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The nonadiabatic temporal evolution which is associated with inelastic collisions and photoreactive processes
typically produces a final state distribution that differs markedly from the initial state distribution. Nevertheless
an adiabatic formalism is often used in a zeroth-order description of the processes; for time-periodic
perturbations the Floquet theory has been used within an adiabatic framework to provide a compact dynamical
theory which requires a basis composed of only a small number of Floquet eigenstates. The use of the
generalized Floquet theory or of the concept of a super-adiabatic basis allows the adiabatic approach to be
further extended to handle systems with quasi-periodic Hamiltonians. The present work proposes a new
approach, in which the time duration of the interaction is artificially prolonged and special absorbing boundary
conditions are introduced asymptotically over the lengthened time interval in such a way as to force the
adiabaticity of the process. The method involves what can be thought of as time-dependent optical potentials.
Some trial applications to semiclassical inelastic collisions and to photodissociation effects have shown that
the use of the new technique permits a description of the dynamical processes which is so economical that
the use of a single generalized Floquet eigenvector will suffice. The main technical feature of this constrained
adiabatic trajectory method is that it converts the problem of solving the TDSE with an explicitly time-
dependent potential into that of solving a static complex eigenvalue problem.

1. Introduction

The study of molecular dynamical systems is often character-
ized by two contrasting features. First, the nonlocal character
of the interactions, which requires a global description of all
the molecular phase space, increases the sizes of the vector
spaces involved and so increases the memory and CPU time
needed in numerical calculations. Second, in many such large
scale calculations it emerges that the dynamical processes are
in fact well described by using only a small number of the
eigenvectors in the large space, so that only a small effective
subspace of the original large space turns out to be important.
This observation has led to a renewed interest in adiabatic or
quasi-adiabatic approaches and in effective Hamiltonian meth-
ods, which are conceptually simple and which use only spaces
of small dimension.

The interest of the effective Hamiltonian formalisms is evident
when studying the laser control of molecular dynamical
processes, which is today one of the major goals of photochem-
istry. The possibility of reaching large radiation field intensities
using short-pulsed lasers has motivated an increasing amount
of experimental and theoretical work.1-4 To describe the
nonlinear effects induced by intense and ultrashort laser pulses
it is essential to possess a nonperturbative theory which describes
the nonlinear effects occurring during all of the interaction
period and which facilitates the repetitive calculation of many
propagations, in which the small number of coupling parameters
involved can be varied to find the optimum values required to

achieve the desired control process. The analysis of laser control
processes is also an appropriate field for the application of
Floquet theory, which permits an adiabatic separation between
the fast field oscillation dynamics and the slow time modulation
of the field envelope. In this framework, appropriate adiabatic
representations can be constructed by considering instantaneous
Floquet eigenvector basis sets,5-7 and a detailed understanding
of the inelastic and dissipative processes induced by the field-
matter interaction can be obtained. For example, the importance
of the laser-induced avoided crossings is clearly revealed in this
approach, and dissociation processes or inelastic transitions are
characterized by the presence or absence of nonadiabatic jumps
at the avoided crossings of instantaneous Floquet states.8,9 For
high laser frequencies a high frequency approximation can be
implemented by neglecting the rapidly oscillating parts of the
eigenfunctions. This approximation was proposed by Gavrila10

and has been tested with success in the study of the ionization
produced by high-frequency short pulses.11

One crucial consequence of the near-adiabatic nature of the
above and other processes is that an active space of few
dimensions suffices to describe the dynamical evolution of the
system concerned. This advantage justifies the use of effective
Hamiltonian theories and in particular that of the time-dependent
wave operator theory (TDWOPT),12 which has several valuable
features: It is consistent with the Floquet theory, it is applicable
without change to non-Hermitian Hamiltonians, and various
robust algorithms have been proposed for the integration of the
wave operator equation.

Clearly, the most simple dynamical evolution to describe is
that involving a purely adiabatic evolution and a one-
dimensional active space. One of the important trends in modern
theory is the attempt to construct representations which will
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make it possible to start from a system which apparently
undergoes nonadiabatic transitions involving large spaces and
to transform it so as to reduce it as nearly as possible to one
undergoing an adiabatic evolution. The use of a generalized
Floquet basis set13 and of Berry’s super-adiabatic basis con-
cept,14,15 belong to this trend of ideas. Nevertheless great
difficulties arise in putting such ideas into practice. The main
one is that of choosing the dimension of the active space needed
to obtain a given degree of accuracy of the results. The necessity
of choosing a priori the instantaneous Floquet eigenstates
involved in describing a nonadiabatic process is a severe
handicap because one does not generally have precise indications
about the degree of nonadiabaticity before solving the problem.

To remedy this, we tackle this problem by adopting another
point of view. We do not try to define a new more efficient
representation but we modify the Hamiltonian over an artificially
prolonged time interval so as to transform the primary dynamical
problem into a pure eigenvalue problem (which of course
represents the extreme limit of adiabaticity). The paper is
organized as follow.

Section 2 analyses the adiabaticity concept in molecular
dynamics by paying careful attention to the case of periodic
and quasi-periodic Hamiltonians. The concept is developed in
the framework of the Floquet theory by first presenting a
standard formulation using the instantaneous Floquet state
concept and then introducing a generalized Floquet formalism.
The correlation between the adiabaticity of a process and the
asymptotic behavior of the generalized Floquet eigenstates is
investigated.

Section 3 presents the constrained adiabatic trajectory method
(CATM) by developing a theoretical analysis of the asymptotic
behavior of the Floquet eigenstates in the presence of local time-
dependent optical potentials.

Section 4 illustrates the theory by treating two examples
which both involve short time interactions, since the CATM in
its present version is limited to such problems. The first concerns
the semiclassical treatment of the He-N2 inelastic collision, a
system which was investigated many years ago by Gert
Billing.16,17The second is the photodissociation of the H2

+ ion
subjected to a short and intense laser pulse. Particular emphasis
is given to the beneficial dispersion of the eigenvalue spectrum
produced by the introduction of a time-dependent absorbing
potential, with a consequent notable improvement in the rate
of convergence of the iterative calculations.

Section 5, the conclusion, analyses the merits and defects of
this new method and describes some planned improvements to
it.

2. Adiabaticity and Floquet Theory

We consider in this paper the case of quantum systems for
which the time-dependent Hamiltonian includes a perturbation
V(t)

where the termsAi(t) represent quantum mechanical operators
depending both on the quantum coordinatesq and on the
associated momenta- ip∂/∂q and the Fi(t) are pure time
functions introduced by the semiclassical treatment of the
interaction. In our first example, the semiclassical treatment of
a diatom-atom collision,q represents the molecular vibration
coordinate, and the time functions describe the translational and
rotational parts of the couplings, including the coriolis terms,

in a description in which the relative translation and the
molecular rotational motions are obtained by integration of the
classical Hamilton differential equations. In the second example,
the photodissociation of H2+, the use of the dipole approximation
and of the length gauge in a semiclassical description leads to
the Hamiltonian:

where the field-matter interaction is assumed to be turned on
at t ) 0. The initial phaseθo appears as a parameter andr,
which plays the role ofq in eq 1, is the interfragment axis
coordinate.

2.1. The Instantaneous Floquet Eigenstates Basis Set.The
standard adiabatic theorem18 cannot be applied for these two
chosen applications. In the case of semiclassical collisions the
translational and rotational couplings are not generally adiabatic
functions of time. The difficulty appears to be more severe for
the second example, since eq 2 exhibits rapidly oscillating terms
which remove the possibility of expanding the wave function
using a few instantaneous eigenvectors ofH(θo + ωt) at each
time t. However, this last problem can be partially solved by
using an enlarged Hilbert space

whereL2 denotes the space of square integrable functions on
the circle of length 2π andH is the molecular Hilbert space.
On this enlarged space the Floquet Hamiltonian is defined as

whereHF is 2π-periodic as a consequence of going fromt to θ
and where the local optical potentialVopt(r) allows dissipative
systems to be treated using finiteL2 representations. In the
following the system will be described equally by usingθ or t.

The advantage of the Floquet Hamiltonian (eq 4) arises from
the fact that the Floquet dynamics inK and the semiclassical
dynamics inH are essentially identical. A precise demonstration
of this equivalence can be found in the review paper of Gue´rin
and Jauslin.19 A complementary result is that of the equivalence
between the purely quantum approach and the Floquet formula-
tion under some precise conditions in the strong field regime,
as expressed in the symbolic formula

where the photon averagenj is assumed to be very large and
where the symbolf in eq 5 relates to a model of a quantized
field in a cavityV taken at the limitsV f ∞, nj f ∞, with F )
nj/V ) Cte. The idea of the equivalence between the quantum
dressed state dynamics inH X F (the tensorial product of the
Hilbert space of the molecule and the Hilbert space of the
photons) and the Floquet dynamics in theK space was present
in the pioneering work of Shirley,5 and was developed more
explicitly by Bialynicki-Birula and Van20 and by Gue´rin et al.21

The use of the Floquet HamitonianHF then appears as the
intermediate step necessary to demonstrate the equivalence of
the pure quantum and the semiclassical treatments in the strong
field limit.

The Floquet dynamics also provides a new complete basis
set at each instant, formed by the instantaneous eigenvectors
of HF(t) (i.e., the eigenvectors|λR(t)〉 of HF(t) in which the
adiabatic parametersR(t) of the field are frozen at their
instantaneous values). This basis possesses a strongly adiabatic

H(r,θo + ωt) ) Ho(r) - µb(r)EBo(t) cos(θo + ωt) (2)

K ) H X L2(S1, dθ/2π) (3)

HF ) H(θ) - iVopt(r) - ipω ∂

∂θ
(4)

(Hmol + Hrad + V) - pωnj f HF (5)

V(t) ) ∑
i

Ai(q,
∂

∂q)Fi(t) (1)
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character when compared with theH-eigenvectors basis. This
is a direct consequence of the quasi-stationary character of the
spectrum ofHF in the complex plane when working in the
enlargedK space; by comparison theH(t) spectrum makes
fortuitous temporary resonances appear during the time evolu-
tion. In favorable situations only a single Floquet eigenstate
participates in the dynamics, which can then be treated by using
the following adiabatic conjecture:

If Ψ(t ) 0) is identical to a Floquet state|λR(0)〉 and if the
Floquet state is isolated during the eVolution, then the system
remains in the instantaneous Floquet eigenstates|λR(t)〉 continu-
ously connected to|λR(0)〉

When the system introduces resonance effects, this purely
adiabatic approach should be generalized by combining adiabatic
trajectories with local diabatic evolution. The treatment of
Guérin et al.22 (see also ref 19) relates the efficiency of the
population transfer to the topology of the dressed state energy
surfaces, which varies as a function of the time-dependent
external field parameters.

2.2. The Generalized Floquet Basis Set.The small dimen-
sion of the active space into which the dynamics is projected
in the framework of the Floquet theory has led to the rapid
development of new attemps to extend the standard Floquet
theory. These include the exact adiabatic representation of
Nguyen-Dang,23,24the time dependent density functional theory
(TDDFT)-Floquet formalism,25 which provides a general time-
independent approach for the treatment of multiphoton processes
of many-electron quantum systems, and the Floquet treatment
of Dresse and Holthaus,15 which uses the framework of Berry’s
superadiabatic basis concept14 and introduces an iterative scheme
of unitary transformations to construct basis sets which describe
the fast part of the dynamics.

If the perturbationV(t) in eq 1 vanishes at the two boundaries
of the time interval [0,T] on which the interaction is represented
then one can regardV(t) as the first cycle of a periodic function
with periodT.13 This is just a mathematical artifact; its principal
consequence is the existence of a complete set of Floquet
eigenvectors|λη〉 in K ) H X L2(S1, dθ/2π) where the period
θ ) 2π now corresponds tothe full duration of the interaction
(i.e., a much larger period than the optical period). These
eigenvectors obey the eigenvalue equation

and satisfy the orthonormality condition7

A convenient labeling of the Floquet eigenstates|λj,n〉 can be
produced by using the two indicesj andn referring to theHo-
molecular eigenstates and to the Fourier functions (with〈t|n〉
) exp(inωt). By taking into account the periodicity of the
Hamiltonian, one can rigorously expand the wave function using
the group of Floquet eigenvectors which belong to the first
Brillouin zone (n ) 0)

where|i〉 designates the initial molecular state.
This new basis possesses a highly adiabatic character, since

the introduction of the identity|λj,0(t ) 0)〉 ) |λj,0(t ) T)〉 in eq
8 leads to the result

with

and

In the context of the adiabatic picture using instantaneous
eigenstates, Barash et al.11 make a distinction between “adiabatic
ionization” (caused by the presence of complex energies) and
“nonadiabatic ionization” (caused by nonadiabatic transitions).
This distinction also exists in the present picture. The eigen-
valuesEλj,0 in eq 9 are complex in photoreactive processes and
so produce a temporal decrease of the norm of the wave
function. When a single resonance Floquet state is much longer
lived than all the others, one can have cases in which this single
surving state controls the long-time development, even if the
short-time dynamics is largely nonadiabatic. Nevertheless the
use of generalized Floquet eigenstates identifies more clearly
the presence of purely adiabatic processes. When an instanta-
neous basis set is used, one has in every case〈λj,o(t ) 0)|i〉 )
δi,j, because the instantaneous Floquet state is initially propor-
tional to the free molecular state. On the contrary, when the
generalized basis set is used, the same equation is the exclusive
signature of an adiabatic process. TheT periodicity of the
eigenvectors means that, at the adiabatic limit, a unique state
|λi,0〉 is present, characterized by the asymptotic conditions〈k|λi,0-
(0)〉 ) 〈k|λi,0(T)〉 ) δi,k. At this limit the generalized Floquet
eigenvectors are the simple juxtaposition at successive instants
of the instantaneous Floquet eigenstates (see refs 12 and 26 for
a rigorous demonstration). Outside the adiabatic limit the
relationship between instantaneous and generalized Floquet
eigenvectors is more intricate. One can simply affirm that when
several eigenstates are present in the sum appearing in eq 8
then the process is nonadiabatic, since one cannot simultaneously
satisfy the requirementck(0) ) δi,k imposed by the initial
conditions and also the final conditionck(T) ) δi,k; this
impossibility is due to the presence of the complex phase factors
exp(-iEλj,0T/p) in eq 9. The case of adiabatic ionization (or
adiabatic dissociation) defined by Barash et al.11 represents an
intermediate case for which the final wave function is on the
state|i〉 but with a weight|ci(T)|2 which is strictly smaller than
unity. One can finally summarize these results as follows:

There exists a direct correlation between the adiabatic
character of the dynamics, the number of eigenstates in the
Floquet eigenstates expansion (eq 8) and the asymptotic
conditions satisfied by the generalized Floquet eigenVector|λi,0〉.

3. The Constrained Adiabatic Trajectory Method

When a few generalized Floquet states compose the wave
function (cf. eq 8) the treatment should involve the degenerate
active space spanned by these Floquet states. The time-
dependent wave operatorΩ(t, 0) () U(t, 0)[PoU(t, 0)Po]-1) can
be used to select the corresponding model spaceSo(Po) at t )
0 by implementing the wave operator sorting algorithm.27,28

The wave operator formalism has some similarities with the
well-known theory of the nonlocal optical potential.29,30 The
two theories try to represent the exact dynamics of the quantum
system by working in the restricted model space. This simplified

HF(q,
∂

∂q
, t)|λη(q, t)〉 ) Eη|λη(q, t)〉 (6)

〈〈λη|λη′〉〉 )1
T∫0

T
dt 〈λη(q, t)|λη′(q, t)〉 ) δηη′ (7)

|Ψ(t)〉 ) ∑
j

e-iEλj,0t/p|λj,0(t)〉 〈λj,0(t ) 0)|i〉 (8)

Ψ(t) )∑
k

ck(t)|k〉

ck(0) )∑
j

〈k|λj,0(0)〉 〈λj,0(0)|i〉

ck(T) )∑
j

e-iEλj,0t/p〈k|λj,0(0)〉 〈λj,0(0)|i〉 (9)
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dynamics is obtained in the two schemes by suppressing any
reflected quantum flux from the complementary spaceSo

+ back
to the So space. Other close similarities exist with the (t, t′)
theory of Peskin and Moiseyev,31,32,33and have been analyzed
in ref 12.

The basic equation of the wave operator theory can be written
in the K space as

If the model space includes all the unperturbed states continu-
ously connected to the generalized Floquet eigenstates which
initially have a nonzero overlap with the wave function then
the integration of eq 10 (e.g., by using the recursive distorted
wave approximation,34,35 or the single cycle method36) gives a
complete basis of the active space This active (or target) space
is composed of a single Floquet state|λi,n)0〉 in the adiabatic
limit, since 〈k|λi,n)0(0)〉 ) δi,k and the dynamical problem in
the Hilbert space is thus equivalent to a pure nondegenerate
eigenvalue problem in the extended Hilbert space. On the
contrary, eq 10 becomes a degenerate eigenvalue problem in
the general nonadiabatic case, and so represents a larger
computational task when the active space is large.

3.1. The Concept of the Local Absorbing Potential.In this
section, we will artificially modify the investigated system in
order to give to the general case the simplicity of the adiabatic
case. Our analysis is limited to a study of the evolution of a
quantum system characterized byH(t) ) Ho + V(t) over a short
time interval [0,To]. The perturbation satisfies the condition
V(0) ) V(To) ) 0, and the system is initially in an eigenstate
|i〉 of Ho, i.e., 〈k|Ψ(0)〉 ) δk,i.

This basic problem can be summarized as follows:
If the initial condition 〈k|λ(0)〉 ) δk,i is satisfied then

equiValent results are obtained by solVing either the Schrödinger
equation in the Hilbert space or the Floquet eigenequation in
the extended Hilbert space:

One then has a linear correspondence at any time between
the solutions:

Unfortunately the simple initial condition is never satisfied,
unless the dynamics issuing from|i〉 is purely adiabatic (in this
case one has〈k|λi,n)0(0)〉 ) 〈k|λi,n)0(To)〉 ) δk,i). The impos-
sibility of representing the solution of the TDSE by using a
single generalized Floquet state on [0,To] follows then from
the boundary conditions. The periodicity of the Floquet states
on [0, To] is inconsistent with the existence of any inelastic
solution. To overcome these difficulties without increasing the
numerical task, we propose to solve the problem by artificially
forcing adiabatic behavior within a one-dimensional space, using
the procedure described below.

The initial time interval [0,To] on which the interationV(t)
is nonzero is prolonged using an additional time interval [To,
T] on which absorbing local potentials are introduced. These
potentials are present on the different channels (dissociative or
bound channels) but not on the initial one (i). The initial state
on the channel (i) has in our example the simple Fourier basis
expansion|Ψ(t ) 0)〉 ) |i, n ) 0〉. The choice (n ) 0)
corresponds to an initial phaseθo (the relative phase between

the molecular state and the perturbation) which is uniformly
averaged over [0, 2π].

To simplify our scheme, the same Gaussian optical potential
is introduced on each channel except the initial one.

Th is equal to (To + T)/2, and τ is chosen such thatVopt is
negligible both att ) To and att ) T. The CATM is presented
schematically in Figure 1.

3.2. Asymptotic Analysis of the Modified Floquet States.
The optical potentials are introduced to recover the final
conditions〈f|λ(T)〉 ) 0 if f * i and finally to recover the initial
conditions 〈f|λ(0)〉 ) 0 if f * i as a consequence of the
periodicity of the Floquet states. Between the timesTo andT,
only the derivative term- ip∂/∂t, the free molecular Hamilto-
nian, and the optical potentials are present in the TDSE. One
can then recover the exact influence of-iVopt(t), since in this
interval the Floquet states have a simple analytical expression,
namely

with

where Ef is the asymptotic energy which characterizes the
channel (f).

The main effect ofVopt is to produce the absorption of the
asymptotic components|λE(t)〉f*i which are produced by the
exponentially decreasing term exp{-1/p∫To

t Vopt dt′} The
analysis of eq 15 is nevertheless not straightforward, because
the optical potentialsVopt which are explicitly present in this
equation also indirectly influence the eigenvalueE by inducing
complex shifts. Their contributions are equal to〈〈λ†| - iVoptλ〉〉
where the eigenfunctions|λ†〉 of HF

† together with the Floquet
eigenstates form a biorthogonal basis set.37 By using eq 15 and
the identity (|λE

†〉 ) |λE〉*), one obtains the result

HF(t)Ω(t) ) Ω(t)HF(t)Ω(t)

) Ω(t)HF
eff(t) (10)

HF(t)|Ψ(t)〉 ) 0 S (HF - E)|λ〉 ) 0 (11)

|Ψ(t)〉 ) exp{ 1
ip

Et}|λ(t)〉 (12)

Figure 1. Schematic representation of the constrained adiabatic
trajectory method.

- iVopt(t) )∑
l

|l〉〈l|{- iA exp[- (t - Th

τ )2]}(1 - δl,i) (13)

|λE(t)〉 ) ∑
f

|f〉 |λE(t)〉f (14)

{|λE(t)〉f*i )|λE(To)〉f expi/p∫
To

t
(Re(E)-Ef)dt′exp-1/p∫

To

t
(Im(E)+Vopt)dt′

|λE(t)〉i ) |λE(To)〉i expi/p∫
To

t
(Re(E)-Ei)dt′ exp-1/p∫

To

t
Im(E)dt′

(15)
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Except for the trivial (closed channel) case for which|λ(To)〉f is
equal to zero the value of this integral principally depends on
the Fourier frequencies (ωf ) Re(E) - Ef). Two different cases
can be distinguished, denoted by the numbers 1 and 2 below.

1. Re(E) is quite different from all the inelastic channel
energiesEf*i. In a perturbative scheme this situation manifests
itself via the vector|λi,n)0〉, which is continuously connected to
the initial nonperturbed state|i, n ) 0〉 when one assumes a
state-to-state correspondence between the nonperturbed states,
(i.e., the eigenvectors ofHo - ip∂/∂t and the Floquet eigen-
states: (k, n) S λk,n). The integral on the right of eq 16 then
tends to zero, since all the Fourier frequenciesωf take large
values. The contribution of the optical potential to the eigenvalue
is negligible, so that

The “increasing” effect due to Im(E) < 0 is thus totally canceled
by the “decreasing” effect due toVopt > 0. If the state|λE〉 is a
resonance, then Im(E) is related to a natural width which is
independent ofVopt. It is nevertheless possible to take large
amplitudes ofVopt in order to satisfy (17). By introducing (17)
into (15), one easily concludes that all the asymptotic compo-
nents|λE(T)〉 f take negligible values, except the component
corresponding to the initial channel (i). As the periodicity of
|λ〉 imposes the same values att ) 0, one finally obtains the
result that this modified Floquet eigenvector obeys the expected
boundary conditions|λ(0)〉k ) δk,i. By taking into account eqs
11 and 12, one can thus affirm that the selected eigenvector
|λE(t)〉 is proportional to the true wave function on the time
interval [0, T0], or more exactly that the expansion (eq 8)
requires only a single term|λi,0(t)〉. This affirmation takes into
account the time-arrow (from the past to the future) introduced
by the TDSE so that the extra time-perturbation introduced after
T0 cannot retrospectively influence the true system beforeT0.
In other words, the calculation of a unique eigenstate in theK
space takes the place of the integration of the TDSE.

2. Re(E) is about equal to at least one inelastic channel energy
Ef. The corresponding Fourier frequencyωf becomes very small
in eq 16 and the direct consequence is a large contribution of
Vopt to E which acquires a large negative imaginary part Im(E).
By introducing this result into (15), one observes that the
component|λE〉i increases exponentially with the term exp(-
1/p ∫ Im(E) dt). As |Im(E)| itself increases withVopt, it rapidly
becomes impossible to satisfy the periodicity condition〈i|λE-
(0)〉 ) 〈i|λE(T)〉. This implies that|λE(To)〉i = 0 and consequently
that |λE(0)〉i = 0. For the other components withf * i, the two
contributions Im(E) and Vopt have opposite signs and can
compensate to give finite asymptotic amplitudes. In this case
the boundary condition is not consistent with eq 11, and the
eigenvector|λE〉 is not proportional to the wave function.

4. Two Simple Examples

Two simple examples will be treated in this section to test
the predictions presented in the previous section and to analyze
the performance of the constrained adiabatic trajectory method.

The first example concerns the semiclassical treatment of an
inelastic molecular collision. This example proves that the
application of the formalism is not limited to photoreactive
processes but can be applied more generally to systems
characterized by a periodic time-dependent potentialV(t) (eq
1) whatever may be the origin of this explicit time dependence.
The second example concerns the photodissociation of a
molecule subjected to a short and intense laser pulse. This
example illustrates the capacity of our model to treat open
dissipative systems.

4.1. The Characteristics of the New Approach.Before
investigating two examples, we summarize the main charac-
teristics of our approach.

The implementation of the new treatment is simple. The
Floquet Hamiltonian is formed by prolonging the time duration
of the interaction [0,To] from To to T and by introducing over
the lengthened time interval [To, T] the optical potentials (eq
13). Then the Floquet eigenstate which is continuously related
to the initial state|i, n ) 0〉 is calculated. The wave function,
simply obtained by multiplying the eigenstate by the phase term
exp{1/ip Et} (eq 12), is finally used to analyze the products at
the intermediate timeTo.

In our first example the basis set is very small and the small
size of the Floquet matrix (N < 103) makes it is possible to
obtain, by diagonalization, not only the eigenvalueEλi,n)0 but
also the full spectrum in the complex plane and thus to monitor
the direct influence ofVopt(t) on this complete spectrum. This
example then permits a direct illustration and analysis of the
theoretical developments presented in section 3.2. Nevertheless
we note that the calculation of the final eigenstate|λi,n)0〉 need
not be done by full diagonalization in the case of larger systems;
it can be done more simply by using filter-diagonalization38

methods, a Chebyshev expansion of a projection operator,39 or
a wave operator diagonalization method. The wave operator
option has been selected in our second example, using a recent
new algorithm which performs the iterative RDWA integration
of the Bloch equation (HFΩ ) ΩHFΩ) and which incorporates
nonlinear Pade´ approximant techniques.40 The calculation is
completed by testing for obedience to the initial condition〈k|λ-
(t ) 0)〉 ) δk,i imposed byVopt.

The main principle of our formulation is the transformation
of the task of solving the Schro¨dinger equation of evolution
into that of solving a nondegenerate eigenvalue problem. This
approach opens up interesting new questions about the status
of the time variable in quantum mechanics and about the concept
of adiabaticity. The calculation artificially suppresses the
constraint of periodicity on the generalized Floquet eigenstate
on the interval [0,To]. This periodicity is incompatible with
the inelastic character of the process and is responsible for the
dispersion described in eq 8.

Two obvious advantages result from the introduction of the
absorbing potentials. First, the solution separates a fast oscil-
lating term exp{1/ip Et} and a slowly varying term|λ(t)〉 (even
if |λ(t)〉 defined on [0,T] exhibits more rapid variations on [0,
To] near the instants which correspond to the avoided crossings
of the instantaneous eigenstates). Second, the precision of the
result is related solely to the precision of obedience to the
asymptotic condition〈k|λ(t ) 0)〉 ) δk,i (forced by the optical
potential) and not to the composition of the degenerate model
space. It is thus not necessary to repeat detailed calculations
many times in order to determine a suitable dimension for the
model space.

The present version of the CATM is devoted to the study of
short time interactions. Our second example, which involves a

〈〈λE
†| - iVoptλE〉〉 )

∑
f*i

(|λE(To)〉f)
2∫To

T
-iVopt(t) exp2i/p∫

To

t
(Re(E)-Ef)dt′

exp-2/p∫
To

t
(Im(E)+Vopt)dt′ dt (16)

|∫To

t
Im(E) dt′| , |∫To

t
Vopt dt′| (17)
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pulse with 100 optical cycles, is thus an upper limit case; larger
pulses would require too large a Fourier basis. This constraint
is evidently a severe limitation and will be removed in a future
version (some details are given in the conclusion). The two
examples examined correspond to short interactions (To < 10-13

s). For such systems there exist numerous techniques, e.g, second
order differencing schemes, split operator methods, a short
iteration Lanczos technique, the (t, t′) method. However, our
second example reveals that the CATM is faster than the second
order differencing scheme (for the same quality of solution).
This result is not obvious since the CATM requires the
calculation of internal eigenstates in the dense spectra of large
nonhermitian matrices. This is a severe test which often induces
slow convergences of the iterative algorithms used in eigenvalue
calculations. The good calculational performance arises from
an interesting effect: the time-dependent absorptions produce
a beneficial dispersion of the eigenvalues around the initial one,
with a significant increase in the distance betweenEi,n)0 and
the other nearest eigenvalues. This induces a convergence of
the algorithm after less than 50 iterations and explains the very
small CPU time required. Another advantage of the CATM
appears when many calculations need to be repeated with slight
modifications of the couplings, to test for example the sensitivity
of the results as a function of the perturbative parameters. The
iterative nature of the method makes possible the rapid
generation of new solutions (after only one or a few iterations)
by applying the iterative algorithms starting from the previous
solution.

4.2. The Semiclassical Treatment of the He)N2 Molecular
Collision. For the semiclassical treatment of inelastic molecular
collisions, Gert Billing introduced many years ago the so-called
VqRcTc method, in which both rotation and translation are treated
classically and vibration is treated quantum mechanically. This
approach reduces the quantum dimensionality of the problem
and for heavy diatomic molecules such as CO and N2, it gives
results which for a wide range of energies are much better than
the quantum infinite order sudden (IOS) approximation, when
both are compared to the coupled-states (CS) results as a
standard. Billing41 tested this approach on the system He-N2

by using the potential energy surface (PES) of Banks et al.42

The PES is given by the following expression

where

for i ) 0 and i ) 1; for i ) 2 only the short-range term is
included in eq 19.R is the distance from He to the center of
mass of N2, r is the N2 interatomic distance andγ is the angle
betweenR and r.

The time-dependent Hamiltonian which drives the quantum
oscillator is given by the HamiltonianHo(r) of the isolated N2
molecule plus a time-dependent perturbation relating to the
matrix elements of the potential (eq 18) and the Coriolis
coupling. The classical equations of motion are integrated to
give five different functionsFi(t) (cf. eq 1) which describe, on
a common fixed time interval, the translational and rotational
parts of these couplings.

They are represented in Figure 2 for a particular choice of
the initial conditions as randomly selected by a Monte Carlo

procedure. For consistency, all the results presented here
correspond to this particular collision. Nevertheless, these
restricted results do correctly characterize the CATM since all
the numerous other simulations, not presented here, finally lead
to the same conclusions.

The Floquet Hamiltonian is formed for this selected collision
by prolonging the time duration of the interaction [0,To] from
To to T with (T - To) ) To ) 25.0× 10-14s. The basis of the
extended Hilbert space is the product of the 5 first vibrational
states of N2 and of 128 Fourier states used to describe the time
interval from 0 up toT. The diagonalization ofHF gives a
complex spectrum; the part of the spectrum around the eigen-
value of the initial state (EV)1,n)0

o ) is presented in Figure 3.
This figure shows the spectrum ofHF for two cases.

The first case introduces an amplitudeA of the optical
potentials equal to zero (eq 13). The symbol+ represents the
eigenvalueEλV)1,n)0 connected to the initial state|V ) 1, n )
0〉 and the squares represent the other eigenvalues. All these
eigenvalues are on the real axis since in this caseHF is an
Hermitian matrix.

In the second case the amplitude of the optical potentials is
finite. The symbol× is used forEλV)1,n)0, and black squares
refer to the other states. In accordance with our analysis,
EλV)1,n)0 is not affected by the introduction ofVopt(t). The two

V(R, r,γ) ) ∑
i)0

2

Vi(R,γ)(r - rj)i/rji (18)

Vi(R,γ) )
∂

i

∂ri
(∑

j)1

2

Cj exp(- RjRj) - ajRj
-6) (19)

Figure 2. Five functions Fi(t) representing the translational and
rotational parts of the potential and Coriolis coupling for a He+ N2

collision as a function of time.

Figure 3. Part of the spectrum ofHF for the He+ N2 collision which
is near the eigenvalue corresponding to the initial state. The symbol+
and the squares correspond to an Hamiltonian without optical potential.
The symbols× and the black squares refer to the same Hamiltonian
with optical potentials.
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corresponding eigenvalues are perfectly merged. Other states
situated on the real axis are also unaffected by the introduction
of Vopt. The eigenvaluesEλV)1,n*0 corresponding to the two cases
(with and without optical potentials) are also perfectly merged.
This arises from the periodic properties of the Floquet eigen-
states and eigenvalues

This periodicity is evident in Figure 3.
All the other eigenvalues move in the complex plane

according to our predictions (see section 3.2). To confirm our
analysis, we present in Figures 4 and 5 the components at the
initial time t ) 0 of some eigenvectors on the vibrational
channels, namely (|〈V|λ(t ) 0)〉|) for two extreme amplitudes
of the optical potentials:A ) 0.2 andA ) 25.0. On these
figures, the full line corresponds to|λV)1,n)0〉 and the four dashed
lines to the four other Floquet states of the same Brillouin zone
|λV*1,n)0〉.

Figure 4 reveals that the amplitudeA ) 0.2 is manifestly too
small. The square moduli of the components〈V ) 0|λV)1,n)0〉
and〈V ) 2|λV)1,n)0〉 are equal to about 10-5. This is too large
an error and reveals a noncomplete absorption on these two
channels. The perturbation introduced by the optical potential

is also relatively small and one can recognize the different
eigenstates|λv*1,n)0〉 by simply looking at the several largest
components.

The error has vanished in Figure 5. ForA ) 25.0, the square
modulus of the largest boundary components{〈V′|λV)1,n)0-
(0)〉}V′*1 is smaller than 10-11. According to eq 12, this Floquet
state is proportional to the solution of the Schro¨dinger equation.

For the four other eigenstates of the same Brillouin zone with
eigenvalues possessing large imaginary parts, the squared
amplitudes|〈V ) 1|λ(0)〉|2 are very small (<10-12), in confor-
mity with our analysis. Note that for these states the optical
potentials give such strong perturbations that it is impossible
to recognize the unperturbed states|V, n ) 0〉 which are
continuously connected to these Floquet states.

The vibrational transition probabilitiesP1f0 and P1f2 are
represented for this collision on a logarithmic scale as a function
of time in Figures 6 and 7. The relative value of the two
probabilitiesP1f0 andP1f2 is not significant because they do
not correspond to the same total energy after the symmetrization
procedure of the initial+ kinetic rotational energyU which is
introduced in the (VqRcTc) method. In Figure 6, the CATM
results obtained by using eq 12 are in perfect agreement with
the results coming from the integration of the Schro¨dinger
equation.

Figure 7 confirms that this success is due to the artificial
boundary conditions introduced over the lengthened time

Figure 4. Representation on a logarithmic scale of the boundary
components of different Floquet eigenstates on the five vibrational
channelslg10|〈V|λ(t ) 0)〉|2. The full line corresponds to the Floquet
state which is continuously connected to the initial state, namely
|λV)1,n)0〉. The dashed lines correspond to the four other Floquet states
of the first Brillouin zone,|λv*1,n)0〉. The common amplitude of the
optical potentials is equal toA ) 0.2.

Figure 5. Same as Figure 4 but forA ) 25.0.

{〈〈λj,m|i,n〉〉 ) 〈〈λj,0|i, n - m〉〉
Eλj,m ) Eλj,o

+ np2π/T (20)

Figure 6. Transition probabilitiesP1f0 andP1f2 on a logarithmic scale
as a function of time. The symbols× and the squares are the “exact”
semiclassical results obtained by integration of the TDSE for 1f 0
and 1 f 2, respectively. The solid lines correspond to the CATM
results. The optical potential amplitude is equal toA ) 25.0.

Figure 7. Same as Figure 6 but without the asymptotic optical
potential.
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interval. It reveals that calculations working with only one
unperturbed generalized Floquet eigenvector and without optical
potentials fail to produce the correct final probabilities and even
gives inconsistent results (for example nonzero values at the
time origin before the molecular couplings can produce transi-
tions).

4.3. The Photodissociation of H2+. We consider as a second
example the photodissociation ofH2

+ via an excitation and a
dissociation step.

The sudden switching on of intense laser pulses tuned to the
transition (2Σg

+ f 2Σu
+) produces multiphoton processes with

stimulated emissions during the interaction period and finally
induces dissociation and inelastic transitions between vibrational
states of the ground surface.43 In our example the electric field
is described by a Gaussian envelope of the form

with a rise time ofτ ) 5fs and a plateau duration of (t2 - t1 )
25fs). The pulse is represented in Figure 8.

This particular system has been studied recently in the
framework of the generalized Floquet approach for a carrier
wave frequency equal toωo ) 0.295868 au (corresponding to
a wavelengthλo ) 154 nm) and a maximum amplitudeεo

corresponding to the intensityI ) 1012 W cm-2.44 It was found
that the dissociation probabilities can be accurately described
by a single generalized Floquet eigenstate but that an accurate
description of inelastic transitions requires more than one
generalized Floquet state.

This system is an interesting test for the CATM for two
reasons. First, in contrast to the first example, this is an open
and dissipative system which does not conserve the norm of
the wave function. Conventional asymptotic radial absorbing
potentials are used along the two dissociative potential surfaces,
and it is interesting to know whether their presence is compatible
with the introduction of time-dependent optical potentials.

Second, it introduces a complicated time dependence. Despite
the short duration of the pulse, the time variation of the coupling
(see Figure 8) includes about 100 optical oscillations. Whether
our model has the capacity to take into account such complicated
time-dependencies is a first interesting question. A second
question relates to the large basis set produced by the long time
variations in the extended Hilbert space. The complete product
basis is constituted by 204 800 states (200 grid states to represent
the two surfaces and 1024 Fourier states to span the large time
interval). Within this basis the CATM requires the calculation
of the generalized Floquet eigenstate|λV)0,n)0〉 (associated with
the first vibrational state of the ground surface) after the
introduction of asymptotic optical potentials. This eigenvector
is calculated in our treatment within the framework of the Bloch
wave operator theory, using a recent new algorithm.40 The
efficiency of this iterative procedure which calculates the
perturbed eigenvector|λV)0,n)0〉 from the nonperturbed one|V
) 0, n ) 0〉 evidently depends on the spectrum ofHF. From
this point of view the CATM is very interesting because it

concentrates the dynamics into a single eigenstate and simul-
taneously isolates the corresponding eigenvalue. For our first
test problem this second effect of the optical potential is obvious
in Figure 3. The addition of absorbing boundaries increases the
distance between the initial eigenvalue and its neighbors. In our
second application the basis set is too large to permit calculation
of the full spectrum ofHF but the analysis40 made on the same
system reveals a large increasing of the distance between the
unperturbed initial eigenvalue and its neighbors (without field-
matter interaction) as compared with the distortion of the
spectrum due to the field-matter interaction. The optical potential
approach concentrates the expansion of the wave function onto
a single eigenstate and consequently, it cannot easily handle
near or exact degeneracies which would produce mixing of
different eigenstates.

We present in Figures 9 and 10 the results of this procedure
for an intensity of the field equal to 1012 W/cm2. The dissociation
probability and the inelastic transition probabilitiesP0f1, P0f2

andP0f3 are compared with the corresponding results obtained
by a direct integration of the Schro¨dinger equation. Figure 9
shows a perfect agreement of the CATM results with the “exact”
results. Moreover the perturbative calculation of the Floquet
eigenstate with the iterative RDWA procedure uses less CPU
time than the propagation of the wave packet with a second
order differencing scheme. This is a consequence of the
influence of the optical potentials on the spectrum. The greater

Figure 8. Laser pulse as a function of time.

Figure 9. Dissociation probability and vibrational transition prob-
abilities on a logarithmic scale as a function of time for an intensity
equal to 1012 W/cm2. The dots correspond to the integration of the
Schrödinger equation: (+) dissociation probability; (×) P0f1; (/) P0f2;
(squares)P0f3. The dashed and full lines correspond to the results of
the CATM.

H2
+(2Σg

+, V ) 0, J ) 0) + npωo f H2
+(2Σu

+) f H+ + H(1s)

(21)

E(t) ) {εo exp[- (t - t1
τ )2] for t g t1

εo for t1 e t e t2

εo exp[- (t - t2
τ )2] for t g t2

(22)
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isolation of EλV)0,n)0 significantly increases the speed of
convergence of the RDWA procedure.

Figure 10 reveals the main importance of the use of absorbing
boundaries. Without optical potentials the Floquet solution fails
to produce the correct bound state to bound state transition
probabilities and even gives nonzero values at the time origin.
The dissociation probability remains correct; this is consistent
with a preceding study which concluded that a single Floquet
resonance is sufficient to describe the photodissociation.44 The
indirect positive effect of the optical potentials in increasing
the radius of convergence and the speed of convergence of the
eigenvalue integration procedure permits the solution of this
reactive problem for stronger field amplitudes. For an intensity
of I ) 9. × 1012 W/cm2 Figure 11 reveals the same perfect
agreement between our results and the exact ones.

5. Conclusions and Perspectives

This work has explored the joint use of the stationary wave
operator theory to solve the generalized Floquet eigenvalue
problem and of time-dependent absorbing potentials to force
adiabatic behavior. This approach provides a compact dynamical
theory in which the calculation of a single generalized Floquet
eigenvector suffices to describe correctly the dynamics induced
by the TDSE. Our study has revealed that this new method
presents several advantages. It is consistent with the Floquet
theory and can be applied both to the semiclassical description
of inelastic collisions and to photoreactive processes due to the
interaction between matter and pulsed laser fields. In the latter
case, it is perfectly consistent with the use of the non-Hermitian
Hamiltonians generated by analytical continuations in the

complex plane whenL2 representations of the continua are used.
The precision of the results is limited by the degree of obedience
to the exact initial condition〈k|λ(t ) 0)〉 ) δi,k which is imposed
by the time-dependent optical potentials. In our second example
this condition is satisfied with a precision of about 10-11 (see
Figure 5) and the inelastic transitions probabilities, the survival,
and the dissociation probabilities thus have a similar error factor
(extra errors can also arise from the finite dimension of the
basis).

On the other hand, the optical potentials modify the Floquet
spectra by making them more sparse; this effect improves the
efficiency of the iterative algorithms which are used to solve
the Floquet eigenvalue problem.

The CATM is well adapted to describe the time evolution of
large quantum systems over short time intervals and makes
possible the rapid repetition of perturbative calculations when
physical parameters are slightly modified. It is thus of interest
in studies of the laser control of molecular dynamics, which
often require many simulations to choose the few adiabatic
parameters which govern the efficiency of the control process.

In its present version the method can only be applied to
systems for which the initial wave function is a single
instantaneous eigenstate of the initial Floquet operator. Conse-
quently it cannot be used for the propagation of wave packets
on grids, since the associated states initially have a large
dispersion on the DVR basis set. This defect has been analyzed
and will be removed in a new version which is currently in
development. This new version introduces an evolutive active
space and a nonorthogonal basis in order to propagate wave
packets and to construct new propagators.
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(22) Guérin, S.; Thomas, S.; Jauslin, H. R.Phys. ReV. A 2002, 65,

023409.
(23) Nguyen-Dang, T. T.J. Chem. Phys.1989, 90, 2657.
(24) Nguyen-Dang, T. T.; Manoli, S.; Abou-Rachid, H.Phys. ReV. A

1991, 43, 5012.
(25) Telnov, D.; Chu, S. I.Phys. ReV. A 1998, 58, 4749.

Figure 10. Same as Figure 9 but without optical potentials.

Figure 11. Same as Figure 9 but for an intensityI ) 9. × 1012 W/cm2.

8588 J. Phys. Chem. A, Vol. 108, No. 41, 2004 Jolicard et al.



(26) Viennot, D.; Jolicard, G.; Killingbeck, J. P. Manuscript in prepara-
tion.

(27) Wyatt, R. E.; Iung, C.; Leforestier, C.J. Chem. Phys.1992, 97,
3458.

(28) Wyatt, R. E., Iung, C. InDynamics of Molecules and Chemical
Reaction,Wyatt, R. E., Zhang, J. H. M. Dekker Inc.: New York, 1997.

(29) Austern, N.Ann. Phys. N.Y.1967, 45, 113.
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