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Abstract
We study population transfer processes for photodissociation, as described
within the optical potential model, in the context of adiabatic or quasi-adiabatic
dynamics. By a reformulation of the adiabatic passage theory in terms of the
fibre bundle topology, we extend the analysis made by Yatsenko et al (2002
Phys. Rev. A 65 043407) from conservative to dissipative systems. We show
that this topology is associated with the problem of eigenvalue labelling and
hence with the continuous eigenvalue following process in the control parameter
space. Problems involving adiabatic passage, the direct chirping process and
non-adiabatic transitions are studied, with particular regard to the presence of
resonance states. We also discuss the role played by the molecular continua.

PACS numbers: 33.80.Be, 33.80.Gj, 03.65.Vf

1. Introduction

In 2002, Yatsenko et al [1] proposed a method for the analysis of quantum dynamical systems
in the strong adiabatic regime. Their ‘topology of adiabatic passage’ method is well adapted
to study complete population transfer between bound states of an atom or molecule in strong
electromagnetic fields. It extends a previous theory which describes atoms interacting with
laser fields, the adiabatic Floquet theory [2]. The method proposed by Yatsenko et al is based
on the visualization of the path C describing the field evolution, as drawn on the eigenvalue
surfaces. By considering the topology of these surfaces and their contacts point (the crossings),
it is possible to understand the behaviour of the dynamical system in a strong adiabatic regime,
i.e. a regime without non-adiabatic transitions. In these strong adiabatic regimes, the state of
the dynamical system remains projected on the same eigenvector until the path C passes close
to an eigenvalue crossing point �R0. At this moment, the dynamical system suddenly makes a
transition between energy surfaces. This analysis is applied in [1] to some dynamical processes
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involving two- and three-level atoms. In the electromagnetic picture of adiabatic dynamics,
the sudden transition is simply due to the meeting of the path C with a magnetic monopole
(see [3] for a brief presentation of the magnetic monopole theory). The analogy between
magnetic monopole theory and the mathematical structure describing the energy crossing in
the adiabatic framework is now currently used throughout the atomic and molecular physics
literature, see [4–11].

In this paper we explore the topology of population transfer processes which involve
resonance states. The method described in [1] is restricted to a conservative system (with only
bound states) controlled by two parameters, because it needs the analysis of a three-dimensional
graph (real eigenvalues varying with respect to two parameters). But for resonances, this
method needs the analysis of a four-dimensional graph (complex eigenvalues varying with
respect to two parameters). We show in this paper that the adiabatic passage topology is in
fact the topology of the adiabatic bundle describing the Berry phase. We propose a method to
visualize this topology by means of a graph with a dimension equal to the number of control
parameters. We can then apply the method to dissipative systems (resonances) controlled by
two parameters and to conservative and dissipative systems controlled by three parameters. We
show that the topology of the adiabatic bundle (and thus the topology of the adiabatic passage)
is related to the problem of the eigenvalue labelling with respect to the control parameters, a
point which has not previously been made in the literature on Berry phases. We show that
the topology is much more complicated in the dissipative case. We should note that we do
not need to restrict our attention to strong adiabatic regimes, because the adiabatic bundle
topology can also describe non-adiabatic transitions occurring in weak adiabatic regimes.

Another important point concerns the meaning which is given in our study to the term
‘adiabatic regime’. After the pioneering work of Berry [12], who illustrated the geometric
phase concept for a spin in a magnetic field, many works have been concerned with the
electronic wavefunctions which depend adiabatically on the classical evolution of the nuclear
coordinates in the Born Oppenheimer approximation [13, 14]. In these publications the
topological effect is associated with a spatial system of coordinates, i.e. to the configuration
space, and the classical manifold which defines the static geometry is related to the classical
nuclear motions which are very slow compared with the electronic motions. In this framework,
the relations between time-dependent magnitudes in the adiabatic limit and time-independent
magnitudes have been analysed in [15], which treats molecular Born Oppenheimer systems.

Our paper is devoted to a different problem. Our goal is to show the topological effects
due to the modulations of the amplitude and the frequency of a laser field interacting with
a molecule (somewhat as done by the works of Yatsenko et al [1] in the context of atomic
physics). This point of view is consistent with that of the experimentalists performing laser-
control experiments. The vibrational wavefunction depends on the laser parameters, which
constitute a classical manifold. Thus the laser modulations vary very slowly compared to
the movements of the nuclei, which are considered as quantum particles. The problem
concerning the electronic states as a function of internuclear distance is thus considered as
already having been solved seperately in the Born Oppenheimer approximation. The solution
of this preliminary problem gives our starting data, the vibrational potential surfaces associated
with the electronic states and the electronic transition dipole moments.

Many works have analysed reactive atom–diatom collision processes [16] and the
dissociation, ionization and Coulomb explosion of diatomic molecules in strong laser fields
[17–19]. Here we do not consider very strong laser field amplitudes. Our approach is illustrated
by studying inelastic radiative transitions and the photodissociation of diatomic molecules, as
produced by laser pulses of intensity I < 1013 W cm−2, for which it is assumed that ionization
is not present. A large part of our interest is thus focused on the adiabatic behaviour of these
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open systems and on the precise role played by resonance states and molecular continua in
photodissociation processes.

This paper is organized as follows. Section 2 reviews some basic concepts concerning the
modelling of molecular processes, adiabaticity and the Berry phase phenomenon. Section 3
extends some results concerning bound states to the case of resonance states. Finally, section 4
discusses the role of the continuum in adiabatic processes. In order to help the reader to
compare the conservative case with the dissociative case, and thus to better appreciate the
emphasis of the present paper, an appendix sets out the analysis of the topology of the
adiabatic passages between bound states in terms of the fibre bundle topology.

2. Modelling molecular processes and adiabaticity

2.1. The photodissocative Hamiltonian

This section presents some general aspects of the modelling of molecular processes and of
the concept of adiabaticity. It recalls some results which are needed for the understanding
of later sections and also fixes the notation. In order to simplify the analysis we consider a
one-dimensional molecular vibrational problem (i.e. a diatomic molecule or a single bond),
the generalization to multidimensional vibrations being straightforward. We thus consider the
self-adjoint Hamiltonian of the isolated molecule

H0 = − h̄2

2m

d2

dr2
+ V (r) (1)

acting on the r-dependent wavefunctions, where r is the internuclear distance, m is the
molecular reduced mass and V is the vibrational potential (or possibly several potentials,
depending on the electronic state).

In the general case, the spectrum of H0 is composed of a pure point part and a continuous
part: Sp(H0) = Sppp(H0) ∪ Spcont(H0). The photodissociation process can be then viewed
as a transfer from a state associated with Sppp(H0) to a state associated with Spcont(H0). We
know that this transfer is more efficient for special values of Spcont(H0), called resonances,
for which the associated states have the behaviour of a bound state over an initial finite time
interval before later having the behaviour of a scattering state. To display the resonances, we
can use two techniques: the complex dilation method [20–25] or the optical potential model
(also known as the complex absorbing potential method) [26–33]. Both methods transform
H0 into a non-self-adjoint Hamiltonian H̃0.

The interaction of the molecule with a laser field is represented by the Hamiltonian

H( �R(t)) = H̃0 + µE(t) cos(ω(t)t + φ(t)), (2)

where �R = (E, ω, φ), E is the laser intensity, ω is the laser frequency, φ is the laser phase
and µ is the electric dipole moment of the molecule. To treat the light–matter interaction, we
use the adiabatic Floquet theory [2, 34] associated with the operator

HF ( �R, θ) = H̃0 + µE(cos θ cos φ − sin θ sin φ) − ih̄ωeff
∂

∂θ
(3)

acting on the (r, θ)-dependent wavefunctions, with ωeff(t) = ω̇(t)t + ω(t) (ωeff replacing
ω in the control parameters �R). It has been proved that the solution of the equation
ih̄∂tψ(t, θ) = HF ( �R(t), θ)ψ(t, θ) is such that ψ(t, θ = ω(t)t) is a solution of the usual
Schrödinger equation ih̄∂tψ(t, ω(t)t) = H( �R(t))ψ(t, ω(t)t) [34]. In fact the Floquet
Hamiltonian HF ( �R, θ) is the Hamiltonian of the system (molecule+field), where the state einθ

is an eigenvector of ih̄ωeff∂θ (n ∈ Z) and is the field state with n photons relative to the average
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Figure 1. Illustration of the different deformations of the spectrum. From top to bottom:
Sp(H0), Sp(H̃0) and Sp(HF ).

number of laser photons (see [35]). ψ(t, θ) is then the wavefunction of the molecule dressed
by the field. Sp(HF ( �R, θ)) is periodic and for E = 0 we have Sp(HF (0, θ)) = Sp(H̃0)+Zh̄ω,
see figure 1. From this point onward we assume that we use the optical potential model within
the adiabatic Floquet treatment, and so can denote HF ( �R, θ) simply by H( �R) without any
confusion.

We suppose that at the initial time, the field is off. To summarize, the spectrum of H0 =
H( �R(0)) has three components: a real pure point part Spbd(H0) corresponding to the bound
states, a complex pure point part Spres(H0) corresponding to the resonance states (Sppp(H0) =
Spbd(H0)∪Spres(H0)) and a (pseudo)-continuous part Spcont(H0) located in the lower complex
half-plane and corresponding to the scattering states (resonance and scattering states are the two
types of dissociative states, Spdiss(H0) = Spres(H0)∪Spcont(H0)). The instantaneous spectrum
of H( �R(t)) has a similar decomposition but during an evolution t �→ �R(t), an eigenvalue can
change its nature. Since we suppose that at t = 0 the initial state is a bound state, there are
three possible situations. First, the instantaneous eigenvector coming from the initial one can
remain a bound state (the eigenvalue remains on the real axis at each instant); there is no
dissociation and only transfers to other instantaneous bound states can occur. This situation
corresponds to a weak field interaction and is analysed in the appendix. It is very similar
to the N-level atom case studied by Yatsenko et al [1]. Second, the initial bound state can
be distorted into a resonance state (the eigenvalue migrates into a lower complex half-plane),
and transfers to other instantaneous resonance states can occur. This situation corresponds
to a strong field interaction with slow variations of �R; it is analysed in section 3. Third,
the initial bound state can be distorted into a resonance state until it becomes a scattering-
like state (the eigenvalue migrates in the complex plane until approaching or entering the
continuous spectrum). Transfers to instantaneous scattering states are then possible. This
situation corresponds to a very strong field interaction or to a strong field interaction with fast
variations of �R. It is analysed in section 4.

2.2. The dissociation processes

Dissociation can occur when the dynamical situation involves resonance or scattering states. It
is very important to distinguish between two situations; as illustrated in [36], the dissociation
via a resonance and the dissociation via a state associated with the continuum correspond to
two different regimes. We can illustrate this difference by considering the photodissociation
of the molecule H +

2 with two different laser pulses of constant frequency ω = 0.296 au (see
figure 2) and with the ground bound state as an initial state. The wave packets corresponding
to the projection of the wavefunction on the dissociative electronic states 2�+

u are drawn in
figures 3 and 4. The dissociative wave packet can be interpreted as the wavefunction of the
fragment issuing from the photodissociation (the proton escaping from the hydrogen atom
located at r = 0).
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Figure 2. The left pulse is characterized by the envelope variation E(t) = E0 e
− (t−t1)2

τ2 with
E0 = 1012 W cm−2, t1 = 15000 au, τ = 5000 au; the duration of the interaction is 30 000 au. This
adiabatic interaction involves only the instantaneous resonance state issuing from the initial bound

state. The right pulse is characterized by E(t) = E0 e
− (t−t1)2

τ2 ∀t ∈ [0, t1], E(t) = E0,∀t ∈ [t1, t2]

and E(t) = E0 e
− (t−t2)2

τ2 ∀t > t2, with E0 = 1012 W cm−2, t2 − t1 = 100 au, τ = 50 au; the
duration of the interaction is 3000 au. This second interaction involves scattering states.
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Figure 3. The dissociation wave packet of H +
2 at 12 times for the dynamical process involving

only a resonance. In each figure, the horizontal axis gives r in atomic units, and the vertical axis
gives the wave packet amplitudes in arbitrary units. The optical potential starts at r = 17 au.

These figures show strong differences between the two regimes. In the case of a
dissociation via a resonance, we see (figure 3) that the emitted fragment is delocalized
with respect to r. We have a wave packet with a support covering ]0, r0] ([0, r0] being
the box used to model the system), with an amplitude increasing at the beginning of the
dissociation and decreasing at the end (when the fragment absorbed asymptotically by
the optical potential leaves the box). The duration of the dissociation, corresponding to
the inverse of the imaginary part of the resonance, is then independent of the box length,
and corresponds to the time needed for the fragment to pass through the molecular potential
barrier by tunnelling. In contrast, the dissociation by scattering states (figure 4) shows a
localized fragment (a wave packet with a short support) which moves from zero to the box
wall. In this case, the duration of the dissociation (the inverse of the imaginary part of the
quasi-continuum eigenvalues) depends on the box and corresponds to the time taken as the
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Figure 4. Same as figure 3 but for a dynamical process involving scattering states.

localized fragment covers the distance from 0 to r0. When resonance and scattering states
are simultaneously involved, as explained in [36], the scattering states are responsible for a
transitional dissociative regime, whereas the resonance states are responsible for a permanent
dissociative regime. For the interactions involving only a resonance it is not necessary to know
the decomposition of the wavefunction in the |r〉-basis, because the dissociative process is
completely delocalized. In this situation, we can reduce the analysis to involve a small active
subspace (with dimension equal to 2 in the more simple cases). The first state of the active
space represents the state issuing from the initial bound state and the second represents the
state issuing from the resonance crossing the initial state. In the neighbourhood of the crossing,
the dynamics can be represented by a 2 × 2 effective Hamiltonian matrix as explained in [11]
for the case of a conservative system. Figures 3 and 4 illustrate the use of this low dimensional
representation for dissociation via a resonance, in contrast with the case of dissociation via
scattering states.

2.3. The adiabatic assumption and Berry phases

In order to analyse the population of the different eigenstates, we shall use an adiabatic
formalism. The adiabatic approximation is a standard tool in quantum mechanics, and the
well-known simple adiabatic theorem [37] appears as a basic concept of theoretical physics.
Under certain conditions, this theorem states that the wavefunction remains in the same
instantaneous eigenstate during the evolution so that no transition occurs. One of the required
conditions is that the path t �→ �R(t) does not approach a level crossing point in the manifold
M of all configurations of �R, so that we have what we call the strong adiabatic regime. Other
adiabatic theorems [38] state that the wavefunction remains projected into a space spanned
by a small set of eigenvectors. Under these conditions, we can approach the level crossings
within the small set and transitions between these states are possible. We refer to this situation
as being in a quasi-adiabatic regime.

In 1984 Berry [12] proved that, within the adiabatic approximation, the wavefunction of
a quantum dynamical system takes the form

ψ(t) = e−ih̄−1
∫ t

0 Ea( �R(t ′)) dt ′−∫ t

0 〈a, �R(t ′)|∂t ′ |a, �R(t ′)〉dt ′ |a, �R(t)〉, (4)
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where Ea is a nondegenerate instantaneous eigenvalue which is isolated from the rest of the
Hamiltonian spectrum and which corresponds to the instantaneous eigenvector |a, �R(t)〉. �R
is a set of classical parameters used to model the time-dependent environment of the system.
The set of all configurations of �R is assumed to form a C∞-manifold M. The important
feature is the presence of the extra phase term e− ∫ t

0 〈a, �R(t ′)|∂t ′ |a, �R(t ′)〉dt ′ = e− ∫
C 〈a, �R|∂µ|a, �R〉dRµ

,
called the Berry phase (C being the curve in M described by t �→ �R(t)). Simon [39]
later found the mathematical structure which models the Berry phase phenomenon, namely
a U(1)-principal bundle with the base space M and endowed with the gauge potential
A = 〈a, �R| ∂

∂Rµ |a, �R〉 dRµ. Since the gauge group of the bundle formulation of the adiabatic
theory is the same as the group of the bundle of electromagnetic field theory, we can identify
the 1-form A with a magnetic potential in the virtual space M. The bundle curvature F = dA

can then be viewed as a magnetic field. It is known that if the studied eigenvalue Ea crosses
another one at a point �R0 ∈ M, then F diverges at this point. A point divergence of a
magnetic field must be interpreted as a magnetic monopole. Indeed, it is not difficult to prove
(see, for example, [3]) that F and A satisfy the equations of the Dirac theory of magnetic
monopoles [40–42]. The appearance of the Dirac monopole gauge structure in quantum
dynamical systems in the adiabatic regime has been observed in several situations [4–11]. The
topology of the adiabatic bundle and the adiabatic monopole picture are related by the fact
that the magnetic charges of adiabatic monopoles are the first Chern classes of the adiabatic
U(1)-bundle, the first Chern class being the non-triviality index of a bundle (see [3, 43]). It
is possible to understand the adiabatic monopole properties and thence the topology of the
adiabatic bundle by a local analysis in the neighbourhood of the crossings. This analysis
involves a small effective Hamiltonian matrix [11], with an order equal to the number of
crossing states. In the appendix we consider this case by considering, in place of H( �R), the
2 × 2-matrix H eff( �R) associated with a simple crossing. In the following section, we also use
a 2 × 2 matrix H eff( �R) associated with a simple crossing between an eigenvalue issuing from
a bound state energy and an eigenvalue issuing from a resonance. The delocalization observed
for photodissociation via a resonance justifies the use of this low dimensional representation.

3. Topology of the processes involving resonance states

3.1. Illustrative model

We study an isolated crossing in the complex plane (and in the base manifold M) of an
eigenvalue issuing from a bound state and of an eigenvalue issuing from a shape resonance.
To illustrate this situation, we propose the following model of a diatomic molecule. The
molecule has two vibrational surfaces associated with two bound electronic states and a third
vibrational surface associated with a pure dissociative electronic state (cf figure 5). A first
permanent laser is used to couple the upper bound surface with the dissociative surface; the
resulting adiabatic surfaces are drawn in figure 6. These surfaces have been obtained by
application of the rotating wave approximation by supposing that the time of interaction in the
resonance regime is much larger than the period of the laser light [45].

The structure of the lower adiabatic surface leads to a spectrum with continuum and shape
resonances (see figure 7). A second laser subject to amplitude and frequency modulations
couples the ground bound surface with the lower adiabatic surface, so that the coupling between
bound states and shape resonances induces an isolated crossing of complex eigenvalues.
Figure 8 shows the point of the plane M = (E, ω) for which the eigenvalue issuing from
the fifth bound state of the ground surface crosses the eigenvalue issuing from the third shape
resonance of the lower adiabatic surface. Figure 9 shows in the complex plane the trajectories
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0.25

Figure 5. The three vibrational surfaces of our illustrative molecule: the surface associated
with the ground bound electronic state is drawn in black, the surface associated with the excited
bound electronic state is drawn in strong grey and the surface associated with the pure dissociative
electronic state is drawn in light grey.

2.5 5 7.5 10 12.5 15 17.5

-0.1

0.1

0.2

Figure 6. The lower bound surface (in black) and the two adiabatic surfaces (in grey) of the
illustrative molecule when the first permanent laser is on.

Figure 7. Vibrational spectrum in the complex plane of the illustrative molecule when the first
permanent laser is on. The subspectrum associated with the ground bound surface is drawn in
black, the subspectrum associated with the lower adiabatic surface is drawn in dark grey and the
subspectrum associated with the upper adiabatic surface is drawn in light grey (the colours are the
same as those in figure 6).

of the eigenvalues for two paths in the plane M = (E, ω) (as shown in figure 8, the crossing
is isolated in the space M = (E, ω) so that each path in M passing through the crossing point
induces an isolated crossing of eigenvalue trajectories in the complex plane). Since in the
neighbourhood of the point crossing only two states are significantly involved in the adiabatic
dynamics, we can study the crossing by using a 2 × 2 effective Hamiltonian matrix.
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Figure 8. The plane M = (E, ω) with the points which nullify the spectral distance in the
complex plane between the eigenvalues issuing from the fifth bound state and from the third shape
resonance. We see that that these two eigenvalues have an isolated crossing in M.
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Figure 9. Left: trajectories in the complex plane of the eigenvalues issuing from the fourth, the fifth
and the sixth bound states and from the third shape resonance, for a fixed frequency ω = 0.095 85 au
with increasing values of E starting from 0 (in black) up to 18 × 106 W cm−2 (in the darker light
grey). Right: same as left but for a modulated frequency ω starting from 0.099 au up to 0.0933 au
and a modulated amplitude E starting from 0 up to 25.2 × 106 W cm−2 such that the straight line
in M passes through the crossing point.

This illustrative example reveals the existence of isolated point crossings of two complex
eigenvalues issuing from a bound state and from a shape resonance. The rest of this section
will thus be devoted to a detailed analysis of such an adiabatic crossing with respect to the
structure of the associated effective Hamiltonian.

3.2. Point resonance crossings

We now consider the situation where the initial bound state becomes an instantaneous
resonance state under the influence of the field. In the neighbourhood of a crossing with
another instantaneous state, the effective Hamiltonian takes the form

H eff( �R) = h̄

2

(
0 �

� 2	 − i

2

)
. (5)

We suppose that the resonance width 
 is constant (
 = 1 au) and then can set �R = (�,	).
The effective Hamiltonian representation contains all the physical information because, as was
seen in section 1, resonances induce a totally delocalized wave packet. It is then not necessary
to have the |r〉-basis representation of the wavefunction.

The crossing of complex eigenvalues has been extensively studied in [44, 46] and the
Berry phase phenomenon in this case has been studied in [47, 48].

We will extend the results (also see the appendix) and associate the dynamical effects
with the topology of the adiabatic bundle, which is now a C

∗-principal bundle (C∗ being the
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group of non-zero complex numbers). The problem of the labelling of the states now takes a
more complicated form. The eigenvalues are

E±( �R) = h̄

2

(
	 ±

√
�2 +

(
	 − i

4



)2
− i

4



)
. (6)

Using the notation of [46], we must distinguish LR = { �R ∈ M | 	 = 0,� ∈ [−

4 , +


4

]}
,

the submanifold where the real parts of the resonances cross, from the submanifold LI ={ �R ∈ M|	 = 0,� ∈] − ∞,−

4 [∪]


4 , +∞[
}
, where the imaginary parts of the resonances

(the reciprocal lifetimes) cross. The resonance crossings are in the intersection LR ∩ LI ={(±

4 , 0

)}
.

When considering only the eigenvalues, without reference to the eigenvectors, there are
two possible conventions for the labelling. The energy-ordering convention labels the states
according to the real parts of the complex eigenvalues, and the lifetime-ordering convention
labels the states according to the imaginary parts of the complex eigenvalues. The two
conventions have a physical meaning: the first classifies the states according to their energies
and the second classifies the states according to their dissipative characters. In a study of
the dissociation, the second convention is probably more important. Moreover, we can also
consider a state-ordering convention with a labelling according to the distances defined in the
appendix with respect to the off-field states |1〉 = (1

0

)
and |2〉 = (0

1

)
. As |1〉 is a bound state and

|2〉 is a resonance state, we can suppose that the instantaneous state which is most close to |1〉
is the least dissipative state and the state which is most close to |2〉 is the most dissipative state.

Indeed, the first-order perturbation treatment of the free Hamiltonian h̄
2

( 0 0
2	 − i

2 


)
by h̄

2

(
0 �

� 0

)
leads to

E1( �R) = 0 + O(�2) (7)

|1, �R〉 = |1〉 − �

2	 − i
2


|2〉 + O(�2) (8)

E2( �R) = h̄

2

(
2	 − i

2



)
+ O(�2) (9)

|2, �R〉 = |2〉 +
�

2	 − i
2


|1〉 + O(�2). (10)

We would then conclude that the state-ordering convention is identical to the lifetime-ordering
convention. This assumption is confirmed by numerical tests. The state-ordering convention
then appears to be less artificial in the resonance case than in the bound case treated in
the appendix. Moreover, figures 10 and 11 show that the real parts of the eigenvalues are
continuous in the energy-ordering convention, whereas they present a strong discontinuity on
LI in the state-ordering convention. Conversely the imaginary parts (the reciprocal lifetimes)
are continuous in the state-ordering convention, whereas they present a strong discontinuity on
LR in the energy-ordering convention. In contrast to the bound case, where we can arbitrarily
choose the line separating the two charts, this line must be LR ∪ LI in the resonance case
because of the two discontinuities (in the real and the imaginary parts).

The magnetic field distribution is found to be as represented in figure 12. We see that, in
addition to the monopoles at LR ∩LI , the effective magnetic field makes the submanifold LR

appear in the energy-ordering convention, whereas in the state-ordering convention it gives
rise to the submanifold LI .

In the bound state case, we have identified two different types of adiabatic passages:
a rapid passage consisting of a state swap in the two conventions (figure A5), and a
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Figure 10. Real and imaginary parts of the eigenvalues in the energy-ordering convention as a
function of � and 	 for a resonance crossing.
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Figure 11. Real and imaginary parts of the eigenvalues in the state-ordering convention (the
lifetime-ordering convention) as a function of � and 	 for a resonance crossing.

direct chirping effect consisting of a state swap in the state-ordering convention with no
swap in the energy-ordering convention (figure A6). In the resonance case, these two
effects are replaced by two others. First, the paths which cross LR induce a dynamics
with population transfers in terms of the energy but such that the wavefunction remains
that of the less dissipative state. We then have a weak dissipative dynamics and a state
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Figure 12. The plane (�, 	) for a resonance crossing, with the monopole magnetic field (in
black), for the energy-ordering convention (left) and for the state-ordering convention (right).
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Figure 13. Dissipation rate (left) and probability of dissociation (right) for a dynamical trajectory
crossing LR .
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Figure 14. Up: instantaneous occupation probabilities |〈+∗, �R(t)|ψ(t)〉|2 (left) and |〈−∗, �R(t)|
ψ(t)〉|2 (right). Down: instantaneous occupation probabilities |〈1∗, �R(t)|ψ(t)〉|2 (left) and
|〈2∗, �R(t)|ψ(t)〉|2 (right), for a dynamical trajectory crossing LR .

swap in the energy-ordering convention (at the very instant that the path crosses LR) and
without a swap in the state-ordering convention. These effects for the path t �→ �R(t) =
(�(t) = 0.1 sin(πt/10),	(t) = 1.1 cos(πt/10)) are presented in figures 13 and 14. Second,
the paths which cross LI induce no population transfer from the energy viewpoint, but induce
population transfers from the lifetime viewpoint. We then have a strong dissipative dynamics
and a state swap for the state-ordering convention at the moment when the path crosses LI ,
with conversely no swap in the energy-ordering convention. These effects are illustrated with
the path t �→ �R(t) = (�(t) = 1 sin(πt/15),	(t) = 1.1 cos(πt/15)) in figures 15 and 16.
For a dynamical trajectory approaching a monopole, these effects are accompanied by non-
adiabatic transitions which transfer quantum flux in terms of the energy and of the dissipative
character. The energy-order labelling must be used to exhibit the population transfer effects
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Figure 15. Dissipation rate (left) and probability of dissociation (right) for a dynamical trajectory
crossing LI .
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Figure 16. Up: instantaneous occupation probabilities |〈+∗, �R(t)|ψ(t)〉|2 (left) and |〈−∗, �R(t)

|ψ(t)〉|2 (right). Down: instantaneous occupation probabilities |〈1∗, �R(t)|ψ(t)〉|2 (left) and
|〈2∗, �R(t)|ψ(t)〉|2 (right), for a dynamical trajectory crossing LI .

in the same manner as for the conservative case (the rapid passages or the non-adiabatic
transitions between two states with different energies). The dissipative analogue to the non-
dissipative rapid passage is the passage through a monopole at LR ∩LI , which simultaneously
induces population transfers from the viewpoint of the energy and of the dissipative character.
The state-ordering labelling must be used to exhibit a passage between a weakly and a
strongly dissipative state. We note that direct chirping is the non-dissipative analogue of this
effect.

3.3. One-dimensional resonance crossings

The choice of other control parameters necessarily leads to situations which are different from
those treated in the previous paragraph. First, suppose that we fix the detuning (the laser
frequency) and that we impose a phase modulation. The effective Hamiltonian is then

H eff( �R) = h̄

2

(
0 x − iy

x + iy 2	 − i
2


)
, (11)

where x − iy = � eiφ,	 and 
 being constants (we choose 	 = 0 and 
 = √
2 without loss

of generality). In this case, the eigenvalues are

E±( �R) = h̄

2

(
− i

4

 ±

√
x2 + y2 − 
2

16

)
. (12)

The eigenvalue crossing is then represented by a circle S centred on zero with a radius equal to


4 . The real parts of the resonances cross at the interior of S, whereas the imaginary parts cross
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Figure 17. Real and imaginary parts of the eigenvalues as a function of x = � cos φ and
y = � sin φ for a resonance crossing with phase modulations and constant frequency.
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Figure 18. Up: dissipation rate (left) and probability of dissociation (right) for the dynamics inside
the circle for a resonance crossing with phase drift. Down: instantaneous occupation probabilities
|〈1∗, �R(t)|ψ(t)〉|2 (left) and |〈2∗, �R(t)|ψ(t)〉|2 (right). We observe a small non-adiabatic transfer.

at the exterior (see figure 17). It is then impossible to adopt the energy-ordering convention
in the interior of the circle because the energy is degenerate, and it is impossible to adopt
the state-ordering convention outside the circle because the eigenvectors are equidistant of
the off-field states. The only convention able to describe the fibre bundle topology is that
associated with two charts: one corresponding to the interior of the circle (where we adopt the
state-ordering labelling) and one corresponding to the exterior of the circle (where we adopt
the energy-ordering convention).
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Figure 19. Up: dissipation rate (left) and probability of dissociation (right) for a dynamical
trajectory crossing the circle S, for a resonance crossing with phase drift. Down: instantaneous
occupation probabilities |〈1∗, �R(t)|ψ(t)〉|2 (left) and |〈2∗, �R(t)|ψ(t)〉|2 (right). The population
inversions are not sudden because of small non-adiabatic transitions occurring at the approach to
the circle.

-1
-0.5

0
0.5

1

x
-1

-0.5

0

0.5

1

2

-0.4
-0.2

0
0.2
0.4

ImE1

-1
-0.5

0
0.5

1

x

-1
-0.5

0
0.5

1

x
-1

-0.5

0

0.5

1

2

-0.4
-0.2

0
0.2
0.4

ImE2

-1
-0.5

0
0.5

1

x

-1
-0.5

0
0.5

1

x
-1

-0.5

0

0.5

1

2
-0.4
-0.2

0
0.2
0.4

ReE1

-1
-0.5

0
0.5

1

x

-1
-0.5

0
0.5

1

x
-1

-0.5

0

0.5

1

2
-0.4
-0.2

0
0.2
0.4

ReE2

-1
-0.5

0
0.5

1

x

Figure 20. Real and imaginary parts of the eigenvalues as a function of x = � cos φ and 
 for a
resonance crossing with variations of 
.

Let the dynamics be induced by a laser pulse �(t) = �0 e−(t−t0)
2/τ with a phase drift

proportional to the time, φ(t) = π
2 + αt . For �0 = 0.2 au, t0 = 5 au and α = π

5 au, the path
is a little loop starting from zero and remaining inside the circle. In this case, the dynamics is
weakly dissipative and no population transfer occurs (see figure 18). For �0 = 0.75 the loop
crosses the circle, the dissipation is stronger and population transfers occur at each passage by
the circle (figure 19). Similar results, with S a hyperbola rather than a circle, are obtained by
fixing y and by varying 
 (see figure 20). The representation in terms of the magnetic field
distribution allows us to visualize this situation just as in the previous case (figure 21).
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Figure 21. The monopole magnetic field (in black), for a resonance crossing in the planes
(x = � cos φ, y = � sin φ) (left) and (x, 
) (right).
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Figure 22. Vibrational surfaces modelling the molecule H +
2 ; the surface associated with 2�+

g is

drawn in black and the surface associated with 2�+
u is drawn in grey.
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Figure 23. Spectrum of H +
2 in the complex plane; the subspectrum associated with 2�+

g is drawn

in black and the subspectrum associated with 2�+
u is drawn in grey (in agreement with figure 22).

We note that the continua of 2�+
g and of 2�+

u are confused.

4. Topology of the processes involving the continuum

In this section, we treat the case of a resonance which approaches the continuum or which
has non-adiabatic couplings with the continuum. Within the optical potential model, the
continuum is discretized and is replaced by a sequence of eigenvalues. The coupling between
the continuum and the instantaneous resonance issuing from the initial state is then treated
as couplings between the instantaneous resonance issuing from the inital state and several
instantaneous pseudo-resonances representing the continuum in the model (the eigenvalues of
the pseudo-continuum). We can then apply the results of the previous section. As an example,
we have considered the case of the molecule H +

2 , modelled with two vibrational surfaces
(figure 22), and which presents the spectrum drawn in figure 23. We have drawn the effective
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Figure 24. The monopole magnetic field (in black) for the resonance issuing from the second
bound state of H +

2 , as a function of (E, ω). We have adopted here the state-ordering labelling
which is the only consistent convention involving the scattering states. The structures appearing for
E > 0.6 are numerical artifacts caused by difficulties with the convergence of the diagonalization
program for the matrix representing the Hamiltonian of H +

2 in very strong fields.
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Figure 25. The accumulated outgoing quantum flux for a non-adiabatic dynamical process starting
from the second bound state of H +

2 .

magnetic field distribution (figure 24) for the resonance issuing from the second bound state of
the molecule H +

2 interacting with a laser field. The different crossings between the eigenvalues
of the pseudo-continuum and the resonance induce an image of the quasi-continuum in M (a
sequence of magnetic monopoles that we can call a seam in accordance with the expression
used in the literature in another context [49–51]). We can then make a correspondence between
the different fields and the associated quasi-continuum states; the order in the sequence of
the monopoles with respect to ω is the order of the energies of the associated states. Note
that it is important to know, as a function of �R, with which scattering states the resonance is
coupled, because the energies of these states determine the speed of the wave packet emitted
on the dissociation plateau: consider, for example, the laser pulse E(t) = 0.1 e−((t−1000)/50)2

if t < 1000, E(t) = 0.1 if t ∈ [1000, 2000] and E(t) = 0.1 e−((t−2000)/20)2
if t > 2000.

Starting from the second bound state of H +
2 , we have drawn the outgoing quantum flux

(figure 25) and the dissociation wave packet (figure 26). The energies of the scattering states
which are coupled with the instantaneous resonance determine the speed of the dissociation
wave packet front (see figure 26), and thus the duration of the transitional regime of the
dissociation. They also determine the delay of the outgoing quantum flux with respect to the
case where no scattering states are involved. The outgoing quantum flux (figure 25) starts at
a later time when scattering states are involved than when only a resonance state is involved,
see [36].

It is interesting to consider the limiting case of an exact description of the continuum. At
this limit a continuous seam of monopoles should appear in M, and it is evident that this line is
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Figure 26. The dissociation wave packet of H +
2 at 12 times for the dynamical process involving

non-adiabatic transfers to scattering states. In each figure, the horizontal axis is r in atomic units
and the vertical axis is the wave packet amplitude in arbitrary units.
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Figure 27. Real part of the eigenvalue issuing from the second bound state of H +
2 as a function of

(E, ω) for different views, except for the left lower figure which represents the imaginary part.

also the neighbourhood of charts describing the topology of the adiabatic bundle. Indeed, this
line corresponds to the continuum embedding of the resonance and so to a boundary between
two relaxation schemes: to the left of this seam the state issuing from the inital bound state
is a resonance state, and to the right it is a scattering state. The monopole seams (and thus
the chart system) and the resulting magnetic field are associated with a transition between
dissipative regimes. The non-adiabatic transitions induce the passage from the permanent
dissociative regime (produced only by the resonance state issuing from the initial bound state)
to the transitional dissociative regime (generated simultaneously by the scattering states) (see
[36] for more details).
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Figure 28. Real part of the eigenvalue issuing from the second bound state of H +
2 as a function of

E, for a frequency corresponding to a monopole (left) and for a frequency corresponding to a hole
(right).
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Figure 29. The accumulated outgoing quantum flux for the adiabatic dynamical process
approaching the continuum and starting from the second bound state of H +

2 .

Nevertheless, we note that figure 24 reveals a difficulty. The discretization process
introduces holes in the transition line which can induce errors in the description of the
system. These errors are made clear by drawing the surfaces associated with the resonances
(figure 27). A direct consequence is the presence of strong discontinuities in the real part of
the eigenvalue: it takes higher values at the positions of the monopoles and lower values at
the position of the holes produced by the discretization (figure 28). These discontinuities are
numerical artifacts; fortunately, they do not have a drastic effect on the final results. Indeed,
to be embedded in the continuum the resonance needs to be located very low in the complex
plane and thus involve a strong dissipation. From the viewpoint of the wavefunction, the
dissipation is complete before the continuum can be reached. Consider, for example, the laser
pulse E(t) = 0.4 e−((t−7500)/2500)2

, with ω = 0.342. This is a limit case of a strong adiabatic
regime, for which the wavefunction remains that of the instantaneous resonance and also the
end of the dissipation is as late as possible. Nevertheless, figure 29 shows that the dissipation
is complete at the instant t = 7500, corresponding to the point of the path which is the closest
to the continuum.

5. Conclusion

The quantum effects appearing within the context of adiabatic dynamics can be considered
as manifestations of the topology of the adiabatic bundle. The adiabatic passage (a sudden
transition occurring on passing through a degeneracy point of the eigenvalues) studied by
Yatsenko et al [1] is associated with virtual magnetic monopoles, and thus with the adiabatic
bundle topology. We have seen in this paper that the direct chirping effect is also a manifestation
of this topology. The passage through a chart transition region (in practice reduced to a line
for the two-dimensional cases) is responsible for the direct chirping effect. We have seen that
this problem of identifying the topology is intimately related to the problem of state labelling.
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Table 1. Relations between some quantum dynamical effects and different methods of
interpretation for the general case.

Bundle topology/

Surfaces topology magnetic monopole picture Dynamical effects

Crossings of the real parts Transition lines LR Population transfers from
the viewpoint of the energies

Crossings of the imaginary Transition lines LI (arbitrary Passages from weak to strong (or conversely)
parts in the conservative case) permanent dissociative regimes

(direct chirping in the conservative case)
Eigenlevel crossings Magnetic monopoles Population transfer and swap

of permanent dissociative regimes
Continuum embedding Continuous monopoles Passages from permanent to
of resonances seams transitional dissociative regimes
Contact order of Distribution of the monopole Amplitudes of the
the crossings magnetic fields (magnetic charge) non-adiabatic couplings \hline

This analysis allows us to extend the results of Yatsenko et al to the cases of three-dimensional
conservative systems and to two-dimensional and three-dimensional dissipative systems. In
the dissipative case, we have seen that the problem is more complicated and we have pointed
out the complementary roles of the two labelling conventions. The energy-ordering labelling is
associated with the adiabatic passage from the viewpoint of the energy, and the state-ordering
labelling is associated with the passage between different dissociative regimes (from a weak to
a strong dissipative regime and conversely for the coupling between two resonance states, and
from a permanent to a transitional regime for the coupling of a resonance state with scattering
states). These results are summarized in table 1.

Moreover, the method of visualization of the topology, by drawing the effective magnetic
field based on an n-dimensional graph for n control parameters, should be more practicable
for complex situations than the representation using the eigensurfaces. In this paper, in order
to explain the meaning of the figures, we have also drawn the eigensurfaces.
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Appendix. Topology of the processes involving bound states

We consider the situation in which only instantaneous bound states participate. In the
neighbourhood of the crossing of the initial state with another instantaneous bound state,
the effective dressed Hamiltonian takes the form

H eff( �R) = h̄

2

(
0 � eiφ

� e−iφ 2	

)
. (A.1)

Here �R = (�,	, φ) where � = |〈1|µE|2〉| and 	 = E2 − E1 − h̄ω. |1〉 = (1
0

)
is the initial

bound state, E1 being its eigenvalue, and |2〉 = (0
1

)
is the other bound state when the laser is

off, E2 being its eigenvalue. In order to simplify the analysis we restrict our attention to the
case φ = 0, because φ does not play an important role in the following discussion.
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Figure A2. Energy surfaces in the energy-order convention as a function of � and 	 for a bound
state crossing.

A.1. Eigenvalue labelling

We consider the ‘off-field’ dynamical system, with � = 0. We now have a single control

parameter 	. The Hamiltonian H eff = (
0 0
0 h̄	

)
has two eigenvalues which cross at 	 = 0. For

	 < 0 and 	 > 0, it is possible to follow continuously the eigenvalues and their eigenvectors,
but we have two possible conventions for the passage through 	 = 0. One follows the energy
order of the eigenvalues and the other follows the eigenvectors, as we can see in figure A1.
For � > 0, we can follow continuously the eigenvalues at each �R:

E±( �R) = h̄

2
(	 ±

√
�2 + 	2). (A.2)

This continuous following is associated with the convention which follows the energy order
(see figure A2). This convention is arbitrary; in particular, we observe that

lim
�→0

|+, �R〉 =
{(0

1

)
if 	 � 0(1

0

)
if 	 < 0

(A.3)

lim
�→0

|−, �R〉 =
{(1

0

)
if 	 � 0(0

1

)
if 	 < 0.

(A.4)

The energy-order convention is then not consistent with the following off-field eigenvector.
There is an infinity of possible conventions which are consistent with this following off-
field eigenvector: for example, we can draw an arbitrary line separating in two regions the
plane (�,	) passing by (0, 0) (the level crossing) and then swap the labels with respect to
the energy-order convention at the passage through this line. However, there does exist a
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Figure A4. The plane (�, 	) for bound state crossing, with the monopole magnetic field (in
black), for the energy-ordering convention (left) and for the state-ordering convention (right). We
have extended the domain to � < 0 in order to have a symmetric figure.

particular convention which is physically significant. This convention is one which assigns
label 1 to the state which is closer to the initial bound state and label 2 to the other state. Two
states are defined to be close if their scalar product is large. This convention thus assigns the
labels 1 and 2 so as to satisfy the inequality

|〈1|1, �R〉| × |〈2|2, �R〉| > |〈2|1, �R〉| × |〈1|2, �R〉|. (A.5)

This state-ordering convention thus has a strongly relevant physical meaning but, like other
conventions consistent with the following off-field state, it induces a discontinuity in the
energy surfaces (see figure 3). The recognition of the state which is closer to an off-field state
is physically important; the interpretation of an instantaneous eigenstate is not clear (since it
corresponds to a non-equilibrium state), whereas the physical meaning of the off-field state is
clear.

It is possible to make the topology of the adiabatic bundle play a role in numerical
calculations by considering the adiabatic magnetic field associated with the magnetic monopole
representing the crossing. In the energy-ordering convention only the magnetic monopole
appears, whereas in the state-ordering convention the chart intersection also appears (see
figure A4).

A.2. Interpretation of dynamical processes

In this paragraph, we show that the usual dynamical processes of population transfer can be
interpreted by using the framework of the adiabatic bundle topology and by looking at the
results show in figure A4. These interpretations can be compared with the alternative ones
given in [1, 2].
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Figure A5. Up: instantaneous occupation probabilities |〈+, �R(t)|ψ(t)〉|2 (left) and
|〈−, �R(t)|ψ(t)〉|2 (right), Down: instantaneous occupation probabilities |〈1, �R(t)|ψ(t)〉|2 (left)
and |〈2, �R(t)|ψ(t)〉|2 (right), for the Stark chirped adiabatic passage dynamics. The peaks
appearing at time t � −10 au for the state-ordering convention are numerical artifact due to
the degenerate character of this convention at the precise position of the crossing.

The first dynamical process studied corresponds to the Stark chirped adiabatic passage
effect and is characterized by the path t �→ �R(t) = (

�(t) = 1.5 e−(t−15)2/102
,	(t) = −1 +

2 e−t2/122)
. This path is followed sufficiently slowly to be in a strong adiabatic regime, except

at time t � −10 au, when the path passes through the eigenvalue crossing (see figure A5). We
see that in the energy-ordering convention, the transition occurs when the path encounters the
monopole (the eigenvalue crossing). In the state-ordering convention, the transition occurs
when the path crosses the line separating the two regions of M (see figure A4). In this case,
the representation of the wavefunction in the state-ordering convention could appear to be
artificial. Nevertheless, we see in section 3 that for the description of other effects (or in the
complex case) it is physically relevant.

We now consider the dynamics of the direct chirping effect, t �→ �R(t) = (�(t) =
1.1 sin(πt/10),	(t) = 1.1 cos(πt/10)). This dynamical process is also sufficiently slow to
be in a strong adiabatic regime; thus no transition occurs. If we start with state |−, �R(0)〉, we
finish with |−, �R(10)〉. This fact appears clearly within the energy-ordering convention, where
the wavefunction is projected only on |−, �R〉 (see figure A6). However we have |+, �R(0)〉 = (0

1

)
and |−, �R(10)〉 = (1

0

)
, whereas during the direct chirping process no transition occurs, because

the path does not pass close by the monopole. In fact, the transition from one off-field state

to the other between the inital and the final time is due to the permutation
(

0 1
1 0

)
associated

with the line separating M into two regions. It is the passage from one region to another
which induces the direct chirping effect (see figure A6). We note that it is a global effect
(i.e. a topological effect); physically, the passage from ‘1’ to ‘2’ is not localized, because the
limit between the two regions is arbitrary. It is possible to change the line of transition in the
plane (�,	) by choosing another convention which is consistent with the following off-field
eigenvector. For all the chosen conventions of the chart transition line, the semi-circular path
of the direct chirping necessarily crosses this transition line. The direct chirping is then an
effect of the adiabatic bundle topology, since we must cover the base manifold by a minimum
of two charts corresponding to the two regions. We see in this case that the direct chirping
effect is not explicitly apparent in the energy-ordering convention (left of figure A4 and top of
figure A6), whereas it is clear and easy to interpret in the state-ordering convention (right of
figure A4 and bottom of figure A6).
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Figure A6. Up: instantaneous occupation probabilities |〈+, �R(t)|ψ(t)〉|2 (left) and |〈−, �R(t)|
ψ(t)〉|2 (right). Down: instantaneous occupation probabilities |〈1, �R(t)|ψ(t)〉|2 (left) and
|〈2, �R(t)|ψ(t)〉|2 (right), for the direct chirping dynamics. We observe small parasitic non-adiabatic
transfers inducing small Rabi oscillations.
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Figure A7. Up: instantaneous occupation probabilities |〈+, �R(t)|ψ(t)〉|2 (left) and |〈−, �R(t)|
ψ(t)〉|2 (right). Down: instantaneous occupation probabilities |〈1, �R(t)|ψ(t)〉|2 (left) and
|〈2, �R(t)|ψ(t)〉|2 (right), for a dynamical trajectory approaching the bound state crossing.

The non-adiabatic transitions can be located in figure A4 by considering the distribution
of the monopole magnetic field. A path which passes through the black region of figure A4,
even if it is traversed sufficiently slowly to be strongly adiabatic in the other regions, can
induce non-adiabatic transitions. Consider, for example, the path t �→ �R(t) = (�(t) =
0.2 sin(πt/10),	(t) = 1.1 cos(πt/10)). With this path, we observe non-adiabatic transitions
in addition to the direct chirping effect (see figure A7).
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