SRO 2012 Modified Electromagnetism theories and test prospects

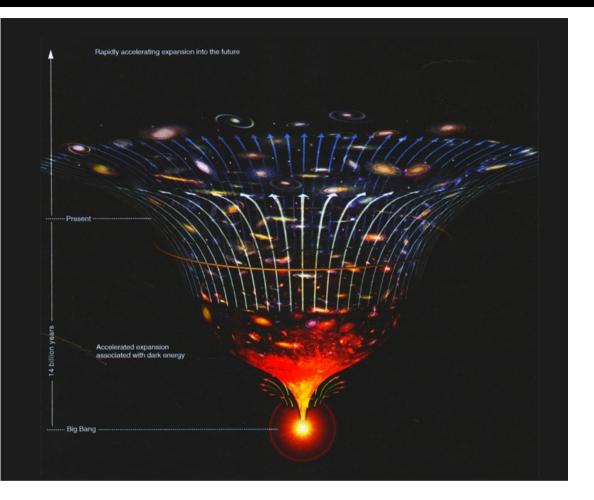
David Viennot *(theory)* maître de conférences Institut UTINAM équipe Physique théorique & Astrophysique

Pierre-Yves Bourgeois *(experiment)* chargé de recherches CNRS Institut FEMTO-ST département Temps-Fréquence

Lucile Aubourg (*phenomenology*) ingénieure d'étude contractuelle OSU THETA

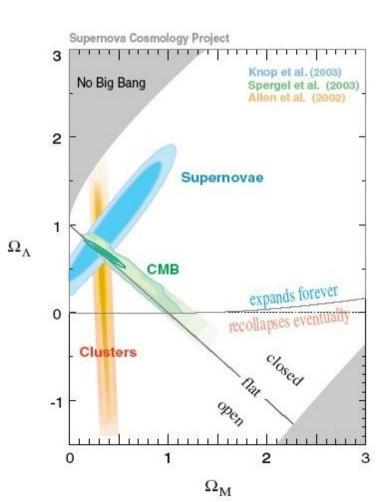
I- Introduction : astrophysical context, dark matter

Stability of galaxies


 \rightarrow equilibrium between gravitation and centrifugal force

Gravitation induced by visible matter is weaker than centrifugal forces (galactic rotation curves) \rightarrow lack of mass = dark matter

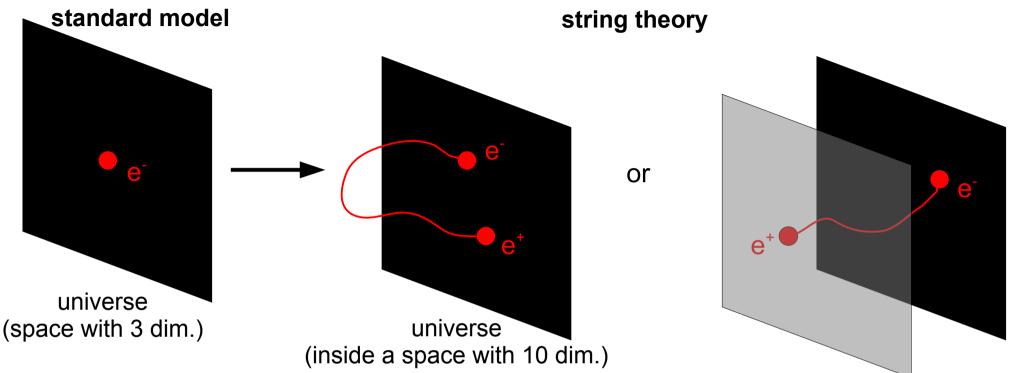
Physical nature of the dark matter ????


I- Introduction : astrophysical context, dark energy

Physical nature of the dark energy ????

Gravity must slow down the universe expansion

Cosmological observations show an acceleration \rightarrow dark energy (cosmological constant)


I-Introduction : theoretical context, two incompatible theories

Quantum field theory	General relativity theory
describes electromagnetic, weak nuclear and strong nuclear forces	describes gravitational and inertial forces
perceptible effects for small objects and high energy	perceptible effects for heavy (dense) objects and high energy
approximations: low energy \rightarrow quantum mechanics large dimension \rightarrow special relativity; low energy and large dimension \rightarrow Newtonian mechanics.	approximations: low mass → special relativity; low mass and low energy → Newtonian mechanics

high energy + small characteristic dimension + large mass (black hole, big-bang, other gravitational singularities) \rightarrow a quantum theory of gravity is needed

I- Introduction : theoretical context, string theory

String theory interests:

• Possible unification theory between quantum field theory and general relativity

• Prediction of the existence of new weakly interacting massive particles (dark matter ?).

• Prediction of the existence of a dilaton, a particle conjugated to the graviton (dark energy ?).

D-branes (universe + anti-universe inside a space with 10 dim.)

Problem: string theory cannot be directly tested by an experiment

II- The project : main idea

The main sector of string theory is the gravity sector, but other sectors can be modified, in particular the electromagnetic sector.

 $\lambda < <1$

$$\mathcal{L}_{\text{EM,string}} \approx \mathcal{L}_{\text{EM,standard}} + \lambda \mathcal{L}_{\text{violations}}$$

Possible violations of the standard model:

- Local Lorentz invariance violation $(\lambda = \Delta c \text{ speed of light anisotropy})$
- Massive photons

 (λ=m² photon mass)

• Existence of a second kind of photons called paraphotons, weakly interacting with matter ("dark light")

 $(\lambda = \max(\chi, m^2)$ coupling constant photonparaphoton / paraphoton mass).

II- The project : main idea

The main sector of string theory is the gravity sector, but other sectors can be modified, in particular the electromagnetic sector.

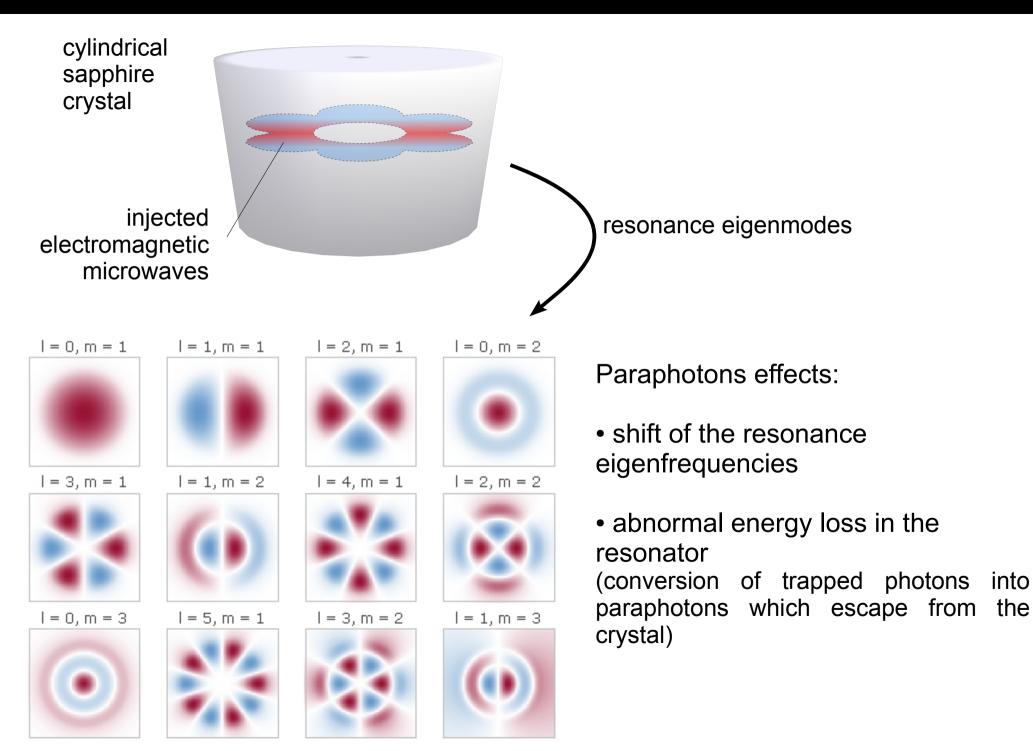
$$\mathcal{L}_{\text{EM,string}} \approx \mathcal{L}_{\text{EM,standard}} + \lambda \mathcal{L}_{\text{violations}}$$

Possible violations of the standard model:

- Local Lorentz invariance violation $(\lambda = \Delta c \text{ speed of light anisotropy})$
- Massive photons

 (λ=m² photon mass)

• Existence of a second kind of photons called paraphotons, weakly interacting with matter ("dark light")

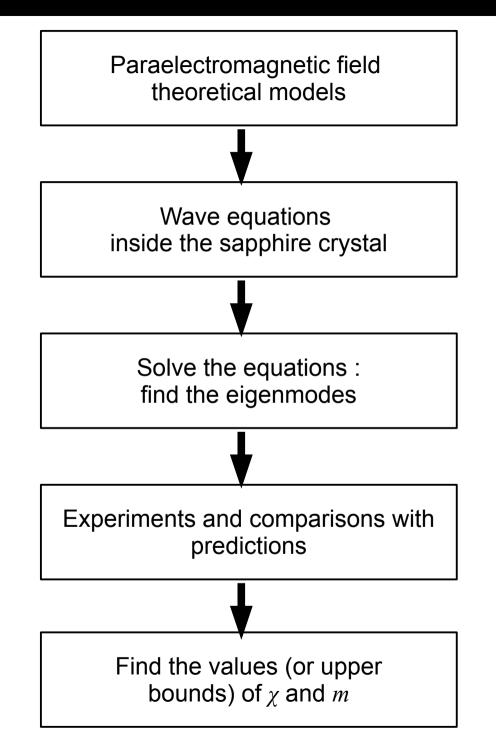

 $(\lambda = \max(\chi, m^2)$ coupling constant photonparaphoton / paraphoton mass). difficult experiments

m=0 highly confirmed

possible tests with the FEMTO-ST cryogenic resonator

 $\lambda < <1$

II- The project : experimental principle



• Compute the wave equations inside the resonator for different paraelectromagnetic theoretical models (by taking into account the crystal anisotropy).

• Find if the experiment could be sufficiently accurate to measure violations of the standard model.

• Find if the experiment could distinguish the different paraelectromagnetic theoretical models (Proca, Chern-Simons, BF, Podolsky).

III- Project realization : programme

Wave equations inside the anistropic cristal have been established for different paraelectromagnetic models

(Proca, Chern-Simons, BF)

 \rightarrow the photon-paraphoton coupling induces high complexity in the wave equations.

 \rightarrow the effects of this coupling on the usual (measurable) electromagnetic field are (probably) independent of the paraelectromagnetic model. The experiment cannot distinguish between the different theories even if a violation of the standard model is detected. Methods to solve the equations:

(1) Semi-analytical approach:

Based on the representation of the EM waves onto a Bessel function basis.

- * Useful for the standard model.
- * Accurate predictions.
- * Useful for theoretical analysis.

 \rightarrow several mathematical methods have been tried without success. This approach seems forbidden by the coupling.

(2) 100% numerical approaches:

- ° Finite elements methods
- ° Line methods

° FDTD

 \rightarrow long programing works and adaptated computation resources are needed.

- The experiment cannot distinguish the different theories.
 → that closes the theoretical aspect of the project.
- The semi-analytical approach does not seem be able to solve the problem. \rightarrow that closes the ab-initio phenomenological aspect of the project.
- Long numerical computation works are needed.
 - \rightarrow needed to establish the experiment accuracy.
 - \rightarrow needed to establish predictions for the experiment