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Abstract
We consider quantum dynamics for which the strict adiabatic approximation
fails but which do not escape too far from the adiabatic limit. To treat these
systems we introduce a generalization of the time-dependent wave operator
theory which is usually used to treat dynamics which do not escape too far
from an initial subspace called the active space. Our generalization is based
on a time-dependent adiabatic deformation of the active space. The geometric
phases associated with the almost adiabatic representation are also derived.
We use this formalism to study the adiabaticity of a dynamics surrounding
an exceptional point of a non-Hermitian Hamiltonian. We show that the
generalized time-dependent wave operator can be used to correct easily the
adiabatic approximation which is very imperfect in this situation.
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1. Introduction

The numerical study of complex quantum dynamical systems, as the interaction of a molecule
with a strong laser field, leads to need for a long computational times and large computer
memory capacity when use is made of a wave packet approach, which involves a direct
integration of the time-dependent Schrödinger equation. Moreover the theoretical study of
such systems is difficult because the time-dependent wave function involves components
belonging to the whole Hilbert space. It is then interesting to approach the true dynamics by an
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effective dynamics within a small subspace, called an active space. Moreover it is important
to be able to compare the true and the effective dynamics.

The time-dependent wave operator theory [1, 2] can be used if the dynamics does not
escape too far from an initial small subspace (the meaning of ‘space too far from a subspace’
will be precisely defined in the next section). The effective dynamics within the active space,
which approaches the true dynamics, is governed by an effective Hamiltonian Heff = P0H�

(where H is the true Hamiltonian, P0 is the projector onto the active space and � is the
time-dependent wave operator). The time-dependent wave operator is a comparison of the
true and the effective dynamics and can be used to deduce the true dynamics from the
effective dynamics. The time-dependent wave operators are a generalization of the Møller wave
operators �± = limt→∓∞ e−ı�−1Ht eı�−1H0t which compares the scattering dynamics induced
by a true Hamiltonian H with the scattering dynamics induced by a simpler Hamiltonian H0.

The main assumption of the time-dependent wave operator theory—the dynamics does
not escape too far from a fixed subspace—can be a strong limitation. When it is not applicable,
the adiabatic approximation [3–6] can be used for some systems. The main principle of
the adiabatic approximation is that the dynamics remains in the neighbourhood of a small
time-dependent subspace generated by some instantaneous eigenvectors. The approximate
dynamics is then governed by the effective Hamiltonian Heff = P0HP0 − ı�Ṗ0P0 (where P0

is the orthogonal projector onto the adiabatic active space spanned by the few instantaneous
eigenvectors, and the dot denotes the time derivative). ı�Ṗ0P0 is associated with the geometric
(Berry) phase [7, 8].

The conditions of the adiabatic approximation can be very restrictive (the Hamiltonian
variations must be slow and a gap condition between the eigenvalues is required). In this paper
we present a generalization of the active space method useful for dynamics which does not
escape too far from an adiabatic subspace. In contrast with the strict adiabatic approximation,
our generalization is not an asymptotic limit but an approach similar to the time-dependent
wave operator theory. A generalization of the time-dependent wave operators is indeed used
to compare the dynamics within the active space and the true dynamics. This approach is then
a mixing between the two previous approaches, as it is shown by the structure of the effective
Hamiltonian of this almost adiabaticity, Heff = P0H� − ı�Ṗ0�.

The next section recalls the main properties of the time-dependent wave operator theory.
Section 3 introduces the almost adiabaticity and the associated generalized time-dependent
wave operators. Section 4 studies the geometric phases associated with the almost adiabatic
representation. Section 5 studies the problem of the adiabatic approximation for a dynamics
surrounding an exceptional point of a non-Hermitian Hamiltonian. The use of the almost
adiabatic formalism helps to increase the accuracy of the description with respect to a strict
adiabatic approximation. A simple analytical two level system is treated but also the case of
the molecule H+

2 . The appendix presents the demonstration of the equation satisfied by the
generalized time-dependent wave operator. It is interesting to note that this demonstration
borrows ideas from the demonstration of the equation satisfied by the usual time-dependent
wave operator and from the demonstrations of the adiabatic theorems.

2. Space of projectors and time-dependent wave operators

Let Gm(H) = {P ∈ B(H), P2 = P, P† = P, tr P = m} be the space of rank m orthogonal
projectors of the Hilbert space H (B(H) denotes the set of bounded operators of H). If H is
finite dimensional, i.e.H � C

n, Gm(Cn) is a complex manifold called a complex Grassmannian
[9]. This manifold is endowed with a Kählerian structure [10], and particularly with a distance
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(called the Fubini–Study distance) defined by

∀P1, P2 ∈ Gm(Cn), distFS(P1, P2) = arccos | det Z†
1Z2|2 (1)

where Z1, Z2 ∈ Mn×m(C) are the matrices of two arbitrary orthonormal basis of Ran P1 and
Ran P2 expressed in an orthonormal basis of C

n (Ran P denotes the range of P). We can note
that 0 � distFS(P1, P2) � π

2 . The Fubini–Study distance measures the ‘quantum compatibility’
between the two subspaces Ran P1 and Ran P2 in the sense that distFS(P1, P2) = π

2 if and only
if Ran P⊥

1 ∩ Ran P2 
= {0} or Ran P1 ∩ Ran P⊥
2 
= {0}, i.e. there exists a state of Ran P1 for

which the probability of obtaining the same measures as that with a system in a state of Ran P2

is zero [8]. For infinite dimensional Hilbert space, it is possible to define a manifold Gm(C∞)

endowed with a Kählerian structure by using the inductive limit techniques [9].
Let P0, P ∈ Gm(H) be such that distFS(P0, P) < π

2 . We call wave operator associated
with Ran P0 and Ran P the operator � defined by

� = P(P0PP0)
−1 (2)

where (P0PP0)
−1 = P0(P0PP0)

−1P0 is the inverse of P within Ran P0 (it exists only if P is
not too far from P0, i.e. distFS(P, P0) < π

2 ). Usually the wave operators are used to solve
eigenequations [1]. In that case, we solve an effective eigenequation Heffψ0 = λψ0 where
Heff = P0H� ∈ L(Ran P0) is the effective Hamiltonian within Ran P0 (H ∈ B(H) is the true
self-adjoint Hamiltonian). We recover the true eigenvector associated with λ, Hψ = λψ , by
ψ = �ψ0 ∈ Ran P (ψ0 = P0ψ). � is called Bloch wave operator and is obtained by solving
the Bloch equation

H� = �H� ⇐⇒ [H,�]� = 0. (3)

Since �2 = �, the Bloch wave operator can be viewed as a nonlinear generalization of an
eigenprojector (an eigenprojector satisfying [H, P] = 0 with P2 = P). Physically, the Bloch
wave operator compares the approximate eigenstates within Ran P0 (which is called the active
subspace) with the associated true eigenstates. The Bloch equation can be numerically solved
by the RDWA method (recursive distorded wave approximation) [2] and a relevant active
space Ran P0 can be numerically selected by using the WOSA method (wave operator sorting
algorithm) [11].

In a same manner, in order to compare an approximate quantum dynamics within an active
space Ran P0 with the true dynamics, we can introduce the time-dependent wave operator [2]:

�(t) = P(t)(P0P(t)P0)
−1 (4)

where (P0P(t)P0)
−1 is still the inverse within Ran P0, and where t → P(t) ∈ Gm(H) is the

solution of the Schrödinger–von Neumann equation:

ı�Ṗ(t) = [H(t), P(t)] P(0) = P0 (5)

H(t) ∈ B(H) being the self-adjoint time-dependent Hamiltonian. We can then solve the
effective Schrödinger equation within Ran P0, ı�∂tψ0(t) = Heff(t)ψ0(t), where Heff(t) =
P0H(t)�(t) ∈ L(Ran P0) is the effective Hamiltonian, and we recover the true wave function,
ı�∂tψ(t) = H(t)ψ(t), by ψ(t) = �(t)ψ0(t) (P0ψ(t) = ψ0(t)). The time-dependent wave
operator can be used only if the dynamics does not escape too far from the initial subspace,
i.e. ∀t, distFS(P(t), P0) < π

2 . Since P(t) = U (t, 0)P0U (t, 0)†, where U (t, 0) ∈ U (H) is the
evolution operator (ı�U̇ (t, 0) = H(t)U (t, 0), U (0, 0) = 1; U (H) denotes the set of unitary
operators of H), we can also write

�(t) = U (t, 0)(P0U (t, 0)P0)
−1. (6)
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By using this expression, it is not difficult to prove that the time-dependent wave operator
satisfies

ı��̇(t) = H(t)�(t) − �(t)H(t)�(t) = [H(t),�(t)]�(t) �(0) = P0. (7)

Usually this last equation is written

(H(t) − ı�∂t )�(t) = �(t)(H(t) − ı�∂t )�(t) (8)

which is right since �(t)�̇(t) = 0. The time-dependent wave operator satisfies then a Bloch
equation with the Floquet Hamiltonian HF (t) = H(t) − ı�∂t in the extended Hilbert space
H⊗ L2

0([0, T ], dt) (T being the duration of the dynamics and L2
0([0, T ], dt) denotes the space

of square integrable functions of [0, T ] with periodic limit conditions). We can then apply the
numerical methods solving the Bloch equation to compute the time-dependent wave operator
(see [2] to have a complete presentation of the use of the generalized Floquet theory with
time-dependent wave operators).

3. Almost adiabaticity and generalized time-dependent wave operators

Let t → H(t) ∈ B(H) be a self-adjoint time-dependent Hamiltonian. Let t → P0(t) ∈ Gm(H)

be a C2 instantaneous eigenprojector:

∀t, [H(t), P0(t)] = 0. (9)

Let UT (s, 0) ∈ U (H) be the evolution operator for the reduce time s = t/T , ı�T∂sUT (s, 0) =
H(sT )UT (s, 0) with UT (0, 0) = 1. The dynamics of the quantum system is said adiabatic if

∀s, UT (s, 0)P0(0) = P0(sT )UT (s, 0) + O(1/T ) (10)

for T in the neighbourhood of +∞. The adiabaticity is realized if H(t) and P0(t) satisfy an
adiabatic theorem [3–6]. We can reformulate the adiabatic assumption. Let t → P(t) ∈ Gm(H)

be the solution of the Schrödinger–von Neumann equation

ı�Ṗ = [H(t), P(t)] P(0) = P0(0). (11)

The dynamics is adiabatic if

∀t, distFS(P(t), P0(t)) = O(1/T ). (12)

The adiabatic assumption is realized if the following Riemann–Lebesgue like lemma is
satisfied [3]: ∀ψa ∈ Ran P0(t)∑
ψb∈ Ran P0(t)⊥

∣∣∣∣
∫ s

0
eı�−1T

∫ s′
0 �Eab(s′′ ) ds′′ 〈ψa(s′)|Ḣ(s′)|ψb(s′)〉

�Eab(s′)
ds′

∣∣∣∣
2

= O(1/T ) (13)

where {ψa}a is a C1 eigenbasis of H, and �Eab(s) = Eb(s) − Ea(s), Ea being the eigenvalue
associated with ψa. In practice this needs a gap condition (∀t the eigenvalues associated with
Ran P0(t) must remain relatively far from the other eigenvalues) and slow variations of the
Hamiltonian (in order to be close to the idealization T → +∞). This can be very drastic.

We consider now systems for which these conditions are not applicable (too fast variations
or spectrum with too small gaps), but which satisfy the following weakest adiabatic assumption

∃r <
π

2
, ∀t, distFS(P(t), P0(t)) � r. (14)

We said then that the quantum system is almost adiabatic. r is called the almost adiabaticity
radius and the strict adiabaticity corresponds to r → 0. In contrast with the strict adiabaticity
where the dynamics must not significantly escape from the adiabatic subspace Ran P0(t), the
almost adiabaticity requires only that the dynamics does not escape too far from the adiabatic
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subspace (distFS(P(t), P0(t)) < π
2 ). Since Ran P(t) is close to the adiabatic subspace Ran P0(t)

we call it the limbo space.
In the almost adiabatic case, the dynamics within the adiabatic subspace Ran P0(t) is

a wrong approximation of the true dynamics, it is then necessary to compare the quantum
dynamics within the adiabatic space with the true dynamics involving limbo states. This is
achieved with the following generalization of the time-dependent wave operator:

�(t) = P(t)(P0(t)P(t)P0(t))
−1 (15)

(P0(t)P(t)P0(t))−1 is the inverse within Ran P0(t) (it exists because of the almost adiabatic
assumption). The essential difference with the usual time-dependent wave operator is that P0

is time-dependent, nevertheless the generalized time-dependent wave operator satisfies the
equation

ı��̇(t) = H(t)�(t) − �(t)H(t)�(t) + ı��(t)�̇(t) (16)

which can be rewritten as a Bloch equation

(H(t) − ı�∂t )�(t) = �(t)(H(t) − ı�∂t )�(t). (17)

This property is proved in appendix A. It can be surprising that the generalized time-dependent
wave operator obeys to the same equation that the usual time-dependent wave operator, but
we can note that in the usual case we consider only the solutions of the Bloch equation such
that ��̇ = 0, whereas the solutions of the generalized case must be such that ��̇ 
= 0.
Another important difference concerns the properties of � in the Floquet theory. In the two
cases we have in H, P0� = P0 with P0 time-dependent or not. But in the extended Hilbert
space H ⊗ L2

0([0, T ], dt), for the usual time-dependent wave operator, we have

P̂0 = P0 ⊗ 1 ⇒ P̂0�̂ = P̂0 (18)

where .̂ denotes the representation of a time-dependent operator of H as an operator of
H ⊗ L2

0([0, T ], dt). For the generalized wave operator, we have

P0(t) =
∑
n∈Z

P0n eınωt (19)

where ω = 2π
T is the frequency of the artificial period of the generalized Floquet theory, and

P0n ∈ B(H) are the Fourier components of P0. We can note that

P0(t)
2 = P0(t) ⇐⇒ ∀n,

∑
q∈Z

P0n−qP0q = P0n. (20)

Let {|n〉 = eınωt}n∈Z be the canonical basis of L2
0([0, T ], dt). The components of P0(t) with

respect to this basis are

〈m|P0|q〉L2
0([0,T ],dt) =

∫ T

0
e−ımωtP0(t) eıqωt dt = P0q−m (21)

and then

P̂0 =
∑

q,m∈Z

P0q−m ⊗ |m〉〈q| (22)

and finally

P̂2
0 =

∑
ml∈Z

⎛
⎝∑

q∈Z

P0q−mP0l−q

⎞
⎠ ⊗ |m〉〈l| 
= P̂0 (23)

5



J. Phys. A: Math. Theor. 47 (2014) 065302 D Viennot

P̂0 is then not a projector in H⊗ L2
0([0, T ], dt) and then P̂0�̂ 
= P̂0 (this is not surprising since

the Floquet representation consists of Fourier transforms which transform the products into
convolutions, then P0(t)2 = P0(t) ⇒ P̂0 ∗ P̂0 = P̂0 this is precisely the equation (20)).

Heff = (P0H − ı�Ṗ0)� governs the effective dynamics since (see appendix A.5)

U (t, 0)P0(0) = �(t)Ueff(t, 0) (24)

where the effective evolution operatorUeff(t, 0) ∈ L(Ran P0(0), Ran P0(t)) (Ueff is not unitary,
it is just invertible) is the solution of

ı�U̇eff(t, 0) = Heff(t)Ueff(t, 0) Ueff(0, 0) = P0(0). (25)

4. Geometric phases in almost adiabaticity

4.1. One dimensional case

We consider the case where dim Ran P0 = 1. Let φ0(t) ∈ H be the considered normalized
eigenvector:

H(t)φ0(t) = λ(t)φ0(t), P0(t) = |φ0(t)〉〈φ0(t)|. (26)

By application of the equation (24), the true wave function ψ(t) ∈ H solution of the
Schrödinger equation with the initial condition ψ(0) = φ0(0) can be written in the almost
adiabatic representation as

ψ(t) = c(t)�(t)φ0(t) c(t) ∈ C
∗ (27)

where the generalized time-dependent wave operator is used to transform the wrong adiabatic
approximation of the wave function c(t)φ0(t) into the true wave function. By inserting this
expression of ψ in the Schrödinger equation, we find

ċ(t)�(t)φ0(t) + c(t)�̇(t)φ0(t) + c(t)�(t)
dφ0(t)

dt
= −ı�−1c(t)H(t)�(t)φ0(t). (28)

We project this equation onto 〈φ0(t)|�−1(t) where �−1(t) = P0(t)P(t) is the pseudo-inverse
of � (�−1� = P0):

ċ(t) = (−ı�−1〈φ0(t)|�−1(t)H(t)�(t)|φ0(t)〉 − 〈φ0(t)|∂t |φ0(t)〉
−〈φ0(t)|�−1(t)�̇(t)|φ0(t)〉

)
c(t). (29)

Finally we have

ψ(t) = e−ı�−1
∫ t

0 λeff(t ′) dt ′−∫ t
0 A(t ′) dt ′−∫ t

0 η̂(t ′) dt ′�(t)φ0(t) (30)

with

λeff(t) = 〈φ0(t)|�−1(t)H(t)�(t)|φ0(t)〉 (31)

A(t) = 〈φ0(t)|∂t |φ0(t)〉 (32)

η̂(t) = 〈φ0(t)|�−1(t)�̇(t)|φ0(t)〉. (33)

We see that the correct adiabatic approximation in almost adiabaticity
e−ı�−1

∫ t
0 λeff(t ′) dt ′−∫ t

0 A(t ′) dt ′−∫ t
0 η̂(t ′) dt ′φ0(t) differs from the usual adiabatic approximation

by two points:

• the presence of an extra geometric phase e− ∫ t
0 η̂(t ′) dt ′ . Such a wave operator geometric

phase has been already observed in the different context of the generalization of the Stokes
theorem to geometric phases associated with a resonances crossing [12].
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• The replacement of the usual dynamical phase e−ı�−1
∫ t

0 λ(t ′) dt ′ by an effective dynamical
phase e−ı�−1

∫ t
0 λeff(t ′) dt ′ .

By setting ψ̃ (t) = �(t)ψ0(t), equation (30) becomes

ψ(t) = e−ı�−1
∫ t

0
〈ψ̃ (t′ )|H(t′ )|ψ̃ (t′ )〉

〈ψ̃ (t′ )|ψ̃ (t′ )〉 dt ′−∫ t
0

〈ψ̃ (t′ )|∂t′ |ψ̃ (t′ )〉
〈ψ̃ (t′ )|ψ̃ (t′ )〉 dt ′

ψ̃ (t). (34)

This is precisely the expression of the (Aharonov–Anandan) geometric phase for a cyclic
non-adiabatic evolution [13]. Nevertheless, in this case the cyclicity cannot be completely
assumed. We can assume that P0(T ) = P0(0) but we have only distFS(P(T ), P(0)) < π

2 (the
evolution is ‘almost cyclic’).

By using equation (16) we have ı��−1(t)�̇(t) = �−1(t)H(t)�(t) − P0(t)H(t)�(t) +
ı�P0(t)�̇(t), and then η̂(t) = −ı�−1(λeff(t) − λ(t)) + 〈φ0(t)|�̇(t)|φ0(t)〉. Equation (30) can
be then rewritten with the usual dynamical phase as follows:

ψ(t) = e−ı�−1
∫ t

0 λ(t ′) dt ′−∫ t
0 A(t ′) dt ′−∫ t

0 η(t ′) dt ′�(t)φ0(t) (35)

with a reduced wave operator geometric phase generated by

η(t) = 〈φ0(t)|�̇(t)|φ0(t)〉. (36)

4.2. Multidimensional case

Now we consider that dim Ran P0 = m > 1. Let Ĥeff(t) = P0(t)H(t)�(t) ∈ L(Ran P0(t)) be
an effective Hamiltonian within Ran P0. Even if Ran P0 is generated by a basis of eigenvectors
of H, these vectors are not eigenvectors of Ĥeff. We consider then the effective eigenvectors
φeff

0a ∈ Ran P0 (a = 1, . . . , m):

Ĥeff(t)φeff
0a (t) = λeff

0a (t)φeff
0a (t). (37)

We can note that by construction λeff
0a (t) is an eigenvalue of P0(t)H(t) with the associated

eigenvector �(t)φeff
0a (t). The true wave function which is the solution of the Schrödinger

equation with the initial condition ψ(0) = φeff
0a (0) = φ0a(0) (φ0a is an eigenvector of H) is in

the almost adiabatic representation (by application of equation (24)):

ψ(t) =
m∑

b=1

cb(t)�(t)φeff
0b (t). (38)

Since Ĥeff is not self-adjoint, the effective eigenvectors do not form an orthonormal basis. Let
T (t) ∈ Mm×m(C) be the matrix defined by

Tbc(t) = 〈φeff
0b (t)|φeff

0c (t)〉 (39)

we define then

〈φeff
0b (t) ∗ | =

m∑
c=1

[T −1(t)]bc〈φeff
0c (t)|. (40)

We have then

〈φeff
0b (t) ∗ |φeff

0c (t)〉 = δbc. (41)

By projecting on 〈φeff
0c (t) ∗ | the equation obtained by inserting the expression (38) in the

Schrödinger equation, we obtain

ψ(t) =
m∑

b=1

[
Te−ı�−1

∫ t
0 Eeff(t ′) dt ′−∫ t

0 Aeff(t ′) dt ′−∫ t
0 η(t ′ ) dt ′]

ba�(t)φeff
0b (t) (42)

7



J. Phys. A: Math. Theor. 47 (2014) 065302 D Viennot

where Te is the time ordered exponential (i.e. a Dyson series) and where the matrices
Eeff, Aeff, η ∈ Mm×m(C) are defined by

Eeff(t) =

⎛
⎜⎝

λeff
1 (t) 0

. . .
0 λeff

m (t)

⎞
⎟⎠ (43)

Aeff(t) =

⎛
⎜⎝

〈φeff
01 (t) ∗ |∂t |φeff

01 (t)〉 . . . 〈φeff
01 (t) ∗ |∂t |φeff

0m(t)〉
...

. . .
...

〈φeff
0m(t) ∗ |∂t |φeff

01 (t)〉 . . . 〈φeff
0m(t) ∗ |∂t |φeff

0m(t)〉

⎞
⎟⎠ (44)

η =

⎛
⎜⎝

〈φeff
01 (t) ∗ |�̇(t)|φeff

01 (t)〉 . . . 〈φeff
01 (t) ∗ |�̇(t)|φeff

0m(t)〉
...

. . .
...

〈φeff
0m(t) ∗ |�̇(t)|φeff

01 (t)〉 . . . 〈φeff
0m(t) ∗ |�̇(t)|φeff

0m(t)〉

⎞
⎟⎠ . (45)

As for the one dimensional case, the ‘non-Abelian phase’ is generated by an effective
eigenvalue matrix in place of the true eigenvalue matrix and by an extra geometric phase
generator associated with the wave operator. We can note that Aeff is not physically different
from of the usual geometric phase generator A. Let M(t) ∈ GL(Ran P0(t)) be the passage
matrix transforming the basis of Ran P0(t) constituted by the eigenvectors of H(t) into the
basis {φeff

0a }a. We have

Aeff(t) = M−1(t)A(t)M(t) + M−1(t)Ṁ(t). (46)

The transformation of A to Aeff is then just a gauge change, Aeff and A have then the same
physical meaning.

Remark: in contrast with M, � cannot be viewed as a gauge change since it is not invertible.

4.3. Computation of the wave function in almost adiabaticity

Formulae (30) and (42) have not interest if we cannot compute easily the generalized time-
dependent wave operator �(t). We have shown that it is solution of a Bloch equation in
the extended Hilbert space of the Floquet theory. Unfortunately we cannot use the RDWA
technique to integrate the equation because the time-dependent projector P0(t) is not a projector
in the extended Hilbert space.

Let X (t) = Q0(t)�(t)P0(t) be the reduced wave operator (�(t) = P0(t) + X (t)), where
Q0(t) = 1−P0(t) (the strict adiabaticity corresponds to X (t) � 0). Let K(t) = ı�(Ṗ0(t)P0(t)+
Q̇0(t)Q0(t)) ∈ B(H) be the adiabatic kernel [3–6] and V (t) ∈ U (H) be the intertwining
operator [3–6] defined by ı�V̇ (t) = K(t)V (t) and satisfying V (t)P0(0) = P0(t)V (t). The
modified reduced wave operator Y (t) = V (t)−1X (t)V (t) satisfies the following equation

ı�Ẏ (t) = (Q0(0) − Y (t))H̃adiab(t)(P0(0) + Y (t)) (47)

with Q0(0)Y (t) = Y (t), Y (t)P0(0) = Y (t). H̃adiab(t) is the adiabatic renormalization of the
Hamiltonian:

H̃adiab(t) = V (t)−1(H(t) − K(t))V (t). (48)

Such a renormalized Hamiltonian occurs in the demonstrations of the strict adiabatic theorems
[3–6]. The proof of equation (47) can be found in appendix B. A very interesting fact is
that equation (47) is exactly [2] the equation of an usual time-dependent reduced wave
operator Y (t) associated with the Hamiltonian H̃adiab(t) and with the fixed active space
Ran P0(0). To compute Y (t) we can then use a differencing scheme of integration [2, 14]

8
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or use the RDWA algorithm in the Floquet extended Hilbert space for the Bloch equation
(H̃adiab(t) − ı�∂t )ϒ(t) = ϒ(t)(H̃adiab(t) − ı�∂t )ϒ(t) with ϒ(t) = P0(0) + Y (t). The
intertwining operator V (t) is purely geometric and can be calculated by using generalized
geometric phases (see appendix B.4).

5. Non-Hermitian quantum dynamics surrounding an exceptional point

Let �R → H(�R) be a parameter dependent non-Hermitian hamiltonian (with eigenvalues in
lower complex half plane), the set of all possible parameters {�R} forming a manifold M.
An exceptional point �R∗ ∈ M is a point of coalescence of two non-degenerate complex
eigenvalues of H where H(�R∗) is not diagonalizable (in contrast with a diabolic point). Let
C be a closed path in M surrounding �R∗ (and not other coalescence points). Starting from an
eigenvector associated with one of the coalescent eigenvalues, if C is slowly followed, the
adiabatic approximation states that after one turn the wave function is projected only on the
eigenvector associated with the other coalescent eigenvalue [15, 16]. This inversion of state
is not due to non-adiabatic transitions but it is a topological effect. Using this effect it is
possible to propose mechanisms of molecular vibrational cooling or logical gate for quantum
information process. But recently, some authors [17, 18] have shown that the conditions to
respect the adiabatic approximation are very drastic and need a very slow travelling speed of C.
If we study the mathematically proved adiabatic theorems for non-self-adjoint Hamiltonians
[5, 6], we show that an assumption to be adiabatic is that the wave function remains projected
onto the eigenvector associated with the less dissipative eigenvalue. Such an assumption is not
satisfied for a path surrounding an exceptional point precisely because of the wanted effect
of state topological inversion. This assumption is required because of a competition between
adiabatic and dissipative processes. This problem is an interesting area to test the almost
adiabatic formalism. This is the subject of this section. We propose two examples of this
situation. The first one consists to a non-Hermitian two level system which can be viewed as
the simplest model exhibiting an exceptional point. This analytical model permits to enlighten
the behaviour of the almost adiabatic representation. But in order to show the interest of the
almost adiabatic approach in numerical simulations, we need a second example. We consider
the problem originally treated in [17, 18] of the coalescence of two instantaneous eigenvalues
of the molecular ion H+

2 .

5.1. First example: the two level system

5.1.1. The model. We consider the two-level system governed by the Hamiltonian (in a basis
denoted by (|0〉, |1〉))

H(�R) = �

2

(
0 W

W 2� − ı
2

)
(49)

with �R = (W,�) ∈ M = R
+ ×R and  = 0.5 au is a constant. This Hamiltonian corresponds

to a two-level atom interacting with a laser field in the rotating wave approximation, where
W = |〈0|�μ · �E |1〉| (�μ is the atomic electric dipole moment and �E is the electric field) and
� = ω01 − ωl (where ω01 is the Rabi frequency of the transition from |0〉 to |1〉 and ωl

is the laser frequency). The resonance width  could modelize a coupling of the state |1〉
with the ionization continuum of the atom or a spontaneous emission decay. The interest of
considering such a small system, is that it exists analytical expressions of the eigenvectors and
of the geometric phase generators. In contrast with a system governed by a large dimensional
Hamiltonian, no other approximation is needed in addition to adiabatic approximations and/or

9
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Figure 1. λ0(t) and λ1(t) for the path C surrounding two times the exceptional point.

time propagation schemes. This will permit an unambiguous comparison between different
representations of the dynamics. The eigenvalues are

λ0 = �

2
(z −

√
W 2 + z2) (50)

λ1 = �

2
(z +

√
W 2 + z2) (51)

where z = � − ı
4 . �R∗ = ( 

4 , 0) is an exceptional point. We set w = √
W 2 + z2. These

eigenvalues are associated with the following eigenvectors:

φ+
0 =

(
z + w

−W

)
, φ+

1 =
(

W
z + w

)
(52)

for the Riemann sheet such that
√

z2 = z and

φ−
0 =

(
W

z − w

)
, φ−

1 =
(

z − w

−W

)
(53)

for the Riemann sheet such that
√

z2 = −z. The following of a closed path surrounding �R∗
induces a passage from a Riemann sheet to another one. We can note that this question is
related to the labelling procedure of the states [19]. With the present labelling, the imaginary
parts of the eigenvalues are not continuous by the passage through [0, 

4 ] × {0}. Let C be
the path defined as being a circle centred on �R∗, starting from (0, 0) (laser field is off) and
surrounding two times �R∗:

W (t) = 

4

(
1 − cos

(
4π

t

T

))
(54)

�(t) = 

4
sin

(
4π

t

T

)
(55)

where T is the duration of the interaction. Figure 1 shows the evolution of the eigenvalues
when this path is followed. H being not self-adjoint, the eigenvector set is not orthonormal but

10



J. Phys. A: Math. Theor. 47 (2014) 065302 D Viennot

Table 1. Dissipation rates at the end of the evolution.

T log10 ‖ψ(T )‖2

T0 −1.6044
2T0 −5.5846
5T0 −13.4441
10T0 −26.1001

biorthonormal to (〈φ±
0 ∗ |, 〈φ±

1 ∗ |) with

〈φ+
0 ∗ | = 1

2w(w + z)
(z + w − W ) (56)

〈φ−
0 ∗ | = 1

2w(w − z)
(W z − w) (57)

〈φ+
1 ∗ | = 1

2w(w + z)
(W z + w) (58)

〈φ−
1 ∗ | = 1

2w(w − z)
(z − w − W ) (59)

with

〈φ±
i ∗ |φ±

j 〉 = δi j. (60)

The generator of the geometric phase is then

A± = 〈φ±
0 ∗ |∂t |φ±

0 〉 = 〈φ±
1 ∗ |∂t |φ±

1 〉 = (2w ± z)WẆ ± (w ± z)2ż

2w2(w ± z)
(61)

and the non-adiabatic coupling term is

A±
10 = 〈φ±

1 ∗ |∂t |φ±
0 〉 = ± zẆ − Wż

2w2
(62)

(with also A±
01 = −A±

10).

5.1.2. The dynamics. We start with ψ(0) = φ+
0 (0) = |0〉 = (1

0

)
(the less dissipative state),

and we consider the time-dependent wave function ψ(t) solution of the Schrödinger equation
ı�ψ̇ = H(W (t),�(t))ψ(t). We want to compare a strict adiabatic approximation and an
almost adiabatic approximation with the true wave function. We need then a ‘numerically
exact’ solution of the Schrödinger equation. To that, we use a splitted second order differencing
propagation scheme (see appendix C). It is a mixing of a split operator method for the non-
Hermitian part (ensuring a correct description of the dissipation process) and of a second order
differencing scheme (ensuring a sufficient accuracy of the propagation) [20].

Let T0 = 50 au of time. We consider the dynamics for a very fast following of the path
C with T = T0, a very slow following of the path C with T = 10T0, and intermediate cases
with T = 2T0 and T = 5T0. The renormalized populations |〈0|ψ(t)〉|2

‖ψ(t)‖2 and |〈1|ψ(t)〉|2
‖ψ(t)‖2 are shown in

figure 2. We renormalize the populations in order to compare the different cases independently
on the falls induced by the dissipation. For T = 10T0 the dynamics is adiabatic and as predict
by the adiabatic analysis, after one turn (t = T

2 ) we have a state inversion (and another one
during the second turns). We have a less perfect inversion for T = 5T0. But for these two
cases, since the dynamics is very slow, the dissipation of the wave function is very strong as
we can see in table 1. The adiabatic inversions are realized but the system is completely killed
by the dissipation. For acceptable dissipations (T = T0 or T = 2T0), the adiabatic inversions
are not correctly realized.

11



J. Phys. A: Math. Theor. 47 (2014) 065302 D Viennot

Figure 2. Evolution of the populations for different evolution speeds.
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Figure 3. Evolution of the populations in the adiabatic approximation (this graph is
independent from the speed of the evolution).

5.1.3. Representations of the dynamics. The formulae of the strict and almost adiabatic
representations can be generalized without difficulty by taking into account the
biorthonormality (we have P0 = |φ+

0 (t)〉〈φ+
0 (t) ∗ | in place of the orthogonal projection,

and the Schrödinger–von Neumann equation (5) becomes ı�Ṗ(t) = [H(t), P(t)]+ =
H(t)P(t) + P(t)H(t) where P(t) = |ψ(t)〉〈ψ∗(t)| is the projection on the solution of the
Schrödinger equation ı�ψ̇ (t) = H(t)ψ(t) parallel to the orthogonal supplement of the space
spanned by the solution of the equation −ı�ψ̇∗(t) = H(t)†ψ∗(t)—the star does not denote the
complex conjugation but the biorthogonality with ψ –). In the strict adiabatic approximation,
the wave function is represented by

ψadiab(t) =

⎧⎪⎨
⎪⎩

e−ı�−1
∫ t

0 λ0(t ′) dt ′−∫ t
0 A+(t ′) dt ′φ+

0 (t) if t � T

2

e−ı�−1
∫ t

0 λ0(t ′) dt ′−∫ T/2
0 A+(t ′) dt ′−∫ t

T/2 A−(t ′) dt ′
φ−

0 (t) if t >
T

2

(63)

where we have taken into account the change of Riemann sheet after one turn. The populations
evaluated with this formula are shown in figure 3. As expected, the adiabatic approximation
is not correct for T = T0 and T = 2T0. We consider the almost adiabatic representation:

ψalmost(t) = e−ı�−1
∫ t

0 λ0(t ′) dt ′−∫ t
0 A+(t ′) dt ′−∫ t

0 η(t ′) dt ′ (φ+
0 (t) + x(t)φ+

1 (t)) if t � T

2
;

e−ı�−1
∫ t

0 λ0(t ′) dt ′−∫ T/2
0 A+(t ′) dt ′−∫ t

T/2 A−(t ′) dt ′−∫ t
0 η(t ′) dt ′

(φ−
0 (t) + x(t)φ−

1 (t)) if t >
T

2
(64)

where we have written the wave operator as being

�(t) =

⎧⎪⎨
⎪⎩

|φ+
0 (t)〉〈φ+

0 (t) ∗ | + x(t)|φ+
1 (t)〉〈φ+

0 (t) ∗ | if t � T

2

|φ−
0 (t)〉〈φ−

0 (t) ∗ | + x(t)|φ−
1 (t)〉〈φ−

0 (t) ∗ | if t >
T

2

(65)

and

η(t) =

⎧⎪⎨
⎪⎩

〈φ+
0 (t) ∗ |�̇(t)|φ+

0 (t)〉 if t � T

2

〈φ−
0 (t) ∗ |�̇(t)|φ−

0 (t)〉 if t >
T

2
.

(66)

13



J. Phys. A: Math. Theor. 47 (2014) 065302 D Viennot

The renormalized Hamiltonian is

H̃adiab =
(

λ0 −ı�A±
10

ı�A±
10 λ1

)
(67)

and in this example equation (47) is reduced to

ẋ(t) =

⎧⎪⎨
⎪⎩
A+

10(t)x(t)
2 − ı�−1(λ1(t) − λ0(t))x(t) + A+

10(t) if t � T

2

A−
10(t)x(t)

2 − ı�−1(λ1(t) − λ0(t))x(t) + A−
10(t) if t >

T

2

(68)

and we have η(t) = x(t)A±
10(t). In the almost adiabatic representation, the approximation is

present in the integration of equation (68). We chose a first order differencing scheme for the
propagation:

xn+1 = xn + (
A±

10(tn)x
2
n − ı�−1(λ1(tn) − λ0(tn))xn + A±

10(tn)
)
�t (69)

with same step �t as for the ‘numerically exact’ solution of the Schrödinger equation.
The populations computed with the almost adiabatic representation are shown figure 4. A
comparison of the figures 2–4 shows:

• For T = 2T0 (non-adiabatic regime), the almost adiabatic representation corrects
completely the errors of the adiabatic approximation (except in the neighbourhood of
T/2—the passage from a Riemann sheet to another one—where the almost adiabatic
dynamics is too brutal because of the needed correction to the strict adiabaticity is very
strong).

• For T = 5T0 (adiabatic regime), the almost adiabatic representation is in a very good
accordance with reality, the deviations to the strict adiabatic approximation are corrected.

• For T = T0 (very non-adiabatic regime), the almost adiabatic representation corrects the
errors of the adiabatic approximation until T/2, after the Riemann sheet change, the error
of the adiabatic approximation being very strong, the almost adiabatic representation needs
some time to correct the populations.

• For T = 10T0 (very adiabatic regime), the almost adiabatic representation seems lower
than the adiabatic approximation after the Riemann sheet change. But we note that this
corresponds to a very dissipated wave function, and small errors are amplified by the
renormalization by 1/‖ψalmost‖2.

We confirm this analysis by studying the errors. In order to evaluate the effect of the
approximation in the calculation of the wave operator, we compare also with a direct
integration of the Schrödinger equation with a non-splitting first order differencing scheme.
The errors concerning the representations of the wave function are drawn figure 5 and the errors
concerning the dissipation are drawn figure 6. In all cases, the almost adiabatic representation
is clearly better than the adiabatic approximation. At the end of the evolution, the error of the
almost adiabatic representation increases. This is certainly caused by the error accumulation
associated with the first order differencing scheme used to compute x(t). Concerning the
dissipation, the almost adiabatic representation is equivalent to the adiabatic approximation
except in non-adiabatic regimes where it is better (only for the first part of the dynamics in the
case T = 2T0).

The convergences of the ‘numerically exact’ integration, of the first order differencing
scheme and of the almost adiabatic representation are studied figure 7. For a very simple
example as a two level system, all numerical methods converge and provide results with
short numerical computation times. In these conditions, a first order differencing scheme can
provide good solutions (as for the example for the very non-adiabatic regime T = T0). But
for problems with a large Hilbert space dimension, such a simple numerical scheme does
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Figure 4. Evolution of the populations for different evolution speeds computed in the
almost adiabatic representation with a first order differencing scheme to compute the
wave operator.
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Figure 5. Evolution of the error concerning the evaluation of the wave function for the
almost adiabatic representation, the adiabatic approximation, and a non-splitting first
order differencing scheme of integration of the Schrödinger equation. The distance is
defined by dist(ψ, φ) = 1 − |〈ψ |φ〉|

‖ψ‖‖φ‖ .
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Figure 6. Evolution of the error concerning the normalization for the almost adiabatic
representation, the adiabatic approximation, and a non-splitting first order differencing
scheme of integration of the Schrödinger equation.
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Figure 7. Convergences of the second order differencing (SOD) scheme, the first order
differencing (FOD) scheme and the almost adiabatic representation in a logarithmic
scale with respect to n the number of time steps using in the propagation schemes
during [0, T ]. The convergence accuracies are computed with respect to reference
solutions denoted ψ∗,∞ computed with 4000 time steps (the graphics presented
here do not change significantly with respect to reference solutions computed with
sufficiently large number of time steps). The convergence accuracy for n time steps
is computed as being ≺ dist(ψ∗,n, ψ∗,∞) �T/2 = 2

T

∫ T/2
0 dist(ψ∗,n(t), ψ∗,∞(t)) dt with

dist(ψ, φ) = 1 − |〈ψ |φ〉|
‖ψ‖‖φ‖ . The figures previously presented are computed with 1000

time steps, corresponding to a ‘numerically exact’ solution converged with an accuracy
close to 10−10 and an almost adiabatic representation converged with an accuracy close
to 10−7.

not work. The almost adiabatic representation can provide satisfactory results with relatively
short numerical computation times. This is the subject of the next paragraph considering the
example of the H+

2 molecule.

5.2. Second example: H+
2

5.2.1. The system. We consider the vibration of the molecule H+
2 described by the Hilbert

space H = L2(R+, dr) ⊗ C
2, where r is the internuclear distance and C

2 describes the space
of the electronic states (we consider only the ground state 2�+

g and the first excited state 2�+
u ).

The dynamics of the molecule interacting with a laser field is governed in the rotating wave
approximation with one photon by the Hamiltonian

H(�R) = − �
2

2m

d2

dr2
⊗ 1C2

+ Vg(r) ⊗ |2�+
g 〉〈2�+

g | + (Vu(r) − �ω)|2�+
u 〉〈2�+

u |
+ Wμ(r) ⊗ (|2�+

g 〉〈2�+
u | + |2�+

u 〉〈2�+
g |)

− ıVopt(r) ⊗ 1C2 (70)

with �R = (W, ω) ∈ M = R
+ ×R

+. m = 911.389 au is the reduced mass of the molecule; ω is
the laser frequency; and W is the electric field. Vg(r) and Vu(r) are the vibrational potentials of
the molecule with respect to the electronic state. μ(r) is the molecular electric dipole moment.
The optical potential −ıVopt(r) plays the role of an absorbing boundary used to dissipate the
wave packets going in regions with large r. Since numerically it is impossible to describe
the infinite configuration space [0,+∞[ for r; we must consider only a configuration space
[0, rmax] (with rmax = 12 au). The absorbing boundary avoids unphysical reflexions of the
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Figure 8. The vibrational potentials for the ground electronic state Vg(r) and for the
first excited electronic state Vu(r), the optical potential Vopt(r) defining the absorbing
boundary and the electric dipole moment μ(r).

wave packets on the box boundary rmax which induce unphysical stationary waves in [0, rmax]
in place of scattering states. The optical potential restores the physical meaning of the waves
and makes non-Hermitian the Hamiltonian. The potentials and the dipole moment are drawn
figure 8. The Hilbert space H is infinite dimensional, it is needed to represent it on a finite
basis. We consider a discretization {ri = (i−1) rmax

N }i=1,...,NDVR of [0, rmax], and we consider the
DVR basis (discrete variable representation) (ζi(r))i associated with the collocation points:

ζi(r) = 1√
NDVRrmax

NDVR∑
j=1

eık j (r−ri ) (71)

with k j = 2π( j−1− NDVR
2 )

rmax
. We have chose NDVR = 100 and then dimHDVR = 200 where HDVR

is the Hilbert space used in the numerical representation of the system and for which the DVR
basis (ζi)i times the electronic basis (|2�+

g 〉, 2�+
u 〉) constitutes the canonical basis. For off-

field, the spectrum of the Hamiltonian is represented figure 9. We denote by {|gi〉}i the bound
states for W = 0 and by {φgi(�R)}i the states issued from {|gi〉}i for W > 0. Following the works
[17, 18], λg8(�R) and λg9(�R) the eigenvalues of H(�R) issued from the eighth and the ninth bound
states, have an exceptional point of coalescence at �R∗ = (W∗ = 0.197 au;ω∗ = 0.102 42 au)

(3.948 × 1013 W cm−2 and 444.92 nm). Let C be the path surrounding two times �R∗
defined by

W (t) = W0

(
1 − cos

(
4π

t

T

))
(72)

ω(t) = ω∗ + �ω sin

(
4π

t

T

)
(73)

with W0 = 0.105 au and �ω = 0.0005 au. The path is drawn figure 10. As shown in
[17, 18] the system is very weakly adiabatic, we have then chosen a very long interaction
duration T = 40 000 au in order to have a semblance of adiabatic behaviour. Figure 11
shows the evolution of the eigenvalues implicated in the exceptional crossing when this path
is followed.
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Figure 9. Spectrum of the Hamiltonian equation (70) for W = 0 and ω =
0.102 42 au. The spectrum associated with the ground electronic state is represented
in blue and the spectrum associated with first excited electronic state is represented in
red. The Hamiltonian presents pure point spectrum on the real axis associated with the
potential well of the ground vibrational potential and two continuous spectra rotated in
the lower complex half plane which are associated with the scattering states of the two
vibrational potentials.

Figure 10. The path C in the manifold M. • denotes the exceptional point.

5.2.2. Numerical integrations of the dynamics. We start with ψ(0) = φg8(0) = |g8〉 (which
becomes the less dissipative state for small non zero W ), and we consider the time-dependent
wave function ψ(t) solution of the Schrödinger equation ı�ψ̇ = H(W (t), ω(t))ψ(t).
We want to compare the adiabatic approximation and the almost adiabatic representation
with a reference solution considered as the ‘numerically exact’ solution. The second order
differencing scheme cannot be used to obtain this reference solution, since for the time steps
considered here, this scheme strongly diverges (the norm of the wave function becomes very
large (>10100) rather than decreasing). To compute the reference solution, we consider the
wave packet propagation based on the time splitted evolution operator:

U (T, 0) = U (n�t, (n − 1)�t)U ((n − 1)�t, (n − 2)�t) . . .U (�t, 0). (74)

For sufficiently small time step �t, H(W (t), ω(t)) does not change significantly during �t
(a such assumption is in accordance with the (almost) adiabatic assumption) and we can use
the approximation

U ((k + 1)�t, k�t) � e−ı�−1H(W (k�t),ω(k�t))�t .
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Figure 11. λg8(t) and λg9(t) for the path C surrounding two times the exceptional point.

Finally the matrix exponentials e−ı�−1H(W (k�t),ω(k�t))�t are computed by a diagonalization of
H at each time step.

For the adiabatic approximation we have

ψadiab(t) = e−ı�−1
∫ t

0 λg8(t ′) dt ′φg8(t) (75)

where φg8(t) must be defined by continuity with respect to t taking into account the changes
of Riemann sheet (which are located at T/5 and 7T/10). We note that in this example,
the geometric phase generators are still zero. Indeed 〈φgi ∗ | = 〈φgi| (where ∗ denotes
the biorthonormal vector and the overline denotes the complex conjugation), we have then
〈φgi ∗ |φ̇gi〉 = ∫ +∞

0 φgi(r, t)φ̇gi(r, t) dr = 1
2

d
dt

∫ +∞
0 φgi(r, t)2 dr = 1

2
d
dt 〈φgi ∗ |φgi〉 = 0.

The almost adiabatic representation is

ψalmost(t) = e−ı�−1
∫ t

0 λg8(t ′) dt ′−∫ t
0 η(t ′) dt ′ (φg8(t) + x(t)φg9(t)) (76)
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where we consider that φg9 (the other state implicated in the exceptional point) is the only
one state ruining the strict adiabaticity. In other words, we make the following assumption
concerning the reduced wave operator:

X = x|φg9〉〈φg8 ∗ | +
∑
i
=8,9

εi|φgi〉〈φg8 ∗ | with εi � 0. (77)

This assumption consists then to consider that the strict adiabaticity is not valid for φg9 but is
valid for the other bound states. The equation (47) is then reduced to

ẋ(t) = Ag8,g9(t)x(t)
2 − ı�−1(λg9(t) − λg8(t))x(t) + Ag9,g8(t) (78)

with Ag8,g9 = 〈φg8 ∗ |φ̇g9〉. We integrate equation (78) by using the Runge–Kutta (RK4)
method. We note that the non-adiabatic couplings must be computed by using the formula

Ag8,g9 = 〈φg8 ∗ | ( ∂H
∂W Ẇ + ∂H

∂ω
ω̇

) |φg9〉
λg9 − λg8

(79)

obtained by projecting onto 〈φg8 ∗ | the time derivation of Hφg9 = λg9φg9. The non-adiabatic
couplings do not be evaluated by a finite difference method applied to 〈φg8 ∗ |φ̇g9〉 because it
induces divergences of the RK4 algorithm.

We diagonalize H(W (t), ω(t)) at each time step. This constitutes a common
precomputation for all representations. We note that to compute e−ı�−1H(W (k�t),ω(k�t))�t we
could also use a split operator method [20] consisting to split the operator between a potential
part which is diagonal in the DVR basis and a kinematic part which is diagonal in a FBR
basis (finite basis representation) obtained by Fourier transformations of the DVR basis. The
computation of the matrix exponential needs then basis changes between the DVR and the
FBR basis. To compute the adiabatic and the almost adiabatic representations, we do not
need the complete diagonalization of H. We need only φg8 at each time step for the adiabatic
representation and only φg8 and φg9 at each time step for the almost adiabatic representation.
We could then use a partial diagonalization algorithm (as for example the RDWA algorithm
[2]) based on a recursive procedure (we compute φg8(k�t) by successive improvements
starting from the test function φg8((k − 1)�t)). The goal of this section is to compare the
almost adiabatic representation to a wave packet propagation method. We have then chosen a
common diagonalization procedure for the two computations to the comparison be independent
of it.

The convergences of the wave packet propagation and of the almost adiabatic
representation are shown figure 12. We remark that the almost adiabatic representation is
better converged than the reference solution. This do not mean that it is a better solution of the
Schrödinger equation. It is natural that the convergence of the almost adiabatic representation
be more easy since it consists to integrate a Schrödinger equation in a (time dependent) two
dimensional space generated by {φg8, φg9} whereas the wave packet propagation consists to
integrate a Schrödinger equation in a (time independent) 200 dimensional space. Nevertheless
the accuracy of the almost adiabatic representation depends also on the validity of the
assumption consisting to ignore the other states.

Table 2 shows the durations of the different computations. For the viewpoint of the
propagation only (without including the diagonalization time) adiabatic and almost adiabatic
representations are very faster than the wave packet propagation. In this example this concerns
a small time (49 s) but for more time steps and with a quantum system having more degrees
of freedom the advantage could be more significant. We can remark that in the previous
example, the almost adiabatic representation consisted to the replacement of a linear two
dimensional equation by a nonlinear one dimensional equation. Its interest could seem small
since it is more difficult to use a nonlinear equation. But in this example, the almost adiabatic
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Figure 12. Convergences of the wave packet propagation by time splitting of the
evolution operator (SEO), and of the almost adiabatic representation in a logarithmic
scale with respect to n the number of time steps using in the propagation schemes during
[0, T ]. The convergence accuracies are computed with respect to reference solutions
denoted ψ∗,∞ computed with 2000 time steps. The convergence accuracy for n time
steps is computed as being ≺ dist(ψ∗,n, ψ∗,∞) �T/2= 2

T

∫ T/2
0 dist(ψ∗,n(t), ψ∗,∞(t)) dt

with dist(ψ, φ) = 1 − |〈ψ |φ〉|
‖ψ‖‖φ‖ .

Table 2. CPU times of the computations of the wave packet propagation by time splitting
of the evolution operator (SEO), of the adiabatic representation (AR), of the almost
adiabatic representation (AAR) and of the second order differencing scheme (SOD),
with n = 800 time steps in [0, T ]. We have shown the CPU times for only the propagation
without the duration of the precomputation (diagonalizations at each step) and the CPU
times including the precomputation. SOD method is not converged but is presented here
only for comparison (we can note that for 8000 time steps, SOD is still not converged
and its CPU time is approximately multiplied by 10).

CPU time (s)

excluding the time of including the time of
diagonalization diagonalization

SEO 49.095 1922.644
AR 0.008 1873.597
AAR 0.064 1873.665
(not converged) SOD 879.299 not needed

representation consists to the replacement of a linear 200 dimensional equation by a nonlinear
one dimensional equation. If the accuracy of the approximation is satisfactory, the interest
seems more important. The following section treats this point.

5.2.3. The dynamics and its representations. The reference solution of the dynamics is
shown figure 13. As explained in [17, 18], although the interaction duration T is very long,
the expected adiabatic state inversion between |g8〉 and |g9〉 after one turn does not occur.
After two turns, the problem is still more important since other bound states are significantly
occupied. It is ridiculous to try a larger interaction duration to have more adiabatic behaviours
since with this interaction duration the molecule is already ‘completely’ dissociated as we
can see it figure 14. Figure 15 shows the adiabatic representation of the dynamics. From the
middle of the first turn, the adiabatic approximation fails completely to represent the dynamics
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Figure 13. Evolution of the populations of the states |g8〉, |g9〉, and of the total population
of the other bound state. Pbd denotes the projection onto the bound states and Pg8,g9 the
projection onto the space spanned by {|g8〉, |g9〉}.

Figure 14. Evolution of the dissociation probability of the molecule.

Figure 15. Evolution of the populations of the states |g8〉, |g9〉, and of the total population
of the other bound states in the adiabatic approximation (thick lines). In order to facilitate
the comparison, we have recall also the true evolution (thin lines). Pbd denotes the
projection onto the bound states and Pg8,g9 the projection onto the space spanned by
{|g8〉, |g9〉}.
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Figure 16. Evolution of the populations of the states |g8〉, |g9〉, and of the total population
of the other bound states in the almost adiabatic approximation (thick lines). In order to
facilitate the comparison, we have recall also the true evolutions (thin lines). Pbd denotes
the projection onto the bound states and Pg8,g9 the projection onto the space spanned by
{|g8〉, |g9〉}.

Figure 17. Evolution of the error concerning the evaluation of the wave function for
the adiabatic and the almost adiabatic approximations. The distance is defined by
dist(φ, φ) = 1 − |〈ψ |φ〉|

‖ψ‖‖φ‖ . The strong error observed at the end of the second turn
is due to the bound states not included in the active space of the almost adiabatic
representation (see figure 16).

(this corresponds to the moment where the followed eigenvector becomes the more dissipative,
this failure of the adiabatic approximation is then coherent with the adiabatic theorems for
non-self-adjoint Hamiltonians [5, 6]). The almost adiabatic representation of the dynamics is
shown figure 16. The almost adiabatic approximation reproduces with very good satisfaction
the behaviours of the populations of |g8〉 and |g9〉. At the end of the second turn, only the
population of the other bound states is not correctly reproduced. This is natural since we have
ignored them in the active space of the wave operator. It could possible to correct this small
problem by including one or two other bound states (spectrally close to {φg8, φg9}) in the active
space. The errors of the adiabatic approximation and of the almost adiabatic approximation
are shown figure 17.
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6. Conclusion

The role of the wave operators in quantum dynamics can be now resumed. The quantum
dynamics can be represented by the projector P(t) solution of ı�Ṗ = [H, P] with P2 = P. P(t)
is the projector onto the space spanned by all the solutions of the Schrödinger equation for initial
conditions within Ran P(0). The nonlinear analogue of P is the time-dependent wave operator
�(t) solution of ı��̇ = [H,�]� with �2 = �. �(t) is the comparison between the true
quantum dynamics and the effective dynamics within Ran P(0) if distFS(P(t), P0(0)) < π

2 . At
the adiabatic limit, distFS(P(t), P0(t)) ∼ 0, the quantum dynamics can be approached within
the active space Ran P0(t) where P0(t) is an eigenprojector, [H, P0] = 0 and P2

0 = P0. The
nonlinear analogue of P0(t) is the Bloch wave operator �(t) solution of [H,�]� = 0 with
�2 = �. �(t) is the comparison between the states from Ran P0(t) and Ran P0(0). Finally in
the almost adiabatic situation, distFS(P(t), P0(t)) < π

2 , the generalized time-dependent wave
operator �(t) solution of ı��̇ = [H,�]�+ ı���̇ is a comparison between the true dynamics
within Ran P(t) and the effective dynamics within Ran P0(t). For the three approximations,
the effective Hamiltonian governing the approximate dynamics within the active space, can
be written with the general formula Heff = P0H� − ı�Ṗ0� (with for the adiabatic limit
� = P0(P0P0P0)

−1 = P0 and Ṗ0 = 0 for a fixed active space).
In practice, the use of the almost adiabatic representation can be efficient to treat problems

where the adiabatic approximation fails as the dynamics surrounding exceptional points. By
mixing adiabatic approximation and wave operator method, we can treat such a problem by
a partial diagonalization of the time-dependent Hamiltonian (to find the two eigenvectors
implicated in the coalescence) and by a propagation of a wave operator in a one dimensional
space (even if the dimension of the Hilbert space is larger than 2, the components of X on
the vectors which are not implicated by the coalescence can be neglected because they are
governed by very small non-adiabatic coupling terms).

Appendix A. Demonstration of the Bloch equation for the generalized case

A.1. The projector into the limbo space

Let U ∈ U (H) be the evolution operator:

ı�U̇ = HU. (A.1)

Since ı�Ṗ = [H, P] with P(0) = P0(0) we have

P = UP0(0)U−1. (A.2)

Let K ∈ B(H) be the operator defined by

K = ı�(Ṗ0P0 + Q̇0Q0) (A.3)

where Q0 = 1 − P0 is the projector into Ran P⊥
0 . K is the usual adiabatic kernel used in

each demonstration of the adiabatic theorems [3–6]. Let V ∈ U (H) be the evolution operator
associated with K:

ı�V̇ = KV. (A.4)

A classical property of K [3–6] easily verifiable is that

P0(t) = V (t)P0(0)V (t)−1. (A.5)

It follows that

P = UV −1P0VU−1. (A.6)
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A.2. Lemma: derivative of the inverse within Ran P0(t )

Let W ∈ B(H) be an arbitrary operator such that (P0WP0)
−1 exists. By definition we have

(P0WP0)
−1P0WP0 = P0 (A.7)

By derivating this expression we find

d(P0WP0)
−1

dt
P0WP0 + (P0WP0)

−1 d(P0WP0)

dt
= Ṗ0 (A.8)

and then

d(P0WP0)
−1

dt
P0 = Ṗ0(P0WP0)

−1 − (P0WP0)
−1 d(P0WP0)

dt
(P0WP0)

−1. (A.9)

A.3. Derivative properties of the generalized time-dependent wave operator

�P0 = � ⇒ �̇ = �̇P0 + �Ṗ0 (A.10)

P0� = P0 ⇒ Ṗ0� + P0�̇ = Ṗ0 ⇒ ��̇ = �Ṗ0 − �Ṗ0�. (A.11)

A.4. Proof of the Bloch equation

� = P(P0PP0)
−1 (A.12)

= UV −1P0VU−1(P0UV −1P0VU−1P0)
−1 (A.13)

= UV −1P0VU−1P0(P0VU−1P0)
−1(P0UV −1P0)

−1 (A.14)

= UV −1(P0UV −1P0)
−1. (A.15)

By using the derivative properties of � and of (P0WP0)
−1 we have

ı��̇ = ı��̇P0 + ı��Ṗ0 (A.16)

= ı�U̇V −1(P0UV −1P0)
−1 − ı�UV −1V̇V −1(P0UV −1)−1 + ı�UV −1Ṗ0(P0UV −1P0)

−1

− ı�UV −1(P0UV −1P0)
−1

(
Ṗ0UV −1P0 + P0U̇V −1P0

− P0UV −1V̇V −1P0 + P0UV −1Ṗ0
)
(P0UV −1P0)

−1 + ı��Ṗ0 (A.17)

= H� − UV −1K(P0UV −1P0)
−1 + ı�UV −1Ṗ0(P0UV −1P0)

−1 − ı��Ṗ0� − �H�

+ �UV −1K(P0UV −1P0)
−1 − ı��UV −1Ṗ0(P0UV −1P0)

−1 + ı��Ṗ0. (A.18)

By using the expression of ��̇ and the fact that KP0 = ı�Ṗ0P0 we find

ı��̇ = H� − �H� + ı���̇. (A.19)
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A.5. Effective Hamiltonian

Let Ueff ∈ L(Ran P0(0), Ran P0(t)) be such that

UP0(0) = �Ueff (A.20)

U ∈ U (H) being the evolution operator. By derivating this expression we find

U̇P0(0) = �̇Ueff + �U̇eff (A.21)

HUP0(0) = H�Ueff − �H�Ueff + ı���̇Ueff + ı��U̇eff. (A.22)

By projecting this equation on P0 we find

P0HUP0(0) = P0H�Ueff − P0H�Ueff + ı�P0�̇Ueff + ı�P0U̇
eff. (A.23)

Since by definition UP0(0) = �Ueff and P0�̇ = Ṗ0 − Ṗ0�, we have

P0H�Ueff = ı�Ṗ0U
eff − ı�Ṗ0�Ueff + ı�P0U̇

eff. (A.24)

Finally since P0Ueff = Ueff we have Ṗ0Ueff + P0U̇eff = U̇eff and then

P0H�Ueff = ı�U̇eff − ı�Ṗ0�Ueff (A.25)

ı�U̇eff = (P0H − ı�Ṗ0)�Ueff. (A.26)

We can then write Heff = (P0H − ı�Ṗ0)�.

Appendix B. Proof of the equation of the modified reduced wave operator

Let X = Q0�P0 and Hadiab = H − K (with K = ı�(Ṗ0P0 + Q̇0Q0) and Q0 + P0 = 1).

B.1. Expression of (Q0 − X )Hadiab(P0 + X )

(Q0 − X )Hadiab(P0 + X ) = (Q0 − X )H(P0 + X )− ı�(Q0 − X )Ṗ0P0 − ı�(Q0 − X )Q̇0X (B.1)

= (Q0 − X )H(P0 + X )− ı�(Q0 − X )Ṗ0P0 + ı�(Q0 − X )Ṗ0X (B.2)

= (Q0 − X )H(P0 + X ) − ı�(Q0 − X )Ṗ0(P0 − X ). (B.3)

Since (Q0 − X )P0 = −X we have by using XQ0 = 0 ⇒ ẊQ0 = −XQ̇0:

(Q0 − X )Ṗ0 = −Ẋ − (Q̇0 − Ẋ )P0 (B.4)

= Ẋ (P0 − 1) − Q̇0P0 (B.5)

= −ẊQ0 + Ṗ0P0 (B.6)

= XQ̇0 + Ṗ0P0 (B.7)

= −XṖ0 + Ṗ0P0. (B.8)

Moreover XP0 = X ⇒ ẊP0 + XṖ0 = Ẋ ⇒ XṖ0 = Ẋ (1 − P0) ⇒ XṖ0P0 = 0. We have then

(Q0 − X )Hadiab(P0 + X ) = (Q0 − X )H(P0 + X ) − ı�Ṗ0P0 − ı�XṖ0X. (B.9)
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B.2. Equation of the reduced wave operator

By the equation ı��̇ = H� − �H� + ı���̇ we find (by using P0�̇ = Ṗ0 − Ṗ0�)

ı�Ẋ = H� − (P0 + X )H� + ı�(P0 + X )�̇ − ı�Ṗ0 (B.10)

= (Q0 − X )H� + ı�P0�̇ + ı�X�̇ − ı�Ṗ0 (B.11)

= (Q0 − X )H� + ı�Ṗ0 − ı�Ṗ0� + ı�X (Ṗ0 − Ṗ0�) − ı�Ṗ0 (B.12)

= (Q0 − X )H� − ı�Ṗ0� + ı�XṖ0 − ı�XṖ0� (B.13)

= (Q0 − X )H� − ı�(1 + X )Ṗ0� + ı�XṖ0 (B.14)

= (Q0 − X )H� − ı�(1 + X )Ṗ0P0 − ı�(1 + X )Ṗ0X + ı�XṖ0 (B.15)

= (Q0 − X )H� − ı�(1 + X )Ṗ0P0 − ı�Ṗ0X − ı�XṖ0X + ı�XṖ0 (B.16)

= (Q0 − X )H� − ı�Ṗ0P0 − ı�Ṗ0X − ı�XṖ0X + ı�XṖ0 (B.17)

= (Q0 − X )Hadiab(P0 + X ) − ı�[Ṗ0, X] (B.18)

where we have used XṖ0P0 = 0.

B.3. Passage to the modified reduced wave operator

Since P2
0 = P0, Q2

0 = Q0 and P0 + Q0 = 1 we have Ṗ0P0 + Q̇0Q0 = −P0Ṗ0 − Q0Q̇0.

[K, X] = ı�(Ṗ0P0X + Q̇0Q0X + XP0Ṗ0 + XQ0Q̇0) (B.19)

= ı�Q̇0X + ı�XṖ0 (B.20)

= −ı�Ṗ0X + ı�XṖ0 (B.21)

= −ı�[Ṗ0, X]. (B.22)

We have then

ı�Ẋ − [K, X] = (Q0 − X )Hadiab(P0 + X ). (B.23)

Let V ∈ U (H) be such that ı�V̇ = KV and Y = V −1XV :

ı�Ẋ = ı�V̇YV −1 + ı�VẎV −1 − ı�VYV −1V̇V −1 (B.24)

= KX + ı�VẎV −1 − XK (B.25)

= [K, X] + ı�VẎV −1. (B.26)

We have then

ı�Ẏ = V −1(Q0 − X )Hadiab(P0 + X )V. (B.27)

Since V (t)P0(0) = P0(t)V (t) we have

ı�Ẏ = (Q0(0) − Y )V −1HadiabV (P0(0) + Y ). (B.28)
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B.4. The intertwining operator

Let {φa(t)}a=1,...,m be an orthonormal basis of Ran P0(t) and {φa(t)}a>m be an orthonormal
basis of Ran P0(t)⊥. Let Pa = |φa〉〈φa|, we have

K = ı�(Ṗ0P0 + Q̇0Q0) = ı�

⎛
⎝ m∑

a,b=1

ṖaPb +
∑

a,b>m

ṖaPb

⎞
⎠ (B.29)

V (t)P0(0) = P0(t)V (t) and V (t)Q0(0) = Q0(t)V (t) imply that

V (t)φa(0) =
{∑m

b=1〈φb(t)|V (t)|φa(0)〉φb(t) if a � m∑
b>m〈φb(t)|V (t)|φa(0)〉φb(t) if a > m

(B.30)

and then

V (t) =
m∑

a,b=1

Vba(t)|φb(t)〉〈φa(0)| +
∑

a,b>m

Vba(t)|φb(t)〉〈φa(0)|. (B.31)

By injecting this expression in ı�V̇ = KV and by projecting on the left on 〈φb(t)| and on the
right on |φa(0)〉 we find

V̇ba(t) = −
{∑m

c=1〈φb(t)|φ̇c(t)〉Vca(t) if a � m∑
c>m〈φb(t)|φ̇c(t)〉Vca(t) if a > m.

(B.32)

Finally we have

V (t) =
∑
a,b

[
T e− ∫ t

0 A(t ′) dt ′]
ba

|φb(t)〉〈φa(0)| (B.33)

with

A(t) =
(

A11 0
0 A22

)
(B.34)

with

A11 =

⎛
⎜⎝

〈φ1(t)|φ̇1(t)〉 . . . 〈φ1(t)|φ̇m(t)〉
...

. . .
...

〈φm(t)|φ̇1(t)〉 . . . 〈φm(t)|φ̇m(t)〉

⎞
⎟⎠ (B.35)

and

A22 =

⎛
⎜⎝

〈φm+1(t)|φ̇m+1(t)〉 . . . 〈φm+1(t)|φ̇dimH(t)〉
...

. . .
...

〈φdimH(t)|φ̇m+1(t)〉 . . . 〈φdimH(t)|φ̇dimH(t)〉

⎞
⎟⎠ . (B.36)

Appendix C. Splitted second order differencing scheme

Let H(t) = H0(t) + D with H0(t)† = H0(t) and D† = −D†. H0 is the ‘energy’ part of the
Hamiltonian and D is the dissipative part. In the example treated section 5, we have

H0 = �

2

(
0 �

� 2�

)
D =

(
0 0
0 −ı

4

)
. (C.1)

Let U (t + �t, t) be the evolution operator associated with H(t) and U0(t + �t, t) be the
evolution operator associated with H0(t)
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ψ(t + �t) = U (t + �t, t)ψ(t) (C.2)

= e−ı�−1D�t+O(�t2)U0(t + �t, t)ψ(t) (C.3)

= e−ı�−1D�t+O(�t2)ψ0(t + �t) (C.4)

where ψ0(t + �t) is solution of

∀s ∈ [t, t + �t], ı�
d

ds
ψ0(s) = H0(s)ψ0(s) ψ0(t) = ψ(t). (C.5)

We have then

ψ0(t + �t) = ψ0(t) + ψ̇0(t)�t + ψ̈0(t)
�t2

2
+ O(�t3) (C.6)

= ψ(t) − ı�−1H0(t)ψ(t)�t + ψ̈0(t)
�t2

2
+ O(�t3) (C.7)

and

ψ(t + �t) = e−ı�−1D�t+O(�t2)

(
ψ(t) − ı�−1H0(t)ψ(t)�t + ψ̈0(t)

�t2

2
+ O(�t3)

)
. (C.8)

In a same way, we have

ψ(t − �t) = eı�−1D�t+O(�t2)

(
ψ(t) + ı�−1H0(t)ψ(t)�t + ψ̈0(t)

�t2

2
+ O(�t3)

)
. (C.9)

Finally

ψ(t + �t) − e−2ı�−1D�t+O(�t2)ψ(t − �t)

= e−ı�−1D�t+O(�t2)(−2ı�−1H0(t)ψ(t)�t + O(�t3)). (C.10)

We have then the following propagation scheme for a partition {t0, . . . , tN} of [0, T ]
(ti+1 − ti = �t):

ψn+1 = e−2ı�−1D�tψn−1 − 2ı�−1e−ı�−1D�tH0(tn)ψn. (C.11)
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