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1 Adiabatic control and holonomic quantum computation in closed
systems

Principle of the adiabatic control
Principle of the holonomic quantum computation
Geometric framework
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Quantum control and quantum information

ı~U̇(t, 0) = (H0 +Hctrl(x(t)))︸ ︷︷ ︸
H(x(t))

U(t, 0) U(0, 0) = 1 U(t, 0) ∈ U(H)

x ∈M (control manifold).
Control problem : find a path C : [0, T ] 3 t 7→ x(t) such that
|〈ψtarget|U(T, 0)|ψ0〉|2 ' 1, with a fixed initial state ψ0 and a previously
chosen target state ψtarget.
Targets associated with quantum information problems :

U(T, 0) is a logical gate.
ψ0 → ψtarget corresponds to a transport of information.
ψtarget is an entangled state.
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Principle of the adiabatic control

Principle of the adiabatic transport

We assume that Sp(H(x)) is pure point, without any degeneracy, and
]Sp(H(x)) = N < +∞.

H(x)φn(x) = λn(x)φn(x) λn, φn ∈ C1(M)

If T � ~
minn,p inft∈[0,T ] |λn(x(t))−λp(x(t))| and if C is C1 then

U(t, 0) =
∑
n

eıϕn(t)|φn(x(t))〉〈φn(x(0))|+O(1/T )

with ϕn(t) = −~−1
∫ t

0
λn(x(t′))dt′ + ı

∫
Ct
An (An = 〈φn|d|φn〉, d being

the exterior differential of M).
T. Kato, Phys. Soc. Jap. 5, 435 (1950)
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Principle of the adiabatic control

Rapid passage by a conical crossing

We assume that :
Sp(H(x)) is non-degenerate except at x× where
λn(x×) = λn+1(x×) ;
|λn(x(t))− λn+1(x(t))| = α|t× − t|+O(|t× − t|2) in the
neighbourhood of t× such that x(t×) = x× ;
C is only C0 at x×.

U(t× + δt, t× − δt) =

(
sin ξ cos ξ
− cos ξ sin ξ

)
(φn,φn+1)

+O(1/
√
T )

with δt ∼
√
~/α� T and tan(2ξ) =

‖~t(t−×)∧~t(t+×)‖
~t(t−×)·~t(t+×)

(~t being the tangent

vector at C ).
S. Teufel, Adiabtic perturbation theory in quantum dynamics (Springer, 2003)

U. Boscain etal. IEEE Transactions on automatic control 57, 1970 (2012).
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Principle of the adiabatic control

Example (pseudo NOT gate)

H(x) =
~
2

(
0 Ω
Ω ∆

)
x = (Ω,∆) ∈M = R2
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Principle of the adiabatic control

Example (pseudo Hadamard gate)

H(x) =
~
2

(
0 Ω
Ω ∆

)
x = (Ω,∆) ∈M = R2
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Principle of the holonomic quantum computation

The case of a globally degenerate eigenvalue

H(x)φn,a(x) = λn(x)φn,a(x) ∀x ∈M, λn, φn,a ∈ C1(M)

U(t, 0)Pa(x(0)) = eıϕ
dyn
n

∑
ba

[
Pe−

∫
Ct
An
]
ba
|φn,b(x(t))〉〈φn,a(x(0))|+O(1/T )

with ϕdynn = −~−1
∫ t

0
λ(x(t′))dt′ and

[An(x)]ab = 〈φn,a|d|φn,b〉
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Principle of the holonomic quantum computation

Principle of the Holonomic Quantum Computation

The holonomy H(C ) = Pe−
∮

C
An (for a closed path C ) constitutes a

“logic gate” for the qudit represented by the degenerate eigenspace.
Under some small assumptions, Holx0

= {H(C )}C∈Lx0
M = U(N)

(Ambrose-Singer-Chow-Rashevski theorem).

P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999)

D. Lucarelli, J. Math. Phys. 46, 052103 (2005)
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Geometric framework

Geometric framework

The adiabatic transport is described within a U(N)-principal bundle
with base space M (the control manifold) and endowed with a
connection described by the potential An ∈ Ω1(M, u(N)).
Fn = dAn +An ∧An constitutes the curvature of the fibre bundle.
M can be embedded in a complex projective space.
M can be endowed with some metrics gµν and/or some symplectic
forms ωµν (or with some Kähler forms Kµν).
The controllability and the control robustness problems can be
reformulated in a geometric language.
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Geometric framework

Example : Fn is a measure of the non-adiabatic effects

H(x) =
~
2

 0 ΩP 0
ΩP 2∆P ΩS
0 ΩS 2(∆P −∆S)



David Viennot UTINAM
Quantum information and control in open systems: adiabatic approaches



Adiab. ctrl. & HQC closed syst. Open qu. syst. Adiab. app. open syst.

2 The open quantum systems
Description of the open quantum systems
Effects induced by the environment
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Description of the open quantum systems

The density matrix

Ψ ∈ HS ⊗HE ⇒ ρ = trE |Ψ〉〉〈〈Ψ|

ρ† = ρ, trρ = 1, ρ > 0

ρ is a pure state if ρ2 = ρ, else it is called a mixed state.

ı~ρ̇ = [H0 +Hctrl(x(t)), ρ(t)] + trE [Hint, |Ψ〉〉〈〈Ψ|]

with Hint ∈ L(HS ⊗HE).
Control problem : find a path C : [0, T ] 3 t 7→ x(t) such that
tr
(
ρ†targetρ(T )

)
' 1.
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Description of the open quantum systems

The Lindblad equation

Under the assumptions :
E is a very large stationary environment (as a thermal bath for
example).
The coupling between S and E is sufficiently small (Born
approximation).
(The correlation time of the bath is smaller than the caracteristic
time of the interaction system-bath (Markovian regime))

without control we have :

ı~ρ̇ = [H0 +HLS︸ ︷︷ ︸
H1

, ρ]− ı

2

∑
k

γk{Γ†kΓk, ρ}+ ı
∑
k

γkΓkρΓ†k

H.-P. Breuer and F. Petruccione, Open quantum systems (Oxford University Press, 2002).

David Viennot UTINAM
Quantum information and control in open systems: adiabatic approaches



Adiab. ctrl. & HQC closed syst. Open qu. syst. Adiab. app. open syst.

Description of the open quantum systems

The Hilbert-Schmidt (Liouville) representation

For a two level system, in the secular approximation (τS � τR) :
{Γk}k = {σ+, σ−, σz}.

ρ =

1∑
i,j=0

ρij |i〉〈j|
HS−−→ |ρ〉〉 = ρij |i〉 ⊗ |j〉

ı~|ρ̇〉〉 = L|ρ〉〉 (L† 6= L) with L = Ld ⊕ Lr

Ld =

(
∆λ− ıΓ2 0

0 −∆λ− ıΓ2

)
(|10〉〉,|01〉〉)

Lr =

(
−ıγ− ıγ+

ıγ− −ıγ+

)
(|00〉〉,|11〉〉)

(∆λ = λ1 − λ0, Γ = γ+ + γ− + γz, H1|i〉 = λi|i〉)
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Description of the open quantum systems

Purification of the dynamics

Let Ψρ ∈ HS ⊗HA (HA is an ancilla (with dimHA = dimHS) playing
the role of an effective small environment), be such that

ρ = trA|Ψρ〉〉〈〈Ψρ|

ı~Ψ̇ρ =

(
H1 −

ı

2

∑
k

γkΓ†kΓk

)
⊗ 1AΨρ +

ı

2

∑
k

γkΓk ⊗ Γ‡k(Ψρ)Ψρ

with Γ‡k(Ψρ) = (W †ρΓ†k(W †ρ )−1)T (Wρ =
∑
i,j Ψρ,ij |i〉〈j|).

D. Viennot, arXiv :1508.02279 (2015).
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Description of the open quantum systems

Stochastic Schrödinger equation representation

In the Markovian regime, we have

ı~dψ =

(
H1 −

ı

2

∑
k

γk(Γ†kΓk − 〈Γ†kΓk〉ψ)

)
ψdt+ı

∑
k

(
Γk
‖Γkψ‖

− 1

)
ψdNk,t

where dNk,t is a Poisson process with E[dNk,t] = γk‖Γkψ‖2dt. Nk,t
counts the number of jumps of type Γk.

ρ = E [|ψ〉〈ψ|]

H.-P. Breuer and F. Petruccione, Open quantum systems (Oxford University Press, 2002).
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Effects induced by the environment

Dynamical effects induced by the environment

Decoherence : under the action of Ld, ρ10(t)→ 0.
Relaxation : under the action of Lr, ρii(t)→ γ±

γ++γ−
.

Dissipation : under only the action of − ı
2

∑
k γkΓ†kΓk ⊗ 1A,

‖Ψρ‖ → 0.

Entanglement : under the action of ı
2

∑
k γkΓk ⊗ Γ‡k(Ψρ) the

ancilla and the system become entangled.
Quantum jumps : under the action of ı

2

∑
k γkΓk ⊗ Γ‡k(Ψρ) or

ı
∑
k

(
Γk
‖Γkψ‖ − 1

)
dNk

t the Hilbert-Schmidt norm is restored.
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Effects induced by the environment

Control of an open quantum system

ı~Ψ̇ = ((H0 +Hctrl(x(t)))⊗ 1E + 1S ⊗HE +Hint) Ψ

−→ ı~ρ̇ = [H0 +Hctrl(x(t)) +HLS(u(t)), ρ]

− ı
2

∑
k

γk(u(t)){Γk(u(t))†Γk(u(t)), ρ}

+ı
∑
k

γk(u(t))Γk(u(t))ρΓk(u(t))†

with ı~u̇(t) = (H0 +Hctrl(x(t)))u(t), u(0) = 1S , u(t) ∈ U(HS).
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Effects induced by the environment

Hampering of the control by the environment

Decoherence : the environment kills the coherences.
Relaxation : the environment forces the populations to go to the
steady state populations.
Dissipation : the environment kills all states (except the steady
state).
Entanglement : the system becomes entangled with the
environment.
Back-reaction : the dynamical effects induced by the environment
react against the control.
Distorsion : the environment adds noises on the control signal
(x(t)→ x(t) + δxE(t)).
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Effects induced by the environment

Simplified models

Only decoherence : “phase-damping” models (Γ2
k = Γk, etc).

Only dissipation : ı~ψ̇ = (H − ıD)ψ (H† = H, D† = D)
(non-hermitian quantum dynamics).
Only relaxation : ı~Ṗ = [H,P ]− ı{D,P}+ 2ıtr(DP )P
(P = |ψ〉〈ψ|/‖ψ‖2 with ı~ψ̇ = (H − ıD)ψ).
Only entanglement : small environment with
ı~Ψ̇ = (HS(x(t))⊗ 1E + 1S ⊗HE(x(t)) +Hint(x(t)))Ψ (bipartite
quantum system).
Only distorsion : ı~ψ̇ = H(x(t) + δx(t))ψ with δx(t) noises
(random, stochastic or chaotic processes), ρ(t) = E [|ψ(t)〉〈ψ(t)|] (E
being the expectation value with respect to the noises).
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3 Adiabatic approaches for the open quantum systems
Adiabatic regimes
Disturbed control of quantum systems
Non-hermitian adiabatic dynamics
Adiabatic control hampered by entanglement in bipartite systems
(small environments)
Adiabatic control of a Lindbladian dynamics
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Adiabatic regimes

Not only one adiabatic regime

S alone is
adiabatic
w.r.t. the
control

E is adia-
batic w.r.t.
the control
(or is statio-
nary)

interaction
is adiabatic
w.r.t. the
control

S is adia-
batic w.r.t.
the interac-
tion

Regime τS � T τE � T τint � T τS � τint

barely adiabatic 4 8 8 8

very weakly adiabatic 4 4 8 8

weakly adiabatic 4 4 8 4

strongly adiabatic 4 4 4 8

very strongly adiabatic 4 4 4 4

David Viennot UTINAM
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Disturbed control of quantum systems

A model : an atom in a laser field with phase noise

H(θ + δθ) =
~
2

(
0 Ωeı(θ+δθ)

Ωe−ı(θ+δθ) 2∆

)
δθ̇ = k(θ(t))η(t)

η is a Gaussian white noise et k(θ + 2π) = −k(θ). The weak adiabatic
transport (with ψ(0) = φ0(θ(0))) is obtained by

ψ(t) ' eıϕ0(t)W (δθ(t))φ0(θ(t))

with W (δθ(t)) = e−
ı~
2
δθ(t)|0〉〈0|+ e

ı~
2
δθ(t)|1〉〈1| and

ϕ0(t) = −~−1
∫ t
0 λ0(θ(t′))dt′ + ı

∫ t
0 〈φ0|∂t′ |φ0〉dt

′ + ı
∫ t
0 〈φ0|W

−1Ẇ |φ0〉dt′.

ρ01(t) = 〈0|E [|ψ(t)〉〈ψ(t)|] |1〉

= e−
~2

4 K(t,0)〈0|φ0(θ(t))〉〈φ0(θ(t))|1〉

K(t, 0) = D
∫ t
0 k(θ(t′))2dt′, Dδ(t2 − t1) = E[η(t1)η(t2)].

D. Viennot, J. Math. Phys. 53, 082106 (2012).
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Disturbed control of quantum systems

A model : spin chains kicked by trains of ultrashort pulses

H(t) =
~ω1

2

N∑
i=1

Sz,i

−
N∑
i=1

(JxSx,iSx,i+1 + JySy,iSy,i+1 + JzSz,iSz,i+1)

+~
N∑
i=1

|wi〉〈wi|
∑
k∈N

λ
(k)
i δ(t− kT + τ

(k)
i )

where (λ
(k)
i , τ

(k)
i )k∈N = (λ

ctrl,(k)
i , τ

ctrl,(k)
i )k∈N + (δλ

(k)
i , δτ

(k)
i )k∈N is a

(discrete time) evolution with (δλ
(k)
i , δτ

(k)
i )k∈N a chaotic noise.

ρ(k) = ρ(kT ) =
1

N

N∑
i=1

tr 6=i
(
U(kT, 0)|ψ0〉〉〈〈ψ0|U(kT, 0)†

)
David Viennot UTINAM
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Disturbed control of quantum systems

Control of the information transmission

without
kicks

control
+
chaotic
noise
kicks

control
kicks

control
+
chaotic
noise
kicks

L. Aubourg and D. Viennot, arXiv :1402.2411 (2016).
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Non-hermitian adiabatic dynamics

Non-hermitian (strong) adiabatic transport

Non-real eigenvalues :

H(x)φn(x) = λn(x)φn(x)

H(x)†φ?n(x) = λn(x)φ?n(x)

〈φ?n(x)|φp(x)〉 = δnp

U(t, 0) =
∑
n

eıϕn(t)|φn(x(t))〉〈φ?n(x(0))|+O(eΓnt/T )

with ϕn(t) = −~−1
∫ t

0
λn(x(t′))dt′ −

∫
Ct
An ∈ C (An = 〈φ?n|d|φn〉), and

Γn = =m(λ0 − λn) (=mλn+1 < =mλn).
A. Joye, Commun. Math. Phys. 275 139 (2015).
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Non-hermitian adiabatic dynamics

Weak adiabatic regime

U(t, 0) =
∑
n

eıϕn(t)Ωn(t)|φn(x(t))〉〈φ?n(x(0))|

with ϕn(t) = −~−1
∫ t

0
λn(x(t′))dt′ + ı

∫
Ct
An + ı

∫ t
0
〈φn|Ω̇n|φn〉dt ∈ C.

Ωn(t) is a time-dependent wave operator :

(H(x(t))− ı~∂t)Ωn(t) = Ωn(t)(H(x(t))− ı~∂t)Ωn(t)

Ωn(t)Pn(t) = Ωn(t) Pn(t)Ωn(t) = Pn(t)

D. Viennot, J. Phys. A 47, 065302 (2014).
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Non-hermitian adiabatic dynamics

Exceptional points

x× is an exceptional point (EP) if
two eigenvalues crosses in the complex plane : λn(x×) = λn+1(x×)
(algebraic multiplicity equal to 2) ;
we have a coalescence of the associated eigenvectors (geometric
multiplicity equal to 1) :

lim
x→x×

φn(x) ∝ lim
x→x×

φn+1(x)

H(x) presents a Jordan bloc at x× :

H(x×) =

(
λn(x×) 1

0 λn(x×)

)
(φn(x×),χn)

for a good chosen generalized eigenvector χn.

David Viennot UTINAM
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Non-hermitian adiabatic dynamics

Example : surrounding an EP

H(x) =
~
2

(
0 Ω
Ω 2∆− ıΓ2

)

(‖ψ(T )‖ ' 10−13)

David Viennot UTINAM
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Non-hermitian adiabatic dynamics

Example : passage through an EP

H(x) =
~
2

(
0 x− ıy

x+ ıy 2∆− ıΓ2

)

interior state populations exterior state populations

David Viennot UTINAM
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Non-hermitian adiabatic dynamics

Other models : spin chain with quantum chimera states
classical chimera state
(oscillator chain)

D. Viennot and L. Aubourg, Phys. Lett. A 380, 678

(2016).

quantum chimera state (spin chain)

〈S〉 = 〈1 − trρ2〉
D = 1 − tr〈ρ〉2 − 〈S〉

David Viennot UTINAM
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Adiabatic control hampered by entanglement in bipartite systems (small environments)

Weak adiabatic transport

Non-commutative eigenvalues :

HS+E(x)ΦE(x) = E(x)⊗1EΦE(x) E ∈ L(HS), ΦE(x) ∈ HS⊗HE

[HS+E(x), E(x)⊗ 1E ]ΦE(x) = 0

Let ρE(x) = trE |ΦE(x)〉〉〈〈ΦE(x)|.
If ρ(0) = ρE(x(0)), then

ρ(t) = Ad
[
Te
←
−ı~−1

∫ t
0
E(x(t′))dt′Pe

→
−

∫
Ct
A
]
ρE(x(t))+O(max(1/T, 1/τint))

with Ad[g]ρ = gρg†, dρE = AρE + ρEA
† (A ∈ L(HS)).

(The strong adiabatic transport is obtained with E(x) = λ(x)1HS ).
D. Viennot and J. Lages, J. Phys. A 44, 365301 (2011).

D. Viennot and L. Aubourg, J. Phys. A 48, 025301 (2015).
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Adiabatic control hampered by entanglement in bipartite systems (small environments)

Geometric framework

The geometric structure is not a principal bundle but a two-sided
categorical bundle with a 2-connection :

Connective structure interpretation
left potential A generator of the operator-valued geometric phases
right object potential ARo generator of the Uhlmann geometric phases
right arrow potential AR→ unitary and SLOCC operations on S
left curving BL measure of the purity decreasing effects
right curving BR measure of the shift in the standard purification
left fake curvature FL measure of the non-adiabatic and entangl. effects
right fake curvature FR quantity related to the quantum Fisher information
two-sided fake curvature FRL measure of the non-invariance

D. Viennot, arXiv :1508.02279 (2015).
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Adiabatic control hampered by entanglement in bipartite systems (small environments)

Example : Left fake curvature (non-adiab. trans. entangl.)

S and E are two coupled 3-level atoms in laser fields.

S(t) = −tr(ρ(t) ln ρ(t))
ρ = trE |Ψ〉〉〈〈Ψ|

D. Viennot, J. Phys. A 47, 295301

(2014).
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Adiabatic control of a Lindbladian dynamics

Master equation in the weak adiabatic assumption

H(x)φn(x) = λn(x)φn(x)

US(t, t0) '
∑
n

eıϕn(t)|φn(x(t))〉〈φn(x(t0))| (t× 6∈ [t, t0])

−→ ı~ρ̇ = [H(x(t)), ρ]

− ı
2

∑
k

γk(R(x(t)), ξ){R(x(t))Γ†kΓkR(x(t))†, ρ}

+ı
∑
k

γk(R(x(t)), ξ)R(x(t))ΓkR(x(t))†ρR(x(t))Γ†kR(x(t))†

with R(x) =
∑
n |φn(x)〉〈φn(x0)| and ξ the mixing angle at the crossing.

γk(R(x(t)), ξ) in Markovian and non-Markovian cases ? (work in
progress)

David Viennot UTINAM
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Adiabatic control of a Lindbladian dynamics

Adiabatic transport with Lindblad equation

The strong adiabatic transport can be obtained as a non-hermitian
adiabatic transport in the Hilbert-Schmidt representation of the
Lindblad dynamics (work in progress for the Markovian secular case
with a 3-level atom in a thermal bath).
The weak adiabatic transport could be obtained as the
non-commutative adiabatic transport in the purified representation
of the Lindblad dynamics but the nonlinearity of the purified
equation is a strong obstruction.

David Viennot UTINAM
Quantum information and control in open systems: adiabatic approaches
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