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A generalized adiabatic approximation is formulated for a two-state dissipative Hamiltonian which is valid
beyond weak dissipation regimes. The history of the adiabatic passage is described by superadiabatic bases as in
the nondissipative regime. The topology of the eigenvalue surfaces shows that the population transfer requires,
in general, a strong coupling with respect to the dissipation rate. We present, furthermore, an extension of the
Davis-Dykhne-Pechukas formula to the dissipative regime using the formalism of Stokes lines. Processes of
population transfer by an external frequency-chirped pulse-shaped field are given as examples.
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I. INTRODUCTION

Adiabatic processes in quantum mechanics, in which the
wave function of a system follows instantaneous eigenstates,
offer the great advantage of robustness of the corresponding
process [1]. It is often termed as adiabatic passage when it
concerns the coherent manipulation of atoms and molecules
by an external pulse-shaped field [2]. Modern capabilities of
laser systems have allowed this concept to be at the heart of
many processes (see reviews [3,4] and more recent works such
as, e.g., [5]).

Modern studies in quantum mechanics treat open systems
which feature decoherence and more generally dissipative
effects [6—8] with applications in quantum information science
[9]. Extending adiabatic principles to such open quantum sys-
tems, treated using either a dissipative Schrodinger equation
or a Lindblad equation, is a nontrivial issue. These systems
are indeed described by non-Hermitian Hamiltonians (or
Lindbladians) that are not necessarily diagonalizable and lead,
in general, to complex eigenvalues corresponding to complex
dynamical and geometrical phases [10-12].

Nondiagonalizable Hamiltonians lead to Jordan blocks in
the most general situation which have to play the role of
eigenspaces in the adiabatic approximation [13]. This has been
rigorously proved in [14] through the use of superadiabatic
renormalization techniques that allow suppression of the
transitions between the Jordan blocks in the adiabatic limit.

However, the main obstacle to the existence of an adia-
batic approximation is related to the appearance of complex
eigenvalues: It is known that an adiabatic theorem in a standard
form exists in general only when the dynamics follows the least
dissipative state [11,12]. In the other case, when the dynamics
follows the most dissipative state, only a weak dissipation
allows preservation of its existence. The weak dissipation
corresponds generally to the condition I'T < 1, where I' is the
dissipation rate and T the characteristic time of adiabaticity,
which limits exponentially growing terms. The nonexistence
of an adiabatic theorem when this condition is not satisfied
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is critical since it prevents, in principle, its applicability to
population transfer processes that are accompanied by crossing
of the imaginary parts of the eigenvalues.

In this paper, we formulate the general solution of a dissi-
pative two-state problem in the adiabatic limit, which is valid
beyond weak dissipation regimes. We refer to this solution
as a generalized adiabatic approximation for the dissipative
two-state system. We denote the instantaneous eigenstates
lpj(t)), j = 1,2, and the corresponding eigenvalues A ;(7),
and one considers an initial connection with the state 1,
| (—00)) = |@1(—00)). One key result is that the state solution
after the interaction reads (with the phase condition for the
eigenvectors satisfying the parallel transport)

Y () = are” T x4 gy (1))
+cr(7) e—iT[fi)xll(f’)dT/'*‘foT Ja(t)dt'] lo2(7)), 1)

with the adiabatic and nonadiabatic coefficients, respectively,
satisfying

a=140/T), (2a)
CT(+OO) — O(e—\c()nSﬂXT). (2b)

The eigenstate |¢;) is referred to as the adiabatic state (which
is expected to be “followed” during the dynamics), and |¢;) as
the nonadiabatic state. The use of the standard adiabatic bases
in Eq. (1) allows the estimation of cr(7) only at large times
T — 400 as already stated. The superadiabatic formulation
[15-19] allows one to derive an optimal superadiabatic basis
in Eq. (1) (instead of the standard adiabatic basis) where the
cr(t) coefficient can be well approximated at all times by a
monotonic function given by the Gaussian error function from
0 to cr(400). The error of the adiabatic coefficient can be
improved using the optimal superadiabatic basis, in principle,
as a; = 1 + O(e~ <7 Extending the derivation for the
self-adjoint Hamiltonian [16,20-22] to the dissipative case,
we can show the generic existence of this formulation using
the formalism of Stokes lines and transition points [22]. This
allows us to determine in principle the nonadiabatic coefficient
cr(+400). This generalizes the Dykhne-Davis-Pechukas (DDP)
formula [20,21] to the dissipative case (see also [23] for
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a determination of the nonadiabatic coefficients for specific
models using perturbation theory).! It is shown here that,
due to the complex phase terms in (1), even in the case of
a well-satisfied adiabatic condition, the two components of
the solution can be of the same order. It is even possible
that the nonadiabatic component becomes larger, even much
larger, than the adiabatic component. This is a consequence
more precisely of the following observation: If the imaginary
parts of the eigenvalues satisfy Im(A;) > Im(A,) at all times,
corresponding to a passage along the least dissipative adiabatic
path, the second term in Eq. (1) is negligible at large times
and one recovers a standard formulation of the adiabatic
theorem, that is, along a single adiabatic state connected to
the initial state. In the other case, Im(A,) > Im(A;) (passage
along the most dissipative adiabatic path), the second term
can become larger than the first one from a certain threshold
time [depending on the value of cr(400)]: Adiabatic passage
can allow continuous passage from one adiabatic state to the
other. This is, however, expected to occur at times when very
little population is left in the system for the model we consider
in this paper. One key message of this paper is that, in general,
one has to consider the two terms in Eq. (1).

The paper is organized as follows. In the next section,
we define the model and present the generalized mixing
angle that allows the diagonalization of the system under the
parallel transport conditions. Superadiabatic bases are defined.
In Sec. III, we analyze the topology of the system: We classify
all the possible paths in the parameter space that lead or do
not lead to population transfer at the end of the interaction.
We show that, in general, the population transfer can occur
only in the situation of a coupling that is strong with respect to
the dissipation rate. In Sec. IV, we sketch the construction of
Eq. (1) in the adiabatic limit through examples of population
transfer by an external frequency-chirped pulse-shaped field.
The dynamics is also analyzed through a superadiabatic
tracking. We conclude in Sec. V.

II. THE MODEL
A. Definition

Two-state models with a decaying state can be generically
described by adding to the nonlossy Hamiltonian a loss rate
I' > 0 as a negative imaginary part to the corresponding
diagonal term. We consider the upper excited state |2) as lossy.
We consider, without loss of generality, that the population is
initially in the ground state: |y(—o0)) = |1). The complete
Hamiltonian, in the basis of the bare states {|1),|2)}, reads
(see, e.g., [24])

G N[0 Q ;
_E[Q 2(A—iF):|’ S

with the time-dependent real-valued parameters A = A(¢/T)
and Q = Q(¢/T) referred to as the detuning (from the exact
resonance) and the coupling (taken to be real for simplicity),
respectively [2]. The loss can also be considered as time

'If one considers a loop in the parameter space, a Berry phase should
be added (see, e.g., [23]).
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dependent in the general formulation: I' = I'(¢/ T'). To extend
the known formulations of adiabatic theorems [16,20-22] to
non-Hermitian Hamiltonians, we first decompose the Hamil-
tonian into a part proportional to the identity and a traceless
Hamiltonian: H = %(A — i1+ H, with

h[—(A—il) Q
5[ Q A—ir]

= “4)
We analyze adiabatic passage for this traceless Hamiltonian
H using the formalism of the Stokes lines and the transition
points (see also [23] for a derivation using perturbation theory).
The connection with the initial model is as follows:

. t

V(1) = exp {—%/ ds[A(s/T) — iF(S/T)]} ¢(@), (5)
—o0

with ¥ (t) and ¢(r) the solutions of the time-dependent

Schrédinger equation with the Hamiltonian A and H,

respectively.

It is convenient to introduce the characteristic duration
of pulse T, which will be formally taken as T — oo for
mathematical considerations of the adiabatic theorem. We
define the normalized time 7 = ¢/7T such that ¥(z) = ¥(7)
and ¢(1) = ¢(r). We assume a pulsed coupling of peak Q:
Q1) = QoA(t) with A(£o0) = 0.

B. Generalized mixing angle
We diagonalize the Hamiltonian (4) using the instantaneous

transformation R associated with the complex mixing “angle”
0 generalizing the real mixing angle of nonlossy systems:

cos(6/2) —sin(0/2) 9 Q

- Lin(e)/z) cos(6/2) ] =
with the branch chosen such that 0 < Re(f) < m for positive 2
[0 < Re(0) < /2 for negative A, 7/2 < Re(f) < m for pos-
itive A] and m < Re(0) < 27 for negative Q2 [r < Re(9) <
3w /2 for positive A, 37/2 < Re(9) < 2w for negative A].
It is associated with the right eigenvectors |¢SFR)> =|py) =
[cos(8/2) sin(@/2)1, |9 = lp-) = [—sin(6/2) cos(8/2)]'
(where the superscript ¢ denotes the transpose), with the
corresponding eigenvalues

1 -
Ae=4-h A=+ (A—il)2+ Q2 7)

2
- L foL)y _
and the left eigenvectors |py~) defined as H'|py’) =

(6)

ey (P =[cos(0/2) sin(@/2)] and (o] =
[—sin(®/2) cos(9/2)]. The left and right eigenvectors

allow one to define a biorthonormal basis with the scalar
product: ((pi(“ |¢§R)) = §;;. We can write the Schrodinger
equation i, |¢) = TH|¢p) as id, |¢pV) = THD|pD), with

THD = TR'HR —iR"'8,R = [2‘; T’;_} G
in terms of the adiabatic states |¢p) = R™!|¢) and the
nonadiabatic coupling iy =iy (t) =i0.0/2. We remark that
the use of this complex mixing angle is convenient since it
allows very concise formulas for the normalization of the
eigenvectors and for the nonadiabatic coupling, and more
importantly it defines the phase of the eigenvectors under
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parallel transport conditions: (@4|0d;|¢+) = 0; that is, no
additional diagonal terms in the Hamiltonian H" (8) have
to be considered.

C. Superadiabatic bases

One can construct superadiabatic bases, either as introduced
by Berry [16], on which we expand the solution as a series, or
by iterating the diagonalization procedure already presented
[15,17,18]. The two procedures have been compared in [19]
for nondissipative systems and show very similar results. Here
we make the choice to describe and to use the iterative scheme
for the example.

Denoting this first step with the index (0) (for the zeroth-
order superadiabatic basis): |<pi))) = |@y), ki)) = A4, Ry =R,
H©Y = H, and after n + 1 steps, one gets the Schrodinger
equation 9, |¢p" D) = T H"TD|p"+D) | with the state in the
nth-order superadiabatic basis [¢”"+D) = R'--- R;'|¢) and
HD = VMR, —iR-'9, R,/ T.

With the use of superadiabatic bases instead of adiabatic
bases, Eq. (1) has the same form but with the adiabatic
eigenvectors and eigenvalues replaced with the optimal su-
peradiabatic ones of order n:

—iT [T )»(“) Ndt'
(7)) = agn)e iT [T 2" (@) de |¢Yl)(r)>
: (N ST ),y ,
+c(T")(T) eI TUZ M@ d'+[5 357 )dT]|<p§")(t)>,
©)

where, if a single transition point z is assumed for simplicity,

n =n. = Int|T5y(z0)|,
agn) -1+ O(ef\consl\xT)7

(1) & % {1 +Erf|: 5@

(10a)
(10b)

“ " (+00), (10c)

A 2180(zo)l/ T
and 0 -
C(Tyl)(+oo) _ cT(+oo)e’Tf*°°[A1 (th—(t"]ldr
x T Jo "B @)—hadr (10d)
with
¥4
50() = / AT, ()
0

where Int is the integer part, and Erf is the Gaussian error
function. The definition of the transition points for the
dissipative system is given in Sec. IV.

III. TOPOLOGY OF ADIABATIC PASSAGE

We first characterize the topology of the system, generaliz-
ing the analysis of Ref. [25] to the dissipative case. We assume
in this analysis an ideal and standard adiabatic evolution (i.e.,
neglecting the nonadiabatic transition, which corresponds to
considering a time well before the threshold time). Figure 1
shows the eigenvalues of the Hamiltonian (3) as functions
of the parameters 2 > 0 and A (we would have symmetric
identical surfaces for negative €2). The Hamiltonian is not
diagonalizable for A = 0, 2 = £TI", which corresponds to the
two singularities of the square root branch of the eigenvalues.
This is shown in Fig. 2, where the absolute value of the
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FIG. 1. (Color online) Real and imaginary parts of the eigenvalue
surfaces (in units of I') of Hamiltonian (3) as functions of 2/ I" and
A/ T. Two paths, (b) and (c), which surround the singularity (located
at @ =TI, A =0), and one path, (a), which does not, are shown.
Note that the nonphysical discontinuity of the imaginary surfaces
that takes place for A = 0, 2 < T', has been removed so that path (a),
following the upper surface continuously, features the actual adiabatic
dynamics.

difference between the two eigenvalues of (4), +|A|/2, are
displayed. The singularity for A = 0, Q = 4T, is exhibited
as a hole in the surfaces. One can define a branch cut between
these two singularities, that is, for —-I' < Q < T at A =0:
It corresponds here to equal real parts of the eigenvalues.
For Q > I at A = 0, the imaginary parts of the eigenvalues
are equal. The chosen branch that defines the eigenstates
corresponds to the Riemann sheet defined as v/z2 = z (with
z = ). This leads to the labeling of the eigenvalues such that
the real part of the upper (lower) surface corresponds to A
(A-) (see a discussion of the labeling of such surfaces in [26]).
We remark that such a labeling implies a discontinuity of the
imaginary part of the eigenvalues when one crosses the branch
cut. We do not show this discontinuity in Fig. 1, since it does
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FIG. 2. (Color online) Absolute value of the difference A of the

eigenvalue surfaces (in units of I") of Hamiltonian (4) as functions of
Q/T'and A/T.

not correspond to the actual adiabatic dynamics, as shown
here. In Fig. 1, state |1) corresponds to the horizontal line of
energy 0 in the plane = 0, and state 2 to the line A for the
real part and the horizontal line —iT" for the imaginary part in
the plane Q2 = 0.

Figure 1 allows one to determine fopologically different
adiabatic dynamics depending on whether the path surrounds
one, two, or no singularities. When the path is such that
Qo < T [i.e., not surrounding the singularity; see path (a) as
an example], the adiabatic dynamics crosses the branch cut (at
A = 0) and thus “jumps” from the surface X (if it is assumed
to be the initial one) to A_. This jump appears for the real
part as a path going through the crossing. For the imaginary
part this jump is not apparent, since we have removed the
discontinuity between the two surfaces. Mathematically this
jump corresponds to a passage to the lower Riemann sheet
for which +/z2 = —z. This physically signifies an absence of
transition as shown by the corresponding path (a) in Fig. 1.
When €y > I', such that the path surrounds the singularity
Q =T, A =0 [see path (b)], the dynamics corresponds to
a transition from state |1) to state |2), accompanied by a
crossing of the imaginary part of the eigenvalues when A = 0.
Figure 1 also shows a path labeled (c) as a loop in the parameter
space surrounding the singularity. Considering also negative
2, one can characterize a path surrounding the two trajectories,
leading to an absence of transition (not shown).

IV. ADIABATIC APPROXIMATION AND
SUPERADIABATIC TRACKING

In the adiabatic limit 7 — oo, one could expect the
existence of a standard adiabatic theorem since in that case
the nonadiabatic coupling with respect to the gap between
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the eigenvalues is small: € := |y|/T|Ay+ — A_| — 0. This is
indeed true in the nonlossy Hermitian case but not, in general,
for a lossy system [11,12]. To show it, we expand the state
solution as

6 = 3 bi®lg;(@), (12)
j=—
with
bj(r) =a;(r) e iT Lo hi(s)ds 13)

The equations read

drai(v) = y(x) T Pa_(1),
dra_(t) = —y(r) e *Day (7).

(14a)
(14b)

with

5(r) = / [i(t) = A_(T)]dT = /

—00

T

ATdd,  (15)

and can be rewritten as the equivalent Volterra equations:

T

a,(t) = a,(—o0) + / y(@) e _(z'ydt',  (16a)

—0Q
T

a,(r):a,(—oo)—/ y() e T, (¢')dT'. (16b)

—0oQ0

In practice, using, for simplicity, a parametrization such that
Q%(1) + A%(7) = Q% (which corresponds to a circular path in
the parameter space, leading to the initial and final detuning in
absolute value |Ag| = Qo; see [27]), one gets a small € for

3/2

T(Q5—T7)"" > . (17)

Superadiabatic bases are more adapted to the tracking of the
solution, since they induce similar equations to (14) but with
a reduced nonadiabatic coupling [in principle, exponentially
small as O(e~°mU*T for high-order bases].

A. Noncrossing models

We first analyze noncrossing models which correspond to
the situation when the imaginary parts of the eigenvalues do not
cross. In that case, we can consider, without loss of generality,
that

Im(x_) < Im(A,) < 0 (18)

for all times t; that is, Im[8(7)] > 0. This means that the state
|@4) is less dissipative than the state |¢_).

1. Connection to the least dissipative eigenvalue

We first consider an initial condition connected to the
state +, |p(—00)) = [1) = |p+(—00)), which is achieved
when A(—o00) = —Agp <0 (i.e.,, Ag > 0), corresponding to
a;(—o0) = by (—00) =l,a_(—o0) = b_(—00) =0. It thus
leads to an adiabatic following along the least dissipative
eigenstate |¢(7)).

Integrating Eqgs. (16) once by parts, and evaluating an upper
bound for the norms |a(7)| and |a_(7)|, we get

a+(7:) =1 + O(I/T)’
a_(t) = 0" Ty,

(19a)
(19b)
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while, in the adiabatic limit 7 — oo, a(7) — 1, |a_(7)]
grows exponentially. However, concerning the coefficients b,
one can calculate at late times that

b_(1)/by(1) = O(e” TME@I) (20)

due to the stronger dissipative exponent in front of the
coefficient a_. A standard adiabatic theorem can thus be
stated along the least dissipative eigenvalue [11,12]: |¢(7)) =~
efiijoc ap(T)dt lo. (7).

More precisely, extending to the dissipative case the
technique of Stokes lines and transition points as rigorously
established for the self-adjoint case in Ref. [22], one obtains,
for the coefficient ¢y (4-00) defined in Eq. (1),

N-—1
cr(+00) = Z e~ 05 piTo()) + O(eTIm[‘SU(ZU)]/T), 1)
=0

with
So(2) = / M)t 22)
0

where the N transition point(s) z; lies on the first Stokes line
z in the lower complex plane, defined as

Im[80(z)] = Im[80(z0)] = Im[8p(zj=1,v-1)] <0,  (23)

and 6, is a geometrical phase [22,23,28]. In the case considered
here, for which  is real, 6; is O or 7. The first Stokes
line corresponds to the one giving the smallest Im[8y(zp)]
in absolute value (which gives the largest contribution). This
result corresponds to the approximation

p(1)) & e T g (7))
+cr(7) e*iT[fBoo A (D) dT+ [ - (T)dT] lo_(1)), (24)

which is (1) in the original model (3) with the labeling 1 <
+ for the eigenvectors and A; = $(A — i)+ Ay, Ao =1
(A =il +x_.

2. Connection to the most dissipative eigenvalue

In the opposite situation, when |p(—00)) =|1) =
|o_(—00)), which is achieved when A(—o0)= A¢ >
0, corresponding to a_(—00) =b_(—00) = 1,a.(—00) =
b, (—o0) = 0, we cannot state a standard adiabatic theorem
along the most dissipative eigenstate in general, in the sense
that the single most dissipative eigenstate is not “followed”
during the complete dynamics. Following the same procedure
as before, we indeed get

a_(t)=1+001/T), (25a)
ap(t) = O(e TP/ T), (25b)

and
b (t)/b_(r) = O("™*™)), (26)

The latter equation signifies that |b_(7)|, much larger than
|by ()] at early times, crosses it at a threshold (late) time, be-
fore becoming exponentially smaller. These arguments prevent
the construction of a standard adiabatic theorem in general
along the most dissipative eigenstate. It can be established
only in the limit of a weak dissipation TIm[6(7)] < 1. We
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remark that the coefficient corresponding to the nonadiabatic
term ay(t) decreases exponentially. The absence of the
general adiabatic theorem is thus due only to the competi-
tion between the dissipative phases associated with the two
eigenstates.

Using the Stokes lines technique, one derives, similarly to
Eq. (21),

N—1
cr(400) = Z e 105 i To0) | O(e—TIm[So(zo)]/T)’ 27
j=0
where the N transition point(s) z; lie on the first Stokes line z
in the upper complex plane defined as

Im[80(z)] = Im[8o(z0)] = Im[So(zj=1,n—1)] > 0.  (28)

This leads to the approximation

p(0) & e T I (o)
+ep(z) e T OO (@) (29)

which is (1) in the original model (3), with the labeling 1 <
— for the eigenvectors and A; = $(A —il)+A_, Ay =1
(A —il) + As.

3. Particular case: Even coupling and constant detuning

In the case of a coupling of even symmetry, Q2(—7) =
Q(t), and of a constant detuning, we can simplify the
phase in Eq. (1) for large final times 77 = —7; — +00
opposite to the initial time t;: fr?)q(t’)dr/ + [y At dT =
% f;’ dt'[A — iT'(z')]. The asymptotic solution reads, in that
case,

W(zp) = [1 4+ 01/ T)e TS 2 14, (1))
For(zp)e TRl AT, ). (30)

B. Crossing models

If one considers an adiabatic passage in a crossing model
leading to a transition from the ground state to the lossy excited
state, and thus corresponding to a crossing of the imaginary
parts of the eigenvalues, we have to extend the two preceding
results.

1. Initial connection to the least dissipative eigenvalue

If the initial condition is connected to the state 4,
|p(—00)) = |1) = |p4+(—00)), that corresponds to the initial
following along the least dissipative eigenstate (before the
eigenvalues cross), we obtain [with 1 <> 4 in Eq. (1)]

a, =14 0(1/7), (31a)
N—-1

cr(+00) = Y e e TN 1 oM/ ) (31b)
j=0

where the N transition point(s) z; lies on the first Stokes line
z in the lower complex plane. This is similar to the situation
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of the following along the least dissipative eigenstate for the
noncrossing model.

2. Initial connection to the most dissipative eigenvalue

In the opposite situation, when the initial condition is
connected to the state —, |p(—o0)) = |1) = |¢_(—00)), that
corresponds to the initial following along the most dissipative
eigenstate (before the eigenvalues cross), we obtain [with
1 < —inEq. (1)]

a_=14+001/T7), (32a)
N—1

cr(+00) = Z e 10 1Tz 4 O(e*Tlml&)(zo)]/T)’ (32b)
=0

where the N transition point(s) z; lies on the first Stokes line
z in the upper complex plane (similarly to the situation of
the following along the most dissipative eigenstate for the
noncrossing model).

3. Numerical illustration: The dissipative Allen-Eberly model

A typical dynamics of a crossing model is shown in Fig. 3,
here for the Allen-Eberly model [29] to which a constant
dissipation is added. We consider the case where the dynamics
first follows the least dissipative eigenstate |¢4(—00)): The
standard adiabatic theorem applies as long as € <« 1 and
until the imaginary parts of the eigenvalues cross. As already
discussed and as shown in Fig. 3, this regime corresponds
to ar(t)~1 and |b_(1)| K |by(7)|. During this part of
the dynamics, the other coefficient |cr(t)| starts growing
exponentially. As expected, the use of superadiabatic bases
of higher orders (here shown up to n = 3) allows the removal
of this growth.

After the crossing of the imaginary part of the eigenvalues,
the dynamics follows the most dissipative eigenstate. The
main point here is that, as expected from the previous
analysis, the coefficient |c7(7)| goes to a small quantity for
T — 00, corresponding to the nonadiabatic correction, and
that |a4(7)| stays localized around the value 1 oscillating. The
use of superadiabatic bases allows a dramatic reduction of the
oscillations, which become unnoticeable.

The standard adiabatic theorem does not apply near and
beyond the crossing of the coefficients |b, ()| and |b_(7)|. We
remark that the superadiabatic bases of higher orders allow a
larger separation between the coefficients |b, ()| and |b_(7)|
before their crossing (whose position is not shifted), which
permits a better standard adiabatic approximation than the one
expected from the zeroth order.

We can determine for this example the asymptotic value
of |cr|* using formula (31b). We have one transition point
on the first Stokes line in this case for Ag > €2¢. We obtain
|7 (400)|*> & 0.016, which corresponds to the value obtained
numerically (expressed in the development with respect to the
zeroth superadiabatic basis). We have also plotted in Fig. 3
the coefficient c(T")(t) from Egs. (10c) and (10d): It is almost
undistinguishable from the numerical values.

One notes in Fig. 3 that, for the subsequent superadiabatic
orders, the coefficient |c§f')(-|-oo)|2 varies slightly, following
Eq. (10d). This behavior, which does not occur in the
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FIG. 3. (Color online) Dynamics for the dissipative Allen-Eberly
model A(t) = sech(t), A(t) = Aptanh(t), 20T =4, AgT = 5, and
I'T =1, corresponding to the type of path (a) surrounding the sin-
gularity in Fig. 1. From top to bottom: Time-dependent coupling and
detuning, populations in the bare states P; = [(j[v/) |2, instantaneous
eigenvalues (real parts, solid lines; imaginary parts, dashed lines),
and coefficients b, cr, and a,. Numbers in parentheses, from (0) to
(3), indicate the order of the superadiabatic iteration; see text.

nondissipative problem, is generic in the dissipative case
when one uses the superadiabatic iterative scheme. The
superadiabatic bases induce indeed a (small) correction of the
eigenvalues at each order (only when the interaction is on).
Equation (1), rewritten with the superadiabatic bases instead
of the adiabatic bases, that is, as Eq. (9), thus shows that,
at late times, when the interaction is off, that is, when the
superadiabatic eigenvectors are identical to the canonical bases
(for any order), the integration of the eigenvalues necessarily
implies a modification of the coefficient c(T")(—}—oo) with respect
to ¢y (4-00) following (10d) to recover the same coefficient in
front of the eigenvector.

This example confirms the general approximation (1) we
have stated.
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V. DISCUSSION AND CONCLUSION

Our analysis has allowed the formulation of a general
adiabatic approximation in a dissipative crossing or non-
crossing model. The occurrence of a transition requires a
strong coupling in the sense that ¢ > I', as shown by the
topology of the eigenvalue surfaces. Determination of the
precise conditions that allow approximation (1) is in progress,
and this will be the subject of a forthcoming paper.

Our analysis supports the generalized Berry phases in
dissipative models (see, e.g., [30]). Our result is also applicable
in the case of time-dependent dissipation rates. They can be
encountered, for instance, in a process of population transfer
from the ground state of an atom to an excited state that is
coupled to a continuum (see, e.g., [31]).

A further important issue is whether the techniques pre-
sented in this paper, namely, the topology of the eigensurfaces,
superadiabatic bases, and generalized DDP formula, are appli-
cable to a dissipative system with more than two states. This
question arises in the frame of both the Schrodinger equation
and the Lindblad equation. The latter corresponds to an
effective system of three components on the Bloch sphere for
a two-state system that leads, in general, to complex adiabatic
eigenvalues. The simplest extension concerns the analysis of
the passage using eigensurfaces (as functions of the field
parameters) decomposed as a real part and an imaginary part.
This analysis has been performed in multistate systems without
dissipation (see, e.g., [32]). The main different feature for such
multistate systems with complex eigenvalues is the presence
of zones in the parameter space where the Hamiltonian is not
diagonalizable [13]. The use of superadiabatic techniques has
been applied in that case to suppress the transitions between
the Jordan blocks in the adiabatic limit [14]. We remark that
it would be of interest to find a physical system that features
such a particular property and to describe its influence on the
dynamics of population transfer.
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More generally, using superadiabatic techniques in an
N-level system (N > 2) to determine a common superadia-
batic basis that would be optimal for the transitions, which
are multiple in the generic case, is questionable. This has,
however, been successfully applied for the example of the
nonlossy stimulated Raman adiabatic process in a A system
[19]. The presence of additional loss, as, for instance, from the
upper state as spontaneous emission outside the considered
three-state system, has not been considered.

The extension of the DDP formula to nonlossy N-level
systems was described in the original paper by Hwang and
Pechukas [21]. It has been shown to be complicated and not
generically solvable due to numerous crossings in the complex
plane. Only specific symmetries in the Hamiltonian allow this
extension [33-37]. In the simplest case, the result can be
interpreted as local Landau-Zener analysis of the consecutive
avoided crossings between pairs of levels assumed to be sepa-
rated, which do not involve interfering paths, such that the final
probability is the product of the probabilities corresponding
to the consecutive avoided crossings. The presence of an
additional dissipation is expected to lead to a similar analysis
and to similar results. Calculations in a two-state system
submitted to a dephasing loss through the Lindblad equation,
and leading to an effective three-component system with
specific symmetries, have given results compatible with such
an extension of the DDP formula [38]. Such a system could be
a physical candidate for application of the technique of supera-
diabatic bases and a DDP formula to lossy N-level systems.
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