unphysical informations into H !
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Decomposition of quantum dynamics

The decomposition

P = |ψ〉〈ψ| (‖ψ‖ = 1) rank-1 projection (normalized state without
phase).

ı~Ṗ = [H(t), P ]

Cyclic dynamics : P (T ) = P (0). Let ψ̃(t) ∈ H, be an arbitratry
normalized state such that |ψ̃〉〈ψ̃| = P and ψ̃(T ) = ψ̃(0).

ı~ψ̇ = H(t)ψ ⇐⇒ ψ(t) = e−ı~
−1

∫ t
0
λ(t′)dt′e−

∫ t
0
A(t′)dt′ ψ̃(t)

with λ = 〈ψ̃|H|ψ̃〉 and A = 〈ψ̃| ddt |ψ̃〉.
The phase difference between ψ(0) and ψ(T ), e−

∫ T
0
A(t′)dt′

(geometric phase), is physically meaningful 1.

1. Y. Aharonov & J. Anandan, Phys. Rev. Lett. 58, 1593 (1987)
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The base space

The projective manifold

ψ ∈ H ' Cn. ‖ψ‖ = 1⇒ ψ ∈ S2n−1.
ψ ∼ eıϕψ (|ψ〉〈ψ| = |eıϕψ〉〈eıϕψ|) ⇒ P ∈ S2n−1/ ∼' CPn−1.

Example : for a 2-level system, CP 1 = S2 (the Bloch sphere) :
|ψ〉 = cos θ|0〉+ eıϕ sin θ|1〉, (θ, ϕ) are local coordinates onto S2.
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The principal bundle and its connection

U(1)-bundle

Consider all possible arbitrary phases
{eıϕψ, |ψ〉〈ψ| = P ∈ CPn−1}ϕ∈[0,2π[.
⇒ At each point P ∈ CPn−1, we attach a copy of U(1) as manifold (a
fibre).
The set of all fibres constitutes the manifold S2n−1 as a fiber space
locally diffeomorph to CPn−1 × U(1).
To restore the arbitrary character of the phases, we consider U(1) (as a
group) acting onto S2n−1 as “translations” along the fibres.
The whole structure is a principal U(1)-bundle P :

U(1) → S2n−1

↓ π
CPn−1

with π(ψ) = |ψ〉〈ψ|.
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The principal bundle and its connection

The Berry-Simon connection

ψ̃ s.t. π(ψ̃) = P and ψ̃(T ) = ψ̃(0), is an arbitrary section of P above the
path C into CPn−1 (defined by ı~Ṗ = [H,P ]).

Let A ∈ Ω1CPn−1 be defined by A(P ) = 〈ψ̃|d|ψ̃〉 (Berry-Simon gauge
potential). The geometric phase is e−

∮
C A (holonomy of the horizontal

lift of C in the fibres).

e−
∮
C A = e−

∫∫
S F with ∂S = C, F = dA ∈ Ω2CPn−1 (Berry-Simon

curvature). (A,F ) are the local data which define the connective
structure of P.

Gauge change : ψ̃′ = eıϕψ̃ ⇒ A′ = A+ ıdϕ and F ′ = F .
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Adiabatic quantum dynamics

Adiabatic approximation

ı~ψ̇ = H(x(t))ψ

x ∈M (control manifold).
Adiabatic theorem : P (s) = Pλ(x(s)) +O( 1

T ) (s = t/T ) with
H(x)φλ(x) = λ(x)φλ(x) (Pλ = |φλ〉〈φλ|) 2.

U(1) → P
↓
M

with gauge potential :

A(x) = 〈φλ|
d

dxµ
|φλ〉dxµ ∈ Ω1M

2. B. Simon, Phys. Rev. Lett. 51, 2167 (1983)
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Adiabatic quantum dynamics

Interests

Analogy with classical field theory : ψ(T ) = e−
∮
C Aψ(0) is the

transport along C of a charged particle living inM where F = dA is
a magnetic field. Crossings points x∗ ∈M where λ(x∗) is locally
degenerate with another eigenvalue, appear as magnetic
monopoles 3.
Adiabatic quantum control : find C inM in order to the horizontal
lift of C be the control target 4.
Adiabatic quantum computation (AQC) : find C inM in order to
the horizontal lift of C be a quantum computation 5 (example :
quantum annealing 6).
This application can be extended to the non-adiabatic case :
holonomic quantum computation (HQC).

3. F. Wilczeck & A. Zee, Phys. Rev. Lett. 52, 2111 (1984)
4. U. Boscain etal, arXiv :1102.3063 (2011)
5. E. Farhi etal, arXiv :quant-ph/0001106 (2000)
6. S. Morita & H. Nishimori, arXiv :0806.1859 (2008)
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2 Dynamics of an entangled quantum system
Mixed state
Phases ?
The base space
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Mixed state

Density matrix

ı~ψ̇ = (HS(t)⊗ 1E + 1S ⊗HE(t) + Vint(t))ψ

with ψ ∈ HS ⊗HE , HS ∈ L(HS), HE ∈ L(HE), Vint ∈ L(HS ⊗HE)
(Vint modifies the entanglement between S and E during the dynamics).

ρ = trE |ψ〉〉〈〈ψ|

We are interested only by the state of S (we forget the informations
concerning E).
ρ is pure (trρ2 = 1) ⇐⇒ ψ is a separable state.
ρ is mixed (trρ2 < 1) ⇐⇒ ψ is an entangled state.
ρ is maximaly mixed (trρ2 = 1

n ) ⇐⇒ ψ is a “Schrödinger cat”.
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Mixed state

C∗-module structure

Closed system Entangled system
λψ, λ ∈ C, ψ ∈ H A⊗ 1Eψ, A ∈ L(HS), ψ ∈ HS ⊗HE

field C C∗-algebra a = L(HS)
Hilbert space H C∗-module HS ⊗HE
〈φ|ψ〉 ∈ C 〈φ|ψ〉∗ = trE |ψ〉〉〈〈φ| ∈ a
‖ψ‖2 ∈ R+ ‖ψ‖2∗ = ρ ∈ D(HS)
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Mixed state

Operator valued geometric phases

In the litterature :
Uhlmann geometric phase (based on transition probabilities) 7 :
ψ̃ = 1S ⊗ Pe−

∫
Aψ with dρ = Aρ+ ρA (but a large class of

generators are also possible 8).
ρ = ρ̃

Sjöqvist geometric phase (based on interferometry) 9 :
ψ = Pe−

∫
η ⊗ 1Eψ̃ with η =

∑
j PjW

†dWPjσ
−1 with ρ = WW †,

σ diagonal matrix of Sp(ρ) and Pj the associated eigenprojections.
ρ = ρ̃.
C∗-geometric phase (based on the C∗ inner product) 10 :
ψ = Pe−

∫
A ⊗ 1Eψ̃ with A = 〈ψ̃|dψ̃〉∗‖ψ̃‖−2

∗ .
ρ = Pe−

∫
Aρ̃(Pe−

∫
A)†.

7. A. Uhlmann, Rep. Math. Phys. 24, 229 (1986)
8. J. Dittman, G. Rudolph, J. Math. Phys. 33, 4148 (1992)
9. E. Sjöqvist etal, Phys. Rev. Lett. 85, 2845 (2000)

10. D. Viennot & J. Lages, J. Phys. A 44, 365301 (2011)
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Phases ?

3 notions of phases in the C∗-module

g ∈ a is a
phase by invariance if ‖gψ‖2∗ = ‖ψ‖2∗
phase by equivariance if ‖gψ‖2∗ = g‖ψ‖2∗g−1

phase with respect to the Hamiltonian if Hgψ = gHψ

If a = C, then the three definitions are the same.
Three definitions of the cyclicity : ρ(T ) = ρ(0), ρ(T ) = gρ(0)g−1

(isospectral density matrices) or ρ(T ) = gρ(0)g† (with [H(0), g] = 0 and
H(0) = H(T ) for example).
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The base space

The base space

D(Cn) manifold of density matrices or Σ(n) simplex of possible specta ?
In fact : D(Cn)→ Σ(n) is a fibre bundle, but this one is not locally
trivial, it is stratified 11 :

11. I. Bengtsson & K. Zyczkowski, Geometry of quantum states (Cambridge University
Press, 2006)
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The base space

The base space as a category

Let M be the category defined by ObjM = D(Cn) and
MorphM = G×D(Cn) (with G the group of phases by equivariance or
w.r.t. the Hamiltonian) ; with the source, the target and the identity
maps defined by

s(g, ρ) = ρ; t(g, ρ) = gρg†, idρ = (1S , ρ)

(g′, gρg†) ◦ (g, ρ) = (g′g, ρ)

g is then not viewed as phase (gauge) change but as an arrow of the base
category.
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3 The categorical bundle
Fibers
Connections
The adiabatic case
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Fibers

Groups acting on the fibres

G group of phases by equivariance, acting on the left.
H group of phases by invariance, acting on the left.
K group of phases by invariance, acting on the right.

G groupoid on the left with ObjG = G, MorphG = GoH and

s(g, h) = g; t(g, h) = gh; idg = (g, 1S)

(gh, h′) ◦ (g, h) = (g, hh′)

(g′, h′)(g, h) = (g′g, g−1h′gh)
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Fibers

The fibred structure

G ⇒ P ← K
↓ ⇓
↓M
↓ ↓

Σ

P cannot be defined as a manifold, it is just defined as a category.
The structure is a “stratified categorical composite principal bi-bundle” 12

12. D. Viennot, J. Geom. Phys. 133, 42 (2018)
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Connections

The gauge potentials

A ∈ Ω1(Σ, g) (C∗-geometric phase generator) : left gauge potential

ψ̃′ = g⊗kψ̃ ⇒ A′ = gAg−1+dgg−1+gηkg
−1 (ηk = 〈ψ̃|k−1dk|ψ̃〉∗ρ̃−1)

A ∈ Ω1(ObjM , k) (Uhlmann phase generator) : right object gauge
potential

ψ̃′ = g⊗kψ̃ ⇒ A′ = k−1Ak+k−1dk+k−1ηgk (ηg = 〈ψ̃|dgg−1|ψ̃〉∗ρ̃−1)

η→ ∈ Ω1(MorphM , k) (Uhlmann generator transformation) : right
arrow gauge potential

ψ̃′ = h⊗ kψ̃ ⇒ η′→ = (hψ̃k)−1η→hψ̃k + (hψ̃k)−1d(hψ̃k) + ηhψ̃k

A+ η→ is the Sjöqvist phase generator (for some η→). The connective
structure presents also left/right fake/true curvatures and curvings.
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The adiabatic case

Non-commutative eigenvalues

H(x)φΛ(x) = Λ(x)⊗ 1EφΛ(x), [Λ(x)⊗ 1E , H(x)]φΛ(x) = 0

with H(x) = HS(x)⊗ 1E + 1S ⊗HE(x) + Vint(x), φΛ ∈ HS ⊗HE ,
Λ ∈ a.
G is the group of phase w.r.t. H (leaving invariant ker(H − Λ⊗ 1E)), K
is the group of unitary operators of E leaving invariant H(x).

G ⇒ P ← K
↓
M

M being the manifold of all configurations of x 13.

13. D. Viennot & J. Lages, J. Phys. A 44, 365301 (2011)
David Viennot Institut UTINAM (UMR CNRS 6213)
Geometry of the dynamics of an entangled quantum system



Geometry of quantum dynamics Dynamics of an entangled quantum system The categorical bundle Applications *

The adiabatic case

Adiabatic theorem for density matrix

ρ(s) = gΛA(s)ρΛ(x(s))gΛA(s)† +O
(

max

(
1

T
, ε

))
ρΛ = ‖φΛ‖2∗ and gΛA = Te−ı~

−1T
∫ s
0

Λ(t′)dtPe−
∫
C A,

A = 〈φΛ|d|φΛ〉∗ρ−1
Λ . 14

s = t/T and infsminb 6=a |µb − µa| = O(ε) with {µa}a = Sp(HS).

14. D. Viennot & L. Aubourg, J. Phys. A 48, 025301 (2015)
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4 Applications
Adiabatic quantum control hampered by entanglement
Decoherence phenomenons
Quantum black holes
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Adiabatic quantum control hampered by entanglement

Interpretation of the connective structure

A = 〈φλ|d|φλ〉∗ρ−1
λ (left gauge potential).

A = 〈φλ|Pλd|φλ〉∗ρ−1
λ (reduced left gauge potential), Pλ is the

orthogonal projection onto ker(H − λ1S ⊗ 1E).

B = dA− A ∧ A (curving) :
trS (ρλ(x)B(x)) measures of the entanglement entropy increase
induced by variations in the neighbourhood of x.
F = dA−A ∧A−B (fake curvature) :
trS (ρλ(x)F (x)) measures the non-adiabaticy in the neighbourhood
of x.
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Adiabatic quantum control hampered by entanglement

Charts of the curving

Average curvings (tr(ρaBa)) for STIRAP control of a 3-level atom entangled
with another one 15.

S(t) = −tr(ρ(t) ln ρ(t))

15. D. Viennot, J. Phys. A 47, 295301 (2014)
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Decoherence phenomenons

True decoherence

True decoherence : irreversible fall of the quantum state purity (trρ2)
induced by the entanglement of S with a very large environment B
(thermal bath for example), ρ = trB |ψS⊗B〉〉〈〈ψS⊗B |.
Master equation :

ı~ρ̇ = [HS , ρ]− ı

2

∑
k

γk{Γ†kΓk, ρ}+ ı
∑
k

γkΓkρΓ†k

Schmidt purification procedure : ψ ∈ HS ⊗HE where dimHE = dimHS
(E is an anchor system) with trE |ψ〉〉〈〈ψ| = ρ.

ı~ψ̇ =

(
HS ⊗ 1E −

ı

2

∑
k

γkΓ†kΓk ⊗ 1E +
ı

2

∑
k

γkΓk ⊗ Γ‡k(ψ)

)
ψ

where Γ‡k is a nonlinear operator built with Γ†k.
16

16. D. Viennot, J. Geom. Phys. 133, 42 (2018)
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Decoherence phenomenons

Fake decoherence

Fake decoherence : irreversible fall of the state purity (trρ2) induced by
averaging effect on a lot of copies of S,
ρ = limN→+∞

1
N

∑N
n=1 |ψSn〉〈ψSn |.

The different copies are in different states {ψSn}n because of random
initial conditions and/or a Hamiltonian HS(ϕt(x0)) which depends on a
chaotic or stochastic classical flow ϕt : Γ→ Γ (classical noises).
Schrödinger-Koopman representation : ψ ∈ HS ⊗ L2(Γ, dµ(x)). 17

ı~ψ̇ = (HS(x)− ı~1S ⊗ Fµ(x)∂µ)ψ

(ϕ̇(x0) = F (ϕ(x0))).

ρ = trL2(Γ,dµ(x))|ψ〉〉〈〈ψ|

17. D. Viennot & L. Aubourg, J. Phys. A 51, 335201 (2018)
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Decoherence phenomenons

Quasienergy states

Eigenvector of HS(θ) −
ı~Fµ(θ)∂µ with S a spin- 1

2

kicked by ultra-fast magnetic
pulses noised by a chaotic process
(defined by the Chirikov-Taylor
standard map on the torus).

⇒ definition of ergodic geometric phases in the chaotic sea (usual cyclic
geometric phases in the islands of stability). 18

18. D. Viennot & L. Aubourg, J. Phys. A 51, 335201 (2018)
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Quantum black holes

Quantum black hole : BFSS matrix model

Matrix model theory (String M-theory in non-perturbative sector) :

Event Horizon = thermalized D2-brane, i.e. stack of
quantum bosonic strings. Test particle = fermionic
string linking the D2-brane to a probe D0-brane

D2-brane = non-commutative manifold described by (X1, X2, X3)
(“space coordinate” operators of the manifold), Xi ∈ L(CN ) (N − 1 is
the number of strings of the stack).
Non-commutative Klein-Gordon and Dirac equations :

Ẍi − [Xj , [Xi, Xj ]] = 0

ı|ψ̇〉〉 = σi ⊗ (Xi − xi)|ψ〉〉

ψ ∈ C2 ⊗ CN (state of the fermionic string). ⇒ entanglement between
the spin of the fermionic string and the D2-brane (event horizon). 19

19. D. Viennot & L. Aubourg, Class. Quant. Grav. 35, 135007 (2018)
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Quantum black holes

Categorical bundle

σi ⊗XiφΛ(x) = Λ(x)⊗ 1CNφΛ(x), Λ(x) = xiσi

A = 〈φΛ|d|φΛ〉∗ρ−1
Λ (left gauge potential).

A = 〈φΛ|PΛd|φΛ〉∗ρ−1
Λ (reduced left gauge potential).

The differential manifold MΛ of all points x for which xiσi is a
non-commutative eigenvalue is the emergent “classical” event horizon.
Let f = dtrC2(ρΛA), and θ = f−1 (fijθjk = δki ) ; then
dt2 − θikθjlgkldxidxj is the space-time metric (gkl is the metric of MΛ

induced by its embedding into R3).
The curving B = dA−A∧A−F (F = dA−A∧A), is the Kalb-Ramon
(Neveu-Schwarz-Neveu-Schwarz) field (torsion potential / axion field).
Dilaton field in the gauge structure ? ? ? 20

20. work in progress...
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5 Conclusion
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Conclusion

Forthcoming works :
Decoherence : make more easy the computation of the quasienergy
states.
Quantum black hole : finish the study of the geometric structure.
General theory : generalize AQC with entangled (or noised) quantum
systems.
Open question : relation between categorical geometry,
non-commutative geometry and algebraic geometry (works of
Frédéric).
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