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Abstract
We consider localized qubits evolving around a black hole following a 
quantum adiabatic dynamics. We develop a geometric structure (based on 
fibre bundles) permitting to describe the quantum states of a qubit and the 
spacetime geometry in a single framework. The quantum decoherence induced 
by the black hole on the qubit is analysed in this framework (the role of the 
dynamical and geometric phases in this decoherence is treated), especially for 
the quantum teleportation protocol when one qubit falls to the event horizon. 
A simple formula to compute the fidelity of the teleportation is derived. The 
case of a Schwarzschild black hole is analysed.

Keywords: qubit in curved spacetimes, non-Hermitian adiabatic dynamics, 
quantum teleportation, black hole, fibre bundle
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1. Introduction

Recent works have explored the possibility of showing the effects of gravity on quantum 
systems [1, 2]. An interesting study concerning the behaviour of a scalar field in the neigh-
bourhood of a black hole [3] has shown that the entanglement is degraded by the effect of the 
black hole. In this work, Fuentes-Schuller and Mann have studied a model in which all the 
ingredients of quantum field theory are present, but the gravitation is only represented as a 
Rindler spacetime corresponding to the uniform surface gravity in the neighbourhood of the 
event horizon. Recently Palmer et al [4] have proposed a theory of localized qubits in curved 
spacetimes. In this paper, we want to re-examine in this framework the problem of qubits 
around a black hole, especially concerning the entanglement and the quantum teleportation 
protocol. Moreover, we want to analyse the physical meaning of the non-self-adjointness of 
the localized qubit Hamiltonian. In contrast with the model of Fuentes-Schuller and Mann, 
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quantum field theory is not completely treated, semi-classical approximations in the localized 
qubit theory induce the loss of the possibility to create and annihilate particles, the loss of 
the Unruh effect, and the loss of the delocalization of the wave packets (but the non-locality 
remains in the theory with the entanglement). But we want to treat the complete geometry 
of the black hole spacetime. The interest of our approach is the possibility to treat the local 
effects on a fixed quantum system (a single qubit boarded in a ‘spacecraft’ with definite posi-
tion and velocity and following a geodesic), whereas no local information associated with 
the spacetime geometry is taken into account in the Fuentes-Schuller–Mann model since the 
gravitational field is considered in it as uniform and the qubits are completely delocalized in 
it. We want to analyse the entanglement degrading effect with respect to the position and the 
velocity of the qubits with respect to the black hole.

We consider a qubit realised as the spin of a fermion submitting only to the gravitational 
field (no external magnetic field) and boarded in a ‘spacecraft’ following a geodesic around 
a black hole. By ‘gravitational field’ we mean the Lorentz connection associated with the 
spacetime geometry. In order to treat the dynamics of the qubit, we use the quantum adi-
abatic approximation because the qubit transport can be considered as slow with respect 
to its proper quantum time (the period of its Rabi oscillations induced by the gravitational 
field). Section 2 summarizes the localized qubit approach by rewriting it in the language of 
the fibre bundle theory. The goal of this reformulation is to provide a description including 
spacetime geometries and qubit quantum states in a single common geometric structure. This 
is achieved by the introduction of the fiber bundles of the quantum adiabatic approximation. 
We show that the problem takes place in complex line bundles over a space constituting the 
product of the space of Lorentz connections by the tangent bundle of the spacetime manifold. 
We show that the qubit is submitted to a kind of decoherence process induced by the gravi-
tational field and responsible to the degradation of the entanglement. Section 3 presents in 
our framework the quantum teleportation protocol with an EPR (Einstein–Podolsky–Rosen) 
qubit pair when one qubit falls to the black hole, whereas the other one is comoving with 
it. We compute a formula providing the fidelity of the teleportation. Section 4 applies the 
formalism to two spacetime geometries, firstly to the Rindler spacetime used by Fuentes-
Schuller and Mann, secondly to a Schwarzschild spacetime, where we analyse the fidelity of 
the quantum teleportation protocol with respect to the geodesic followed by the qubit falling 
to the black hole.

Throughout this paper, we consider the unit system such that = =c 1ħ .
Note about the notations: a fibre bundle of total space FB and base space B is denoted by 

its projection →FB B. The space of the local sections of a fibre bundle is denoted by ( )Γ B FB, . 
For a map →′f B B: , → ′∗f FB FB:  denotes the map induced by the fibration. Let M be a 
manifold, its tangent bundle is denoted by TM (TxM is the tangent space of M at the point 
x), and its differential 1-form set is denoted by Ω M1 . For a map →f M N: , →∗f TM TN:  
and →Ω Ω∗f N M: 1 1  denote the associated tangent and the cotangent maps (the push-for-
ward and the pull-back). ( )C M0  and ( )C ∞ M  denote the spaces of continuous and differenti-

able functions of M. ‘!’ between two manifolds denotes a diffeomorphism. × ×E EPr : ...i n1  
denotes the projection map defined by =e e ePr , ...,i n i1( ) . We use the Einstein convention con-
cerning the up and down indices repetition. The greek indices runs in {0, 1, 2, 3} as curved 
spacetime indices, the capital latin indices runs in {0, 1, 2, 3} as flat Minkowski auxiliary 

spacetime indices, the small latin indices runs in {1, 2, 3}. =µ
τ

µ
ẋ xd

d
 denotes the derivation 

with respect to a proper time τ.
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2. Adiabatic dynamics of a localized qubit

2.1. Localized qubit in a curved spacetime

In this section we summarize the results (without details) of Palmer et al [4], we fix the nota-
tions, and we embed the localized qubit theory into the fibre bundle theory (for an exposition 
of the fibre bundle theory, see for example [5]). Let M be an open set of the spacetime mani-
fold endowed with a local coordinates system { } { }µ

µ∈x 0,1,2,3  and a metric tensor ( )µνg x  (to sim-
ply we will refer to M as the spacetime). Let { ( )} { }µ µ ∈e xA

A, 0,1,2,3  be a tetrad field associated with 
the metric: η=µν µ νg e eAB

A B, where ηAB is the Minkowski metric. Let ω = ∂ + Γρ µ ρ
µ

µ ρν
µ νe e e eAB A B A B  

be the Lorentz connection (Γρν
µ  being the Christoffel symbols). A Dirac field Ψ obeys the 

Dirac–Einstein equation:

( ( ) ) ( )γ ∇ − Ψ =µ
µı e x m x 0A

A (1)

where { } { }γ ∈
A

A 0,1,2,3  are the Dirac matrices (in Weyl representation) and ∇µ is the spinorial 
covariant derivative defined by

( ) ( )ω∇ = ∂
∂
+µ µ µ D

x
x MAB

AB (2)

where D is the ( / ) ( / )⊕1 2, 0 0, 1 2  representation of ( )CSL 2,  (the coverging group of the Lorentz 
group SO+ (3,1)) on ⊕C C2 2 (we denote by the same symbol the induced representation of its 

Lie algebra), i.e. ( ) [ ]γ γ=D M ,AB A B
1
4

.
Let →TM M be the tangent bundle of M and →FM M be the frame principal SO+ (3,1)- bundle 

of M. Let ⟶ϕ ×R !M TM:T
4  and ( ) ⟶ϕ × + !M SO FM: 3, 1F  be the local trivializations of 

these bundles, which are defined by ( ) ( )ϕ =µ µx v e x v,T A
A and ( ) ( )ϕ Λ = Λx e x,F  ( ( )∈ Re GL 4,  is 

the matrix of elements µeA). The tetrad field can be identified as the trivializing local section of 
FM: ( ) ( ) ( )ϕ= ∈Γ!x e x x M FM, id ,F . Let →P M be the principal ( )CSL 2, -bundle associ-
ated with the local ( )CSL 2,  transformations of the spinors (P is an extension of FM such that 

/= ZFM P 2). Let →E TM and ¯ →E TM be the associated vector bundles for the representa-
tion (1/2,0) and (0,1/2), i.e. →E TM is defined by its local trivialization ⟶ϕ ×C !TM E:E

2 , 
( ( ) ) [ ( ( ( )) ) ] ( )ϕ ψ ϕ π ψ= −

∈ Cv x v x g g, , ,E P T g SL
1

2,  where ϕP is the local trivialization of →P TM 
and πT is the projection →TM M, and ( ( ) ) [ ( ( ( )) ) ¯ ]¯ ¯ ( )ϕ ψ ϕ π ψ= −

∈ Cv x v x g g, , ,E P T g SL
1

2,  (we have 
denoted simply the (1/2, 0)-action of ( )∈ Cg SL 2,  on ψ∈C2 by ψg  and the (0, 1/2)-action of 
g on ψ by ¯ψg ).

( ¯)Γ ⊕TM E E,  is a Hilbert ( )C TM0 -module endowed with the inner product:

( ¯)
⟨ ⟩ ( ( )) ⟨ ( ( )) ( ( ))⟩ ( )( ¯) γ γ
∀Ψ Φ∈Γ ⊕
Ψ|Φ = Ψ | |ΦΓ ⊕ C

TM E E

u x u x u x u x

, , ,

TM E E
A

A,
0

4
 (3)

where ( )∈u x T Mx  ( =u u 1A
A , = µ

µu e uA A ). Let ⊂Σ M be a spacelike hypersurface of 
M and { }Σ = ∈ ∀ ∈ Σ = >µν

µ ν
µν
µ ν+

|ΣN n TM t T g n t g n n; , 0, 0  be the set of future ori-
ented timelike normal vectors to Σ. The Dirac field Ψ is a vector of the Hilbert space 

( ¯) { ( ¯) ∥ ∥ ( ( )) ( ) }( ¯)∫Σ ⊕ = Ψ∈Γ Σ ⊕ Ψ Σ <+∞+ +
Σ Γ ⊕L N E E N E E n x x, , ; dTM E E

2
,

2  (the space of 
the Dirac spinor fields living at some time on the instantaneous space Σ).

Let C be a geodesic worldline in M and { }Στ τ∈R be a violation of M along C by spacelike 
hypersurfaces (τ being the proper time along C). By the WKB (Wentzel–Kramers–Brillouin) 
approx imation associated with the assumption that the Compton wavelength is small with 
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respect to the curvature scale [4], we have ∫ τΣ ⊕ Γ ⊕⊕
τ

+ CR L N E E T E E, d ,
WKB2( ¯) ⟶ ( ¯). This 

semi-classical approximation suppresses the space delocalisation of the fermion supporting the 

qubit and the absence of second quantization suppresses the particle number ambiguity. Since 
only the (1/2,0)-representation is needed to describe a single spin (qubit), we can project onto 
the space ( )Γ CT E, . We work then with the composite bundle [6] → →E TM M. It can be easier 
to work with a bundle →+E M with structure fibre ×R C4 2 (tangent vector model space and 
spin quantum state space). E+ is defined by the local trivialization ⟶ϕ × ×+ +R C !M E:E

4 2 , 
( ) ( ( ) ) ( ( ) )ϕ ψ ϕ ϕ ψ ϕ ψ= =+ x v x v e x v, , , , ,E E T E . We have an action of ( )CSL 2,  onto E+ defined 

by ( )∀ ∈ Cg SL 2, , ( ) ( ) ( ( ) ( ) )ϕ ψ ϕ ψ= Λ+ + +D Dg x v x g v g, , , ,E E , where ( ) → ( )Λ +CSL SO: 2, 3, 1  
is the group homomorphism associated with the quotient ( ) ( )/+ C Z!SO SL3, 1 2, 2.

We can identify the space of local sections  of E+ , ( )Γ +M E, , to the space of SO+  
(3,1)-invariant local sections of E: ( ) { ( ) ( )ψ ψΓ = ∈Γ ∀Λ∈ ∀ ∈+TM E TM E SO v TM, , ; 3, 1 , ,i  
ψ ψΛ =v x v x( ( )) ( ( ))}. The restriction of ( )Γ TM E,  to the invariant sections  is important to 
ensure the physical character of the theory, more precisely to have the following property:

ψ φ
ψ φ ψ φ

∀ ∈ Γ ∀ ∈ ∀ ∈
| Λ = |Γ Γ

CTM E g SL v TM
g g g v x v x
, , , 2, ,i

TM E TM E, ,

( ) ( )
〈 ( ) ( ) 〉 ( ( ) ( )) 〈 〉 ( ( ))( ) ( )D D

 (4)

i.e. the quantum propabilities are invariant under Lorentz transformations. Endowed with the  

inner product ⟨ ⟩ ( ) ⟨ ⟩ ( ( )) ( ( ) ( ))( ) ( )ψ φ ψ φ δ| = | −Γ Γ+ x v x v x w xv w M E TM E, ,  (with ψ ψ= =x v xv( ) ( ( ))  

( ( ))ϕ ϕ ψ+
−PrE E v

2,3

1 , δ is the Dirac distribution), ( )Γ +M E,  is a Hilbert ( )C M0 -module.

Concerning the evolution of the Dirac field, by using the Weyl representation of the Dirac 
matrices, the Dirac–Einstein equation (1) can be rewritten as the Van der Waerden equation:

¯σ σ ∇∇Ψ + Ψ =µ ν
µ νe e m 0A

A
B

B
E E

2 (5)

with ( )∫ τΨ ∈ Στ
⊕ +
R L N E, dE

2  and with { } { }σ σ σ σ= id, , ,A
A

x y z  and σ σ σ= − −id, , ,A
A

x y{ ¯ } {
σ− z} (( )σ σ σ, ,x y z  being the usual Pauli matrices). After some algebra (see [4]) it can be  

rewritten as

∇∇Ψ − Ψ + Ψ =µν
µ ν µ ν

µνRg ıe e L m 0E
A B

AB E E
2 (6)

with ( ¯ ¯ )σ σ σ σ= −LAB
ı A B B A
4

 and µνR  the Ricci tensor. The WKB ansatz consists in setting 
ψΨ = eE

ıS with ∇ =µ µS k  ( µk  is the wave number, =µ
µk k m2) and the WKB approximation 

consists in assuming that the typical scale over which ψ varies and the spacetime curvature 

scale are large compared to the Compton wavelength λ =−
m
1 . Inserting the WKB representa-

tion of ΨE into equation (6) and neglecting the small terms with respect to the WKB approx-
imation, we find (see [4])

ψ ψ∇ + ∇ =µ
µ µ

µk k2 0 (7)

Finally, along the geodesic C defined by + Γ =µ µνρ
ν ρx x x¨ 0, with = µµ

ẋk
m

, the localized qubit 
is described by the spin state ( ) ( )ψ∈Γ Γ +!TM E M E, ,i  which obeys the Schrödinger-like 
equation (see [4]):

( ( )) ( ) ( )ψ
τ

ω τ τ ψ τ= − µ
µı x x L

d
d

1
2

˙AB
AB (8)

where τ is the proper time along the geodesic followed by the qubit. The WKB approx-
imation is equivalent to saying that ψ consists in a wave packet essentially localized around 
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the geodesic, with a wave packet size very small with respect to the spacetime curvature scale. 
According to this remark, we can consider that the qubit viewed at the curvature scale, is local-
ized on the geodesic (a more complete discussion about the qubit localization and the WKB 
approx imation can be found in [4]).

( ) ( ( ))ψ τ π τ∈ − uE
1  where πE is the projection of E onto TM and ( ) ( ) ( )τ τ= ∈µ

τ
∂
∂ µ

u x T M˙
x x . 

The instantaneous qubit Hilbert space ( ( )) ( )⊂π τ Γ− u TM E,E i
1  depends on the four-velocity 

since the correct inner product induced by the Dirac field theory is

⟨ ⟩ ( ( )) ⟨ ( ( )) ¯ ( ( ))⟩ ( )( )ψ φ ψ σ φ| = | |Γ Cu x u x u x u xTM E
A

A, 2 (9)

⟨ ( ( )) ( ( ))⟩ψ φ= | C
! u x u x 2 (10)

where the conjugate state is ( ( )) ¯ ( ) ( ( ))†ψ σ ψ=! u x u x u xA
A .

The interaction of the Dirac field with gravity is essentially encoded in the Dirac–Einstein 
equation (1) by the spinorial covariant derivative. We refine this term in the localized qubit 

Schrödinger equation (8) with the operator ω− µ
µx L˙AB

AB
1
2

. We see that equations (1) and (8) are 
similar to equations of a fermion or a spin with minimal coupling to an interaction field hav-
ing the Lorentz connection as gauge potential. We can then consider the Lorentz connection 
as the ‘gravity field’ felt by the fermion or the qubit. More subtly, another aspect of general 
relativity is encoded in the Dirac–Einstein equation (1) by the tetrad field. { ( )}xeA

A defines 
the local inertial frame in the neighbourhood of x. The Dirac–Einstein equation is based on 
the idea that the equation of the field takes in this frame a similar form of its equivalent into a 
Minkowski spacetime. In the localized qubit theory, we refine this dependence with the frame 
by the dependence of the Hilbert space (and of its inner product) with the four-velocity. The 
physical meaning of this dependence will be extensively discussed in the sequel of this paper.

2.2. Inner products and linear functionals

In order to interpret the dependence of the instananeous spin Hilbert space on the four-veloc-
ity, it needs to recall some elementary axioms of the quantum mechanics. A Hilbert space 
H constitutes the space of the states of a quantum system. But its algebraic dual ∗H , i.e. the 
space of continuous linear functionals of H, is the space of the probability amplitudes of  
the elementary events: ∈ ∗ℓ H  is a map from H to C, such that ( )ψ| |ℓ 2 is the probability of the 
realization of some measurement event associated with ℓ when the quantum system is in the 
state ψ. By the Riesz theorem, we know that ∀ ∈ ∗ℓ H , η∃ ∈ℓ H!  (up to a renormalization and 

phase factor) such that ψ∀ ∈H, ( ) ⟨ ⟩
∥ ∥ ∥ ∥ψ = η ψ
η ψ
|ℓ ℓ

ℓ

H

H H
. We find ⟨η |∈ ∗

ℓ H  as an eigenvector of an 

observable Θ associated with the measure; ⟨η |ℓ  corresponds to the event ‘the measure of Θ has 
provided the result λℓ’ (λℓ being the eigenvalue associated with the eigenvector ⟨η |ℓ ). It is then 
important to note that a ‘ket’ ⟩ψ|  characterizes the quantum system as being its state, whereas 
a ‘bra’ ⟨η| characterizes an event for an observer making measures on the quantum system.

Returning to the localized qubit problem, we want to interpret the difference between the 
two linear functionals ⟨ψ| and 〈 〈 ¯†ψ σ ψ| = |! uA

A  (the ‘bra’ always denoting in this paper the partial 
inner product of C2: ⟨ ⟩ψ| C. 2, and never ⟨ ⟩ ( )ψ| Γ. TM E, ). Let ( )ψ∈Γ TM E,i  be a normalized state:

⟨ ⟩ ⟺ ⟨ ¯ ⟩( )ψ ψ ψ σ ψ| = | | =Γ C u1 1TM E
A

A, 2 (11)

⟺ ∥ ∥ ⟨ ⟩ψ ψ σ ψ− | | =C u u 1i
i

2
02 (12)

D Viennot and O Moro Class. Quantum Grav. 34 (2017) 055005
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⟺ ( )→ →γ − ⋅ = !S S v S0 0 (13)

where we have introduced the magnetic four-momentum operator { ˆ } { }σ σ σ=S id, , ,A
A

x y z1
2

1
2

1
2

1
2

,  

with ⟨ ˆ ⟩ψ ψ= | | CS SA A
2; γ = u0, 

→ →γ =v u and ⟨ ⟩ ⟨ ⟩( )ψ ψ ψ ψ= | | = | | =Γ C
! !S TM E

0 id
2 ,

id
2

1
2

2 . The 
form ula (13) is the classical relation between a magnetic four-momentum S measured into an 
inertial frame K and the four-momentum !S  measured into its rest frame !K  of four-velocity 

( )→ →γ γ=u v,  with respect to K (see for example [7]). For our problem, K is a frame comoving 
with the black hole and !K  is the frame comoving with the qubit.

With this analysis of the normalization with respect to ⟨ ⟩ ( )| Γ. . TM E,  we can say that:

 • ⟨ψ| is the linear functional associated with the (non-normalized) probability amplitude 
to find the spin in the state ψ measured by an observer comoving with the black hole 
(⟨ ⟩ψ ψ| =C S2 0

2 ).
 • ⟨ψ |!  is the linear functional associated with the (normalized) probability amplitude 

to find the spin in the state ψ measured by an observer comoving with the qubit 
(⟨ ⟩ψ ψ| = =C
! !S2 10

2 ).

(with ∥ ∥ ( )ψ =Γ 1TM E, ).

2.3. Adiabatic approximation

We consider the Schrödinger-like equation for the localized qubit:

ψ
τ

ψ=ı H
d
d

 (14)

with the Hamiltonian = + ♯H H H0  (non-self-adjoint with respect to ⟨ ⟩| C. . 2, †≠H H):

ω= − µ
µH x L˙a

a0
0

0 (15)

ω ω ω
ω ω ω

= −
+ −

⎛
⎝⎜

⎞
⎠⎟

ı ı
ı2

03 01 02

01 02 03 (16)

ω= − µ
µ

♯H x L
1
2

˙ab
ab (17)

ω ω ω
ω ω ω

= − −
+ −

⎛
⎝⎜

⎞
⎠⎟

ı
ı

1
2

12 23 31

23 31 12 (18)

(ω ω≡ µ
µẋAB AB ). We have † = −H H0 0 (dissipation operator, see section  2.5) and † =♯ ♯H H  

(Hamiltonian of the qubit rotation). Finally we can write

= −
+ −

⎛
⎝⎜

⎞
⎠⎟H z z ız

z ız z
1
2

3 1 2

1 2 3 (19)

where ω ω= − εz ıi i i
jk

jk0 1
2

 ( ω ω= −µ µ µεz ıi i i
jk

jk0 1
2

 is the complex self-dual Lorentz connec-
tion). From the viewpoint of the qubit, the interaction with the gravitational field is similar to 
a spin submitted to a complexified magnetic field. Let ( )= ∈Cz z z z, ,1 2 3 3.

D Viennot and O Moro Class. Quantum Grav. 34 (2017) 055005
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To integrate the dynamics involved by the Schrödinger like equation, we propose to use the 
adiabatic approximation for the non-self-adjoint Hamiltonians [8]:

( ) ⟨ ( ( )) ( )⟩ ( ( ))
{ }

A∑ ∫ ∫ψ τ φ ψ φ τ| λ τ

∈ + −

∗ − −
τ

ΓC! z z0 0 e
k

k
ı

k
,

dk k
2 0 (20)

where φk, φ
∗
k and λk are respectively the instantaneous right eigenvectors, left eigenvectors and 

eigenvalues of H:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )†φ λ φ φ λ φ= =∗ ∗H z z z z H z z z zk k k k k k (21)

(the overline denoting the complex conjugation), ⟨ ⟩φ φ δ| =∗
Ck q kq2 , and Ak are the generators of 

the non-unitary geometric phases:

( ) ⟨ ( ) ( )⟩A φ φ= | |∗
C Cz z d zk k k3 2 (22)

Γ is the path in C3 defined by ( ) ( ( ( )) ( ( )) )τ τ ω τ ω τ= −µ
µ

µ
µ
=! εz ı x x x x˙ ˙i i

jk
jk

i
0 1

2 1,2,3 for the 
geodesic ( )τ τ! x  followed by the qubit.

A simple calculation shows that

λ ζ=± + + ≡±± z z z z
1
2

1
2

1 2 2 2 3 2( ) ( ) ( ) ( ) (23)

( )⟩
( )

φ
ζ ζ

ζ| =
+

+
++

⎛
⎝⎜

⎞
⎠⎟z

z

z

z ız

1

2 3

3

1 2 (24)

( )⟩
¯( ¯ )

¯
φ

ζ ζ

ζ
| =

+

+

+
+
∗

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟z

z

z

z ı z

1

2 3

3

1 2
 (25)

( )⟩
( )

φ
ζ ζ ζ

| =
+

− +
+−

⎛
⎝⎜

⎞
⎠⎟z

z

z ız
z

1

2 3

1 2

3 (26)

( )⟩
¯( ¯ ) ¯φ
ζ ζ ζ

| =
+

− +

+
−
∗

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟z

z

z ı z

z

1

2 3

1 2

3
 (27)

A ( )
( )ζ ζ

=± −
+± z

ı z z z z
z2

d d1 2 2 1

3 (28)

The adiabatic approximation is valid if the non-adiabatic coupling is negligible, i.e.

N
〈 ( ( )) ( ( )) ( ( ))〉

( ( )) ( ( ))
φ τ τ φ τ
λ τ λ τ

=
| |
−−+

−
∗

+

+ −
≪Cz H z z

z z

˙
1

2

 (29)

Let A be the space of the ( )CSL 2, -connections of the principal bundle P. The eigenvectors 
can be considered as maps ˆ →φ ×± CA TM: 2 such that ˆ ( ) ( )φ ω φ ξ ω=± ±u i, u , where i is the 
inner product of M and ( ) →ξ sl C C: 2, 3 is defined by ( ) ( )ξ ω ω ω= − =εL ıAB

AB
i i

jk
jk

i
0 1

2 1,2,3 
({ }LAB A B,  constitutes a set of generators of ( )sl C2,  the Lie algebra of ( )CSL 2, ). The eigen-
vectors being defined up to an arbitrary normalization and phase factor, they define 
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C-line bundles →Φ ×± A TM with local trivializations ˜ ⟶φ Φ× ×± ±C !A TM:  with 
˜ ( ) ˆ ( )φ ω λ λφ ω=± ±u u, , , . ψ obtained by the adiabatic transport formula 20 is then a local sec-
tion of Φ Φ⊕− + over ×A CT . Note that the left eigenvectors do not define line bundles since 
their normalization factors are fixed by those of the right eigenvectors.

Finally, the geometric structure in which the qubit transport takes place can be summarized 
by the following commutative diagram:

where ( ) ( )ι ω= ∈ ×ω Au u TM, . We can note that ω∈A is a connection of the principal bun-
dle P and A± are connections of the ∗C -principal bundles associated with Φ±. We have then 
three kinds of gauge changes associated with each floor of the composite bundle:

 • ground floor: φ∈ MDiff  (diffeomorphism of the spacetime manifold), ω̃ φ ω= ∗  and 
˜ φ= ∗u u.

 • first floor: ( ( ))CΛ∈ ∞ +M SO, 3, 1  (local Lorentz transformation), ω ω= Λ Λ +µ µB
A

C
A

D
C D

B˜
Λ ∂ ΛµC

A C
B and ˜ = Λu uA A

B
B.

 • second floor: ( )Cµ ∈ ×±
∞ ∗CA TM,  (normalization and phase local change), 

Ã A µ= +± ± ±d ln .

The different steps of the construction of the localized qubit adiabatic state can be summarized 
as follows:

( ¯) ⟶ ( ¯) ⟶ ( ) ( )

⟶ ( )

( )∫ τ

Φ Φ

Σ ⊕ Γ ⊕ Γ Γ

Γ × ⊕

⊕
τ

+ +

− +

C C C

A C

!R L N E E WKB T E E T E E

T

, d , , ,

,

WKB P

i

adiab

2

.

1
2

,0

It can be interesting to note that the holonomy of ω∈A along C (between 0 and τ) is

( ) ∫ω = σ− µ
µ

PC CHol , e ı z xdi
i (30)

( ( ))∫= τ τ−
τ

Te ı H z d
0

 (31)

( ( ))⟩⟨ ( ( ))
{ }

A∑ ∫ ∫ φ τ φ| |λ τ

∈ + −

− −
τ

Γ! z ze 0
k

ı
k k

,

dk k
0 (32)

where Pe and Te denote path and time ordered exponentials (Dyson series). 

( ) Aϕ ω = ∫ ∫λ τ
±

− −
τ
± Γ ±

C e ı
,

d
0  which characterize the adiabatic state of the qubit can be viewed 

as cylindrical functions of the space of Lorentz connections, ( )ϕ ∈± AC Cyl, , and ψ as a linear 
combination of these two cylindrical functions. It can be interesting to note that (the topo-
logical completion of) ( )ACyl  constitutes the kinematical Hilbert space of the loop quantum 
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gravity [9], this could indicate a possible connection of the adiabatic localized qubit formal-
ism with a semi-classical limit of the loop quantum gravity.

It is also interesting to note that the localized qubit Hamiltonian 19 takes the form σ=H zi
i

1
2

 

with { }σ =i i 1,2,3 the Pauli matrices and zi the complex self-dual Lorentz connection. Some 
D-brane matrix models are governed by an effective Hamiltonian ( ) σ= − ⊗H Z zMM

i i
i

eff  where 
{ } =Zi

i 1,2,3 are matrices corresponding to non-commutative coordinates of a stack of D-branes 
and zi are scalars corresponding to the position of a probe brane [10, 11]. The eigenequa-
tion ⟩|Λ =H 0MM

eff  (with ⟩|Λ ∈ ⊗CK 2 where K is a representation Hilbert space for { }Zi
i) 

is associated with the emergent non-commutative geometry of membranes [11] and can be 
used to study quantum aspects of black holes [10]. The matrices Zi can be split into a back-
ground part and a fluctuation part which is associated with a Lorentz connection [12]. Since 

⟩ ⟺ ⟩ ⟩σ σ|Λ = ⊗ |Λ = |ΛH Z z0MM
i

i
i

i
eff , we see that the localized qubit Hamiltonian 19 could 

be viewed as a kind of a non-commutative eigenvalue of the matrix model. This suggests a 
possible connection between the localized qubit theory with matrix models and then with 
supergravity (due to the correspondance between the two theories [13]). Moreover, non-com-
mutative eigenequations as ⟩ ⟩σ σ⊗ |Λ = |ΛZ zi

i
i

i  appear also in the adiabatic theory of entan-
gled quantum systems and their operator valued geometric phases [14, 15]. It could be then 
possible that the connection between the localized qubit theory and D-brane matrix models 
enlighten the qubit/black-hole correspondence [16, 17], where some properties of STU black 
holes are in correspondence with the entanglement states of several qubits.

Note that the evolution governed by H(z) is unitary with respect to ⟨ ⟩ ( )| Γ. . TM E,  (for a  

proper observer comoving with the qubit) (see [4]): ψ τ ψ τ ψ ψ| = |! !
C C0 02 2〈 ( ) ( )〉 〈 ( ) ( )〉 ⟺ 

〈 ( ) ( ) ¯ ( ) ( )〉 ( ) 〈 ( ) ¯ ( )〉 ( )ω ψ σ ω ψ τ ψ σ ψ| | = | |C C C Cu uHol , 0 Hol , 0 0 0 0A
A

A
A . But it is not unitary with 

respect to ⟨ ⟩| C. . 2 (for an observer comoving with the black hole). We begin to examine this 
point in the next section.

To simplify the notation, from this point we denote ⟨ ⟩| C. . 2 only by ⟨ ⟩|. . .

2.4. The complex magnetic monopole

The adiabatic transport of a non-self-adjoint two-level quantum system has been extensively 
studied in the litterature (see for example [18–21]). The interesting effects in the adiabatic 
transport (equation (20)) are related to the submanifold M of C3 defined by the crossings 

( ) ( )λ λ=+ −z z . Firstly, because the validity of the adiabatic approximation (equation (29)) 
needs not approach M (except if ⟨ ⟩φ φ| | =−

∗
+Ḣ 0). Secondly, because M is a kind of hypercone 

separating the region of C3 for which λ± are real (and generate only pure phases) from the 
region for which λ± are complex (and generate non-unitary (for ⟨ ⟩| C. . 2) evolution modifying 
the relative weights of the superposition of φ±). Since in the self-adjoint case, the geometric 
phase generator is similar to a magnetic field induced by a magnetic monopole at the eigen-
value crossing point (see [5]), for the non-unitary case, M has been called complex magn etic 
monopole [18] (but M is not an isolated point and is associated with exceptional cross-
ings, i.e. H(z) is not diagonalizable on M). Let ( )→ω ω ω ω= , ,0 01 02 03  and ( )→ω ω ω ω=♯ , ,23 31 12 . 

( ) ∥ ∥ ∥ ∥→ → → → → →ζ ω ω ω ω ω ω= − = − − ⋅♯ ♯ ♯ı ı22 0 2 2 0 2 0. Since ( ) ( ) ⟺λ λ ζ= =+ −z z 0, the complex 
magnetic monopole is defined by

ω ω
ω ω
=
⋅ =

⎧⎨⎩
♯

♯
:

0

0

0

∥ ∥ ∥ ∥→ →

→ →
M (33)
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=MRdim 4. If the condition → →ω ω⋅ =♯ 00  is satisfied, outside M (∥ ∥ ∥ ∥→ →ω ω>♯ 0 ), ζ∈R and 
( )∈∫λ τ− ± Ue 1ı d  are just pure phases; but inside M (∥ ∥ ∥ ∥→ →ω ω<♯ 0 ), ζ∈ Rı  and ∈∫λ τ− +± Re ı d  

are non-unitary dynamical phases. In this last case, the evolution modifies the weights of the 
superposition of φ± (with respect to ⟨ ⟩| C. . 2, i.e. for an observer comoving with the black hole). 
We will call this effect a dynamical decoherence because the following coherence

⟨ ⟩⟨ ⟩
∥ ∥

φ ψ ψ φ
ψ

| | | |
=
| |

| | +| |

∫ ∫

∫ ∫

ζ τ ζ τ

ζ τ ζ τ
+
∗

−
∗

+ −
| | − | |

+
| |

−
− | |

τ τ

τ τ

c c

c c

e e

e e2

d d

2 d 2 d

1
2 0

1
2 0

0 0

 (34)

∫∼ ζ τ−

+

− | |
τc

c
e d

0 (35)

falls to zero for large τ (with ⟨ ( ( )) ( )⟩φ ψ= |∗c z 0 0k k , we have neglected the geometric phases 
and supposed that ζ ζ=| | >Im 0). We have not considered the effects of the non-unitary geo-
metric phases A∫− Γ ±e  which can induce a geometric decoherence if A ∈± R (we call it geomet-
ric decoherence since the geometric phase depends only on the shape of the followed path Γ 
and not from the proper time).

Let ( )ξ=ω ω
− −M Mı 1 1  be the pre-image of M into TM. It is important to note that the com-

plex magnetic monopole for a fixed spacetime geometry ωM  is not a submanifold of the 
spacetime M but a submanifold of the tangent bundle TM. The complex magnetic monopole 
around the black hole ‘viewed’ by the qubit depends on its four-velocity. Gobally, the set of all 
complex magnetic monopoles is {( ) }⊂ω ω= ∈ ×ωM M A AA TM, , . In some cases, a class 

{ }G α αI  of geodesics can be defined with some first integrals { }α αI  and ωiu  ( ∈ Cu Tx , { }G∈ α αC I ) 

depends only on { }α αI  and x. In that case ( )( ){ } { }Gπ π= ∩ω ω
−

α α α αM MI T T I,
1  is a submanifold of 

M which is an image (for the qubits following geodesics of { }G α αI ) of the complex magnetic 
monopole in the spacetime.

2.5. Physical origin of the non-unitarity evolution

To understand the physical origin of the non-unitarity with respect to ⟨ ⟩| C. . 2 (observer comov-
ing with the black hole), consider first a simpler model constituted by a three-level system 
(with levels denoted by { ⟩ ⟩ ⟩}| | |d , 0 , 1 ), governed by an Hamiltonian H and with spontane-
ous emission from ⟩|0  to the ‘dark state’ ⟩|d  with a rate γ−. We want to consider the system 
restricted to ( ⟩ ⟩)| |0 , 1  as a qubit and to forget the dark state ⟩|d . The system obeys a master 
equation [22]:

[ ] { }ρ ρ
γ
σ σ ρ γ σ ρσ= − − +− + −

−
− +

t
ı H

d
d

,
2

,d d d d0 0 0 0 (36)

where ρ is the density matrix of the system, {.,.} denotes the anti-commutator, σ = | |− d 0d0 〉〈  
and σ = | |+ d0d0 〉〈 . The equation can be rewritten as

( ) ⟩⟨†ρ ρ ρ γ ρ= − − + | |−t
ı H H d d

d
d

eff eff
00 (37)

where ⟩⟨= − | |γ−H H ı 0 0eff
2

. The anti-self-adjoint part of the effective Hamiltonian ⟩⟨− | |γ−ı 0 0
2

 
models the loss of population from ⟩|0  to the dark state by spontaneous emission, whereas 

⟩⟨γ ρ | |− d d00  models the gain of population of this dark state. So, if we forget the dark state 
in the modelization, the qubit obeys a Schrödinger equation governed by a non-self-adjoint 
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effective Hamiltonian ⟩⟨( ⟩ ⟩) ( ⟩ ⟩)= − | |γ
| | | | | |

−H H ı 0 00 , 1
eff

0 , 1 2
. The non-self-adjoint part of H eff, 

⟩⟨− | |γ−ı 0 0
2

, can be called a dissipation operator, since it models the dissipation of the wave 
function induced by the loss of population from ⟩|0  to the dark state. Dynamically, it generates 
a factor γ− −e t on the population ⟨ ( )⟩ψ| | |t0 2 (for ψ a solution of the Schrödinger equation gov-
erned by H eff) killing it with the time (reproducing the relaxation described by the master 
equation, which induces the fall of the population of ⟩|0 ). More precisely, if direct couplings 
with the dark state do not occur, i.e. ⟨ ⟩ ⟨ ⟩| | = | | =H d H d0 1 0, then the populations and coher-
ences of the two active states obey

( )
ρ

ρ ρ ρ ρ= − + − −
t

ı H H H H
d

d
ij

i j i j j i j i0
eff

0 1
eff

1 0
eff

0 1
eff

1 (38)

{ }∀ ∈i j, 0, 1 . Let ψ be the solution of ( ⟩ ⟩)ψ ψ= | | |ı H˙
0 , 1

eff , then ψ ψ= | |P 〉〈  obeys 
( )( ⟩ ⟩) ( ⟩ ⟩)

†= − −| | | | | |P ı H P PH˙
0 , 1

eff
0 , 1

eff  and the populations and the coherences ⟨ ⟩= | |P i P jij  obeys 
the same equation (38). It follows that ρ = Pij ij (note that ≠P P2  since ψ is not normalized due 
to the non-Hermitian character of ( ⟩ ⟩)| | |H 0 , 1

eff ). We see that if the dark state is not directly coupled 
with the active states (except by the spontaneous emission), the non-Hermitian hamiltonian 

( ⟩ ⟩)| | |H 0 , 1
eff  generates for the active states the same evolution than the master equation.
In a curved spacetime there is an ambiguity concerning the particle number. Due to the 

Unruh effect, the vaccum in the rest frame becomes a thermal state in an uniformly acceler-
ated frame [3, 23]. At the level of the quantum field theory in curved spacetime, the evolution 
in the black hole frame of the Dirac field spontaneously couples the one particle state to the 
zero particle state (in the fermionic Fock space of the system). But the semi-classical and 
WKB approximations used in our model forget this last one (we want to have one and only 
one qubit). We have then only two qubit states ⟩|10  and ⟩|11  (forming the canonical basis of C2 
used in the construction of the different bundles), and a dark state: the vacuum ⟩|∅ . In the same 
way that for the small example of a three-level system, the qubit is then governed by a non-
self-adjoint effective Hamiltonian. We will study this point with more details in a concrete 
example in section 4.

We call the non-self-adjoint part of the Hamiltonian, H0 (equation (16)), a dissipation oper-
ator in the sense where it describes a relaxation phenomenon as in the example of a three level 
atom with a dark state. We find in the literature a lot of examples of physical systems which 
can be described by non-Hermitian Hamiltonians in order to model a relaxation process by 
a dissipation behaviour and which are in accordance with experimental studies. We can cite 
for example the modelling of a spontaneous decay [24], of a finite lifetime state [25] or of a 
quantum resonance in atomic or molecular systems [26].

3. Quantum teleportation

Let Alice and Bob be initially at the point xB of M, supposed sufficiently far from the black 

hole to consider that M is flat in the neighbourhood of xB. We set ( )⟩| =0 0
1

 and ( )⟩| =1 1
0

. Bob 

is supposed comoving with the black hole (he stays at xB), but Alice follows a geodesic going 
near the event horizon at a point xA. Alice wants to teleport information when she will be at 
this point. At the moment τ τ= = 0A B  when Alice leaves Bob, they have an entangled qubit 
pair in a Bell state:
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〉〉 ( 〉〉 〉〉) ( ) ( )ψ π π| = | + | ∈ ⊗− −u u
1
2

0 0 1 1 E EAB A B A B A B
0 1 0 1 0

 (39)

∈u T MxA
0

B  and ( )= ∈u T M1, 0, 0, 0 xB
0

B  are the initial four-velocities of Alice and Bob. 
Since Alice and Bob belong to two different frames, each one has its proper definition of 
the qubit states. For Bob, the linear functionals of finding his qubit in a particular state are 
⟨ |0  and ⟨ |1 , involving that | = |0 0B〉 〉 and 〉 〉| = |1 1B . But for Alice, her linear functionals are 
⟨ |!0  and ⟨ |!1  since she is not comoving with the black hole. The qubit states for Alice are then 
defined by ⟨ ⟩ ⟨ ¯ ⟩σ δ| = | | =!a b a b uA

A abA A A
0  ( { }∀ ∈a b, 0, 1 ). It follows that ⟩ ⟩σ| = |u0 0A

AA A
0  and 

⟩ ⟩σ| = |u1 1A
AA A

0  (( ¯ )σ σ=−u uA
A

A
AA A

0 1 0 ).

⟩⟩ ⟨ ⟩ ⟩⟩∑ψ σ| = | | |a b u ab
1
2 ab

A
AAB A

0 0
 (40)

In the flat region ( =z 0B ), we have ( )( )⟩φ| =+ zB
1
2

1
1

 and ( )( )⟩φ| =−
−zB

1
2

1
1

.

⟩⟩ ⟨ ⟩ ( )⟩ ⟩∑ ∑ψ σ φ| = | | | ⊗ |
= =±

a b u i z b
1
2 a b i

A
A

a
iAB A B

0

, 0

1
0

 (41)

Let τA
1  be the proper time when Alice arrives at xA. We suppose that the evolution along the 

geodesic C linking xB to xA is adiabatic for Alice’s qubit (as equation (20)). We have then for 
τ τ=A A

1  and τ > 0B

⟩⟩ ⟨ ⟩ ( )⟩ ⟩∑ψ σ φ| = | | | ⊗ |ϕa b u i z b
1
2

e
abi

A
A

a ı
iAB A A

1 0 i (42)

( A∫ ∫ϕ λ τ= − +
τ

Γ
ıdi i i0

A
1

). Note that ⟩⟩ψ| AB
1  is defined for two proper times, one for Alice and 

one for Bob, since their clocks are asynchronous. The evolution for Bob’s qubit is trivial since 
it is inertial in a flat part of M.

( )⟩ ⟨ ( )⟩ ⟩ ⟨ ¯ ( )⟩ ⟩∑ ∑φ φ σ φ| = | | = | | |!z c z c c z u ci
c

i
c

C
i CA A A A A A

1
 (43)

where ∈u T MxA
1

A  is Alice’s four-velocity at τA
1 .

⟩⟩ ⟩⟩∑ψ χ| = |c b
1
2 bc

bcAB A
1

 (44)

with

⟨ ⟩ ⟨ ¯ ( )⟩∑χ σ σ φ= | | | |ϕa b u i c z u
1
2

ebc
ai

A a ı C
i CAA A A

0 1i (45)

Alice encodes quantum information in a qubit ⟩ ⟩ ⟩ψ α β| = | + |0 1I A A  (α β| | + | | = 12 2 ). The 
state of the three qubits is then 〉〉〉 〉 〉〉ψ ψ ψ| = | ⊗ |IAAB AB

1 1 . Alice performs then the operations 
of the usual teleportation protocol:

⟩⟩⟩ ( )( ) ⟩⟩⟩H CNOTψ ψ| = ⊗ ⊗ ⊗ |id id idAAB A A AAB
2 1 (46)

where CNOTA and HA are the CNOT and Hadamard gates in Alice’s frame. After some alge-
bra, we find
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ψ
αχ βχ αχ βχ

αχ βχ αχ βχ

αχ βχ αχ βχ

αχ βχ αχ βχ

| = | ⊗
+

| +
+

|

+ | ⊗
−

| +
−

|

+ | ⊗
+

| +
+

|

+ | ⊗
−

| +
−

|

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

0 0
2

0
2

1

1 0
2

0
2

1

0 1
2

0
2

1

1 1
2

0
2

1

AAB A A

A A

A A

A A

2 00 10 01 11

00 10 01 11

10 00 11 01

10 00 11 01

〉〉〉 〉〉 〉 〉

〉〉 〉 〉

〉〉 〉 〉

〉〉 〉 〉

 

(47)

Alice performs a measurement of her qubits. To fix the discussion, we suppose that she finds 
0 0A A (the result can be easily adapted for another result). Alice sends to Bob by a classical 
communication chanel what is the operation to perform on his qubit (in our example, the oper-
ation is the identity). Bob receives the message at τB

3 . The state is then for τ τ>A A
1  and τ τ=B B

3 :

〉〉〉 ( 〉〉)
(( ) 〉 ( ) 〉)
ψ
αχ βχ αχ βχ

| = ⊗ |
⊗ + | + + |

U U 0 0

0 1
AAB A A A A
3

00 10 01 11
 (48)

where UA is the evolution operator for Alice’s qubit after τA
1 . The fidelity of the quantum tele-

portation is then

( ) ( ¯⟨ ¯⟨ )(( ) ⟩ ( ) ⟩)
∥( ) ⟩ ( ) ⟩∥

α β
α β αχ βχ αχ βχ

αχ βχ αχ βχ
=
| |+ | + | + + | |

+ | + + |
F ,

0 1 0 1

0 1
00 10 01 11

00 10 01 11
 (49)

¯ ¯α χ αβχ αβχ β χ

αχ βχ αχ βχ
=
| | + + +| |

| + | +| + |

2
00 10 01

2
11

00 10
2

01 11
2

 (50)

The fidelity of the teleportation is clearly degraded by the decoherence induced by the black 
hole which is encoded in χbc.

Remark: for a flat spacetime with Alice having a constant four-velocity we have 
⟨ ¯ ⟩⟨ ⟩ ⟨ ¯ ⟩χ σ σ σ σ δ= ∑ | | | | = | | =c a a b u u c u u bbc a

C A
A C

C
C

A
A cbA A A A , and then F  =  1 (we refine the 

efficiency of the usual teleporation protocol).

4. Applications

4.1. Rindler spacetime

In order to compare with the Fuentes-Schuller–Mann model [3], we first consider the case of 
the Rindler spacetime defined by the metric

( )τ = −Ax t xd d d2 2 2 2
 (51)

which corresponds to a flat spacetime viewed in a non-intertial frame uniformly accelerated 

(with acceleration parameter 
A
1), or to the surface gravity approximation of a Schwarzschid 

black hole ( ( )= −x r r r2 S S  and =A
r
1

2 S
, rS  =  2GM being the Schwarzschild radius) (see 

[3]). The tetrad fields are =e Ax td0  and =e xd1 , and the only one non-zero Lorentz connec-
tion component is ω = −A td01 . It follows that = −z ıAṫ1  and = =z z 02 3 , and then
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= − ⎜ ⎟
⎛
⎝

⎞
⎠H

ıAṫ
2

0 1
1 0 (52)

with λ =± ∓ Aṫı
2

 and

( ) ( )⟩ ⟩φ φ| = − | =− +
1
2

1
1

,
1
2

1
1 (53)

A N= =± −+ 0. It is interesting to note that since the qubit moves in the x-direction, φ+ cor-
responds to a spin parallel to the linear momentum (so to a positive helicity state) and φ− to a 
spin antiparallel to the linear momentum (a negative helicity state) (σ φ φ=±± ±x ). The geode-
sic equations are

+ =

+ =

⎧
⎨⎪
⎩⎪

t
x

tx

x A xt

¨ 2 ˙˙ 0

¨ ˙ 02 2
 (54)

The first geodesic equation defines the first integral:

=x t K˙2 (55)

The second geodesic equation becomes the autonomous equation:

+ =x
A K

x
¨ 0

2 2

3 (56)

The adiabatic transport of a qubit state ( )ψ τ φ φ= ++ + − −c c0  ( ∈± Cc ) is then

( ) ( )( ) ( ( ) ( )) ( ( ) ( ))ψ τ = − +τ τ− − + − −c c

2
e 1

1 2
e 1

1
A t t A t t
2

0
2

0 (57)

( ) ( )∫ ∫= − +
τ τ− + −

τ τc c

2
e 1

1 2
e 1

1

AK
x

AK
x2

d
2

d
0 2 0 2 (58)

The dynamical decoherence kills the positive helicity state in favor of the negative helicity 
state. We can heuristically understand this fact as follows. The vacuum of the Minkowsky 
spacetime becomes in the non-inertial frame ⟩ ⟩ ⟩ ⟩ ⟩θ θ|∅ = |∅ |∅ + | | −cos sin 1 1I II k s I k s II, ,  
(see [23]) where θ = πω−tan e A (k denotes the momentum, s the helicity, I and II denote the 
two regions separated by the horizon, ω = mṫ). It is then associated with a density matrix 

⟩⟨ ⟩⟨ ⟩⟨ρ θ θ= |∅ ∅|= |∅ ∅| + | |∅ tr cos sin 1 1k s II I k s k s I,
2 2

, ,  which is a thermal distribution with 
temper ature =

π
T a

k2 B
 (kB is the Boltzmann constant), corresponding to the Unruh radiation. 

It follows that the fermion is coupled with this thermal bath. For the positive helicity mode 
(which is the part of the Weyl spinor with positive energy), we can write that the density 
matrix ρ+ (for 〉 〉φ| = |+ +1k,  and ⟩|∅ ) obeys the master equation (see for example [27]):

( ¯){ } ( ¯)

¯{ } ¯

ρ
τ

γ
ρ γ ρ

γ
ρ γ ρ

= − − + −

− +

+
+
+
+ + + + +

+

+ +
+
+ +

+
+ +

n c c n c c

n c c nc c

d

d 2
1 , 1

2
,

 (59)

where +
±c  are the fermionic creation/annihilation operators on the positive helicity mode 

( 〉〈= |∅ |+ +c 1k,  and = | ∅|+
+

+c 1k, 〉〈 ), ¯ =
+

ωn 1

e 1k TB

 and γ characterizes the spectral density of 
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the bath. With some assumptions ( ¯)γ − γ ω!n1
k T4
0

B
 where γ0 is a constant (see [28]). Since n̄ is 

very small (the Unruh temperature T is very small), the master equation is dominated by the 
dissipation of φ| = |+ +1k, 〉 〉 in accordance with equation (57). By following the approximation 
explained in section 2.5 (by projecting onto ⟩⟨| |+ +1 1k k, , , by neglecting the quantum jumps and 
the n̄ terms) we have

⟩⟨γ ω
φ φ= − | |+ + +H

ı

k T4
eff 0

B
 (60)

We refine ⟩⟨λ φ φ= | |+ + + +Heff  by setting γ =
πm0
1 . For the negative helicity mode the problem 

is quite different since it is associated with the part of the Weyl spinor with negative energy. 
It follows that the roles of ( ¯)γ − n1  and ¯γn are inverted in the master equation. This one is 
then dominated by the increase of the population of φ| = |− −1k, 〉 〉. We can then postulate an 
 effective Hamiltonian creating negative helicity population, as ⟩⟨λ φ φ= | |− − − −Heff .

This is just a heuristic argument to relate the results obtained with the Fuentes-Schuller–
Mann model in [23] (in curved spacetime quantum field theory with the simple geometry 
of the Rindler space) with the model of localized qubit (non-Hermitian quantum mechanics 
associated with a curved spacetime). The correct derivation of the non-Hermitian Hamiltonian 
(52) follows the method exposed in [4]. The role of this heuristic argument consists in making 
an analogy between the Unruh effect of the Fuentes-Schuller–Mann model which is respon-
sible of the decoherence and the relaxation (because of the entanglement between the qubits 
separated by the horizon), with the non-Hermitian dynamics of the localized qubit model 
which is responsible for the decoherence and the relaxation of the localized qubit. The two 
phenomena (Unruh effect and non-Hermitian evolution) model the same thing, the coupling 
of the qubit with the gravity encoded by the Dirac–Einstein equation (1) (which is the primary 
equation of the two approaches, Fuentes-Schuller–Mann and localized qubit, but treated with 
different approximations), and having the same consequences (decoherence and relaxation of 
the qubit state).

The geodesic (equation (56)) has for solution ( ) ( )τ β τ= + −x A K 12 2 2  with 
( )β = − +x

AK

0 12

. We have then an analytical expression of the dynamical phases:

( )( ( ))
( )( ( ))

/
∫ β β τ

β β τ
= + − +

− + +

ττ ⎛
⎝⎜

⎞
⎠⎟

AK AK
AK AK

e
1 1
1 1

AK
x2
d 1 4

0 2 (61)

Let τ β= − −H AK
1  be the proper time for which the qubit reaches the horizon. We have 

→ =∫
τ τ

τ τ
lim e 0

H

AK
x2 0
d

2 .
The fidelity of the teleportation protocol for the Rindler spacetime is represented in fig-

ure  1. The fidelity of the quantum teleportation falls if Alice approaches too close to the 
Rindler horizon.

4.2. Schwarzschild black hole

We consider the metric associated with a static black hole with spherical symmetry:

( ) ( ) ( )τ θ θ ϕ= − − +−T r t R r r rd d d d sin d2 2 2 2 2 2 2 2 2
 (62)

where T and R are the factors of time dilation and length contraction, the Schwarzschild 

metric being obtained for ( ) ( )= = −T r R r 1 r
r
S  with rS  =  2GM the Schwarzschild radius. 

The tetrad fields are ( )= T r te d0 , ( )= −e R r rd1 1 , θ=e rd2  and θ ϕ=e r sin d3 ; and the 
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non-zero components of the Lorentz connection are ( ) ( )ω = − ′T r R r td01 , ( )ω θ= −R r d12 , 
( )ω θ ϕ= R r sin d13  and ω θ ϕ= cos d23 . Because of the spherical symmetry, we can restrict our 

attention to the equatorial plane θ = π
2
. The geodesic equations are

ϕ

ϕ ϕ

+ =

+ − − =

+ =

′

′
′

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

t
T
T

tr

r T R Tt
R
R

r R r

r
r

¨ 2 ˙˙ 0

¨ ˙ ˙ ˙ 0

¨
2

˙ ˙ 0

2 2 2 2 2 (63)

The first and the last geodesic equations define the first integrals:

=T t E˙2 (64)

ϕ =r L˙2 (65)

E and L being the energy and the angular momentum by mass unit. We have = − ′z ı ET R
T

1
2 , 

=z LR
r

2
2 , and z3  =  0. It follows that

=
− −

− +

′

′

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
H

ı
T R
T

E ı
R
r

L

ı
T R
T

E ı
R
r

L

1
2

0

0

2 2

2 2

 (66)

Figure 1. Average fidelity ⟨ ⟩ ( ( ) ( ))∫ ∫ α α=
π π β α β

π
F F cos , e sinı

0 0

2 d d
2 2  (equation (49)) of 

the teleportation protocol, for Alice following a geodesic of the Rindler spacetime and 
Bob being static, with respect to AK (first integral of the geodesic) and τA

1  Alice’s proper 
time when she realizes her part of the protocol. For each value of AK, the fidelity is 
drawn until the proper time when Alice reaches the Rindler horizon.
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with λ =± − ′
± L ER

r
T R

T
1
2

2 22

4

2 2

4 . λ ∈± R if ⩾ ′L ET r
T

2

2  ( ϕ ϕ π= ∈ω r , ; 0, 2  with L E LE, , {( ) [ ]M  

}( )
( ) =
′T r r
T r

L
E

LE LE

LE

2

2 ). For the Schwarzschild case, the dynamical decoherence disapears for 

( ) ⩾/
− L E1 r

r
r3 2

2
S S , i.e. if < 1r E

L2
S  and ( ) /> =

−
r rLE

r

1

S

rSE

L2

2 3 . It follows that the qubit is submitted 

to dynamical decoherence except if it follows a strongly rotating geodesic (L large) and far 

from the complex magnetic monopole (which is a sphere of radius ⩾r rLE S). The generators 

of the geometric phases are A ( )=± ∈Ω±
− −
−

′ ′ ′ REL r Md ,uvw u vw uv w
w L u v E

1
2

1
2 2 2 2 2  (with = ′u T

T
, =v R

T
 and 

=w R
r2). For the Schwarzschild case, we have A

( )
( )

=±±
− −

−

rdEL r

r L E
2

1

S

rS
r

rSr
rS
r

2

3 2 2
2 2

4 1

2
. Geometric 

decoherence is always present except for the radial geodesics (L  =  0) and the circular orbits 

(r constant). Moreover, the non-adiabatic coupling is ( )( )
( ) /N = | |−+

| − − |
−
′ ′ LE ṙwL uE u w uw

w L u E2 2 2 2 3 2 , assuring 

without any assumption concerning the velocity, the validity of the adiabatic approximation 

for the radial geodesics (L  =  0) and the circular orbits ( =ṙ 0).

4.2.1. Radial geodesics for the Schwarzschild metric. We consider first the radial geodesics 
L  =  0 (ϕ =˙ 0). The second geodesic (equation (63)) is then reduced to + =r̈ 0r

r2
S
2 , which has 

for solution: τ τ= − +r r r3 S 0
3 2 2 3( )( ) / /

. The event horizon is reached at 
/ /

τ = −
H

r r
r3

S

S

0
3 2 3 2

. The 

fidelity of the teleportation protocol for this situation is drawn in figure 2. As for the Rindler 

Figure 2. Average fidelity ⟨ ⟩ ( ( ) ( ))∫ ∫ α α=
π π β α β

π
F F cos , e sinı

0 0

2 d d
2 2  (equation (49)) of 

the teleportation protocol, for Alice following a radial geodesic of the Schwarzschild 
spacetime and Bob comoving with the black hole, with respect to E (first integral of the 
geodesic) and τA

1  the Alice’s proper time when she realizes her part of the protocol. The 
fidelity is drawn until the proper time when Alice reaches the event horizon.
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spacetime, the fidelity of the quantum teleportation falls if Alice approaches too close to the 
event horizon, because of the decoherence induced by the gravitational field (all the radial 
geodesics are inside {( ) [ ]}ϕ ϕ π= +∞ ∈ω =M , , 0, 2L E, 0, ).

4.2.2. Circular orbits for the Schwarzschild metric. We consider the circular orbits defined 

by r  =  r0 (constant) and ( )ϕ τ τ ϕ= +L

r 0
0
2 . The second geodesic (equation (63)) involves that 

=
−

L r r
r r

2
2 3

S

S

0
2

0
 and the metric (equation (62)) involves that ( )( )= +E T r 1 L

r
2

0
2 2

0
2 . The fidelity 

of the teleportation protocol for this situation is drawn in figure 3. For the circular orbits, the 

effect is essentially caused by the difference of four-velocity between Alice and Bob (explain-
ing why the fidelity is almost uniform with respect to r0 and τA

1 ). No decoherence occurs since 

for all r0, ζ∈R ( {( ) [ ]}ϕ ϕ π= ∈ωM , , 0, 2r
r

,
3
2

S
0 , all circular orbits are outside the complex 

magnetic monopole which is identified with the photon sphere). The adiabatic transport gen-
erates a phase difference between φ+ and φ− which induces some interferences in the quantum 
teleportation explaining the small oscillations in the fidelity.

4.2.3. Geodesics reaching the event horizon. We consider geodesics starting far from 
the event horizon and almost reaching it by an adiabatic process for the qubit evolution. 

Since ⟶
→
ζ + ∞ı

r rS

 we can suppose that ∫ ζ τ
τ −

!
ε

e 0dı H
2 0  (τH being the proper time needed to 

reach the event horizon and ≪ε 1). Moreover, ( )⟶
→

φ+
r r

1
2

1
1

S

, ( )⟶
→

φ−
−

r r

1
2

1
1

S

, and since 

( ) { } = − − −θ ϕ∈ ⎜ ⎟⎛
⎝

⎞
⎠u , 1 , 0,A

A t r
E
T

E
T

L
r

L
r, , ,

2

2

2

2 , we can compute an evaluation of the fidelity of 

the teleportation protocol for geodesics almost reaching the event horizon, see figure 4. The 

Figure 3. Average fidelity ⟨ ⟩ ( ( ) ( ))∫ ∫ α α=
π π β α β

π
F F cos , e sinı

0 0

2 d d
2 2  (equation (49)) of 

the teleportation protocol, for Alice following a circular orbit around the black hole and 
Bob comoving with the black hole, with respect to r0 (radius of the orbit) and τA

1  the 
Alice’s proper time when she realizes her part of the protocol. The red lines indicate 

the proper times corresponding to the orbital periods. We start at =r rS0
3
2

 (the photon 
sphere) since no closed orbit exists under this value.
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Figure 4. Fidelity ( )α βF ,  (equation (49)) of the EPR teleportation protocol, for Alice 
following a geodesic almost reaching the event horizon and Bob comoving with the 
black hole, with respect to E and L (first integrals of the geodesic) and ϕ the angular 
position of Alice when she almost reaches the event horizon (Alice having started from 
ϕ = 00 ), its final radial position rf being such that =− −10

r r

r
2f S

S
. Alice realizes her part 

of the protocol when she reaches her final point near the event horizon.
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fidelity oscillates with the relative angular position of Alice when she reaches the event hori-
zon (for the teleportation of a ‘Schrödinger cat’, no oscillation occurs for the teleportation 
of ⟩|0  or ⟩|1 ). The dependence from E and L is small except for the small values of these first 
integrals.

5. Conclusion

A localized qubit in general relativity is described (at the adiabatic limit) by a geometric struc-
ture including the description of the quantum states and of the spacetime geometry, i.e. the 
composite bundle → →Φ Φ⊕ ×+ − A TM M where A is the space of Lorentz connections. In 
this bundle, inside a particular submanifold (the complex magnetic monopole MA) decoher-
ence processes appear on the qubit. This complex magnetic monopole is a sphere surrounding 
the event horizon for a Schwarzschild black hole, with radius decreasing with the increase of 

the angular momentum of the qubit (it is infinite for ⩽L r E
2
S , is equal to r3

2
S  (the photon sphere) 

for the circular orbits, and tends to rS (the event horizon) with →+∞L ). We have two differ-
ent decoherence processes, a dynamical decoherence associated with the non-unitary dynami-
cal phases and a geometric decoherence associated with the non-unitary geometric phases 
(and depending only on the shape of the followed path and not from the proper time). The 
physical origin of these processes is related in a Rindler spacetime to the Unruh radiation and 
we can then postulate that in the general case it is related to the Hawking radiation (since the 
Unruh effect can be considered as the near-horizon form of the Hawking radiation). We have 
shown how these decoherence processes degrade the fidelity of the quantum teleportation 
proto col if Alice falls to the event horizon, the adiabatic framework permitting one to obtain a 
simple formula to compute this fidelity with respect to the spacetime position and to the four-
velocity of Alice when she realizes her part of the protocol.

The approach of the adiabatic dynamics of localized qubits presented in this paper is valid 
in the context of the semi-classical approximations (WKB, no second quantization, adiabatic 
limit). But it permits one to consider all spacetime geometry and all geodesics. In contrast, the 
approach of the Fuentes-Schuller–Mann model does not make approximation in the quantum 
field theory but is restricted to the Rindler spacetime (neighbourhood of the event horizon of 
a Schwarzchild black hole). The two models are then complementary. The calculation of the 
quantum field of a qubit in a generic curved spacetime with a strong localization without any 
approximation is a very difficult problem. The two approaches permit one to have comple-
mentary views of the problem with simple calculations.
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