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We present an iterative method for calculating eigenvalues and eigenvectors of large non-Hermitian matri-
ces. The method uses an iterative procedure to solve the basic Bloch equationHV=VHV of wave operator
theory. It involves nonlinear transformations such as the translation of diagonal matrix elements in the complex
plane and the use of Padé approximants to treat the strongly coupled states which constitute an intermediate
space around the model space. In the particular case of Floquet eigenstates the further step of adding time-
dependent absorbing boundaries significantly improves the convergence properties of the iterative calculations.
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I. INTRODUCTION

Studies of the rovibrational spectra of polyatomic mol-
ecules[1,2] and of the quantum dynamics of systems exhib-
iting resonances, as well as the Floquet analysis of photore-
active processes[3,4] are all faced with the task of
calculating some internal eigenvectors of a large(possibly
non-Hermitian) matrix [5]. In such applications the dimen-
sion N of the matrix is generally too large to use implemen-
tations of standard algorithms which store the full matrix and
the cost of which in CPU time scales asN3 [6].

These difficulties have prompted the development of it-
erative methods which do not store or modify the Hamil-
tonian matrix and which require only the computation of
matrix-vector products. These methods can be classified into
indirect and direct methods; the former include the relaxation
method[7], the spectral method[8], and the filter diagonal-
ization methods[9], while the latter include perturbative and
moment method approaches. The most popular methods are
variants of the algorithms of Davidson[10] or Lanczos
[11–13] or of the filter diagonalization method.

A good method for calculating eigenvectors must(i) re-
quire the storing of only a small number of vectors(with
dimension equal to that of the Hilbert space) and(ii ) require
the calculation of a reasonably small number of matrix-
vector products to assure the convergence of the iterative
process. From this viewpoint the Cullum and Willoughby
(CW) Lanczos approach[14] and the filter diagonalization
method[15–17], which extract energy levels from the same
Krylov subspace, are operationally very similar and in both
cases the CPU time mainly depends on the density of states.
The CW Lanczos method[14] without regeneration of vec-
tors easily satisfies(i) but in both methods many vectors
must be stored or regenerated if eigenvectors are desired.

Hybrid techniques have been proposed in order to over-
come some of the typical defects of the methods mentioned
above; the Lanczos method has been coupled with a spectral
filter [18] and a preconditioned Green function block algo-
rithm has also been proposed[19]. A Lanczos algorithm
which computes Lanczos vectors forFsHd=sEI−Hd−1 and

which uses an inexact spectral transform to get exact energy
levels has also been tested with success[20].

The calculation of resonance states and the use of a time-
dependent Floquet formalism to investigate photoreactive
processes leads to non-Hermitian matrices because of the use
of complex absorbing potentials in the calculation of the ma-
trix elements. The particular eigenvectors being sought will
depend on the physical process being described. Photoreac-
tive processes involve long-lived Floquet eigenstates with
eigenvalues which have very small imaginary parts in theL2

discrete representation as well as eigenstates which have a
suitably large overlap with some specified initial state[21].
In such cases the diagonalization algorithm should be able to
induce a state-to-state correspondence between the nonper-
turbed states(eigenvectors ofH0 or of H0− i"] /]t for the
Floquet dynamics in the extended Hilbert space[22]) and the
perturbed states(eigenvectors of H0+V or of H0+V
− i"] /]t). The wave operator formalism has the capacity to
follow continuously the eigenvectors as the perturbation de-
velops as well as the advantage of selecting self-consistently
the active space in which the greater part of the strong inter-
action is concentrated. This formalism satisfies criterion(i),
since the number of stored vectors is equal to the dimension
of the small active space and is constant during the iterations
used in the recursive distorted-wave approximation(RDWA)
algorithm [23] or in the single-cycle(SC) algorithm [24]. It
has more difficulties in satisfying criterion(ii ), particularly in
the strong-coupling regime, but like the Lanczos method, has
the advantage that it supports hybrid techniques; an approach
which blends a Green function filter approach with wave
operator techniques significantly improves the performances
of wave operator iterative methods[25].

The present work presents an integration procedure for
the nonlinear wave operator equation. The strategy adopted
is to embed the active space in an intermediate space, within
which nonlinear transformations such as complex transla-
tions of the diagonal elements or Padé transformations can
be carried out to improve the convergence. In the case of
Floquet eigenstates, a further procedure is used; the introduc-
tion of time-dependent complex boundary potentials gives a
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natural spectral transformation which produces a notable im-
provement in the treatment of the Schrödinger equation in
the Floquet picture.

The formalism is described in Sec. II, with an illustration
involving the Floquet eigenstates of the ion H2

+ interacting
with a strong pulsed laser field. Particular attention is given
to the Bloch wave operator formulation for the quasistation-
ary treatment of the time-dependent Schrödinger equation.
Section III sets out a time-dependent optical potential
method which strongly modifies the Floquet spectrum and
improves the convergence by selectively isolating the treated
Floquet eigenstate. Section IV analyzes the results and gives
some conclusions.

II. THEORY

A. Wave operator model in eigenvalue problems

The Bloch effective Hamiltonian theory was developed
within nuclear physics and in quantum chemistry to improve
on ab initio and semiempirical methods. The original wave
operator concept was defined by Møller[26] within the con-
text of scattering theory, while the later works of Bloch[27],
Des Cloizeaux[28], and Durand[29] developed a theory
more suitable for bound-state problems in nuclear physics
and quantum chemistry.

The basic idea is to use the HamiltonianH in the full
Hilbert space to define an effective HamiltonianHeff, acting
in a reduced model spaceS0, such that a subset of the exact
energy levels ofH coincides with the energy levels ofHeff.
Bloch sets the wave operatorV equal to

V = PsP0PP0d−1, s1d

whereP0 is the projection operator of the model spaceS0 and
P is that of the corresponding active spaceS.

S is the subspace generated by the set of eigenvectors that
play an important role in our problem. It can be constituted
by eigenvectors which are situated in a given energy window
or which possess a large overlap with a given unperturbed
state. The model spaceS0 is the space generated by the zero-
order description of the states which constitute the active
spaceS. If H is separated intoH=H0+V, then the elements
of S0 are usually eigenstates ofH0.

The wave operatorV is the solution of a nonlinear
equation

HV = VHV s2d

and leads to the effective HamiltonianHeff=P0HV. By sepa-
rating the wave operator into a diagonal and an off-diagonal
part,

V = P0 + Q0VP0 = P0 + X, s3d

Eq. (2) can be written in the form

Q0s1 − XdHs1 + XdP0 = 0, s4d

where 1 is the identity operator for the full Hilbert space and
Q0 the projector into the complementary space associated
with the model space—i.e.,Q0=1−P0.

Equation(4) manifestly displays the wave operator as a
nonunitary and nonsingular transformationsT=1+Xd which

has a trivial inversesT−1=1−Xd and which cancels the cou-
plings betweenS0 and S0

+, generatingHeff from P0HP0 by
adding the termP0HQ0VP0.

The algorithm proposed in this paper integrates Eq.(4)
and solves the eigenvalue problem insideS0 by finding the
reduced wave operatorX, leading to V and thus toHeff
=P0HV. The eigenvectors ofHeff are the projections into the
model space of the corresponding exact eigenvectors. The
wave operator transforms these projected eigenvectors back
into the exact eigenvectors in the full space. Modern devel-
opments[21] show that the use of Eqs.(2) and (4) is not
restricted to the treatment of stationary problems. The time-
dependent Schrödinger equation can be transformed into an
equation similar to Eq.(2) by working in an extended space.
By introducing the time-dependent wave operatorVstd
=Ust ;HdfP0Ust ;HdP0g−1, the quantum evolution issuing
from a model spaceS0 can be factorized as follows:

Ust;HdP0 = VstdUst;Heffd. s5d

Here the first evolution operator, associated withHeffstd
=P0HstdVstd, induces an evolution insideS0 and the second
term Vstd possesses an off-diagonal part which induces the
transitions fromS0 into the complementary spaceS0

+. The
reduced wave operator is the solution of a nonlinear equation
of motion:

i"
]Xstd

]t
= Q0f1 − XstdgHstdf1 + Xstdg. s6d

If the perturbation is localized on a finite time intervalf0,Tg,
Eq. (6) can be rewritten as

HFstdVstd = VstdHF
ef fstd = VstdHFstdVstd. s7d

Equation(7) then resembles Eq.(2), provided that the Flo-
quet HamiltonianHFstd=Hstd− i"] /]t is taken in place ofH.
This implies that this modified eigenvalue equation should
be solved in an extended Hilbert space

K = H ^ L 2sS1,du/2pd, s8d

whereH is the initial Hilbert space andL 2 denotes the space
of square integrable functions on the circle of length 2p
(with u=2pt /T). Within the formalism described above Eq.
(2) now appears as a generic equation in the treatment of
both stationary and dynamical problems. In the dynamical
case it should nevertheless be noted that the Floquet eigen-
states obtained by integration of Eq.(7) do not generally
have the correct asymptotic behaviour, so that many Floquet
eigenstates need to be combined to form an appropriate wave
function. This aspect of the problem will be analyzed in Sec.
III. In the next section the generic termH will be used to
designate equallyH or HF.

B. Iterative integration of HV=VHV

The task of integrating Eq.(2) or (7) has been handled
using various iterative treatments[23,24]. Here we propose a
variant of these methods and analyze more closely their con-
vergence behavior; some aspects of the iterative techniques
will be improved by using nonlinear transformations.
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The important task is that of choosing the dimensionN0
of the model spaceS0 and the mode of construction ofS0
around an initial unperturbed stateuil. Various approaches to
a suitable definition ofS0 have been proposed in the litera-
ture; these include the adiabatic reduced coupled equation
method[30], the low-frequency expansion method[31], and
several artificial intelligence techniques[32–34]. In our ap-
proach we use an algorithm based on the wave operator for-
malism. This procedure, called the wave operator sorting al-
gorithm by Wyatt and Iung[2], is based on the iterative
RDWA treatment of the Bloch equation[Eq. (2) or (7)]. After
a finite numberNmaxof iterations a large number of statesual
are connected by the RDWA iteration(generally less than 30
iterations are sufficient to connect all the space). The states
ual are then reordered after stateuil such that those having
the largest magnitudes of the reduced wave operator at an
arbitrary iteration orderNøNmax are at the top end of the
list. Nonconvergence of the iterations does not have serious
consequence for this reordering. The model spaceS0, the
dimensionN0 of which is imposed in our model, is con-
structed by taking theN0 first vectors. The ordering is also
used to define an intermediate space of dimensionN1 adjoin-
ing the model space, simply by taking theN1 next vectors.
This intermediate space groups together the states which are
strongly coupled to or are in near resonance with the states of
the model space. It is this intermediate space which is sub-
jected to nonlinear transformations in our treatment.

Starting from Eq.(2) or, equivalently, from Eq.(7), if H
;HF in an extended Hilbert space, a few algebraic manipu-
lations lead to the equation

XHeff − H8X = Q0sH − H8dX + Q0HP0, s9d

with

Heff = P0HsP0 + Xd.

This equation is true for any choice of the matrixH8 in the
complementary spaceS0

†; in the following H8 will be as-
sumed to be diagonal for simplicity.

By projecting Eq.(9) to the left on an arbitrary stateufl of
the complementary space and by settingEf8=kf uH8ufl one can
arrive at an iterative integration procedure described by the
equations

kf uXsn+1d = kf ufZ + YXsndgfP0HP0 + P0HXsnd − Ef8P0g−1,

s10d

with

Z = Q0HP0 and Y = Q0sH − H8dQ0.

Applying Eq. (10) requires inversion of the matrixP0sH
+HXsnddP0−Ef8P0 at each step of the iteration. The model
spaceS0 usually has a small dimension(typically N0ø50),
so this inversion is without problems whenever the matrixH8
is diagonal. One can then introduce the matrixTsnd which
diagonalizes the effective Hamiltonian at theNth step, so
that

sTsndd−1fP0HsP0 + XsnddgTsnd = Eef f
snd . s11d

Equation(10) can then be transformed into the new iterative
formula

kf uXsn+1d = kf ufQ0sH − H8dXsnd + Q0HP0g

3T sndfEef f
snd − Ef8P0g−1sT sndd−1. s12d

The behavior of the sequence of iterates and more precisely
the radius and speed of convergence of the iterative process
directly depend on the choice of the arbitrary diagonal matrix
H8. A simple choice is to identifyH8 with the diagonal part
of H in S0

†. If one further assumes moreover that the model
space is one dimensional withP0= uilki u, one can transform
Eq. (12) into

uinl = Vnuil = s1 + Xnduil. s13d

By setting Dui sndl=sXn+1−Xnduil and Ei
n=ki uEef f

snduil, one can
finally write Eq. (12) as follows:

Dui sndl = sEi
n − Q0HdiagQ0d−1sH − Ei

nduinl. s14d

This is exactly the iterative rule proposed in the Davidson
algorithm [10].

A more sophisticated choice involves taking into account
the effects of the couplings betweenS0 andS0

† on the diago-
nal matrix elements in the complementary space by setting

Ef8 = sEf8d
snd = kf us1 − XsnddHs1 + Xsnddufl. s15d

When introduced into Eq.(12) this choice leads to the
RDWA approach proposed some years ago[23].

C. Nonlinear transformations

Although the iteration rule for the RDWA appears to
be more sophisticated than that used in the method of
Davidson, the performance of the RDWA-wave operator ap-
proach is sometimes poor compared to those of the Davidson
and Lanczos methods. The reason is simple. Equation(12)
is only used perturbatively in the wave operator approach;
at stepsnd the new wave operator is simply obtained by
incrementation:Xsn+1d=Xsnd+DXsnd. By contrast the treat-
ment is nonperturbative in both the Davidson and Lanczos
approaches. At stepsnd the Davidson treatment extracts
energy levels from a Krylov subspace including
huil ,Dui s1dl ,Dui s2dl , . . . ,Dui sndlj but requires the storing of a
large number of vectors; this storage cost is too high to per-
mit the treatment of Floquet eigenstates in large vector
spaces. Our approach in this work is to improve the perfor-
mance of the perturbative wave operator treatment by intro-
ducing artificial nonlinear transformations in order to take
into account indirectly the strong-coupling effects introduced
by the Krylov subspace.

Before explaining these transformations we should note
that the wave operator formalism does incorporate in a non-
perturbative manner some strong couplings—namely, those
between the states which compose the model space; from a
certain viewpoint the corresponding active space can be re-
garded as a Krylov space. However, the dimension ofS0 is
necessary kept small to ensure the storage of only a small
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number of vectors. Only the first few vectors which are
strongly coupled and are in exact or near resonance are then
selected in the model space. As all the states of the full space
are ordered according to their importance in the eigenvector
construction(see the wave operator sorting algorithm in Sec.
II B ), we can apply nonlinear transformations to the states of
the intermediate space(states numbered fromN0+1 up to
N0+N1+1), without explicitly constructing the correspond-
ing eigenvectors. Two modifications of the iterative proce-
dure are then proposed.

The first concerns the choice of the arbitrary diagonal
matrix H8. The two previously mentioned choices led to it-
eration formulas like those of the Davidson theory and the
RDWA treatment. However, the divergence of the wave op-
erator iterations is more commonly caused by small denomi-
nators which are due to accidental near resonances between
the eigenvalues of the effective HamiltonianHeff=P0sH
+HXdP0 and the diagonal elements ofQ0H8Q0. One way to
suppress these effects is to identifyQ0H8Q0 with the diago-
nal part of Q0HQ0, except for a reduced group of states,
which are selected as the states ofS0

+ with eigenvalues near-
est in the complex plane to the eigenvalues of the states
included in the spaceS0. These states belong to the interme-
diate space. For these states usually responsible for acciden-
tal resonances the corresponding diagonal elementsHjj8 are
chosen to beHjj +d j j , where the complex shiftd j j is chosen
to produce a suitably large minimum distancedE between
Hjj

ef f and the nearest eigenvalue of the complementary space
S0

+. In the simplest case of a one-dimensional model space,
this option involves moving all the nearest eigenvalues out-
side a circle which is cenered on the effective eigenvalue and
has the radiusdE. This transformation is nonlinear, since it
affects the denominator on the right-hand side of Eq.(12).

The second modification is the introduction of nonlinear
transformations such as Padé approximants[35], Aitken’s D2

method[36], or the Borel transformation to improve the con-
vergence. In our example, it is the diagonalfN,Ng Padé ap-
proximant which was used. The convergence criteria for
Stieltjes series cannot be applied in the present case[37], but
non-Stieltjes series have often been found to be summable
using Padé methods[38]. The procedure which has been
tested involves a two-step calculation. It is presented here in
a simple form by assuming a one-dimensional model space
but the generalization to degenerate model space is straight-
forward and is illustrated here by Fig. 2, below. During the
first step the iterations using Eq.(12) are carried out up to a
finite orderNiter (typically Niter,20). Simultaneously theN1
statess jd of the intermediate space which generate accidental
resonances are selected and the correspondingN0N1 series of
Niter elements are stored:

Xj ,i
n=0,Xj ,i

n=1, . . . ,Xj ,i
n=Niter, j = 1 –Np, i = 1 –N0. s16d

The Padé procedure is applied to these series by considering
successively the reals parts and imaginary parts using the
scalar Wynn epsilon algorithm[35]. The transformation must
be applied with caution; empirically the Padé approximant is
found to be inefficient if the series considered is already well

converged before applying the transformation. Consequently
the convergence test

o
n=Niter

Niter−3

uXj ,i
n − Xj ,i

n−1u ø e s17d

was applied to each seriess j , id so as to exclude from the
Padé procedure those which satisfied this criterion(typically
e=10−4).

The Padé calculation leads toNPøN0N1 complex values
sXj ,i

Padéd. In a second step, the iterations using Eq.(12) are
continued, keeping theseNP components constant and equal
to their Padé-extrapolated values. A test of convergence is
made at the end of this second step. If the test is not satisfied,
the two steps are repeated by starting with the nonconverged
X operator.

The effects of these two nonlinear transformations are
presented in Fig. 1. This figure shows, on a logarithmic scale,
the quantityiHV−VsP0HVdi2 for a one-dimensional model
space as a function of the number of productsHX formed
during the computation.

The studied eigenvector is one generalized Floquet state
of the H2

+ molecule subjected to a Gaussian laser pulse
which corresponds to an intensity of 431012 W/cm2, with
switch-on and -off timest of 5 fs, and a plateau duration of
T0=25 fs, which is represented over a periodT of 75 fs. The
studied vectorlv=0,n=0 corresponds to the unperturbed eigen-
state uv=0,n=0l—i.e., the ground vibrational state of the
surface2Sg

+ in the first Brillouin zone. The carrier wave fre-
quency of the lasersv0=0.295 868 a.u.d is tuned in this case
to the transition fromuv=0l to the dissociative surface, so
that the studied vector plays a central role in the photodisso-
ciation process[39]:

FIG. 1. Illustration of the effect of the choice of the matrixH8
and of the use of the Padé procedure in the integration iterations
using Eq.(12). The figure presents the defectiHV−VsP0HVdi2 on
a logarithmic scale as a function of the number of productsHV
formed during the computation. The three curves correspond to the
three options: dashed line,dE=0, and no Padé procedure; dotted
line, dE=10−3 and no Padé procedure; solid line:dE=0, with the
Padé procedure.
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H2
+s2Sg

+,v = 0,J = 0d + "v0 → H2
+s2Su

+d → H+ + Hs1sd.

s18d

The complete basis introduces 102 400 states, from which
N1=300 are selected to constitute the intermediate space and
eventually to participate in the Padé procedure. This figure
reveals that the Padé procedure is highly effective in a case
for which the standard wave operator series diverges
strongly.

Figure 2 corresponds to a second caculation which
involves two Gaussian pulses and a two-dimensional
model space. The two intensities are equal to 2.25
31012 W/cm2 and the two frequencies are tuned to the tran-
sitions: h2Sg

+, uv=0lj→ h2Su
+,E=Ev=0+"v1j→ h2Sg

+, uv=1lj.
The model space includes the two dressed statesuv=0,n1
=0,n2=0l and uv=1,n1=−1,n2= +1l which are in exact
resonance. The wave operator treatment makes it possible to
collect into the model space all the states which are strongly
coupled to the initial state or are in near resonance with it, as
well as any other states which are of interest. This feature has
a double advantage. First, all the eigenvalue-eigenvectors
pairs are calculated at the same time. As a single wave op-
eratorV is stored during the calculation, the model space and
the corresponding active space can include many vectors.
Second, the strong couplings inside the model space are
taken into account nonperturbatively by the effective Hamil-
tonian and the effects of these couplings on the exact eigen-
vectors are obtained by diagonalizingHeff. In many circum-
stances this procedure reduces the number of iterations
necessary to give a convergedV giving a calculation which
is faster than the separate calculation of the different exact
eigenvectors included in the active space.

Figure 2 shows the improvements due to the two nonlin-
ear transformations and particularly reveals the efficiency of
the Padé procedure, which produces convergence of the two
eigenvectors simultaneously up to a precision of 10−25. For
each pair of curves one column of the wave operator is ob-

served to show better convergence than the other column.
The difference is sometimes larger than 1010. It is the column
with the poorer convergence which imposes the precision of
the final result, since the two columns are mixed together by
the matrix which diagonalizesHeff to form the Floquet
eigenstates. In this framework the better results are obtained
with the Padé approximants.

III. TIME-DEPENDENT ABSORBING BOUNDARIES

The filter diagonalization method significantly improves
the performance of iterative methods for the eigenvalue
problem. This method, which requires the calculation of
productssEI−Hd−1uil, is computationally costly, even if the
use of inexact spectral transforms appears as an interesting
hybrid solution[20]. The Padé approximant procedure intro-
duced in Sec. II is an alternative procedure which tries to
obtain a good performance without needing a costly spectral
transformation.

In the integration of Eq.(7), which represents the time-
dependent Schrödinger equation(TDSE), one can use an-
other spectral transformation method, called the “constrained
adiabatic trajectory method”(CATM) [40]. This modifies
both the spectrum and the Floquet eigenstates(unlike the
standard filter diagonalization method) but it does not require
the solution of a large linear system at each step. It is de-
scribed below and is illustrated by treating again the Floquet
states of the H2

+ molecule subjected to a Gaussian laser
pulse.

The approach exploits the equivalence which exists be-
tween the Schrödinger equation in the Hilbert space and the
Floquet eigenequation in the extended Hilbert space and also
the linear correspondence existing between the solutions—
namely,

HFstduCstdl = 0 ⇔ sHF − Edull = 0,

uCstdl = expH 1

i"
EtJulstdl. s19d

Unfortunately this correspondence cannot be exploited in
most cases because the eigenvalueE and also the initial
value of the Floquet eigenstateulst=0dl are imposed by the
interaction. This initial value does not generally correspond
to the initial value of the wave function[a usual choice iden-
tifies uCst=0dl with a nonperturbed molecular eigenstateuil].
The CATM solves this difficulty by artificially imposing the
correct initial conditions. To do this the initial time interval
f0,T0g over which the field-matter interaction takes place is
prolonged by using an additional time intervalfT0,Tg. Ab-
sorbing time-dependent potentials are then introduced along
this extra time interval and on each molecular channel dif-
ferent from the initial oneuil. These potentials are of the
form

FIG. 2. The same as Fig. 1 but for the case of a two- dimen-
sional model space. The pair of solid, dashed, and dotted lines
correspond to the two Floquet eigenstateslv=0,n1=0,n2=0 and
lv=1,n1=−1,n2=+2.
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− iVoptstd = o
l

ullkl uH− iA expF− S t − t0

t
D2GJs1 − dl,id,

s20d

wheret0 is equal tosT0+Td /2 andt is chosen such thatVopt

is negigible att=T.
The initial state corresponds here to the ground vibra-

tional stateuv=0l of the surface2Sg
+ and to the first Brillouin

zone: ui ,n=0l. The analyses developed in Ref.[40] reveal
that two cases can be distinguished:

Case 1.Some Floquet eigenvalues are not affected by the
introduction of the absorbing boundaries conditions. For
such states the analysis proves that the absorbing boundaries
impose negligible componentsulsTdl fÞi on the channels dif-
ferent from the initial one. As the Floquet eigenstates are
periodic states by construction, this absorption imposes the
initial expected conditions:uls0dlk=dk,i and finally[Eq. (19)]
leads to an eigenstate proportional to the true wave function
on the intervalf0,T0g. We note that because of the time
arrow (from the past to the future) introduced by the TDSE
the extra-time perturbation introduced afterT0 cannot retro-
spectively influence the true system beforeT0.

Case 2.Other eigenvalues are greatly affected by the ab-
sorbing conditions and move about in the complex plane. In
this case the eigenstates are disturbed in a chaotic way and
cannot be used to solve the TDSE.

The basis is too largesN=102 400d for us to calculate and
present the exact spectrum ofHF. Nevertheless, partial
analysis reveals that the distortion of the spectrum due to the
field-matter interaction is small compared to that produced
by the time-dependent boundary potentials. One can then
roughly appreciate the influence of this spectral transforma-
tion by considering the unperturbed spectrum ofHF

0 =H0
− i"] /]t. Figure 3 presents the part of this spectrum around
the eigenvalue of the initial stateui ,n=0l, without the pres-
ence of time-dependent absorbing boundaries.

The spectrum is complex because of the presence of two
radial complex potentials placed asymptotically on the two
potential energy surfaces for states2Sg

+ and2Su
+. In Fig. 3 one

can distinguish the bound states on the real axis and also a
compact group of states which have an imaginary energy
part larger than 2310−3 a.u. in absolute value and which are
related by a discretized representation of the continua of the
two electronic statesg andu. Some other intermediate states
with a smaller imaginary energy part are present. They cor-
respond to the highest bound states ofg and their imaginary
part is a pure numerical artifact without consequence for the
dynamics. The spectrum is periodic with a period which cor-
responds to the time interval used—i.e.,f0,Tg. An important
characteristic is that the initial state eigenvalue is embedded
in a dense part of the spectrum on the real axis; this feature
explains the difficulties in obtaining convergence of the nu-
merical results in an iterative procedure.

Figure 4 represents the same spectrum after the introduc-
tion of time-dependent absorbing boundaries. It shows(near
the real axis) the unperturbed eigenvalueEi,n=0spd and the
corresponding Floquet eigenvalueEli,n=0

s3d. Their positions
reveal the small shift induced by the field-matter interaction.
On the other hand, one notes a large translation of the spec-
trum in the lower half complex plane if one compares with
Fig. 3 (the complex shift has an amplitude larger than 2
310−3). Only the initial state and its duplications in the other
Brillouin zones are not affected by this translation. The direct
consequence is a beneficial dispersion of the eigenvalues
around the initial one and a significant increasing of the dis-
tance betweenEi,n=0 and the other nearest eigenvalues. This
effect has important consequences for the iterative process
using Eq.(12).

These consequences are confirmed by Figs. 5 and 6,
which present the effect of the absorbing boundary procedure
on the use of the iterative formula(12). In these two appli-
cations the laser field is intense(I =1.631013 W/cm2 and
I =2.531013 W/cm2) and produces a rapid divergence of the

FIG. 3. The unperturbed Floquet spectrum of H2
+ around the

initial state without time-dependent absorbing boundaries. The star
(p) corresponds to the initial stateui ,n=0l.

FIG. 4. The unperturbed Floquet spectrum of H2
+ around the

initial state when time-dependent absorbing boundaries are intro-
duced asymptotically. The star(p) corresponds to the initial unper-
turbed stateui ,n=0l and the cross(3) to the corresponding Floquet
stateli,n=0.
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iterative process. The introduction of complex boundary con-
ditions drastically modifies this behavior and produces a con-
vergence of the process after fewer than 100 iterations. The
Floquet eigenvectors obtained by this procedure are also
modified by the introduction of the boundary conditions but
the proportionality betweenuCstdl and ulstdl represents a
positive feature of this approach to the solution of the TDSE.

An important question concerns the performance of the
present computational method as compared to those of other
well-established methods: filter diagonalization and CW
Lanczos methods. These three approaches are attractive for
similar reasons: the large Hamiltonian matrix enters into the
calculation only via the formation of matrix-vector products;
moreover, only a few iterations are needed to converge
widely separated eigenvalues. The loss of orthogonality in
the Krylov spaces is a severe handicap for the single-vector
Lanczos algorithm and the block Lanczos algorithm and re-
quires selective[41] and partial reorthogonalization[42].
The Bloch treatment proposed here does not adopt a varia-
tional approach in a Krylov space. It identifies the states
which make the solution process difficult and proposes a
specific treatment of nonlinear transformations in the inter-
mediate space which includes them. This reduces the nonor-
thogonality effects, even if reorthogonalizations are neces-
sary in the precise calculation of resonance states in large
spaces. For the same reasons the present treatment requires
the storing of only a small number of vectors and finally
makes possible the calculation of many eigenvalue-
eigenvector pairs by calculating only once a multidimen-
sional wave operator. The penalty is the less efficient behav-
ior of our integration procedure in the strong-coupling
regime. Figures 1 and 2 reveal that about 400 matrix prod-
ucts HV are necessary to converge the solution. Moreover,
the two columns of the wave operator converge with notably
different speeds in the degenerate case(Fig. 5), revealing
that the Padé procedure has some difficulties in correlating

the two vectors. Nevertheless, it should be recalled that the
effects of large basis sizes and density of states are particu-
larly severe for resonance calculations and that the efficiency
of other approaches(such as for example the preconditioned
inexact spectral transform[43]) depend critically on the ef-
fectiveness of the preconditioner used. In our case no pre-
conditioner has been used.

The introduction of time-dependent absorbing potentials
has strong positive effects(Figs. 5 and 6) and avoids the
introduction of a spectral transform such asFsHd=sEI
−Hd−1. However, this procedure is limited to the integration
of the time-dependent Schrödinger equation and cannot be
applied to solve stationary spectral problems.

IV. CONCLUSION

This paper treats the integration of the generic wave op-
erator equationHV=VHV, which describes stationary
eigenproblems or quantum time-dependent dynamics accord-
ing to the nature of the operatorH and to the nature of the
space in which it is defined.

The iterative solution method proposed is based on a stan-
dard RDWA procedure but is modified by using extra non-
linear transformations. Artificial translations of the diagonal
matrix elements in the complex plane and Padé approximant
transformations are tested; the second option appears as the
better, especially when the active space on which the wave
operator is defined is degenerate. The Padé approximant pro-
cedure forces the convergence of the iterative process by
operating in a small intermediate space formed by states
which are strongly coupled to the active space. The size of
this intermediate space is small(200 or 300 in our examples)
compared to the size of the full spaces.105d. The drastic
improvement due to the nonlinear transformations conse-
quently has a very small associated price in terms of in-
creased CPU time requirements but the benefit in terms of
improved convergence is important.

In the case of a nondegenerate Floquet eigenequation(i.e.,
if H→HF) we propose a spectral transformation based on the
introduction of asymptotic absorbing boundary potentials

FIG. 6. The same as Fig. 5 but with an intensity equal to
I =2.531013 W/cm2.

FIG. 5. Illustration of the effect of the time-dependent absorbing
conditions in the integration of Eq.(12) for an intensity I =1.6
31013 W/cm2. The figure presents the defectiHV−VsP0HVdi2 on
a logarithmic scale as a function of the number of productsHV
formed during the computation. The two curves correspond to the
two options: dashed line, without absorbing boundaries; solid line,
with absorbing boundaries.
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which control the asymptotic values of the periodic Floquet
eigenstate and offer the possibility of forming a Floquet
eigenstate proportional to the wave function which is a solu-
tion of the time-dependent Schrödinger equation. A second
important effect of this transformation is to produce a trans-

lation in the complex plane of a great part of the spectrum.
This spectral modification produces an increased distance be-
tween the Floquet eigenvalue investigated and the other near-
est eigenvalues and so improves significantly the perfor-
mance of the iterative process.
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