
PHYSICAL REVIEW A 94, 043409 (2016)

Controlling vibrational cooling with zero-width resonances: An adiabatic Floquet approach
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In molecular photodissociation, some specific combinations of laser parameters (wavelength and intensity) lead
to unexpected zero-width resonances (ZWRs) with, in principle, infinite lifetimes. Their potential to induce basic
quenching mechanisms has recently been devised in the laser control of vibrational cooling through filtration
strategies [O. Atabek et al., Phys. Rev. A 87, 031403(R) (2013)]. A full quantum adiabatic control theory based
on the adiabatic Floquet Hamiltonian is developed to show how a laser pulse could be envelope-shaped and
frequency-chirped so as to protect a given initial vibrational state against dissociation, taking advantage of its
continuous transport on the corresponding ZWR all along the pulse duration. As compared with previous control
scenarios that actually suffered from nonadiabatic contamination, drastically different and much more efficient
filtration goals are achieved. A semiclassical analysis helps us to find and interpret a complete map of ZWRs
in the laser parameter plane. In addition, the choice of a given ZWR path, among the complete series identified
by the semiclassical approach, turns out to be crucial for the cooling scheme, targeting a single vibrational state
population left at the end of the pulse, while all others have almost completely decayed. The illustrative example,
which has the potential to be transposed to other diatomics, is Na2 prepared by photoassociation in vibrationally
hot but translationally and rotationally cold states.
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I. INTRODUCTION

Quantum control is aimed at designing external pulses in
order to achieve efficient transfers between the states of the
quantum system under study [1–3]. This task is crucial in
atomic and molecular physics, and it has many applications
extending from photochemistry to quantum computation.
Quantum control has attracted the attention of the physics
and chemistry communities [4], but it has also been used in
applied mathematics for the development of new theoretical
methods. In strong field molecular physics, antagonistic basic
mechanisms such as bond softening versus vibrational trap-
ping [5,6], or barrier lowering versus dynamical dissociation
quenching [7], have been referred to in the control scenarios of
molecular reactivity or even for alignment and orientation pur-
poses [8]. An even more unexpected quenching mechanism is
in relation to the so-called zero-width resonances (ZWRs). For
certain couples of laser parameters (wavelength and intensity)
the photodissociation rate vanishes, leading to, in principle,
infinitely long-lived resonances (ZWRs) in both continuous
wave [9,10] and pulsed regimes [11]. In a diatomic molecule, a
destructive interference takes place among fluxes contributing
to the outgoing scattering amplitude of an initial vibrational
state decaying through two laser-induced adiabatic channels.
When dealing with intramolecular couplings, the specific
requirement for such destructive interference can only be
fulfilled for some particular interchannel coupling amplitudes.
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Despite strong interchannel coupling, the observation of some
narrow rotational lines in IBr predissociation provides such an
example [12]. Radiative interactions offer the possibility of a
continuous tuning of laser parameters to reach a ZWR.

Our laser control objective is the vibrational cooling of
diatomic molecules produced by photoassociation in transla-
tionally and rotationally cold, tightly bound states [13]. The
aim of the filtration strategy to which we are referring is to
protect a given single vibrational state against photodisso-
ciation, while all others are decaying fast. This is achieved
through an adiabatic and continuous transport of this state
population on its corresponding ZWR all along a laser pulse
adequately shaped and frequency-chirped. Starting from a
given vibrational distribution, the efficiency of such a control
remains in two crucial issues: (i) The best possible protection of
the given vibrational state; (ii) the highest decay rates for all the
others. The first issue deals with the adiabatic transport model.
Recently, we built an intuitive transport scheme by chirping a
laser pulse so as to merely combine, at each time within the
pulse duration, the wavelength and the intensity corresponding
to the following of a ZWR originating, in field-free conditions,
from the vibrational state we wish to protect. Although
this simple scheme does not result from a formal adiabatic
treatment, we obtained encouraging results in the case of a light
diatomic such as H+

2 , with 70% of the initial population left at
the end of the pulse thanks to the relatively slowly varying
pulse envelope and modest chirp amplitude [14]. It turns
out that the situation is drastically different for Na2, where
almost the whole initial population can photodissociate. This
prompted us to go through a full adiabatic transport control
scheme based on the adiabatic Floquet theory [15] completely
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reformulated to account for ZWRs in a pulsed regime. The
second issue concerns the anharmonicity and relatively high
density of vibrational levels in heavier species such as Na2.
The consequence is that laser pulses shaped so as to protect a
given vibrational level can have characteristics close to those
appropriate for at least partly protecting neighboring levels. A
semiclassical analysis helps in finding and interpreting, in the
laser parameter plane, a complete map of ZWRs originating
from a field-free vibrational level. We show how a particular
ZWR path can be chosen, among the complete series identified
by the semiclassical analysis, with the aim of realizing the most
efficient filtration, i.e., the best compromise for selectively
protecting the single vibrational state under consideration.

The paper is organized in the following way: In Sec. II,
ZWRs are introduced within a two-state photodissociation
model referring both to a time-independent close-coupled
Floquet Hamiltonian formalism and a semiclassical interpre-
tation. Two computational methods, either grid or global, are
presented. Section III is devoted to a complete derivation of
the adiabatic control theory. The filtration strategy as applied
to Na2 is discussed in Sec. IV by introducing the model, the
ZWR maps, the adiabatic transport dynamics, and the choice
of the optimal ZWR path.

II. ZERO-WIDTH RESONANCES

In this section, we examine the rather unexpected property
of a resonance state, originating from a bound state coupled
to a dissociative continuum, to possibly acquire an infinite (or
quasi-infinite) lifetime. Such exotic resonances have already
been discussed in the literature, first in the context of acciden-
tally narrow rotational lines in predissociation [16], then as
bound states in continuum (BICs) [17], and more recently
as zero-width resonances (ZWRs) [10]. In the following,
the physical context is molecular photodissociation, and our
illustrative example is Na2.

A. Photodissociation model

We briefly recall the model used to describe the photodis-
sociation of a rotationless field-aligned diatomic molecule
in a single spatial dimension (the internuclear distance R)
with only two electronic states labeled |1〉 and |2〉 in a
Born-Oppenheimer approximation. Reduced dimensionality
with the frozen rotation assumption is validated by considering
linearly polarized light and short pulse durations referred
to hereafter, as compared to the rotational periods of the
molecular species. The time-dependent wave function is
written as

|�(R,t)〉 = |φ1(R,t)〉|1〉 + |φ2(R,t)〉|2〉. (1)

The nuclear dynamics is governed by the time-dependent
Schrödinger equation (TDSE):

i�
∂

∂t

[
φ1(R,t)
φ2(R,t)

]
=

(
TN +

[
V1(R) 0

0 V2(R)

]

− μ12(R)E(t)

[
0 1
1 0

])[
φ1(R,t)
φ2(R,t)

]
, (2)

where TN represents the nuclear kinetic energy operator, V1(R)
and V2(R) are the Born-Oppenheimer potentials, μ12(R) is the
electronic transition dipole moment between states |1〉 and |2〉,
and E(t) is the linearly polarized electric field amplitude. We
first consider the case of a continuous wave (cw) laser,

E(t) = E cos(ωt) (3)

with an intensity (I ∝ E2), a frequency ω, and a wavelength
λ = 2πc/ω, c being the speed of light. In this strictly periodic
case, the Floquet ansatz is applied:[

φ1(R,t)
φ2(R,t)

]
= e−iEvt/�

[
χ1(R,t)
χ2(R,t)

]
. (4)

Due to the periodicity in time of χk(R,t) (k = 1,2), these
functions can be Fourier-expanded:

χk(R,t) =
∞∑

n=−∞
einωtϕk

n(R), (5)

where the Fourier components satisfy a set of coupled
differential equations for any n:

[TN + V1,2(R) + n�ω − Ev]ϕn
1,2(R)

− 1/2Eμ12(R)
[
ϕn−1

2,1 (R) + ϕn+1
2,1 (R)

] = 0. (6)

For moderate field intensities inducing single-photon pro-
cesses, these equations obviously simplify into two close-
coupled equations:

[TN + V1(R) + �ω − Ev]ϕ1,v(R)

−1/2Eμ12(R)ϕ2,v(R) = 0,

[TN + V2(R) − Ev]ϕ2,v(R) − 1/2Eμ12(R)ϕ1,v(R) = 0, (7)

where we have kept only the Fourier component (n = 1) of
χ1,v(R,t) and the zero-frequency Fourier component (n =
0) of χ2,v(R,t), denoted ϕ1,v(R) and ϕ2,v(R), respectively.
It should be noted that a specific solution (v) has been
identified in Eq. (7) by labeling both the eigenenergy Ev

and the corresponding eigenvector χk,v(R,t) and their Fourier
components ϕk,v(R). Resonances are solutions with Siegert-
type outgoing-wave boundary conditions [18], and they have
complex quasienergies of the form Re(Ev) − i
v/2, where

v is the resonance width related to the decay rate. In the
following, the label v designates both the field-free vibrational
level and the laser-induced resonance originating from this
vibrational state.

Now relaxing the cw laser assumption, we consider a
chirped-laser pulse with parameters ε(t) ≡ {E(t),ω(t)} involv-
ing a slowly varying envelope and frequency. The molecule,
initially in a particular field-free vibrational state v, is supposed
to be adiabatically driven by such a pulse. Adiabaticity means
here that a unique resonance �v(t), labeled v according to its
field-free parent bound state v, is followed during the whole
dynamics. This resonance wave function involves, through its
complete basis-set expansion, a combination of both bound and
continuum eigenstates of the field-free molecular Hamiltonian.
But the important issue is that, at the end of the pulse, the
molecule is again on its initial single vibrational state v

(adiabaticity condition). For such open systems, contrary to
dynamics involving bound states only, there is unavoidably
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an irreversible decay process, precisely due to the fact that
vibrational continuum states are temporarily populated under
the effect of the pulse. A quantitative measure of such a decay
could be given in terms of the overall fraction of nondissociated
molecules, assuming a perfect adiabatic following of the
selected resonance [10]:

Pv(t) = exp

[
−�

−1
∫ t

0

v(ε(t ′))dt ′

]
, (8)

where the decay rate 
v(ε(t)) is associated with the relevant
Floquet resonance quasienergy Ev(ε(t)) using the instanta-
neous field parameters ε(t) ≡ {E(t),ω(t)} at time t .

There are two central control issues: (i) investigating how
rates are changing with the field parameters, and in particular
finding optimal combinations εZWR(t) for which these rates are
small enough (or even ideally zero) to ensure the survival of
the vibrational state v to the laser excitation, that is, Pv(τ ) ≈ 1,
τ being the total pulse duration; and (ii) predicting how well
the adiabatic following is effectively realized (this point will
be analyzed in more detail in Sec. III).

B. Semiclassical interpretation

The occurrence of ZWRs, at least under some particular
circumstances, is rationalized by the semiclassical theory of
predissociation of a diatomic molecule [16]. The formalism
deals with the so-called adiabatic potentials V±(R) resulting
from the diagonalization of the molecule-field interaction
matrix, and it predicts dissociation quenching resulting from
a null value of the outgoing scattering amplitude in the lower
(open) adiabatic channel V− if the following two conditions
are simultaneously fulfilled [12,19]:∫ R0

R+
dR′k+(R′) +

∫ Rt

R0

dR′k+(R′) + χ =
(

ṽ+ + 1

2

)
π (9)

and ∫ R0

R−
dR′k−(R′) +

∫ Rt

R0

dR′k+(R′) =
(

ṽ + 1

2

)
π. (10)

In Eqs. (9) and (10), the wave numbers are k±(R) =
�

−1{2m[ε − V±(R)]}1/2, m is the reduced nuclear mass, R±
are the left turning points of the V± potentials, Rt is the right
turning point of V+, and R0 is the diabatic crossing point
resulting from field-dressing. With integer ṽ+ and ṽ, these
conditions lead to Bohr-Sommerfeld quantization involving a
coincidence between two energies, namely (i) one ε = εṽ+ of
the upper adiabatic potential V+(R), with a phase correction
χ , which in weak coupling is −π/4 [12], and (ii) another
ε = εṽ of a potential made of two branches, namely V−(R)
for R � R0, and V+(R) otherwise. For a weak coupling, this
is practically the diabatic attractive potential V1(R). More
precisely, the coincidence condition is implemented in the
expression of the resonance width 
v [12]:


v = 2π

�

e2πν(e2πν − 1)ωdω+
[ω+ + (e2πν − 1)ωd ]3

(εṽ − εṽ+ )2, (11)

where ωd and ω+ are the local energy spacings of the modified
diabatic and adiabatic potentials, respectively. ν is the Landau-

Zener coupling parameter:

ν = μ2
12(R0)E2

�v̄|�F | , (12)

where v̄ and �F are the classical velocity and slope difference
of the diabatic potentials at R0. Clearly, the two energies ε = εṽ

and ε = εṽ+ , and therefore the width 
v , are dependent on field
parameters, i.e., both frequency (or wavelength) and amplitude
(or intensity). This is due in particular to the (λ,I ) dependence
of the corresponding field-dressed adiabatic potentials V±(R).
All other factors building up 
v in Eq. (11), that is, the
coupling ν and the local energy spacings ωd,ω+, also depend
on field parameters. Contrary to predissociation, where such
coincidences can only be accidental since there is no easy and
continuous way to modify potentials and interstate couplings
(electronic or spin-orbit), for a diatomic molecule submitted to
an electromagnetic field, a fine tuning of the wavelength and
intensity produces them at will. This explains the occurrence of
ZWRs in photodissociation. Moreover, for a wavelength λ that
roughly brings into coincidence the levels ṽ (corresponding to
the field-free vibrational level v in consideration) and ṽ+ = 0,
a fine tuning of the intensity I will result in an accurate
determination of a ZWR, that is, 
v(λ,I ) = 0. In some cases,
a stronger field (higher I ) may also bring into coincidence
ṽ with ṽ+ = 1, producing thus a second ZWR for the same
wavelength, and so on for ṽ+ = 2,3, . . . . But, one can also
envisage slightly different wavelengths that build energetically
close enough ṽ and ṽ+ = 0 levels in a field-dressed picture,
such that a subsequent fine tuning of the intensity brings them
into precise coincidence. This flexibility offered by the field
parameters, which, in principle, can be continuously modified,
is at the origin of not only quasizero width photodissociation
resonances, but also for their multiple occurrence in the
(λ,I )-parameter plane [20].

C. Computational methods

We are referring to two classes of computational methods
for an accurate determination of laser parameters εZWR(t)
producing a ZWR: (i) grid methods and (ii) global methods.
To be more specific, for these calculations, t should not be
considered as a time variable, but rather as a parameter.
A set of field parameters ε(t) ≡ {E(t),ω(t)} or equivalently
ε(t) ≡ {I (t),λ(t)} corresponds to a fixed t , and they determine
a specific cw laser, fulfilling the single period requirement
of the Floquet ansatz of Eq. (4). The time-independent
system of close-coupled equations for the R-dependent Fourier
coefficients ϕ1,2(R) of Eqs. (7) is solved for the given field
amplitude and frequency.

1. Grid methods

These methods are based on so-called shooting-matching
techniques. The Fox-Goodwin propagation algorithm [21] is
used in conjunction with a properly chosen set of imposed
boundary conditions, which accounts for the correct behavior
of the channel wave functions both at short and large distances.
The algorithm consists in an iterating sequence of the follow-
ing two steps [22]. (i) Shooting: With an initial guess for the
quasienergy Ev , properly initialized Fox-Goodwin matrices
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are constructed at each point of a grid (along R) in terms of
independent solution matrices propagated inward and outward.
(ii) Matching: The criterion for convergence is a condition to be
fulfilled for matching both the functions and their derivatives
on two adjacent points of the grid, by properly changing the
energy Ev . While regularity [ϕ1,2(R → 0) = 0] is imposed
at the origin for both open and closed channels, which are
classically forbidden, the boundary conditions for large R

are different for these two types of channels. Zero inward
initialization is still valid for the closed channel ϕ1(R), whereas
Siegert-type outgoing boundary conditions should be adopted
for the open one, ϕ2(R) [18]. High accuracy can be achieved
by using complex rotation of the coordinate R [23], which
actually plays the role of an absorbing potential. The most
important observation is that the use of the complex coordinate
brings the outgoing asymptotic behavior to regularity (zero
inward initialization) [22]. Such imposed boundary conditions
are at the origin of quantization conditions leading to discrete
complex resonance energies.

In practice, a plausible laser wavelength is guessed from the
semiclassical coincidence criterion involving the vibrational
level ṽ of the quasidiabatic potential V1(R) at low intensity
[Eq. (10)] and one of the vibrational levels ṽ+ of the upper
adiabatic potential V+(R) [Eq. (9)]. This is convenient for the
search of a ZWR originating from ṽ, which actually is merely v

at the zero-field intensity limit. An important point to consider
is that, due to the possibility of bringing into coincidence
several vibrational levels of the upper adiabatic potential ṽ+
with a given ṽ, there are several wavelengths that may be
convenient for a ZWR search. Such a wavelength being fixed
for a given field-free vibrational level v, the field strength I is
progressively increased. For each discrete value of I , starting
from an initial guess for the energy coming from the previously
considered value of I , the propagation-matching procedure
leads to an accurate eigenenergy Ev = Re(Ev) − i
v/2 when
properly converged. All calculations are conducted within the
single-photon absorption approximation frame of Eqs. (7),
which is valid for low enough intensities, neglecting the
mixing of neighboring Floquet blocks occurring within the
period 2ω [22]. A typical behavior of the resonance width

v as a function of the increasing field strength I displays
a linear increase and a saturation, followed by a natural
decrease of the decay rates, which is interpreted in terms
of spatial nonadiabatic effects [9]. But more interesting is
the observation of very fast and local collapse of the width
for specific intensities. One can finely adjust the intensity so
as to obtain resonance widths close to zero within several
figures of accuracy. This shows that, at least in the single
Floquet block approximation of Eqs. (7), ZWRs do exist,
as was also predicted by the semiclassical theory. Introduc-
ing multiphoton processes will offer additional dissociation
channels from which the outgoing flux could be evacuated.
This may give rise to (small but still nonzero) partial widths
contributing to 
v [9], which may no longer strictly collapse to
zero.

2. Global methods

Inserting the Floquet ansatz Eq. (4) into the Schrödinger
equation (2) leads to an eigenvalue problem for the Floquet

states χv and the associated quasienergies Ev ,

[
H (t) − i�

∂

∂t

][
χv,1(R,t)
χv,2(R,t)

]
= Ev

[
χv,1(R,t)
χv,2(R,t)

]
, (13)

where H (t) is the Hamiltonian introduced in Eq. (2). This
eigenvalue problem can be solved using a global iterative
method. The operator K = H (t) − i� ∂

∂t
appearing on the

left-hand side of Eq. (13) is called the Floquet Hamiltonian,
and it can be represented within a direct product basis set
made of two Fourier basis sets, one for the radial coordinate
and another for the time coordinate (as an additional quantum
coordinate). We typically use four to eight Floquet blocks with
both open channels (describing multiphoton absorption) and
closed ones (describing photon emission). With the moderate
intensities used hereafter, the Floquet block describing a single
photon absorption remains the dominant one. It should be
noticed that grid method calculations can also be extended
to perform calculations including a larger number of Floquet
blocks, and the convergence with respect to the number of
channels has been checked independently with both numerical
approaches. In any case, if the intensity is small enough, the
difference between two-channel calculations and calculations
using a larger number of Floquet blocks remains very
small.

Using the global representation of the Floquet Hamiltonian
described above, we proceed as follows: For each value of
the field parameters {I,λ}, one particular solution of Eq. (13)
is obtained by using an initial guess for the eigenvector and
modifying it by using an iterative method. We have taken
advantage of the wave operator method, which can handle
dissipative problems and is well-adapted to search small
numbers of complex eigenvalues of a large matrix [24]. The
main idea is to define an active space of interest chosen so
as to possess a strong overlap with the expected unknown
eigenvector. Then we find the wave operator �, which
transforms the Floquet Hamiltonian matrix K into a smaller,
effective matrix within the active space,

Heff = Po[K�]Po, (14)

the eigenvalues of which are exact eigenvalues of the initial
problem. Po is the projector on this active space, and � is
a noninvertible matrix with a special structure, such that all
columns corresponding to states out of the active space are
zero. The wave operator can be found by effectively solving
the nonlinear Bloch equation [25],

K� = �K�. (15)

The above Eq. (15), together with the special structure imposed
on �, completely define the wave operator that is able to reduce
the eigenvalue problem to an effective, small-dimensional
problem.

Equation (15) can be solved in an iterative way. We have
used a variant of the recursive distorted wave approximation
algorithm [24]. Here, the active space can be chosen as
one-dimensional (the space spanned by the vibrational state
from which the resonance is formed). This choice is simple
and sufficient to attain convergence. This means that we
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calculate one resonance at a time. The same approach has
been used previously in a slightly different context within the
constrained adiabatic trajectory method (CATM), and more
methodological details about the iterative equations can be
found in Ref. [26]. It should be noted that the wave-operator
equation (14) can give either solutions to the TDSE (if
suitable time-dependent absorbing potentials are included in
the model to constrain the initial conditions, as in Ref. [26]),
or quasienergies and the corresponding Floquet eigenstates
defined in Eq. (13) (if there are no constraints on the initial
conditions, as is the case here).

In comparison with grid methods described in Sec. II C 1,
there is no need for an initial energy guess, but we do need
an initial guess for the eigenvector. At low intensities, the
algorithm converges well by using a field-free vibrational state,
constant over the time period, as an initial guess. Then, when
the laser parameters are progressively varied, it is possible to
use the result obtained in the previous calculation (with slightly
different parameters) as the initial guess for calculating the
next eigenvector corresponding to the next laser parameters.
Each new calculation costs only a few more iterations to
converge toward the new quasienergy (only one iteration
is often sufficient). This is an advantage of using a global
iterative method, i.e., the exploration of the parameter plane is
made easier. Another difference with grid methods is that the
calculations with the global algorithm have been done using a
radial complex absorbing potential to discretize the continuum,
instead of using a complex rotation of the coordinate. This
different implementation has very little consequence on the
results, since the absorbing potential is acting over a large
domain.

The optimal ZWR paths in the {I,λ} parameter plane are
obtained following a two-step strategy. In a first step, we
fix a low intensity and we study exhaustively the variations
of the width 
v with respect to the wavelength for different
resonances originating from different values of v. This allows
us to identify the wavelengths of interest. Then complete
ZWR paths are obtained by gradually varying the laser
intensity I and finding for each intensity the optimal λ

corresponding to a minimum resonance width 
v . This gives
a critical set of parameters εZWR(t) ≡ {IZWR(t),λZWR(t)},
which forms an almost continuous numerical path (see
Sec. IV B).

III. ADIABATIC CONTROL THEORY

The purpose of optimizing laser parameters ε(t) ≡
{E(t),ω(t)} such that the survival probability of a resonance
state originating in field-free conditions from a given vi-
brational state v is maximized, while all other resonances
(originating from v′ 	= v) are decaying fast, can be conducted
within the frame of the adiabatic Floquet formalism [15].
The methodology goes through the following steps: (a)
introduction of the adiabatic Floquet Hamiltonian acting
on an extended Hilbert space together with the conditions
of its equivalence with the original TDSE of the physical
space; (b) adiabatic approximation aimed at the tracking of
a single resonance in the extended space; (c) ZWR strategy
in the extended space; (d) backtransformation to the physical
space.

We will now develop these steps.

A. Floquet Hamiltonian in the extended Hilbert space

Starting from the TDSE:

i�
∂

∂t
|�(t)〉 = H (t)|�(t)〉 (16)

with

H (t) = H0 − μE(t) cos[ω(t)t],

the first goal to achieve toward adiabaticity is to fix the rapidly
growing phase ω(t)t leading to nonadiabatic fast oscillations
of the control field. This is precisely done through the Floquet
Hamiltonian K(θ ) acting on an extended Hilbert space given
as a tensorial product H ⊗ L2 of the physical Hilbert space
H times the space L2(dθ/2π ) of square integrable functions
of θ defined as an additional phase, varying within the
interval [0,2π ] and describing a field degree of freedom.
More precisely, this adiabatic Floquet Hamiltonian involves
a so-called effective frequency [15,27],

ωeff(t) = d

dt
θ, (17)

and it reads

K(θ ) = H (t) − i�ωeff
∂

∂θ
. (18)

The resulting time evolution equation is

i�
∂

∂t
|�(θ,t)〉 = K(θ )|�(θ,t)〉. (19)

We will now examine the relationship between the two wave
packets |�(t)〉 and |�(θ,t)〉, which are solutions of Eqs. (16)
and (19), respectively. To do this, |�(θ,t)〉 is expanded on the
complete basis set of square-integrable eigenfunctions {|v〉} of
H0 with the straightforward possibility of extending to energy-
normalized continua. More precisely, {|v〉} designates the com-
plete set of eigenvectors associated with the square-integrable
vibrational eigenfunctions, augmented by the enumerable set
of the continuum eigenfunctions subspace. The remaining part
of the expansion concerns the basis set {〈θ |n〉}n = {einθ }n of
L2, with time-dependent unknown coefficients cv,n(t):

|�(θ,t)〉 =
∑

v

∑
n

cv,n(t)〈θ |n〉|v〉. (20)

Recasting Eq. (20) into Eq. (19) results in

i�
∑
v,n

[
ċv,n(t)〈θ |n〉 + cv,n(t)ωeff(t)

d

dθ
〈θ |n〉]|v〉

= H (t)
∑
v,n

cv,n(t)〈θ |n〉|v〉. (21)

The notation ċ is for the time derivative of c. It is important
to notice that Eq. (21) holds for any time t and for any
phase θ , taken up to here as two independent variables. More
specifically, from now on θ is taken as

θ = ω(t)t. (22)
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Upon making this choice for θ , Eq. (21) reads

i�
∂

∂t

∑
v,n

cv,n〈θ |n〉|v〉 = H (t)
∑
v,n

cv,n〈θ |n〉|v〉, (23)

or equivalently,

i�
∂

∂t
|�(θ,t)〉 = H (t)|�(θ,t)〉, (24)

which shows that if |�(θ,t)〉 is a solution of Eq. (19),
then |�(t)〉 = |�(θ,t)〉 is in turn a solution of Eq. (16),
with θ defined by Eq. (22). The fast oscillating behavior
of |�(t)〉 is now recast in 〈θ |n〉, the Fourier components
cv,n(t) of �(θ,t)〉 being henceforth slowly varying functions of
time.

In conclusion, the two control strategies aimed at vi-
brationally selective survival through an adiabatic tracking
of a ZWR—namely (i) finding the laser parameters ε(t) ≡
{E(t),ω(t)} such that |�(t)〉, the solution of Eq. (16), fol-
lows this ZWR, or (ii) finding the laser parameters ε(t) ≡
{E(t),ωeff(t)} such that |�(θ,t)〉, the solution of Eq. (19),
follows the ZWR—are formally identical, with the choice of
Eq. (22) for θ . In the following, it is the adiabatic strategy (ii)
that is retained.

B. Adiabatic approximation

We are now looking for an adiabatic evolution such
that at all times t , the solution |�(θ,t)〉 follows a specific
single resonance eigenvector |χv〉 of the adiabatic Floquet
Hamiltonian labeled by its corresponding field-free parent
state |v〉:

K(θ )|χv〉 = Ev|χv〉. (25)

This equation should be understood in the following way: At
each time t , the field parameters ε(t) ≡ {E(t),ωeff(t)} give rise
to a Hamiltonian K(θ ; ε(t)) with resonance eigenfunctions
〈θ |χv〉 = χv{θ ; ε(t)} and eigenvalues Ev{ε(t)}. The adiabatic
approximation for |�(θ,t)〉 is merely

∣∣�ad
v (θ,t)

〉 = exp

[
− i/�

∫ t

0
Ev{ε(t ′)}dt ′

]
|χv{θ,ε(t)}〉.

(26)

We note, for completeness, that the exact wave function
|�(θ,t)〉 could be given as an expansion on the basis set of
the resonance eigenvectors {|χv′ 〉}v′ or their analogs {|�ad

v′ 〉}v′ ,
including the corresponding phase exp [−i/�

∫ t

0 Ev′ {ε(t ′)}dt ′]:

|�(θ,t)〉 =
∑
v′

dv′ (t)
∣∣�ad

v′ (θ,t)
〉
. (27)

The initial condition describing the system in its vibrational
state, v, implies

dv(0) = 1, dv′ (0) = 0, ∀ v′ 	= v (28)

with the result

|�(0,0)〉 = |�(0)〉 = |χv(0)〉, (29)

which actually is the initial field-free vibrational wave
function.

C. Zero-width resonance strategy

The full control strategy is constructed in two steps: (i)
trapping the system into a single eigenvector |χv〉 of the
adiabatic Floquet Hamiltonian, and (ii) designing a pulse with
field parameters such that this eigenstate presents the lowest
(zero, if possible) dissociation rate. The requirement of step
(i) leading to the approximation of Eq. (26) is expected to be
reached for slowly enough (adiabatically) varying parameters
ε(t) avoiding any degeneracy between complex eigenvalues
Ev′ {ε(t)} at all times t [28]. The second step (ii) involves an
optimal choice for the field parameters:

ε∗(t) ≡ {E∗(t),ω∗
eff(t)}

such that

Im[Ev{ε∗(t)}] = 0 ∀t, (30)

where Im(Ev) is the imaginary part of the energies of
these field-induced resonances. We note that Eq. (30) stands
precisely for the search of a ZWR path (originating from |v〉)
in the amplitude-frequency parameter plane (or, equivalently,
intensity I–wavelength λ) as a function of t . In other words,
the asterisk in Eq. (30) could be replaced by the superscript
ZWR, such that

εZWR(t) ≡
{

EZWR(t) = [IZWR(t)]1/2,

ωZWR
eff (t) = 2πc/λZWR(t)

is the control field of the evolution monitored by the adiabatic
Floquet Hamiltonian of the extended Hilbert space, Eq. (19).
Following such a resonance associated with a quasi-infinite
lifetime is very favorable for obtaining a good adiabatic
approximation in this dissipative context. Following the less
dissipative eigenstate is actually a requirement of the adiabatic
theorem in the presence of dissipation [29]. In any other
situation, there is a risk of losing population in the selected
resonance and magnifying nonadiabatic transitions due to
this relative population loss with respect to other eigenstates.
Following a ZWR automatically avoids this magnification
of nonadiabatic contaminations, which could occur if the
adiabatic approximation is done on a resonance associated
with a nonzero decay rate.

On mathematical grounds, it should also be noticed that
fulfilling the requirement of Eq. (30) leads to the possibility of
solving the challenging issue of adiabatic transport involving
passages through continuum spectra. In other words, ZWRs
are good candidates for a full adiabatic Floquet treatment as
initially derived for pure bound states.

D. Backtransformation to the physical Hilbert space

The purpose now is to obtain the optimal field parameters
acting in the original Hilbert space where the evolution is
monitored by the TDSE displayed in Eq. (16). This is achieved
by solving the first-order differential equation (17), with ω∗(t)
as the unknown function:(

d

dt
ω∗(t)

)
t + ω∗(t) − ωZWR

eff (t) = 0. (31)
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Here again, the asterisk stands for the optimal control solution.
A particular solution of Eq. (31) is obtained as

ω∗(t) = 1

t

∫ t

0
ωZWR

eff (t ′)dt ′, (32)

which satisfies the expected initial condition, i.e.,

lim
t→0

1

t

∫ t

0
ωZWR

eff (t ′)dt ′ = ωZWR
eff (0) = ω∗(0). (33)

Finally, the external laser field that fulfills the requirements of
the control objective in the physical Hilbert space is

E∗(t) = E∗(t) cos [ω∗(t)t]

= EZWR(t) cos

(∫ t

0
ωZWR

eff (t ′)dt ′
)

, (34)

which can be written in terms of intensity-wavelength param-
eters as

E∗(t) = [IZWR(t)]1/2 cos

(∫ t

0
2πc/λZWR(t ′)dt ′

)
. (35)

E. Numerical methods and test of the adiabatic character

All the dynamical results presented below have been
obtained by rigorously solving the TDSE. We have used two
independent methods to validate the numerical results.

We have first used the split-operator scheme [30], which
is based on a differential propagation over small time steps.
Split-operator calculations have been done either with a grid
Fourier DVR basis set associated with the internuclear distance
coordinate, or within the bare vibrational eigenbasis, the
splitting being done between kinetic and potential operators or
between the diagonal and dipolar coupling terms, respectively.

We have also confirmed all the results by using a recently
developed iterative algorithm based on the time-dependent
wave operator formalism in which Fourier decomposition is
also used to describe the time coordinate [31,32], allowing a
much smaller number of discretization points. In this frame-
work, the time-dependent wave operator �(t) is calculated
and used to deduce the true dynamics from the dynamics
within a smaller dimensional subspace, which includes only
a small part of the bare vibrational (bound and possibly
continuum) states. The evolution operator issuing from the
small-dimensional subspace is calculated as

U (t,0; H )Po = �(t)U (t,0; Heff), (36)

where Heff(t) = PoH (t)�(t) is a time-dependent effective
Hamiltonian governing the dynamics within the active sub-
space of projector Po. This effective Hamiltonian is similar to
that of Eq. (14), but it is now defined over the entire duration of
the chirped pulse, while Eq. (14) is valid over a single optical
period, at a fixed frequency and intensity.

We will point out that this concept of an effective
Hamiltonian is not only a computational intermediate, it
also naturally gives an indication about the adiabatic or
nonadiabatic character of the dynamics during the interaction.
If the active subspace is one-dimensional (the space spanned
by the vibrational state |v〉 associated with the selected ZWR
|χv〉), then the effective Hamiltonian leads to an effective

energy [33],

Ev
eff(t) = 〈v|Heff|v〉 = 〈v|H (t)|�(t)〉

〈v|�(t)〉 , (37)

where |�(t)〉 is a solution of the TDSE (16). This quantity
follows some trajectory in the complex plane, which illustrates
the more or less adiabatic character of the dynamics. Assuming
a perfect adiabatic dynamics and using Eq. (26), the effective
energy can also be expressed as the sum of two terms [33,34],

E
v,ad
eff (t) = Ev{ε(t)} + i�

〈v| ∂
∂t

|χv{θ,ε(t)}〉
〈v|χv{θ,ε(t)}〉 , (38)

where |χv{θ,ε(t)}〉 and Ev{ε(t)} are the selected instantaneous
Floquet state and eigenvalue, corresponding to the field
parameters ε(t) [cf. Eq. (25)]. Following a ZWR path, the first
term Ev{ε(t)} will approximately follow a straight line along
the real axis during the pulse, starting from the initial field-free
vibrational energy. The second term in Eq. (38) depends on
|χv{θ,ε(t)}〉, which is time-periodic with a chirped period,
T (t) = 2π/ωZWR

eff (t). This term may show rapid oscillations
in the complex plane. For a given ZWR path, two different
trajectories can be calculated: Ev

eff(t), using the exact wave
function [direct use of Eq. (37) with the solution of Eq. (16)
including all the possible nonadiabatic transfers], and E

v,ad
eff (t),

expected from the adiabatic approximation using Eq. (38). The
quality of the matching between these two complex trajectories
will be used in Sec. IV C as an indicator for the quality of the
adiabatic following.

IV. VIBRATIONAL COOLING BY FILTRATION

This section is devoted to the potentiality of ZWRs
implemented in an adiabatic control scenario to reach a
filtration strategy for molecular vibrational cooling with Na2

as an illustrative example. The following application deals
with a realistic situation since the formation of ultracold
sodium molecules has already been demonstrated [13]. The
transposability to other diatomic molecules, especially to
alkali-metal dimers, requires only small changes due to the
similarities of their potentials.

A. The model

Translationally and rotationally cold, tightly bound, and
vibrationally hot Na2 species are experimentally produced
by photoassociation in a metastable bound state 3�+

u (3 2S +
3 2S), considered as a ground state (referred to as state u).
Typically, vibrational levels with quantum numbers v � 8 are
prepared. The laser-controlled filtration strategy consists in
applying an electromagnetic field with wavelengths around
570 nm, which couples state u with a repulsive, thus dissoci-
ating excited (1)3�g(3 2S + 3 2P ) electronic state (referred to
as state g). The corresponding Born-Oppenheimer potential
energy curves V1,2(R) and the electronic transition dipole
moment μ12(R) between states g and u are taken from the
literature [35–37] and references therein. Our specific model
refers to a rotationless field-aligned molecule in a single spatial
dimension (namely, the internuclear distance R). Such a frozen
rotation approximation is validated when comparing the short
pulse durations in consideration (12 ps) with the long rotational

043409-7



LECLERC, VIENNOT, JOLICARD, LEFEBVRE, AND ATABEK PHYSICAL REVIEW A 94, 043409 (2016)

-8

-7

-6

-5

-4

-3

-2

-1

 0

 566  568  570  572  574  576  578  580

lo
g 1

0|
Im

(E
v)

| (
cm

-1
)

λ (nm)

(b)(a)

v=8
v=9

v=10

FIG. 1. Morphology of ZWRs originating from state v = 8 of Na2. Left frame (a): Im(E8) as a function of the laser wavelength λ and
intensity (logarithmic scale). Right frame (b): Im(Ev) as a function of the wavelength λ for resonances originating from v = 8,9,10 for a laser
intensity I = 0.14 × 108 W cm−2 (logarithmic scale).

periods of Na2 (estimated as hundreds of ps). Finally, the
reduced mass of Na2, which is involved in the kinetic energy
operator TN of Eq. (2), is taken as 20 963.2195 a.u.

B. ZWR maps in the laser parameter plane

Solving time-independent coupled equations (7) with
Siegert boundary conditions for a set of continuous-wave
(cw) laser parameters {E,ω} or equivalently {I,λ} gives rise
to resonances with complex eigenvalues Ev correlating, in
field-free conditions, with the real vibrational eigenenergies
εv . We are actually interested in finding specific couples of
field parameters for which the imaginary part of the resonance
eigenvalues is close to zero.

The general morphology of ZWRs is illustrated in Fig. 1,
which displays an exploratory calculation in the {I,λ}
parameter plane. The left panel shows the imaginary part of
E8 (in logarithmic scale) as a function of laser intensity and
wavelength covering a 5-nm-wide window in the vicinity of
λ = 576 nm. The right panel displays the imaginary parts
of Ev (v = 8,9,10) as a function of the laser wavelength for
a fixed intensity I = 0.14 × 108 W cm−2. Within numerical
inaccuracies inherent to the evaluation of such very small width
resonances (typically less than 10−6 cm−1), we observe that
there are several couples of critical wavelengths and intensities
producing ZWRs originating from a single vibrational
level v.

Referring to the semiclassical analysis, the quantum
destructive interference pattern from phase (or energy) coin-
cidences in Eq. (11) leads to the choice of photon frequencies
picking out the couple of electronic states that take part in the
process by appropriately dressing the corresponding adiabatic
potentials. The field intensity is the remaining parameter,
which allows an accurate phase coincidence aimed at reaching
ZWRs. Due to the relatively moderate intensities to which we
are referring, a single-photon model with only two electronic

states offers enough accuracy for converged calculations, ob-
tained using the grid and global methods presented in Sec. II C.
Clearly, for a given field-free vibrational state, the destructive
interference leading to a ZWR cannot take place, whatever the
intensity is, if an avoided curve crossing position exceeds the
right turning point of the vibrational level under consideration.
In particular, for v = 8 this fixes a maximum value for λ

at about 577 nm. Guided by the semiclassical analysis, a
tentative wavelength of λ = 576 nm brings the v = 8 level
roughly into coincidence with the v+ = 0 level of the upper
adiabatic potential. The fine adjustment is obtained referring
to the full quantum Floquet approach by tuning the remaining
field parameter, i.e., the intensity I , so as to produce the ZWR
within accuracies of typically 10−7 cm−1 concerning the
widths.

As has previously been observed [14], within an intensity
window not exceeding 108 W/cm2, ZWRs are very close to
being positioned along a straight line in the {λ,I } parameter
plane. Figure 2 displays such a behavior, which seems generic
for all ZWR paths. These are labeled as (v = 8,v+) referring to
the field-free initial vibrational state v = 8 and the successive
v+ = 0,1,2,3 levels of the upper field-dressed adiabatic poten-
tial of the semiclassical picture brought into coincidence using
different wavelengths. It is worth noting that the semiclassical
picture is merely referred to for an initial guess of laser parame-
ters and also for a systematic labeling of ZWRs paths. Figure 2
illustrates the general morphology of ZWRs in the laser param-
eter plane. It could obviously be extended to additional paths
based on coincidences involving v = 8 with v+ = 4,5, . . . .

C. Adiabatic transport dynamics

We are now looking for the dynamical signature of a
ZWR on a vibrational population transfer using the adiabatic
transport strategy of Sec. III. We proceed by shaping a laser
pulse envelope optimized for such an adiabaticity with a total
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FIG. 2. ZWR paths originating from v = 8 in the laser parameter
plane {λ,I }. The labels (v = 8, v+ = 0,1,2,3) refer to energy
coincidences between v = 8 on the one hand, and the levels v+ of
the upper adiabatic potential of the semiclassical picture on the other
hand.

duration not exceeding 12 ps to fulfill the frozen rotation
requirement. The remaining part of the strategy consists in
chirping the pulse so as to combine at each time the wavelength
and intensity corresponding to the following of a ZWR path
as obtained from the Floquet theory and illustrated in Fig. 2.
For convenience, a linear fit is used to represent these paths:

λZWR (nm) = a IZWR (108 W/cm2) + b. (39)

The coefficients a and b are calculated separately for each
of the different paths (v = 8,v+). Taking (v = 8,v+ = 0)
as an illustrative example, we get a = −0.772 322 9 and
b = 576.3668. The additional parameters involved in the pulse
envelope could be obtained by optimal control algorithms
aimed at the minimization of the population decay due to
nonadiabatic contamination in the transport. We simplified the
procedure, and based on our previous experience, after a few
attempts, we have used linear ramps of intensity

I (t) =
{ Imax

T1/2
t for t ∈ [0,T1/2],

Imax
(
2 − t

T1/2

)
for t ∈ [T1/2,Ttot],

(40)

where T1/2 = Ttot/2 is half the total pulse duration. The
wavelength is continuously chirped according to Eq. (39) to
follow the ZWR path. Figure 3 (upper panel) illustrates our
strategy with a total pulse duration of 12 ps, long enough
to produce almost complete depletion of neighboring level
populations v = 6,7,9. During the transport dynamics, the
initial population of v = 8 is partially shared with v = 7, 6, and
9 (in decreasing importance). As expected from adiabaticity, at
the end of the pulse, the major part of the shared populations is
recovered back by v = 8, which ends up with a final population
of 95%. The quality of adiabaticity that is achieved can be
measured by less than 5% of the v = 8 population escaped
toward the dissociative continuum.

In that respect, it is worthwhile to compare the efficiency
of the adiabatic transport control we are presenting in this
work [Eq. (35)] to the one that is much more naive, which we
have previously discussed in [14], where the pulse was shaped
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FIG. 3. Vibrational populations of Na2 as a function of time.
(a) For the adiabatic transport based on a laser pulse resulting from
Eqs. (40) and (35), following the ZWR path (v = 8, v+ = 0) of Fig. 2:
v = 8, solid black line; v = 6,7,9, solid green, orange, and red lines,
respectively. (b) For the instantaneous ZWR frequency strategy of
Eq. (41). Only the populations of v = 8 are displayed for three ZWR
paths (v = 8, v+ = 0), thick solid line; (v = 8, v+ = 1), dashed line;
and (v = 8, v+ = 2), thin solid line, following the notations of Fig. 2.

referring to an instantaneous ZWR frequency strategy:

E(t) = [IZWR(t)]1/2 cos[(2πc/λZWR)t]. (41)

Figure 3 (lower panel) displays the results for the same
v = 8 and the ZWR path identified in Eq. (39), but with the
field of Eq. (41) with the envelope given by Eq. (40). The
efficiency with respect to the protection against dissociation
is completely washed out, with only 5% of the population
remaining undissociated. Similar calculations done with the
other ZWR paths, taken from Fig. 2, lead to intermediate
efficiency, namely, 50% for (v = 8, v+ = 1) and 75% for (v =
8, v+ = 2), but still clearly illustrating that the instantaneous
strategy is far from being an adiabatic transport, as has been
previously proposed [14].

Figure 4 is another way of checking the adiabaticity of the
dynamical process. Following the discussion of Sec. III E, we
have drawn the trajectories of the effective energies given by
Eqs. (37) and (38). The top frame of Fig. 4 shows short extracts
of the complex trajectory E

v=8,ad
eff (t) given in Eq. (38), deduced
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FIG. 4. Complex trajectory followed by the effective energy
associated with state v = 8 [cf. Eqs. (37) and (38)] during the dy-
namics following the ZWR path. (a) Ideal trajectories expected from
the adiabatic approximation following a single Floquet eigenstate.
(b) Results from the TDSE using the pulse of Eqs. (34) and (40) with
adiabatic phase

∫ t

0 ωZWR
eff (t ′)dt ′. (c) Results from the TDSE using the

pulse of Eq. (41) with the naive phase ωZWR
eff t . The ellipses correspond

to short extracts of the complex parametric curve E8
eff(t) around

three different times corresponding to given intermediate values of
the field amplitude during the rise of the pulse: E(t1) = 0.5Emax,
E(t2) = 0.75Emax, and E(t3) = Emax. For panels (b) and (c), the
instantaneous center is the complex trajectory obtained by performing
a rolling mean of Ev

eff(t) over one optical cycle (see the text). Note
that the scales are slightly different in panel (c).

from the ideal adiabatic approximation of Eq. (26). In this case,
only one Floquet eigenvector is present. Each ellipse represents
the complex trajectory followed by E

8,ad
eff (t) during one optical

cycle, at three intermediate times corresponding to given field
parameters during the rise of the pulse, E(t1) = 0.5Emax,
E(t2) = 0.75Emax, and E(t3) = Emax. Emax is the maximum
field amplitude reached during the pulse. The dotted line
represents the trajectory followed by the first term of Eq. (38),
i.e., the instantaneous Floquet eigenvalue E8{ε(t)}. This is
also the trajectory followed by the instantaneous centers of
the ellipses resulting from the second term in Eq. (38). Four

black circles also indicate the positions of E8{ε(t)} at four
different times, t0 = 0 (when there is no electric field) and
at the intermediate times t1,t2,t3 defined above. This dotted
trajectory stays very close to the real axis because the control
pulse is designed to follow a ZWR path. This frame should be
compared with the middle and bottom frames of Fig. 4, which
contain extracts of the effective energy trajectory Ev=8

eff (t)
obtained by using Eq. (37) with the exact solution of the TDSE.
The ellipses have been recorded during short time intervals
[ti ,ti + �t] around the same intermediate times t1,t2,t3, with
�t = 0.12 ps corresponding to a few tens of optical cycles
(this explains the broadening of the curves). We have also
shown the instantaneous center, i.e., the rolling mean over one
optical cycle, 1

T (t)

∫ t+T (t)
t

E8
eff(t

′)dt ′, during the whole pulse.
If the adiabatic approximation is satisfied, this instantaneous
center should be close to the eigenvalue trajectory (dotted line
in the top frame). The more adiabatic the dynamics is, the
closer from the top frame the trajectories should be.

The middle frame has been obtained by using the pulse of
Eqs. (34) and (40), with the phase θ (t) = ∫ t

0 ωZWR
eff (t ′)dt ′. We

observe a nice agreement with the ideal adiabatic trajectory
shown in the top frame, with ellipsoids of growing radii whose
centers closely follow the instantaneous resonance trajectory.
The deviations from the real axis are less than 0.2 cm−1.
As a comparison, the bottom frame shows the trajectories
obtained by using the naive pulse of Eq. (41) with the phase
θ (t) = ωZWR

eff t . We observe very different results: Adiabaticity
is rapidly lost, in agreement with the explanations developed in
Sec. III. The deviation from adiabaticity is even more marked
during the falling-off of the control field, leading to an erratic
behavior in the instantaneous center trajectory. The chaotic
path on the right side of panel (c) corresponds to the second
half of the pulse, and it indicates that the adiabatic character
is completely lost. These results are consistent with the direct
population analysis of Fig. 3.

The results obtained using the two kinds of pulses,
corresponding to Eq. (41) (naive pulse) or Eq. (35) (adiabatic
strategy), are very different, only the adiabatic strategy giving
rise to an efficient protection against dissociation of the
selected state. The two pulses are compared in Fig. 5. A
direct comparison is difficult due to the very large number
of oscillations (more than 6000 optical cycles), therefore we
have shown the power spectrum of each pulse on the left
panel, together with the relative frequency shifts occurring
during the pulses (right panel). The spectrum corresponding
to the pulse of Eq. (35) displays three major peaks close to the
central frequency (corresponding to λ = 576 nm), whereas the
one resulting from Eq. (41) covers a much larger frequency
range. At the selected scale, the difference between the two
pulses is clearly noticeable. In the right panel of Fig. 5,
we have also drawn the relative frequency shifts ωeff(t)−ω(0)

ω(0)

(for the effective frequency) and ω(t)−ω(0)
ω(0) (using the actual

instantaneous frequency). It is worth noting that the shifts
remain very small all along the pulses. This is certainly
an advantage for a future experimental implementation. The
various numerical results previously shown in Figs. 3 and 4 can
be better understood by noting that a strong difference piles up
during the pulse between the effective and the instantaneous
frequencies, explaining why the dynamics moves progres-
sively away from an optimal adiabatic dynamics if we use one
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FIG. 5. Laser pulse properties: (a) Power spectrum of the laser
pulse shaped using the adiabatic strategy of Eq. (35), solid line, and
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ω(0) (dashed line).

frequency instead of the other. Using the adiabatic strategy of
Eq. (35) for shaping the pulse is thus very important.

D. Optimal ZWR paths

As graphically shown in Fig. 2, there are several ZWR
paths originating from v = 8 and labeled by the corresponding
quasidegenerate upper adiabatic potential levels v+ = 0,1,2,3
of the semiclassical analysis. The question that is addressed
now is the choice of the path that better fulfills the requirement
of the filtration strategy. More precisely, all of these paths are
well adapted to protect v = 8 population from decaying. But,
due to the anharmonicity and the density of the vibrational
levels, a couple of laser parameters (λZWR,IZWR), which
are well identified as producing a ZWR of v = 8, can also
be rather well suited to produce a ZWR originating from
a neighboring vibrational state v = 7, 9, or 10. In such a
situation, when following this ZWR path, not only is the
v = 8 population protected against dissociation, as it should
be, but the dissociation of neighboring levels could also be
severely slowed down. As a consequence, the filtration strategy
would lose its efficiency. Only very long duration pulses would
achieve the complete decay of v = 7, 9, and 10, inducing
the unwanted effect of rotational degrees of freedom coming
into play producing rotational heating. The best choice among
ZWR paths targets the highest contrast that could be expected
between the widths of the resonances originating from v = 8
(ideally zero) on the one hand, and from v = 7, 9, and 10
(largest possible values, that is, shortest lifetimes) on the other
hand. Once again, the semiclassical analysis turns out to be
helpful for such a choice.

As indicated in Eq. (11), the semiclassical estimate of
resonance widths is proportional to the square of the difference
(εṽ − εṽ+ )2 of the energies of the corresponding levels accom-
modated by the adiabatic potentials V±(R). They are obtained
by the numerical solution of Eqs. (9) and (10), including the
phase correction χ . For field intensities close to zero, εṽ is
merely the energy εv , the energy of the ground-state vibrational
level v, whereas εṽ+ is the semiclassical estimate εv+ of the
upper adiabatic potential vibrational levels with a χ = −π/4

phase correction. Restricting the analysis to v = 8, 9, and 10,
the field-free values of εv are calculated with the following
results: ε8 = −82 923.86 cm−1, ε9 = −82 915.99 cm−1, and
ε10 = −82 909.80 cm−1, the zero energy being chosen as
the energy of two infinitely separated Na+ ions, as in [35].
The values of εv+ depend on the specific wavelength λ

appropriately shifting the V+(R) potential in a field-dressed
picture. As an example, for λ = 576.396 nm corresponding
to the almost zero-intensity field value of the ZWR (v =
8, v+ = 0) of Fig. 2, one gets εv+=0 = −82 924.21 cm−1,
εv+=1 = −82 912.96 cm−1, and εv+=2 = −82 906.45 cm−1.
Remaining in the almost zero-field regime, the different ZWR
paths displayed in Fig. 2 correspond to a quasicoincidence of
ε8 with one of the εv+ (v+ = 0,1,2,3) depending on the laser
wavelength. Due to important anharmonicities and relatively
dense vibrational distribution (for v � 8), it may happen that,
for some wavelengths, in addition to the quasidegenerate
couple of levels (v = 8 with v+ = 0,1,2,3), other couples of
levels (v′ 	= 8 with v′

+) will be in close proximity, leading to
unwanted secondary trapping processes that are detrimental to
the efficiency of the filtration strategy. A quantitative analysis
can be provided based on the definition, for a given wavelength,
of a dimensionless parameter d(v,v+,w), which measures the
energy proximity among a given couple εv and εv+ :

d(v,v+,w) = εv − εv+

�εw

, (42)

where w labels one of the two anharmonicity windows of
the vibrational levels sequence, with an energy extension
�εw = εv+1 − εv . More precisely, for a given v, w = 1
depicts a situation in which a given εv+ is within the win-
dow �ε1 = εv − εv−1 (for example, ε9 − ε8 = 7.87 cm−1),
whereas w = 2 corresponds to �ε2 = εv+1 − εv (for example,
ε10 − ε9 = 6.19 cm−1). Obviously, d may vary between 0
(exact degeneracy εv = εv+ ) and 1. In practical calculations
done for the different ZWR paths originating from v = 8, we
obtain semiclassical estimates for d(8,v+ = 0,1,2,3,w = 1,2)
typically less than 0.04. The additional important information
emerges from the analysis of d(9,v+ + 1,w) and d(10,v+ +
2,w) addressing the following question: When a given v+
is almost degenerate with v = 8, how close is (v+ + 1) to
v = 9, or (v+ + 2) to v = 10? The histograms of Fig. 6,

FIG. 6. Histograms displaying d(9,v+ + 1,w) (in hatched blue)
and d(10,v+ + 2,w) (in solid green) for the different ZWR paths
(v = 8, v+ = 0,1,2,3) of Fig. 2. For the definition of d , see Eq. (42).
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FIG. 7. (a) Resonance behaviors and decay rates in the complex
energy plane with laser pulses shaped and chirped along the ZWR
paths of Fig. 2. (b) Estimate of the population decay as a function
of time, using the adiabatic approximation of Eq. (8). Color code for
both panels (as also indicated by the corresponding v labels): v = 9 in
red and v = 10 in blue, thick solid lines for ZWR(8, v+ = 0), dashed
lines for ZWR(8, v+ = 1), and thin solid lines for ZWR(8, v+ = 2,3).

displaying the corresponding values of d for each of the
ZWR paths, answer this question and help in the choice
of the best adapted path leading to the maximum contrast,
that is, for an almost zero estimate for d(8,v+,1), the largest
possible values for d(9,v+ + 1,2) and d(10,v+ + 2,3), in order
for the filtration to be the most efficient. This is obviously
obtained for ZWR(v = 8, v+ = 0) upon which the filtration
will ultimately be based. This choice is also confirmed by
looking at the Floquet results displayed in Fig. 1(b). There
are three local minima for the resonance width 
8. The third
minimum (wavelength around 576.4 nm), which corresponds
to the semiclassical coincidence of (v = 8,v+ = 0), is the one
that faces simultaneously the two best-marked maxima for
both 
9 and 
10. The contrast is then optimal in comparison to
the two other possible minima of 
8 appearing around λ = 569
and 572.5 nm.

This semiclassical analysis conducted in the near zero-
field limit can be confirmed by the time-dependent quantum
behavior of resonance widths during their adiabatic transport
all along the ZWR paths of Fig. 2. The result is displayed
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FIG. 8. Vibrational populations as a function of time for three
different laser pulses, adiabatically following the ZWR paths of Fig. 2.
Thick solid lines for the path corresponding to ZWR (v = 8,v+ = 0),
dashed lines for the path (v = 8,v+ = 1), and thin solid lines for the
path (v = 8,v+ = 2). Color code (also indicated by the corresponding
v labels): Black for v = 8, red for v = 9, blue for v = 10.

in Fig. 7(a) for resonances originating from v = 9 and 10
with laser pulses shaped and chirped so as to follow the ZWR
paths (v = 8, v+ = 0,1,2,3). A much more pronounced decay
rate (larger imaginary parts of the energies) is observed when
following ZWR (v = 8, v+ = 0). Within a purely adiabatic
hypothesis of a single (not contaminated) resonance transport,
these rates can be used to calculate the resulting vibrational
population decays during the pulse through Eq. (8). The
results are gathered in Fig. 7(b), which clearly shows that
the most important v = 9 and 10 population depletions are
observed when the transport is along the ZWR (v = 8, v+ = 0)
path. This is a complete confirmation of the semiclassical
choice of this particular path as producing the highest
possible decay of v = 9,10 populations, while quenching that
of v = 8.

The implementation of the filtration scheme, within the
hypothesis of an initial ensemble of vibrational states, or of
an initial coherent vibrational superposition, is summarized
in Fig. 8. We assume an equally populated field-free initial
vibrational distribution among levels v = 8 (in black), v =
9 (in red), and v = 10 (in blue). Three laser pulses are
considered, which adiabatically follow the ZWR originating
from v = 8 as depicted in Fig. 2 and shaped so as to quench
v = 8 dissociation. ZWR (v = 8,v+ = 0) is indicated by thick
solid lines, ZWR (v = 8,v+ = 1) by dashed lines, and ZWR
(v = 8,v+ = 2) by thin solid lines. Full quantum dynamical
simulations based on wave-packet propagation are used for
solving the TDSE Eq. (2) as explained in Sec. III E. The first
observation is that for all ZWR paths, the initial population of
v = 8 is well protected against dissociation, as is expected
from an adiabatic transport. The final v = 8 undissociated
populations are all above 95%, which remains a remarkable
result for the ZWR quenching mechanism itself. The second
important piece of information concerns the overall filtration
process efficiency. While for ZWR (v = 8,v+ = 2) a large
remaining population on v = 9,10 levels (more than 80%
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and 50%, respectively) renders the filtration inefficient, only
the choice of ZWR (v = 8, v+ = 0) leads to acceptable
results, with less than 10% of the undissociated population
on v = 9,10. The vibrational cooling control is achieved as
the system is left on a single vibrational level, namely v = 8.
A final STIRAP process [38] could optionally be referred to for
transferring the population from v = 8 to 0.

V. CONCLUSION

We propose a laser control strategy for the vibrational
cooling of diatomic molecules based on an efficient filtration
scheme. The basic mechanism we referred to is a destructive
interference between outgoing fluxes from the two field-
dressed electronic states involved in the photodissociation
process. In principle, infinitely long-lived resonances (ZWRs)
result from such interference for some well-tuned couples of
laser parameters (wavelength and intensity). Starting from
an initial vibrational population distribution, filtration aims
at a selective decay among them; that is, all levels, except
one, should dissociate. The proposed scheme goes through
the optimization of a laser pulse that is envelope-shaped and
frequency-chirped in such a way as to protect a given initial
vibrational level v against dissociation. This is achieved by an
adiabatic transport of the v population on its corresponding
ZWR, which is continuously followed all along the pulse
duration. Two important issues that turn out to be crucial for
the success of the process when dealing with heavy systems
such as Na2, and that have not been addressed previously, are
emphasized in this work.

The more fundamental first one concerns the challeng-
ing problem of adiabaticity in decaying system dynamics
involving a dissociative continuum. Actually this is solved by
adapting the adiabatic Floquet approach (originally derived for
bound states) to the special case of ZWRs, taking advantage
of their nondecaying peculiarity, although being coupled to a
dissociative continuum [bound states in continuum (BICs)]. It
is only through such an adiabatic transport that we can protect
the population of a vibrational level in a robust way.

The second issue concerns more specifically the application
that we have in mind. We have shown that the family of

ZWRs, originating from the field-free initial vibrational level
v that is to be protected, is organized in terms of several
paths in the laser parameter plane. If all the members of
this family can conveniently quench the dissociation from
v, some of the laser pulses built to follow such paths may
have characteristics close to being appropriate for partly
protecting neighboring vibrational populations as well. This
situation arises when transposing the control scheme to heavier
diatomics such as Na2, basically due to anharmonicity and
relatively high vibrational level density. Its occurrence is
obviously detrimental to the efficiency of the filtration process.
A semiclassical analysis developed in detail facilitates the
choice of the pulse that offers the best compromise between
quenching v and providing the highest possible decay rates for
the neighboring vibrational states v′ (v′ 	= v).

A full quantum wave-packet propagation using the optimal
pulse confirms the expectations of both the adiabatic Floquet
theory and the semiclassical analysis. In the hypothesis of
an initial equal vibrational population partition on v = 8,
9, and 10 for Na2 prepared by photoassociation, v = 8 is
protected up to 95% of its initial population, whereas only
less than 5% of the v = 9 and 10 populations are left. It
is worth noting that such a control is achieved with a total
pulse duration not exceeding 12 ps, thus avoiding rotational
heating of the molecule. Our final claim is that the proposed
laser pulse characteristics, i.e., rather modest frequency chirp
amplitudes around λ = 570 nm, moderate intensities (less than
1010 W/cm2), and a realistic pulse duration (less than 12 ps),
remain experimentally feasible. Moreover, within the adiabatic
transport frame that has been developed, the model becomes
generic enough to be transposed to the vibrational cooling of
other alkali-metal dimers.
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