Open qu. syst.

Adiab. app. open syst.

Quantum information and control in open systems: adiabatic approaches

David Viennot

Institut UTINAM (UMR 6213 CNRS, Université de Bourgogne-Franche-Comté)

Rencontres Information Quantique Bourgogne-Franche-Comté 15 mars 2016

ΠΤΙΝΔΜ

イロト イポト イヨト イヨト

David Viennot

- 1 Adiabatic control and holonomic quantum computation in closed systems
 - Principle of the adiabatic control
 - Principle of the holonomic quantum computation
 - Geometric framework

イロト イポト イヨト イヨト

Quantum control and quantum information

$$\imath \hbar \dot{U}(t,0) = \underbrace{(H_0 + H_{ctrl}(x(t)))}_{H(x(t))} U(t,0) \qquad U(0,0) = 1 \quad U(t,0) \in \mathcal{U}(\mathcal{H})$$

 $x\in M$ (control manifold). Control problem : find a path $\mathscr{C}:[0,T]\ni t\mapsto x(t)$ such that $|\langle\psi_{target}|U(T,0)|\psi_0\rangle|^2\simeq 1$, with a fixed initial state ψ_0 and a previously chosen target state $\psi_{target}.$

Targets associated with quantum information problems :

• $\psi_0 \rightarrow \psi_{target}$ corresponds to a transport of information.

• ψ_{target} is an entangled state.

ΠΤΙΝΔΜ

イロト イポト イヨト イヨト

David Viennot

Adiab. ctrl. & HQC closed syst. •••••••• Principle of the adiabatic control **Open qu. syst**.

Adiab. app. open syst.

Principle of the adiabatic transport

We assume that Sp(H(x)) is pure point, without any degeneracy, and $\sharp Sp(H(x)) = N < +\infty$.

$$H(x)\phi_n(x) = \lambda_n(x)\phi_n(x) \qquad \lambda_n, \phi_n \in \mathcal{C}^1(M)$$

If
$$T \gg \frac{\hbar}{\min_{n,p} \inf_{t \in [0,T]} |\lambda_n(x(t)) - \lambda_p(x(t))|}$$
 and if \mathscr{C} is \mathcal{C}^1 then

$$U(t,0) = \sum_{n} e^{i\varphi_n(t)} |\phi_n(x(t))\rangle \langle \phi_n(x(0))| + \mathcal{O}(1/T)$$

with $\varphi_n(t) = -\hbar^{-1} \int_0^t \lambda_n(x(t')) dt' + i \int_{\mathscr{C}_t} A_n \ (A_n = \langle \phi_n | d | \phi_n \rangle, d \text{ being the exterior differential of } M).$

T. Kato, Phys. Soc. Jap. 5, 435 (1950)

UTINAM

< □ > < □ > < □ > < □ > < □ >

David Viennot

Adiab. ctrl. & HQC closed syst. ••••••• Principle of the adiabatic control **Open qu. syst.** 000000000

Adiab. app. open syst.

Rapid passage by a conical crossing

We assume that :

- $\operatorname{Sp}(H(x))$ is non-degenerate except at x_{\times} where $\lambda_n(x_{\times}) = \lambda_{n+1}(x_{\times})$;
- $|\lambda_n(x(t)) \lambda_{n+1}(x(t))| = \alpha |t_{\times} t| + O(|t_{\times} t|^2)$ in the neighbourhood of t_{\times} such that $x(t_{\times}) = x_{\times}$;
- \mathscr{C} is only \mathcal{C}^0 at x_{\times} .

$$U(t_{\times} + \delta t, t_{\times} - \delta t) = \begin{pmatrix} \sin \xi & \cos \xi \\ -\cos \xi & \sin \xi \end{pmatrix}_{(\phi_n, \phi_{n+1})} + \mathcal{O}(1/\sqrt{T})$$

with $\delta t \sim \sqrt{\hbar/\alpha} \ll T$ and $\tan(2\xi) = \frac{\|\vec{t}(t_{\times}^{-}) \wedge \vec{t}(t_{\times}^{+})\|}{\vec{t}(t_{\times}^{-}) \cdot \vec{t}(t_{\times}^{+})}$ (\vec{t} being the tangent vector at \mathscr{C}).

- S. Teufel, Adiabtic perturbation theory in quantum dynamics (Springer, 2003)
- U. Boscain etal. IEEE Transactions on automatic control 57, 1970 (2012).

UTINAM

イロト イポト イヨト イヨト

David Viennot

Adiab. ctrl. & HQC closed syst. 0000000 Principle of the adiabatic control

Open qu. syst.

Adiab. app. open syst.

Example (pseudo NOT gate)

David Viennot

Adiab. ctrl. & HQC closed syst. 00000000 Principle of the adiabatic control Open qu. syst.

Adiab. app. open syst.

Example (pseudo Hadamard gate)

David Viennot

Adiab. ctrl. & HQC closed syst. Principle of the holonomic quantum computation **Open qu. syst.**

Adiab. app. open syst.

The case of a globally degenerate eigenvalue

$$H(x)\phi_{n,a}(x) = \lambda_n(x)\phi_{n,a}(x) \qquad \forall x \in M, \quad \lambda_n, \phi_{n,a} \in \mathcal{C}^1(M)$$

$$U(t,0)P_a(x(0)) = e^{i\varphi_n^{dyn}} \sum_{ba} \left[\mathbb{P}e^{-\int_{\mathcal{C}_t} A_n} \right]_{ba} |\phi_{n,b}(x(t))\rangle \langle \phi_{n,a}(x(0))| + \mathcal{O}(1/T)$$

with $\varphi_n^{dyn} = -\hbar^{-1}\int_0^t \lambda(x(t'))dt'$ and

$$[A_n(x)]_{ab} = \langle \phi_{n,a} | d | \phi_{n,b} \rangle$$

UTINAM

< □ > < □ > < □ > < □ > < □ >

David Viennot

 Open qu. syst.

Adiab. app. open syst.

Principle of the Holonomic Quantum Computation

The holonomy $H(\mathscr{C}) = \mathbb{P}e^{-\oint_{\mathscr{C}} A_n}$ (for a closed path \mathscr{C}) constitutes a "logic gate" for the qudit represented by the degenerate eigenspace. Under some small assumptions, $\operatorname{Hol}_{x_0} = \{H(\mathscr{C})\}_{\mathscr{C} \in \mathscr{L}_{x_0}M} = U(N)$ (Ambrose-Singer-Chow-Rashevski theorem).

P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999)

D. Lucarelli, J. Math. Phys. 46, 052103 (2005)

ΠΤΙΝΔΜ

イロト イポト イヨト イヨト

David Viennot

Adiab. ctrl. & HQC closed syst. OCOCOO Geometric framework **Open qu. syst**.

Adiab. app. open syst.

Geometric framework

- The adiabatic transport is described within a U(N)-principal bundle with base space M (the control manifold) and endowed with a connection described by the potential $A_n \in \Omega^1(M, \mathfrak{u}(N))$.
- $F_n = dA_n + A_n \wedge A_n$ constitutes the curvature of the fibre bundle.
- ${\ \bullet \ } M$ can be embedded in a complex projective space.
- *M* can be endowed with some metrics $g_{\mu\nu}$ and/or some symplectic forms $\omega_{\mu\nu}$ (or with some Kähler forms $K_{\mu\nu}$).
- The controllability and the control robustness problems can be reformulated in a geometric language.

ΠΤΙΝΔΜ

< □ > < □ > < □ > < □ > < □ >

Open qu. syst.

Adiab. app. open syst.

Example : F_n is a measure of the non-adiabatic effects

2 The open quantum systems

- Description of the open quantum systems
- Effects induced by the environment

< □ > < □ > < □ > < □ > < □ >

Description of the open quantum systems

Open qu. syst.

Adiab. app. open syst.

The density matrix

$$\begin{split} \Psi &\in \mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{E}} \Rightarrow \rho = \mathrm{tr}_{\mathcal{E}} |\Psi\rangle \rangle \langle\!\langle \Psi | \\ \rho^{\dagger} &= \rho, \quad \mathrm{tr}\rho = 1, \quad \rho > 0 \end{split}$$

 ρ is a pure state if $\rho^2=\rho,$ else it is called a mixed state.

$$i\hbar\dot{\rho} = [H_0 + H_{ctrl}(x(t)), \rho(t)] + \operatorname{tr}_{\mathcal{E}} [H_{int}, |\Psi\rangle\rangle\langle\langle\!\langle\Psi|]$$

with $H_{int} \in \mathcal{L}(\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{E}})$. Control problem : find a path $\mathscr{C} : [0,T] \ni t \mapsto x(t)$ such that $\operatorname{tr}\left(\rho_{target}^{\dagger}\rho(T)\right) \simeq 1$.

UTINAM

< □ > < □ > < □ > < □ > < □ >

David Viennot

Adiab. ctrl. & HQC closed syst. 00000000 Description of the open quantum systems Open qu. syst.

Adiab. app. open syst.

The Lindblad equation

Under the assumptions :

- \mathcal{E} is a very large stationary environment (as a thermal bath for example).
- The coupling between ${\cal S}$ and ${\cal E}$ is sufficiently small (Born approximation).
- (The correlation time of the bath is smaller than the caracteristic time of the interaction system-bath (Markovian regime))

without control we have :

$$i\hbar\dot{\rho} = [\underbrace{H_0 + H_{LS}}_{H_1}, \rho] - \frac{i}{2} \sum_k \gamma_k \{\Gamma_k^{\dagger} \Gamma_k, \rho\} + i \sum_k \gamma_k \Gamma_k \rho \Gamma_k^{\dagger}$$

H.-P. Breuer and F. Petruccione, Open quantum systems (Oxford University Press, 2002).

ΠΤΙΝΔΜ

< □ ト < □ ト < 三 ト < 三 ト

David Viennot

Open qu. syst.

Adiab. app. open syst.

Description of the open quantum systems

The Hilbert-Schmidt (Liouville) representation

For a two level system, in the secular approximation $(\tau_S \ll \tau_R)$: $\{\Gamma_k\}_k = \{\sigma_+, \sigma_-, \sigma_z\}.$

$$\rho = \sum_{i,j=0}^{1} \rho_{ij} |i\rangle \langle j| \xrightarrow{HS} |\rho\rangle = \rho_{ij} |i\rangle \otimes |j\rangle$$

$$\begin{split} i\hbar|\dot{\rho}\rangle\!\rangle &= L|\rho\rangle\!\rangle \qquad (L^{\dagger} \neq L) \quad \text{with } L = L_{d} \oplus L_{r} \\ L_{d} &= \left(\begin{array}{cc} \Delta\lambda - i\frac{\Gamma}{2} & 0 \\ 0 & -\Delta\lambda - i\frac{\Gamma}{2} \end{array}\right)_{(|10\rangle\!\rangle, |01\rangle\!\rangle)} \\ L_{r} &= \left(\begin{array}{cc} -i\gamma_{-} & i\gamma_{+} \\ i\gamma_{-} & -i\gamma_{+} \end{array}\right)_{(|00\rangle\!\rangle, |11\rangle\!\rangle)} \end{split}$$

$$\left(\Delta\lambda=\lambda_{1}-\lambda_{0},\,\Gamma=\gamma_{+}+\gamma_{-}+\gamma_{z},\,H_{1}|i
ight
angle=\lambda_{i}|i
ight
angle$$

UTINAM

イロト イロト イヨト イヨト

David Viennot

Description of the open quantum systems

Open qu. syst.

Adiab. app. open syst.

Purification of the dynamics

Let $\Psi_{\rho} \in \mathcal{H}_{S} \otimes \mathcal{H}_{A}$ (\mathcal{H}_{A} is an ancilla (with $\dim \mathcal{H}_{A} = \dim \mathcal{H}_{S}$) playing the role of an effective small environment), be such that

$$\rho = \mathrm{tr}_{\mathcal{A}} |\Psi_{\rho}\rangle \langle \langle \Psi_{\rho} |$$

$$\begin{split} \imath \hbar \dot{\Psi}_{\rho} &= \left(H_1 - \frac{\imath}{2} \sum_k \gamma_k \Gamma_k^{\dagger} \Gamma_k \right) \otimes \mathbf{1}_{\mathcal{A}} \Psi_{\rho} + \frac{\imath}{2} \sum_k \gamma_k \Gamma_k \otimes \Gamma_k^{\ddagger} (\Psi_{\rho}) \Psi_{\rho} \\ \text{with } \Gamma_k^{\ddagger} (\Psi_{\rho}) &= (W_{\rho}^{\dagger} \Gamma_k^{\dagger} (W_{\rho}^{\dagger})^{-1})^{\mathsf{T}} \left(W_{\rho} = \sum_{i,j} \Psi_{\rho,ij} |i\rangle \langle j| \right). \end{split}$$

D. Viennot, arXiv :1508.02279 (2015).

UTINAM

< □ > < □ > < □ > < □ > < □ >

David Viennot

Description of the open quantum systems

Open qu. syst. 0000€0000

Adiab. app. open syst.

Stochastic Schrödinger equation representation

In the Markovian regime, we have

$$\imath \hbar d\psi = \left(H_1 - \frac{\imath}{2} \sum_k \gamma_k (\Gamma_k^{\dagger} \Gamma_k - \langle \Gamma_k^{\dagger} \Gamma_k \rangle_{\psi}) \right) \psi dt + \imath \sum_k \left(\frac{\Gamma_k}{\|\Gamma_k \psi\|} - 1 \right) \psi dN_{k,t}$$

where $dN_{k,t}$ is a Poisson process with $\mathbb{E}[dN_{k,t}] = \gamma_k \|\Gamma_k \psi\|^2 dt$. $N_{k,t}$ counts the number of jumps of type Γ_k .

$$\rho = \mathbb{E}\left[|\psi\rangle\langle\psi|\right]$$

H.-P. Breuer and F. Petruccione, Open quantum systems (Oxford University Press, 2002).

ΠΤΙΝΔΜ

イロト イポト イヨト イヨト

David Viennot

Effects induced by the environment

Open qu. syst.

Adiab. app. open syst.

Dynamical effects induced by the environment

- **Decoherence** : under the action of L_d , $\rho_{10}(t) \rightarrow 0$.
- **Relaxation** : under the action of L_r , $\rho_{ii}(t) \rightarrow \frac{\gamma_{\pm}}{\gamma_{+}+\gamma_{-}}$.
- **Dissipation** : under only the action of $-\frac{i}{2}\sum_k \gamma_k \Gamma_k^{\dagger} \Gamma_k \otimes 1_{\mathcal{A}}$, $\|\Psi_{\rho}\| \to 0$.
- **Entanglement** : under the action of $\frac{i}{2} \sum_{k} \gamma_k \Gamma_k \otimes \Gamma_k^{\ddagger}(\Psi_{\rho})$ the ancilla and the system become entangled.
- Quantum jumps : under the action of $\frac{i}{2} \sum_k \gamma_k \Gamma_k \otimes \Gamma_k^{\ddagger}(\Psi_{\rho})$ or $i \sum_k \left(\frac{\Gamma_k}{\|\Gamma_k \psi\|} 1\right) dN_t^k$ the Hilbert-Schmidt norm is restored.

UTINAM

イロト イポト イヨト イヨト

Effects induced by the environment

Open qu. syst.

Adiab. app. open syst.

Control of an open quantum system

$$i\hbar\dot{\Psi} = ((H_0 + H_{ctrl}(x(t))) \otimes 1_{\mathcal{E}} + 1_{\mathcal{S}} \otimes H_{\mathcal{E}} + H_{int}) \Psi$$

$$\longrightarrow i\hbar\dot{\rho} = [H_0 + H_{ctrl}(x(t)) + H_{LS}(u(t)), \rho] - \frac{i}{2} \sum_k \gamma_k(u(t)) \{\Gamma_k(u(t))^{\dagger} \Gamma_k(u(t)), \rho\} + i \sum_k \gamma_k(u(t)) \Gamma_k(u(t)) \rho \Gamma_k(u(t))^{\dagger}$$

with $\imath \hbar \dot{u}(t) = (H_0 + H_{ctrl}(x(t)))u(t)$, $u(0) = 1_{\mathcal{S}}$, $u(t) \in \mathcal{U}(\mathcal{H}_{\mathcal{S}})$.

UTINAM

▲ロト ▲昼 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ● ● ●

David Viennot

Hampering of the control by the environment

- Decoherence : the environment kills the coherences.
- **Relaxation** : the environment forces the populations to go to the steady state populations.
- **Dissipation** : the environment kills all states (except the steady state).
- **Entanglement** : the system becomes entangled with the environment.
- **Back-reaction** : the dynamical effects induced by the environment react against the control.
- **Distorsion** : the environment adds noises on the control signal $(x(t) \rightarrow x(t) + \delta x_{\mathcal{E}}(t)).$

ΠΤΙΝΔΜ

イロト イポト イヨト イヨト

Adiab. ctrl. & HQC closed syst. 00000000 Effects induced by the environment Open qu. syst.

Adiab. app. open syst.

Simplified models

- Only decoherence : "phase-damping" models ($\Gamma_k^2 = \Gamma_k$, etc).
- Only dissipation : $i\hbar\dot{\psi} = (H iD)\psi$ ($H^{\dagger} = H$, $D^{\dagger} = D$) (non-hermitian quantum dynamics).
- Only relaxation : $i\hbar \dot{P} = [H, P] i\{D, P\} + 2i \operatorname{tr}(DP)P$ $(P = |\psi\rangle\langle\psi|/||\psi||^2$ with $i\hbar \dot{\psi} = (H - iD)\psi$).
- Only entanglement : small environment with $\imath\hbar\dot{\Psi} = (H_{\mathcal{S}}(x(t)) \otimes 1_{\mathcal{E}} + 1_{\mathcal{S}} \otimes H_{\mathcal{E}}(x(t)) + H_{int}(x(t)))\Psi$ (bipartite quantum system).
- Only distorsion : $i\hbar\dot{\psi} = H(x(t) + \delta x(t))\psi$ with $\delta x(t)$ noises (random, stochastic or chaotic processes), $\rho(t) = \mathbb{E}[|\psi(t)\rangle\langle\psi(t)|]$ (\mathbb{E} being the expectation value with respect to the noises).

UTINAM

イロト イポト イヨト イヨト

David Viennot

- 3 Adiabatic approaches for the open quantum systems
 - Adiabatic regimes
 - Disturbed control of quantum systems
 - Non-hermitian adiabatic dynamics
 - Adiabatic control hampered by entanglement in bipartite systems (small environments)
 - Adiabatic control of a Lindbladian dynamics

イロト イポト イヨト イヨト

Adiab. ctrl. & HQC closed syst. 00000000 Adiabatic regimes **Open qu. syst**.

Adiab. app. open syst.

Not only one adiabatic regime

	${\cal S}$ alone is adiabatic w.r.t. the control	\mathcal{E} is adia- batic w.r.t. the control (or is statio- nary)	interaction is adiabatic w.r.t. the control	${\cal S}$ is adiabatic w.r.t. the interac- tion
Regime	$\tau_{\mathcal{S}} \ll T$	$\tau_{\mathcal{E}} \ll T$	$ au_{int} \ll T$	$\tau_S \ll \tau_{int}$
barely adiabatic	 ✓ 	×	×	×
very weakly adiabatic	 ✓ 	 ✓ 	×	×
weakly adiabatic	 ✓ 	 ✓ 	×	 ✓
strongly adiabatic	 ✓ 	 ✓ 	 ✓ 	×
very strongly adjabatic	_	_	_	v

UTINAM

990

< □ > < □ > < □ > < □ > < □ >

David Viennot

Open au. syst.

Adiab. app. open syst.

Disturbed control of quantum systems

A model : an atom in a laser field with phase noise

$$H(\theta + \delta\theta) = \frac{\hbar}{2} \begin{pmatrix} 0 & \Omega e^{i(\theta + \delta\theta)} \\ \Omega e^{-i(\theta + \delta\theta)} & 2\Delta \end{pmatrix} \qquad \delta\dot{\theta} = k(\theta(t))\eta(t)$$

 η is a Gaussian white noise et $k(\theta + 2\pi) = -k(\theta)$. The weak adiabatic transport (with $\psi(0) = \phi_0(\theta(0))$) is obtained by

$$\psi(t) \simeq e^{i\varphi_0(t)} W(\delta\theta(t)) \phi_0(\theta(t))$$

with $W(\delta\theta(t)) = e^{-\frac{i\hbar}{2}\delta\theta(t)}|0\rangle\langle 0| + e^{\frac{i\hbar}{2}\delta\theta(t)}|1\rangle\langle 1|$ and $\varphi_0(t) = -\hbar^{-1} \int_0^t \lambda_0(\theta(t')) dt' + i \int_0^t \langle \phi_0 | \partial_{t'} | \phi_0 \rangle dt' + i \int_0^t \langle \phi_0 | W^{-1} \dot{W} | \phi_0 \rangle dt'.$

$$\rho_{01}(t) = \langle 0|\mathbb{E}\left[|\psi(t)\rangle\langle\psi(t)|\right]|1\rangle$$
$$= e^{-\frac{\hbar^2}{4}K(t,0)}\langle 0|\phi_0(\theta(t))\rangle\langle\phi_0(\theta(t))|1\rangle$$

$$\begin{split} K(t,0) &= D \int_0^t k(\theta(t'))^2 dt', \ D\delta(t_2 - t_1) = \mathbb{E}[\eta(t_1)\eta(t_2)]. \\ \text{D. Viennot, J. Math. Phys. 53, 082106 (2012).} \\ \end{split}$$

D. Viennot, J. Math. Phys. 53, 082106 (2012).

David Viennot

Quantum information and control in open systems: adiabatic approaches

UTINAM

Open qu. syst.

Adiab. app. open syst.

UTINAM

Disturbed control of quantum systems

A model : spin chains kicked by trains of ultrashort pulses

$$H(t) = \frac{\hbar\omega_1}{2} \sum_{i=1}^{N} S_{z,i} \\ -\sum_{i=1}^{N} (J_x S_{x,i} S_{x,i+1} + J_y S_{y,i} S_{y,i+1} + J_z S_{z,i} S_{z,i+1}) \\ + \hbar \sum_{i=1}^{N} |w_i\rangle \langle w_i| \sum_{k \in \mathbb{N}} \lambda_i^{(k)} \delta(t - kT + \tau_i^{(k)})$$

where $(\lambda_i^{(k)}, \tau_i^{(k)})_{k \in \mathbb{N}} = (\lambda_i^{ctrl,(k)}, \tau_i^{ctrl,(k)})_{k \in \mathbb{N}} + (\delta \lambda_i^{(k)}, \delta \tau_i^{(k)})_{k \in \mathbb{N}}$ is a (discrete time) evolution with $(\delta \lambda_i^{(k)}, \delta \tau_i^{(k)})_{k \in \mathbb{N}}$ a chaotic noise.

$$\rho^{(k)} = \rho(kT) = \frac{1}{N} \sum_{i=1}^{N} \operatorname{tr}_{\neq i} \left(U(kT, 0) |\psi_0\rangle \langle \langle \psi_0 | U(kT, 0)^{\dagger} \right)$$

David Viennot

Adiab. ctrl. & HQC closed syst. Disturbed control of quantum systems Open qu. syst.

Adiab. app. open syst.

Control of the information transmission

David Viennot

Non-hermitian adiabatic dynamics

Open qu. syst.

Adiab. app. open syst.

Non-hermitian (strong) adiabatic transport

Non-real eigenvalues :

$$H(x)\phi_n(x) = \lambda_n(x)\phi_n(x)$$
$$H(x)^{\dagger}\phi_n^{\star}(x) = \overline{\lambda_n(x)}\phi_n^{\star}(x)$$
$$\langle \phi_n^{\star}(x) | \phi_p(x) \rangle = \delta_{np}$$

$$U(t,0) = \sum_{n} e^{i\varphi_n(t)} |\phi_n(x(t))\rangle \langle \phi_n^{\star}(x(0))| + \mathcal{O}(e^{\Gamma_n t}/T)$$

with $\varphi_n(t) = -\hbar^{-1} \int_0^t \lambda_n(x(t')) dt' - \int_{\mathscr{C}_t} A_n \in \mathbb{C} (A_n = \langle \phi_n^{\star} | d | \phi_n \rangle)$, and $\Gamma_n = \Im(\lambda_0 - \lambda_n) (\Im \lambda_{n+1} < \Im \lambda_n).$

A. Joye, Commun. Math. Phys. 275 139 (2015).

UTINAM

イロト イロト イヨト イヨト

David Viennot

Non-hermitian adiabatic dynamics

Open qu. syst.

Adiab. app. open syst.

Weak adiabatic regime

$$U(t,0) = \sum_{n} e^{i\varphi_n(t)} \Omega_n(t) |\phi_n(x(t))\rangle \langle \phi_n^{\star}(x(0))|$$

with $\varphi_n(t) = -\hbar^{-1} \int_0^t \lambda_n(x(t')) dt' + i \int_{\mathscr{C}_t} A_n + i \int_0^t \langle \phi_n | \dot{\Omega}_n | \phi_n \rangle dt \in \mathbb{C}.$ $\Omega_n(t)$ is a time-dependent wave operator :

$$(H(x(t)) - i\hbar\partial_t)\Omega_n(t) = \Omega_n(t)(H(x(t)) - i\hbar\partial_t)\Omega_n(t)$$
$$\Omega_n(t)P_n(t) = \Omega_n(t) \qquad P_n(t)\Omega_n(t) = P_n(t)$$

D. Viennot, J. Phys. A 47, 065302 (2014).

David Viennot

Quantum information and control in open systems: adiabatic approaches

UTINAM

< □ > < □ > < □ > < □ > < □ >

Non-hermitian adiabatic dynamics

Open qu. syst.

Adiab. app. open syst.

Exceptional points

- x_{\times} is an exceptional point (EP) if
 - two eigenvalues crosses in the complex plane : $\lambda_n(x_{\times}) = \lambda_{n+1}(x_{\times})$ (algebraic multiplicity equal to 2);
 - we have a coalescence of the associated eigenvectors (geometric multiplicity equal to 1) :

$$\lim_{x \to x_{\times}} \phi_n(x) \propto \lim_{x \to x_{\times}} \phi_{n+1}(x)$$

• H(x) presents a Jordan bloc at x_{\times} :

$$H(x_{\times}) = \left(\begin{array}{cc} \lambda_n(x_{\times}) & 1\\ 0 & \lambda_n(x_{\times}) \end{array}\right)_{(\phi_n(x_{\times}),\chi_n)}$$

for a good chosen generalized eigenvector χ_n .

UTINAM

イロト イポト イヨト イヨト

David Viennot

Non-hermitian adiabatic dynamics

Open qu. syst.

Adiab. app. open syst.

Example : surrounding an EP

Non-hermitian adiabatic dynamics

Open qu. syst.

Adiab. app. open syst.

Example : passage through an EP

Non-hermitian adiabatic dynamics

Open qu. syst.

Adiab. app. open syst. 0000**000000**000000

Other models : spin chain with quantum chimera states

David Viennot

Open qu. syst. 000000000 Adiab. app. open syst.

Adiabatic control hampered by entanglement in bipartite systems (small environments)

Weak adiabatic transport

Non-commutative eigenvalues :

 $H_{\mathcal{S}+\mathcal{E}}(x)\Phi_E(x) = E(x)\otimes \mathbb{1}_{\mathcal{E}}\Phi_E(x) \qquad E \in \mathcal{L}(\mathcal{H}_{\mathcal{S}}), \quad \Phi_E(x) \in \mathcal{H}_{\mathcal{S}}\otimes \mathcal{H}_{\mathcal{E}}$ $[H_{\mathcal{S}+\mathcal{E}}(x), E(x) \otimes 1_{\mathcal{E}}]\Phi_{E}(x) = 0$ Let $\rho_E(x) = \operatorname{tr}_{\mathcal{E}} |\Phi_E(x)\rangle \langle \langle \Phi_E(x) |$. If $\rho(0) = \rho_E(x(0))$, then $\rho(t) = \mathfrak{A} \mathfrak{d} \left[\mathbb{T} e^{-\iota \hbar^{-1} \int_0^t E(x(t')) dt'} \mathbb{P} e^{-\int_{\mathcal{C}_t} A} \right] \rho_E(x(t)) + \mathcal{O}(\max(1/T, 1/\tau_{int}))$ with $\mathfrak{A}\mathfrak{d}[q]\rho = q\rho q^{\dagger}, d\rho_E = A\rho_E + \rho_E A^{\dagger} (A \in \mathcal{L}(\mathcal{H}_S)).$ (The strong adiabatic transport is obtained with $E(x) = \lambda(x) \mathbb{1}_{\mathcal{H}_{s}}$). D. Viennot and J. Lages, J. Phys. A 44, 365301 (2011).

D. Viennot and L. Aubourg, J. Phys. A 48, 025301 (2015).

David Viennot

Quantum information and control in open systems: adiabatic approaches

UTINAM

イロト イポト イヨト イヨト

Open qu. syst. 000000000

Adiabatic control hampered by entanglement in bipartite systems (small environments)

Geometric framework

The geometric structure is not a principal bundle but a two-sided categorical bundle with a 2-connection :

Connective structure		interpretation	
left potential	A	generator of the operator-valued geometric phases	
right object potential	A_o^R	generator of the Uhlmann geometric phases	
right arrow potential	A^R_{\rightarrow}	unitary and SLOCC operations on ${\mathcal S}$	
left curving	B^L	measure of the purity decreasing effects	
right curving	B^R	measure of the shift in the standard purification	
left fake curvature	F^L	measure of the non-adiabatic and entangl. effects	
right fake curvature	F^R	quantity related to the quantum Fisher information	
two-sided fake curvature	F^{RL}	measure of the non-invariance	

D. Viennot, arXiv :1508.02279 (2015).

UTINAM

San

イロト イポト イヨト イヨト

Open qu. syst.

Adiab. app. open syst.

Adiabatic control hampered by entanglement in bipartite systems (small environments)

Example : Left fake curvature (non-adiab. trans. entangl.)

David Viennot

Adiab. ctrl. & HQC closed syst. 00000000 Adiabatic control of a Lindbladian dynamics **Open qu. syst**.

Adiab. app. open syst.

UTINAM

Master equation in the weak adiabatic assumption

$$H(x)\phi_n(x) = \lambda_n(x)\phi_n(x)$$
$$U_{\mathcal{S}}(t,t_0) \simeq \sum_n e^{i\varphi_n(t)} |\phi_n(x(t))\rangle \langle \phi_n(x(t_0))| \quad (t_{\times} \notin [t,t_0])$$

$$\longrightarrow \imath\hbar\dot{\rho} = [H(x(t)),\rho] -\frac{\imath}{2}\sum_{k}\gamma_{k}(R(x(t)),\xi)\{R(x(t))\Gamma_{k}^{\dagger}\Gamma_{k}R(x(t))^{\dagger},\rho\} +\imath\sum_{k}\gamma_{k}(R(x(t)),\xi)R(x(t))\Gamma_{k}R(x(t))^{\dagger}\rho R(x(t))\Gamma_{k}^{\dagger}R(x(t))^{\dagger}$$

with $R(x) = \sum_{n} |\phi_n(x)\rangle \langle \phi_n(x_0)|$ and ξ the mixing angle at the crossing. $\gamma_k(R(x(t)),\xi)$ in Markovian and non-Markovian cases? (work in progress)

イロト イポト イヨト イヨト

David Viennot

Adiab. ctrl. & HQC closed syst. 00000000 Adiabatic control of a Lindbladian dynamics **Open qu. syst.** 000000000 Adiab. app. open syst.

Adiabatic transport with Lindblad equation

- The strong adiabatic transport can be obtained as a non-hermitian adiabatic transport in the Hilbert-Schmidt representation of the Lindblad dynamics (work in progress for the Markovian secular case with a 3-level atom in a thermal bath).
- The weak adiabatic transport could be obtained as the non-commutative adiabatic transport in the purified representation of the Lindblad dynamics **but** the nonlinearity of the purified equation is a strong obstruction.

