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Efficient descriptions of open quantum systems can be obtained by performing an adiabatic elimination of
the fast degrees of freedom and formulating effective operators for the slow degrees of freedom in reduced
dimensions. Here, we perform the construction of effective operators in frequency space, and using the final
value theorem or alternatively the Keldysh theorem, we provide a correction for the trace of the density matrix
which takes into account the non-trace-preserving character of the evolution. We illustrate our results with two
different systems, one where the eliminated fast subspace is constituted by a continuous set of states and ones
with discrete states. Furthermore, we show that the two models converge for very large dissipation and at coherent
population trapping points. Our results also provide an intuitive picture of the correction to the trace of the density
matrix as a detailed balance equation.
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I. INTRODUCTION

The adiabatic elimination method allows to reduce the
dimensionality of a problem by discarding fast degrees of
freedom and describing only the dynamics of the slow ones.
Adiabatic elimination has played an important role in unifying
dynamical patterns observed in very different phenomena,
from laser and fluid dynamics to biological and chemical sys-
tems [1,2]. It has allowed to reduce these apparently very dif-
ferent problems to similar minimal sets of coupled differential
equations. In quantum systems, adiabatic elimination dates
back to the 1960s in atomic physics, with the development
of a theory of the maser and laser which includes the quantum
noise due to the spontaneous emission process [3]. It has also
been essential to understand the mechanisms responsible for
atom cooling [4].

While these first applications were concerned with dis-
sipative systems, it seems that in the quantum arena, the
adiabatic elimination procedure has been popularized mainly
in the case of conservative Hamiltonian systems [5–7] and, in
particular, in many-body systems [8,9], where it allows one to
obtain effective Hamiltonians and open new perspectives for
quantum simulations [9].
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Meanwhile, the concept of quantum open systems has
emerged and it is now taking over Hamiltonian systems as the
elementary brick for the description of a quantum system. A
quantum open system consists of subsystems interacting with
its environment. Its state is described by the density operator,
where the degrees of freedom of the bath have been traced
out [10]. Among quantum open systems, the ones whose dy-
namics follows a one-parameter semigroup play a special role.
Indeed, since the work of Lindblad, Gorini, Kossakowski, and
Sudarshan [11,12], the form of its generator, the so-called
Lindblad operator, is completely specified. Furthermore, this
specific evolution is the one followed by a quantum subsystem
interacting with a Markovian environment. The concept of
open quantum system constitutes a first reduction by elimi-
nating (tracing out) the bath degrees of freedom. Indeed, from
a very high dimensional Hamiltonian dynamics, we end with a
Lindblad dynamics in a Hilbert space of a smaller dimension.
But even this reduced description can be cumbersome [13]
and to get at least the steady states and the dynamics around
these steady states can be very difficult and computationally
intensive.

When this reduced-system Lindblad dynamics presents
two different timescales, it should be useful to separate the
fast-evolving degrees of freedom from the slow ones, that is,
to perform an adiabatic elimination. In most cases, there is
a unique steady state, and the adiabatic elimination consists
in obtaining the dynamics in the proximity of the stationary
state, where the fast part has already reached a stationary state
while the slow part is still evolving to the steady state. In
this way, the adiabatic approximation becomes a “long” time
approximation, long with respect to the time needed for the
fast part to reach a steady-state behavior. The main objective
is then to be able to describe the dynamics of the slow part
without the need to refer to the fast one.
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To our knowledge the first work which addressed a general
formalism to perform the adiabatic elimination with Lind-
bladian dynamics is the one by Mirrahimi et al. [14]. The
main idea of this work and subsequent ones [15–19] from
the QUANTIC group consists in preserving the Lindblad
structure for the generator of the slow dynamics. To this
end they built a bijective map from the exact density matrix
to the couple of density matrices corresponding to fast and
slow motions. Using singular perturbation theory [20–22],
they are able, in principle, to obtain the slow motion at any
given order of approximation. One of the main points is that
the mapping is such that the dynamics of the slow density
matrix is generated by an effective Lindblad operator. As a
consequence, the dynamics of the slow density matrix is trace
preserving.

With a completely different methodology, Reiter and
Sørensen obtain an effective Lindblad operator which recov-
ers the same result as obtained in [14] (up to an overall energy
shift) for the case of a single excited state, but which can also
be applied to more general systems where the energy level
structure for the excited states takes into account arbitrary
detunings [23].

We note that in these approaches the density matrix de-
scribing the slow part does not accurately describe the quan-
tum state in the slow subspace when exchange of population
between the fast and slow subspace cannot be neglected.
Indeed, as the slow dynamics is described by a Lindblad op-
erator, it is trace preserving and the initial population present
in the slow subspace will remain in this subspace.

Adiabatic elimination for many-body systems, in particular
for Rydberg atoms, has been addressed in [24,25] and relies
mainly on perturbation methods applied to the Lindblad op-
erator. In these works, the authors calculated the correction
up to fourth order in the perturbation and concluded that
the physical constraints of the solutions were only preserved
to second order. Recently, Macieszczak et al. [26] recover
a general formulation of long-time dynamics based on the
eigenvalue decomposition of the Liouville operator and time-
dependent perturbation techniques, in order to describe a
metastable manifold. A final application of adiabatic elim-
ination techniques worth noting highlights its usefulness in
finding conditions for dissipative-state preparation and noise
suppression via interference effects. Recently an extension
of Ref. [23] has presented an effective operator formulation
including perturbations of the Hamiltonian and of the jump
operators involved in the dissipative part of the Lindblad
operators. They are able to show under very general terms how
to understand and implement error correction strategies for
steady-state subspaces of the Liouvillian [27]. Also, several
publications have reported adiabatic eliminations in specific
systems [28–31] but without a general recipe to make this
approximation.

In this work, we follow an alternate route which consists in
using Feshbach projectors P and Q = 1 − P [32] to develop
a general strategy to approximate the evolution of Pρ(t ),
the slow component of the quantum state ρ(t ) at time t . It
is based on the projection PG(z)P of the resolvent G(z) =
(z − L)−1 of the original Lindblad operator L in the slow
subspace. We define Leff(z), a z-dependent operator defined on
the slow subspace only, such that PG(z)P = [z − Leff(z)]−1.

The operator L0 = Leff(z = 0) is the analog of the effective
Lindblad operator obtained previously by Mirrahimi [14]
and Reiter [23]. Furthermore, we also show how to correct
the trace-preserving evolution generated by L0 to take into
account possible population exchange between fast and slow
subspace.

In this paper, we consider only the case where the projector
P onto the space of operators themselves defined on H is built
from a projector P onto the underlying Hilbert space H as
Pρ = PρP, as in Refs. [14,23]. In others words, we assume
that the fast/slow partition is linked to a partition of H in two
complementary subspaces H = PH ⊕ QH. The application
of our formalism to bipartite systems where the fast/slow
partition is linked to a tensorial structure H = Hslow ⊗ Hfast

will be the subject of a future publication. The partial trace
over the fast subsystem can be formalized in terms of projector
operators as in Ref. [33], for instance.

We apply our general result to several examples where
the fast subspace is finite or infinite dimensional. In the last
case, we consider that the Hamiltonian of the fast part has a
continuous spectrum while the slow part has a discrete one. In
other words, we address the problem of adiabatic elimination
of the continuous set of states in dissipative Fano systems [34].

The generalization of Fano interferences from Hamiltonian
to open quantum systems whose evolution is generated by
a Lindblad operator has recently been the subject of great
interest [35–39], in particular to describe mesoscopic systems
or condensed matter systems. In the wideband approximation,
corresponding to a “flat continuum,” we are able to obtain
the explicit expression for Leff(z) and therefore analyze in
great detail the adiabatic approximation. In particular we show
formally and numerically that in the limit where the fast
dynamics reaches its steady state in a very short time, the
Hamiltonian of the fast part can be approximated by a flat
continuous spectrum.

The paper is organized as follows: In Sec. II the general
formalism is developed and in Sec. III our general results are
illustrated with several examples with excited-state continua
or excited-state discrete levels. In Sec. IV we draw the con-
nection between the effective Liouvillians of these two classes
of systems, and conclude in Sec. V.

II. THEORY

The Hilbert space H of the system is partitioned into two
subspaces with the help of two orthogonal projectors P and
Q = 1H − P, where 1H is the identity operator on H. The QH
subspace represents the fast degrees of freedom which reach
a stationary regime in a short time. Our goal is to describe
the slow motion in the subspace PH only, after the QH has
reached its stationary state.

We suppose that the system is coupled to a bath that opens
dissipation channels between QH and PH, or within PH and
QH. Hamiltonian couplings (PHQ, or QHP) can also open
transitions between PH and QH. Associated with P and Q,
we define superprojector operators P and Q such that

Pρ = PρP, Q = 1 − P, (1)

where 1 is the identity superoperator on the space of operator
on H, and ρ is an operator on H.
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We assume that the bath is Markovian so that the density
matrix evolves according to a Lindblad equation [11,12]. For
convenience, we will use the operator-vector isomorphism
[40], which maps the operator |a〉〈b| in the Hilbert space
H onto the vector |b〉 ⊗ |a〉 in the H ⊗ H Hilbert space, or
equivalently maps any n × n density matrix ρ to a column
vector �ρ with n2 elements, by stacking the columns of the
ρ matrix. Under this isomorphism, the operation AρB† is
mapped to B ⊗ A�ρ, where A and B are operators on H and
B denotes the complex conjugate of B; that is, B = (B†)

T
,

where B† is the adjoint and BT is the transpose of B (see
Appendix A). From now on, we drop the arrow in �ρ as we
assume that ρ is in vector form. The only exception is when a
density matrix ρ is inside a bracket like in tr[ρ].

With this notation, the superprojector operators P and Q
read

P = P ⊗ P, Q = Q ⊗ Q + P ⊗ Q + Q ⊗ P. (2)

Also, the general form of the Lindblad operator L, generator
of the evolution, ρ̇ = Lρ, can be written as [41]

L = −i[1 ⊗ H − H̄ ⊗ 1] +
∑

i

D(Fi ),

where

D(F ) = F̄ ⊗ F − 1
2 [1 ⊗ F †F + (F †F )T ⊗ 1]. (3)

We start by expressing the density matrix evolution in an
integral form through the Laplace transform:

ρ(t ) = 1

2π i

∫
D

ezt G(z)ρ0dz, (4)

where G(z) = (z − L)−1 is the resolvent of L, and the integral
on the complex plane is performed on a straight line D =
{z ∈ C; Re z = a > 0}. Projecting Eq. (4) using P and Q
gives

Pρ(t ) = 1

2π i

∫
D

dzezt [PG(z)Pρ(0) + PG(z)Qρ(0)],

Qρ(t ) = 1

2π i

∫
D

dzezt [QG(z)Pρ(0) + QG(z)Qρ(0)]. (5)

In the remainder of the text, we make the assumption that at
time t = 0 the population is entirely in the slow subspace PH
so that Qρ(0) = 0. Hence the evolution in the PH subspace
is simply given by

Pρ(t ) = 1

2π i

∫
dzeztPG(z)Pρ(0). (6)

We define the operator Leff(z), a z-dependent operator defined
on PH, such that PG(z)P = [z − Leff(z)]−1. Using the defi-
nition of the resolvent and the orthogonality of the P and Q
projectors, we have

Leff(z) = PLP + PLQG0(z)QLP, (7)

where QG0(z)Q = [z − QLQ]−1 is the resolvent of QLQ.
Equation (6) with Eq. (7) is an exact description of the
dynamics (restricted to PH subspace) of a system coupled to a
Markovian bath, and so is a completely positive map; however
it is not trace preserving because the PH and QH partitions
can exchange population during the evolution.

Generator of the slow dynamics. We notice that L0 =
Leff(z = 0) is the generator of the slow time dynamics. Indeed,
projecting the Lindblad equation ρ̇ = Lρ on PH and QH we
have

P ρ̇(t ) = PLPρ(t ) + PLQρ(t ), (8)

Qρ̇(t ) = QLQρ(t ) + QLPρ(t ). (9)

To obtain the approximate slow time dynamics in the subspace
PH, we assume that Qρ has reached a stationary regime,
Qρ̇ = 0. Using Eq. (9) to express Qρ as a function of Pρ,
and inserting the result in Eq. (8), we obtain

Qρ̇ = 0 ⇒ P ρ̇ = L0Pρ. (10)

In Appendix E, we show a sufficient condition for L0 to be the
generator of a trace-preserving evolution. In all the examples
we will present below, this condition is fulfilled. In addition,
we have found, explicitly or numerically, that the operator L0

is of Lindblad form. But we know that we are looking for a
non-trace-preserving evolution as the total initial population
may be distributed on Pρ and Qρ. We must then correct this
evolution to take into account the possible variation of the
trace of Pρ. To this end, we look for the exact final state,
reached in PH subspace, ρ f = limt→∞ Pρ(t ), from a given
initial state ρ0 = ρ(t = 0).

Mapping to the final state. By Eq. (10), we know that the
final state ρ f , in PH subspace, is in the kernel of L0 = Leff(z =
0). We assume that the kernel is one dimensional and define
ρ its unique element with tr[ρ] = 1. Then ρ f = αρ, and we
are left to determine α = tr[ρ f ]. The final stationary state ρ f

can be obtained taking the limit of Eq. (6) when t → ∞. This
limit can be obtained using the final value theorem:

ρ f = lim
z→0

zPG(z)Pρ(0) = lim
z→0

z[z − Leff(z)]−1ρ(0). (11)

As we show in Appendix G, this limit can be calculated
explicitly as

ρ f = αρ, with α = 1

tr[(1 − L1)ρ̄]
= 1

1 − 〈L1〉 , (12)

where L1 = dLeff (z)
dz |z=0. We notice that α given by Eq. (12)

does not depend on the initial state ρ0. This is a consequence
of assuming that the kernel of L0 is one dimensional. The gen-
eralization to the case where the kernel is multidimensional
will be reserved for future work. In this paper we focus on the
generic case where the dynamics has only one stationary state.
The mapping ρ0 → ρ f given by Eq. (12) is exact and only
requires obtaining L1, L0, and its kernel. Using the definition
of Leff [see Eq. (7)], both operators L0 = Leff(z = 0) and L1 =
dLeff (z)

dz |z=0 can be written in terms of the original Lindblad
operator L:

L0 = PLP − PLQ(QLQ)−1QLP, (13)

L1 = −PLQ(QLQ)−2QLP . (14)

Slow time non-trace-preserving evolution. We finally cor-
rect the evolution given by Eq. (10) by normalizing the state
by α = tr[ρ f ] given by Eq. (12). We will drop the projector
P in Pρ(t ) for clarity, given that we are only interested in the
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dynamics in the reduced subspace P, and we further assume
that Qρ(0) = 0. Thus, the corrected evolution reads

ρ(t ) = 1

1 − 〈L1〉eL0tρ0. (15)

Equation (15), along with Eqs. (13) and (14) defining L0 and
L1, is one of the main results of the paper. It consists of a
dynamical evolution rescaled by the population loss to the Q
partition in the steady state.

The difficult part in the calculation of L0 and L1 given by
Eqs. (13) and (14) consists in the computation of the inverse
of QLQ. As we will see in the next section, this inversion
can be obtained explicitly only in specific cases. In general, a
numerical inversion can be attempted but can be cumbersome,
for instance when ran[Q] is an infinite-dimensional space.
In that case, the inverse can be computed using perturbation
theory. Indeed, QLQ can be written as QLQ = LD + W ,
where the matrix representation of LD is diagonal in the basis
formed by the eigenvectors of PHP and QHQ, and W is
nondiagonal. The inversion of QLQ can be written as

(QLQ)−1 = L−1
D

∞∑
n=0

(
W L−1

D

)n
. (16)

As we show in Appendix B, in all cases where the relaxation
processes inside the ran[Q] subspace can be neglected, W
will depend only on the Hamiltonian couplings PHQ and
QHP, and does not depend on the dissipative part. The fast
dissipation of the QH part is involved in LD only. Therefore
when the adiabatic elimination is a good approximation it is
justified to consider that LD � W . In most cases, retaining
only the second-order terms (n = 2) at most, in the sum of
Eq. (16), is enough to obtain a good approximation of the
dynamics. Indeed, the level shift operator [Leff(z) − L0] of
Eq. (7) involves the operators PLQ and QLP which can each
be first or zeroth order in the Hamiltonian coupling QHP or
PHQ, so that only terms n = 0, 1, 2 for (QLQ)−1 are needed.

In the next section, we will illustrate in several examples
how our result gives a very good approximation to the true
dynamics.

III. EXAMPLES

We examine the evolution generated by the effective op-
erator L0 derived in the previous section with the correction
given by Eq. (15), for a few specific cases when the excited
states which are eliminated are (i) continuous manifolds and
(ii) discrete states. We use continuous manifolds because they
are part of fundamental toy models for both basic quantum
evolution and spectroscopy, and also because they allow sim-
plifications in the wideband approximation. In such an ap-
proximation, analytical expression of Leff(z) can be obtained.
In general, using a continuous set of states in the wideband
approximation, instead of a set of discrete levels, gives a zero
real part of the level-shift operator (also called self-energy)
leaving only the imaginary dissipative contribution. We then
investigate systems with discrete excited states since they are
more prevalent. We finally show that in the limit of large
dissipation, the adiabatic evolutions where continuous and
discrete excited-state manifolds are eliminated coincide. We

|g1〉 |g2〉 |gNg
〉

|k1〉 |k2〉 |kNe〉

V
(1)
1

Γ(1)
1

V
(2)
1 Γ(2)

1

V12

FIG. 1. Energy levels and transitions of a Fano-type model with
dissipation. Hamiltonian couplings are indicated by straight arrows,
dissipative processes by twisted arrows.

only consider time-independent Hamiltonians; however the
expressions derived in this work can describe the case where
coherent radiation couples ground and excited states as long
as the rotating wave approximation can be applied (which
converts the problem to a time-independent one). The devel-
oped formalism is valid for arbitrary temperatures, which are
captured in the Lindblad equation by the relative strength of
the incoherent transitions from Q to P and vice versa. In the
limit of zero temperature only incoherent transitions from Q
to P are nonzero.

A. Elimination of continua excited states

Hamiltonians with a continuous spectrum have been
part of the spectroscopist toolbox for several decades
to describe atomic, molecular, and condensed matter
systems [34–36,42–51]. Their distinctive property is that they
result in an asymmetric line shape in the photodissociation
and photofragmentation cross section as a function of the
frequency of the impinging light, arising from interference
processes [34]. The Hamiltonian structure as well as dissi-
pative transitions are shown in Fig. 1. A set of Ng ground
states |gi〉 are coupled among themselves by Hamiltonian
couplings Vi j (i, j = 1, . . . , Ng) as well as to Ne continuous
sets of excited states |k j〉 ( j = 1, 2, . . . , Ne). Continua are not
coupled among themselves (any coupling between continua
can be removed by a unitary transformation which redefines
all the other couplings); they are coupled to the ground states
through Hamiltonian couplings V ( j)

i and through dissipation
at rates �

( j)
i (i = 1, 2, . . . , Ng and j = 1, 2, . . . , Ne). In the

following we adopt the wideband approximation where the
couplings V ( j)

i , the rates �
( j)
i , and the density of states n( j) =

dk j

dE per unit of energy E are considered to be independent
of k j . The continuum states are normalized so that 〈k|k′〉 =
δ(k − k′). The general problem with Ng ground states coupled
to Ne excited states is considered in Appendix C, while in
the following we examine in detail the case of one continuum
coupled to either one or two ground states.

Single ground-state level coupled to a single continuum. We
first consider a single discrete level coupled to a continuum of
states via a Hamiltonian coupling V (1)

1 . The continuum can
dissipate back to the ground state with a rate �

(1)
1 (Fig. 2).

The Liouvillian for this system is L = −i(1 ⊗ H − H̄ ⊗ 1) +
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|g1〉

|k1〉

V 1
1Γ(1)

1

FIG. 2. Ground-state population of a single discrete system cou-
pled to a continuum as a function of the rescaled time γ

(1)
1 t with

γ
(1)

1 = nπ (V (1)
1 )2, for different values of the dimensionless constant

β = �
(1)
1 /γ

(1)
1 [given by Eq. (19)]. The dotted line corresponds to the

limit �
(1)
1 → ∞ which in this case leaves the population unchanged

in the discrete state, and the dashed line corresponds to the limit
�

(1)
1 = 0, which is the limit of a discrete level unitarily coupled to

a continuum of states that corresponds to a description for particle
decay.

D(F (1)
1 ) [see Eq. (3)], where

H =
∫

dk1V
(1)

1 |g1〉〈k1| + c.c.,

F (1)
1 =

√
�

(1)
1

∫
dk1|g1〉〈k1|. (17)

The effective operator Leff(z) to describe the ground-state
dynamics after elimination of the continuous set of ex-
cited states can be obtained explicitly using Eq. (7) (see
Appendix C):

Leff(z) =
(

−z

z + �
(1)
1

)
F̄eff ⊗ Feff, (18)

with Feff =
√

γ
(1)

1 |g1〉〈g1|, and where γ
(1)

1 = 2n(1)π (V (1)
1 )2; it

represents the injection rate from discrete to continuum due
to the Hamiltonian coupling. The operator can be expanded
in powers of z as Leff(z) ≈ zL1 where L1 = − F̄eff⊗Feff

�
(1)
1

and

where the z-independent term L0 is zero. This means that
the approximate dynamics given by eL0t = 1 [see Eq. (15)]

has no dynamics. The correction to the ground state is then
〈1 − L1〉−1 = 1

1+β−1 where β = �
(1)
1 /γ

(1)
1 .

We can readily solve the exact dynamics of the ground state
in terms of the dimensionless constant β and the rescaled time
τ = γ

(1)
1 t :

ρ(τ ) = β + e−(β+1)τ

β + 1
|g1〉〈g1|. (19)

As expected, we see that the correction 〈1 − L1〉−1 gives
the exact population lost β/(β + 1) for the steady state. We
can already see from this simple example that this correction
is nothing else than the detailed balance obtained from a
kinetic equation between two sites P and Q in the steady
state. Indeed, considering temporarily that P and Q are sites
connected by classical rates, and taking nP and nQ to be the
populations of the two sites and kQ→P , kP→Q the transition
rates, we can write

ṅP = kQ→PnQ − kP→QnP ,

ṅQ = −kQ→PnQ + kP→QnP , (20)

which readily yield the steady-state population in P as nP =
1

1+ kP→Q
kQ→P

. We thus identify kQ→P ≡ �
(1)
1 and kP→Q ≡ γ

(1)
1 =

n(1)π (V (1)
1 )2. It is expected that the site populations can be

written in the form of a detailed balance equation since
the Kolmogorov criterion is trivially satisfied. However, we
remark that the relevant transition rate from Q to P is the
dissipative relaxation rate �

(1)
1 while the relevant transition

from P to Q is the Hamiltonian rate γ
(1)

1 . This identification
will be recovered in the more complicated case of a two-level
system coupled to a continuum and then in a different form in
the case of a 
 system.

It is also illustrative to look at the exact solution given by
Eq. (19) in the two limits of absent (�(1)

1 = 0) and very large
dissipation (�(1)

1 � γ
(1)

1 ) from continuum to the ground state.
As the dissipation rate �

(1)
1 goes to zero, we have a discrete

level coupled to a continuum through Hamiltonian couplings
only. This is the standard model for particle decay or injection
into a band [52,53]. The evolution of the discrete state only
can be fully described by a non-Hermitian Hamiltonian alone,
entirely in Hilbert space, without the need for a Lindblad
operator. In this case, the final state has zero population in the
discrete ground state as all the population has been lost in the
continuum. The opposite limit of infinitely high dissipation re-
sults in no dynamics whatsoever with the single discrete level
being always populated. Because both cases are expressed in
superoperator space as the limits of a continuous function
of �

(1)
1 , we provide a rigorous connection between non-

Hermitian Hamiltonian decay dynamics (�(1)
1 /γ

(1)
1 → 0) and

fully trace-preserving dissipative dynamics (�(1)
1 /γ

(1)
1 → ∞)

thanks to the nonlinear term of the form − z
z+�

. This con-
nection is not restricted to the single discrete level system
but is a general feature of discrete levels coupled to a man-
ifold of continua where the evolution presents a transition
from non-Hermitian decay Hamiltonians to trace-preserving
generators, when the dissipation rate from the continuum is
varied, and which could provide insight into comparisons of
both approaches [54,55].
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Two discrete states coupled to a single continuum. The
model of a two-level system coupled to a continuous set of
states is the standard Fano model invoked so often in spec-
troscopy [35]. Once more, the Liouvillian is written as L =
−i(1 ⊗ H − H̄ ⊗ 1) + ∑

i=1,2 D(F (1)
i ), where the Hamilto-

nian H = H0 + HV is

H0 = E1|g1〉〈g1| + E2|g2〉〈g2| +
∫

dkεk1 |k1〉〈k1|,

HV = V12|g1〉〈g2| + V ∗
12|g2〉〈g1|

+
∫

dk1
[
V (1)

1 |g1〉〈k1| + V (1)∗
1 |k1〉〈g1|

]
+

∫
dk1

[
V (1)

2 |g2〉〈k1| + V (1)∗
2 |k1〉〈g2|

]
, (21)

and the quantum jump operators are

F (1)
1 =

∫
dk1

√
�

(1)
1 |g1〉〈k1|,

F (1)
2 =

∫
dk1

√
�

(1)
2 |g2〉〈k1|. (22)

Using Eq. (7) for the effective operator Leff(z) (see
Appendix C), we obtain

Leff(z) = L0 + �(z)
∑
i=1,2

Ji, (23)

where L0 = −i(1 ⊗ PHP−PH̄P ⊗ 1) +∑
i=1,2 D(Feff,i ) and

Feff,i =
∑
j=1,2

√
�

(1)
i

�
V (1)

j |gi〉〈g j |,

Ji = F̄ (1)
eff,i ⊗ F (1)

eff,i,

�(z) = − z

(z + �)
, (24)

and � = �
(1)
1 + �

(1)
2 . The effective Liouvillian can be ex-

panded in powers of z as

Leff(z) = L0 + zL1 + · · · , (25)

where

L1 = −
∑
i=1,2

Ji

�
, (26)

and the correction coefficient is α = 〈1 − L1〉−1 as in Eq. (12).
We calculate the time evolution with and without the

correction α to the trace of the density matrix. In Fig. 3, we
compare the exact evolution (solid line), the evolution with
the effective Liouvillian ρ(t ) = eL0tρ(0) (dash-dotted line),
and the corrected evolution with ρ(t ) = αeL0tρ(0) (dashed
line). For each case, we show the expectation tr[ρ(t )σk] of
the Pauli matrices σk (k = x, y, z). The initial condition is
ρ(0) = |g1〉〈g1|. For large values of the dissipation, all three
evolutions coincide as expected since there is a negligible
amount of population in the excited state. For small values
of the dissipation, there is a fraction of the population that
remains in the excited state so that evolution without the
correction factor no longer asymptotically reaches the exact
steady state.

|g1〉

|g2〉

|k

V12

V
(1)
1

V
(1)
2

Γ
(1

)

1

Γ(1)
2

FIG. 3. Fano model in the zero-temperature limit. The energies
are given in units of V (1)

1 and times in units of 1/V (1)
1 . Left column:

Small values of the dissipation rates. Right column: High values of
the dissipation rates. First row: Evolution of the expectation value
of the Pauli matrices σi (i = x, y, z) as indicated in the inset. Dash-
dotted line: Trace-preserving evolution with eL0t . Dashed line: Trace
rescaled evolution αeL0t . Second row, red circle: Nonlinear eigen-
values of Leff(z); black cross: linear eigenvalues of L0. Parameters
for the simulations are E1 = 0.0, E2 = 0.9, V12 = 0.0, V (1)

1 = 1.0,
V (1)

2 = 0.2, n = 1. All energy values are in units of V 1
1 , so that time is

in units of h̄/V (1)
1 . The starkest difference between the exact evolution

and the evolution with U (t ) = eL0t can be seen in the trace of the
subsystem. As such this approximation sometimes fails to faithfully
describe the population dynamics, which are recovered with the
rescaled operator. The eigenvalues of L0 are obtained by solving
the linear eigenvalue problem (z − L0)v = 0 and in this case are
restricted to four, while those of Leff(z) correspond to the nonlinear
eigenvalue problem [z − Leff(z)]v = 0, which can have in principle
up to 6 distinct eigenvalues.

In addition to the evolution, we show the eigenvalues of
L0 and the nonlinear eigenvalues of Leff(z) [56]. We see that
the first eigenvalues of L0 are in good agreement with those of
Leff(z). As a consequence of the Keldysh theorem [57–59] (see
Appendix F), the nonlinear eigenvalues and eigenvectors of
Leff(z) completely determine the timescales of the dynamics.
In particular the gap of Leff(z), that is, the largest and nonzero
real part of the nonlinear eigenvalues of Leff(z), determines the
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|g1〉

|g2〉 |e1〉

V12

V 1
1

V 1
2

Γ
1
1

Γ1
2

FIG. 4. Energy levels and transitions of a three-level system with
dissipation. Hamiltonian couplings are indicated by straight arrows,
dissipative processes by twisted arrows. Only decay from |e1〉 to
states |gi〉 is represented, but the complete model includes also the
reverse processes, that is, incoherent pumping.

typical timescale to reach the stationary state. We see that the
gap of Leff(z) is well reproduced by the gap of L0.

The correction factor α = 〈1 + ∑
i

Ji
�
〉−1 can also be inter-

preted as arising from a detailed balance problem between
P and Q. To make this more transparent, we recognize that
〈L0〉 = 0 (where the trace is taken over the steady-state density
matrix) so that we may write α = 〈1 − N

�
〉−1 where N =

L0 − ∑
i=1,2 Ji is the non-Hermitian Hamiltonian superoper-

ator that describes the decay of a two-level system into a
continuum. Indeed, N = −i(1 ⊗ HD − H̄D ⊗ 1) with HD =
PHP − i

∑
j=1,2[F (1)

j ]†F (1)
j . Therefore, the correction factor

α can be interpreted again as the detailed balance factor
arising from two sites P and Q equilibrating with rates kP→Q,
corresponding to that of a non-Hermitian Hamiltonian decay-
ing into a continuum, and kQ→P corresponding to a purely
incoherent transition equal to the sum of decay rates from
continuum to the discrete manifold. The dynamics themselves
however cannot be described by a simple detailed balance
problem.

B. Elimination of excited discrete states

The 
 system. The 
 system is one of the most used
model systems in adiabatic elimination [23]. Its usefulness
lies in that it sustains most of the useful features for appli-
cations in metrology, quantum computing, and thermometry,
in particular in cold-ion traps [60–72]. The Liouvillian is
L = −i(1 ⊗ H − H̄ ⊗ 1) + ∑

D(Fi ), where (see Fig. 4)

H0 = E1|g1〉〈g1| + E2|g2〉〈g2| + E3|e1〉〈e1|,
HV = V12|g1〉〈g2| + V ∗

12|g2〉〈g1| + V 1
1 |g1〉〈e1| + V 1∗

1 |e1〉〈g1|
+V 1

2 |g2〉〈e1| + V 1∗
2 |e1〉〈g2|, (27)

and the jump operators are

F 1
1 =

√
�1

1 |g1〉〈e1|,

F 1
2 =

√
�1

2 |g2〉〈e1|,

F 1′
1 =

√
�1′

1 |e1〉〈g1|,

F 1′
2 =

√
�1′

2 |e1〉〈g2|. (28)

The operators F j
i and F j′

i represent incoherent channels going
from the excited to the ground-state manifold, and from the
ground-state manifold to the excited state, respectively.

The effective operator Leff(z) = PLP + PLQG0(z)QLP
can be written in the perturbative limit up to order O((V 1

i )2/�)
for i = 1, 2, and in the zero-temperature limit, as

Leff(z) =
4∑

j=1

(
1 + M�

z + �

)
h j

z − ξ j
, (29)

where we have used the notation

h1 = σσ † ⊗ S†
0S0, ξ1 = −iωe1g1 − �/2,

h2 = S†
0S0 ⊗ σσ †, ξ2 = iωe1g1 − �/2,

h3 = σ †σ ⊗ S†
0S0, ξ3 = −iωe1g2 − �/2,

h4 = S†
0S0 ⊗ σ †σ, ξ4 = iωe1g2 − �/2, (30)

where ωe1gi = (Ee1 − Egi )/h̄, S0 = ∑
i V 1

i |e1〉〈gi|, and M =
−∑2

i=1
Mi�

1
i

�
, M1 = σ †σ ⊗ σ †σ + σ † ⊗ σ †, M2 = σσ † ⊗

σσ † + σ ⊗ σ . The operator σ is defined as σ = |g2〉〈g1|.
After some algebra we get

Leff(z) = L0 + zL1 + O(z2),

L0 =
4∑

i=1

(1 + M )
hi

−ξi
,

L1 = M

�

4∑
i=1

hi

ξi
+ (1 + M )

4∑
i=1

hi

−ξ 2
i

. (31)

The form of the operators in the finite-temperature limit (with
incoherent pumping from ground to excited state) is given
in Appendix D. As in Fig. 3, in Figs. 5 and 6, we show
the evolution of the expectation of the Pauli matrices as a
function of time t for the same initial state. In Fig. 5 zero
temperature is considered where only dissipation from excited
to discrete states takes place (�′1

i = 0). On the contrary, in
Fig. 6 the temperature is taken as infinite with equal rates
for the dissipation from excited to ground and from ground
to excited states (�′1

i = �1
i ). In the zero-temperature case,

there is a negligible amount of population in the excited
state [for the perturbative calculation of (QLQ)−1 to remain
valid], and both the evolution with U (t ) = eL0t and that with
U (t ) = αeL0t work well. We notice that the gap of Leff(z) in
the infinite-temperature case is very well reproduced by the
one of L0 even though there is a significant population in the
excited state (lower right panel of Fig. 6).

In the case of infinite temperature, the weak-field approx-
imation is valid (so we can calculate the inverse of QLQ
perturbatively) but there is a non-negligible population in the
excited state. In this case, the correction α introduced in this
article works very well in reproducing the final dynamics,
while using a trace-preserving map does not. Writing the
density matrix as a linear combination of Pauli matrices
and the identity operator makes evident that the dynamics is
well reproduced by L0 (the Pauli matrices’ evolutions with
all operators are very close) as long as we use the correct
normalization.
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FIG. 5. Same as Fig. 3 for a 
 system in the zero-temperature
limit. We show the trace of the density matrix and all three ex-
pectation values of the Pauli matrices. The parameters are E1 = 7,
E2 = 9, E3 = 6, V12 = 0, V 1

1 = 1.0, V 1
2 = 0.7. All energy values are

in units of V 1
1 , so that time is in units of h̄/V 1

1 . The starkest difference
between the exact evolution and the evolution with U (t ) = eL0t can
be seen in the trace of the subsystem. As such this approxima-
tion sometimes fails to faithfully describe the population dynamics,
which are recovered with the rescaled operator. The calculation of
the resolvent (QLQ)−1 is done perturbatively in the field to the
lowest order. A simulation with the exact resolvent is presented in
Appendix H. The eigenvalues of L0 are obtained by solving the linear
eigenvalue problem (z − L0 )v = 0 and in this case are restricted to
four, while those of Leff(z) correspond to the nonlinear eigenvalue
problem [z − Leff(z)]v = 0, which can have in principle up to 9
distinct eigenvalues.

IV. CONNECTION BETWEEN MODELS
WITH ELIMINATION OF CONTINUOUS

AND DISCRETE STATES

In this section we consider the connection between models
where the states to be eliminated belong to a continuous
set and models where theses states are discrete. Although
Hamiltonians with continuous spectra represent a myriad of
physical systems in their own right, they can also be viewed as
useful ancillary mathematical structures that make the physics
behind the more complicated Hamiltonians with a discrete
spectrum more transparent. The reason for this is that Lamb
shifts (or the conservative part of the level-shift operator)
are absent in the case of a flat continuum (in the wideband
approximation). The question we ask is, When does it matter
whether we describe the excited states (which we would like
to eliminate) as discrete states or as approximate continua?

Intuitively, both classes of models should coincide when
the population of the excited states is negligible. We will
show that this happens in two cases: (i) as the dissipation
rate increases, the population of the excited state asymptoti-
cally vanishes, and (ii) at the points of coherence population

FIG. 6. Same as Fig. 5 with the same parameters and in the
infinite-temperature limit which opens incoherent transitions from
ground to excited state with the same rate as the dissipation from
the excited to the ground state. We show the trace of the density
matrix and all three expectation values of the Pauli matrices. The
starkest difference between the exact evolution and the evolution
with U (t ) = eL0t can be seen in the trace of the subsystem. As
such this approximation sometimes fails to faithfully describe the
population dynamics, which are recovered with the rescaled operator.
The calculation of the resolvent (QLQ)−1 is done perturbatively in
the field to the lowest order. A simulation with the exact resolvent
is presented in Appendix H. The eigenvalues of L0 are obtained
by solving the linear eigenvalue problem (z − L0)v = 0 and in this
case are restricted to four, while those of Leff(z) correspond to the
nonlinear eigenvalue problem [z − Leff(z)]v = 0, which can have in
principle up to 9 distinct eigenvalues.

trapping (CPT), the transition probability amplitudes to the
excited state interfere destructively and the population of the
excited state exactly vanishes [60–64,73,74].

Coincidence for large values of the dissipation. We calcu-
late the limit of the effective operators L0 and L1, as �/ω j →
∞. For this we recast them in terms of the smallness parame-
ters δ j = −iω j/(�/2), for j ∈ {e1g1, g1e1, e1g2, g2e1}. As we
take the limit of large dissipation lim�→∞ δ j = 0, we get for
the effective operators

L(3LS)
eff (z) = L(3LS)

0 + zL(3LS)
1 + O(z2),

L(3LS)
0 =

∑
j

(1 + M )
h j

(1 − δ j )�/2

≈
∑

j

(1 + M )
h j

�/2

= 2

n(1)π�
L(cont)

0 ,
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FIG. 7. Ground-state population and fidelity of the steady-state
density matrix evolved according to the exact and several approxi-
mate operators as a function of the dissipation rate. The parameters of
the calculation are E1 = 0.5, E2 = −0.1, E3 = 0.01, V12 = 0, V (1)

1 =
0.1, V (1)

2 = 0.15. The calculation of (QLQ)−1 is done perturbatively
to lowest order in the Hamiltonian coupling.

L(3LS)
1 = −M

�

∑
j

h j

(1 − δ j )�/2

+ (1 + M )
∑

j

h j

−(1 − δ j )2(�/2)2

≈ 2

n(1)π�
L(cont)

1 − 2

n(1)π�
L(cont)

0 , (32)

where the labels (3LS) and (cont) mean 3-level system and
continuum models, respectively. We find that in the limit
of large dissipation, the continuum and discrete effective
operators for L0 are the same as long as we set the density
of states in the continuum model as n = 2/(π�), while they
differ for L1. We can understand this convergence of operators
as follows. The level-shift operator for the discrete excited
states consists of a real part related to the dissipation and
an imaginary part related to the Lamb shift. That of a flat
continuum only has the real dissipative part. As the dissipation
rate increases, the Lamb shift part of the operator becomes
negligibly small and a discrete excited state becomes analo-
gous to a continuum manifold as far as the evolution of the
ground states is involved.

In Fig. 7, we show the convergence of these models
toward the exact solution of a 
 system. For this we
plot the steady-state population in the ground states and
the steady-state fidelity as a function of dissipation rate
from excited states to ground states. We rescale the fidelity
F = Tr(

√√
ρexactρ

√
ρexact )

2
/[Tr(ρ)Tr(ρexact )] by a factor 1 −

[Tr(ρ) − Tr(ρexact )]2 which penalizes evolution operators that
do not have the correct asymptotic trace. We clearly see that
the rescaled steady state for a three-level system performs
best, and that the rescaled steady state for an equivalent
continuum and the unscaled steady state for the three-level
system approach the correct solution for similar values of the
dissipation rate.

Coincidence at the coherent population trapping points. It
can be shown that as long as we do not have dissipation within
the ground-state manifold, or from the ground-state manifold
to the excited state, that there will be points of coherent
population trapping as long as the steady state ρ fulfills the

FIG. 8. Ground-state population and fidelity of the steady-state
density matrix evolved according to the exact and several approx-
imate operators as a function of the dissipation rate, at the CPT
condition. All traces overlap.

following conditions [74]:

[PHP, ρ] = 0,

QHPρ = 0. (33)

FIG. 9. Steady-state population in the ground-state manifold
ρg1g1 and ρg2g2 , and in the excited-state manifold ρe1e1 , with a three-
level system, a Fano model, and an effective Liouvillian evolution
with L0 for the three-level system. Parameters are V (1)

1 = 1.7, V (1)
2 =

1.0. The detuning between g2 and e1 is set to zero while the detuning
between g1 and e1 is varied. All energies are given in units of V (1)

2 .
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Remarkably, this condition is independent of the value of
the dissipation rate (as long as ρ is a dark state), so that we
are free to choose an arbitrarily large value and still retain
the property of CPT where the population is restricted to
the ground-state manifold. Accordingly, it follows from the
previous paragraph that if we scale n(1) = 2/(π�) then the
effective operators will be the same. It also follows that since
α = 1, then 〈L1〉 = 0.

We illustrate the effect of coherence population trapping
points on our models in Figs. 8 and 9. By plotting the ground-
state population and fidelity of the three models at the CPT
condition we see that all four models coincide (Fig. 8). To
further stress the equivalence of the models around CPT, we
plot the steady state of a three-level system, of a Fano model,
and of the effective Liouvillian L0 for a three-level system,
as a function of the detuning of the ground states Eg1 − Eg2

(Fig. 9). We observe the CPT point at zero detuning where all
three models coincide. The unscaled L0 only agrees at the CPT
condition since it preserves the population in the ground-state
manifold while both the continuum and the exact 
 system
agree around a neighborhood of the CPT point.

We have shown that replacing discrete excited states by
continua corresponds to taking the limit of large dissipation,
or alternatively finding the CPT points. This is important
since the effective operator with a continuum is much more
straightforward to calculate exactly than that of a discrete
level. Thus calculations that fulfill these conditions, if carried
out using these simplified operators, can be more easily solved
analytically.

V. CONCLUSION

We have derived expressions for the adiabatic elimination
of a fast manifold in frequency space. This has allowed us
to correct for particle density loss to the fast manifold and
rescale the evolution operator. We have illustrated this with
examples spanning discrete and excited state continua which
show the advantages of the correction factor as well as its
physical meaning. We have provided an equivalence between
the discrete and continuum models at the CPT condition and
in the limit of large dissipation, giving insight into commonly
used adiabatic elimination approaches.
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APPENDIX A: OPERATOR VERSUS
SUPEROPERATOR NOTATION

For an N-level system, the underlying Hilbert space H
is of dimension N and the states of the quantum systems
are described by positive operators acting on H that can be
represented by N × N density matrices. The superoperators
such as the Lindblad operator L or its resolvent G are linear
operators acting on operators themselves acting on H.

To describe an open quantum system we need to know the
evolution of the density matrix using the Lindblad equation,
which in Hilbert H space is written as

ρ̇(t ) = Lρ = −i[H, ρ(t )] +
∑

i

[
FiρF †

i − 1

2
{F †

i Fi, ρ(t )}
]

(A1)
or as

ρ(t ) = eLtρ(0) = 1

2π i

∫
dz

ezt

z − L
ρ(0). (A2)

A disadvantage of this form is that neither the exponential
map nor the resolvent can be straightforwardly expressed or
calculated numerically. It is therefore convenient to represent
the density matrix as a vector �ρ with N2 components, obtained
from the column-stretched form of the N × N density matrix.
This representation is obtained by considering the density
matrix as an element �ρ of the Hilbert space H ⊗ H [40].
In that way, superoperators are linear operators acting on
H ⊗ H and they can be represented by N2 × N2 matrices.
The linear superoperator acting on �ρ, built from 2 arbitrary
operators Sn and Sm on H and acting on ρ as SnρS†

m, is given
by the mapping SnρS†

m → (S̄m ⊗ Sn �ρ ). With the help of this
mapping, the Lindblad operator operating on the vector form
of the density matrix as d

dt �ρ(t ) = L�ρ(0) is

L = −i(1 ⊗ H − H̄ ⊗ 1)

+
∑

i

{
F̄i ⊗ Fi − 1

2
[1 ⊗ F †

i Fi + (F †
i Fi )

T ⊗ 1]

}
. (A3)

APPENDIX B: PERTURBATIVE INVERSION OF QLQ

We consider a generic system, with a Hamiltonian H
written as H = H0 + V , where H0 = PHP + QHQ and V =
PHQ + QHP. Let |i; p〉 (| j, q〉) be the eigenstates of PHP
(QHQ), with i = 1, 2, . . . , Np ( j = 1, 2, . . . , Nq). For the dis-
sipation processes, we consider relaxation from the fast sub-
space ran[Q] to the slow subspace ran[P], described by jump
operators Fi j = √

�i j |i; p〉〈 j; q|, relaxation from the slow sub-
space to the fast subspace described by jump operators Jji =√

γi j | j; q〉〈i; p|, and finally we also consider relaxation inside
ran[P], described by jump operators Nm which we do not
specify as they do not intervene in QLQ. We neglect all the
dissipation processes between states belonging to ran[Q].

It is convenient to define a non-Hermitian Hamiltonian
operator K = K0 + V where

K0 = H0 − ı

2

⎛
⎝∑

i j

F †
i j Fi j +

∑
i j

J†
jiJ ji +

∑
n

N†
mNm

⎞
⎠

has a diagonal matrix representation in the basis {|i; p〉, | j, q〉}.
We can then rewrite the Lindblad operator L as [see Eq. (A3)]

L = −ı(1 ⊗ K − K̄ ⊗ 1) +
∑

i j

(F̄i j ⊗ Fi j + J̄ ji ⊗ Jji )

+
∑

n

N̄n ⊗ Nn.
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Using the expression of Q given by Eq. (2), we notice that
F̄i j ⊗ Fi j = PF̄i j ⊗ Fi jQ, J̄ ji ⊗ Jji = QJ̄ ji ⊗ JjiP , and N̄n ⊗
Nn = PN̄n ⊗ NnP .

Therefore QLQ can be written as

QLQ = LD + W,

where LD = −ıQ(1 ⊗ K0 − K̄0 ⊗ 1)Q has a diagonal ma-
trix representation in the basis {|i; p〉 ⊗ | j, q〉} and W =
−ıQ(1 ⊗ V − V ⊗ 1)Q has a nondiagonal matrix represen-
tation in the same basis.

The nondiagonal part of QLQ depends only on the Hamil-
tonian coupling V which can be considered as a small pertur-
bation with respect to the diagonal part when the relaxation of
the fast space ran[Q] is fast (�i j � Vi j).

APPENDIX C: GENERAL CASE OF Ng GROUND STATES
COUPLED TO Ne CONTINUA

We provide here the general expressions to calculate the
effective Liouvillian for Ng discrete ground states coupled to
Ne continua, from which the more specific examples detailed
in the main text can be derived. The complete Liouvillian for
such a system is

H = H0 + HV + HVp,

H0 = Ei|i〉〈i| +
∑

a

∫
dkaEka |ka〉〈ka|, (C1)

HV =
∑

a

∫
dka

[
V (a)

i |i〉〈ka| + (
V (a)

i

)∗|ka〉〈i|
]
,

HVp =
∑
i, j

[Vi j |i〉〈 j| + V ∗
i j | j〉〈i|]. (C2)

With the dissipative part the Liouvillian is

L = −i(1 ⊗ H − H̄ ⊗ 1) +
∑
i,a

D
(
F (a)

i

)
, (C3)

F (a)
i =

√
�

(a)
i

∫
dka|gi〉〈ka|. (C4)

The effective operators are obtained in a calculation similar
to what we have done previously [38] but keeping the z
dependence of the operators. Briefly, we define the projection
operators for the continuous part (Q) and the discrete part (P).
The effective Liouvillian [see Eq. (7)] hinges on the resolvent
operator in Q. This operator can be expanded in a Lippman-
Schwinger series that is exactly resummed for the wideband
approximation, where the parameters of the continuum do not
depend on the continuum energy. We obtain

Leff(z) = −i(1 ⊗ H − H̄ ⊗ 1) +
Ng∑
i

Ne∑
a

D
(
F (a)

eff,i

)

+
Ng∑
i

Ne∑
a

f (a)(z)F̄ (a)
eff,i ⊗ F (a)

eff,i, (C5)

where F (a)
eff,i = ∑

j

√
�

(a)
i∑

l �
(a)
l

n(a)πV (a)
j |i〉〈 j| and f (a)(z) =

− z
z+∑

l �
(a)
l

clearly vanishes when z = 0. We recognize that the

nonlinear operator can be written as a z-independent part in
Lindblad form and a z-dependent part which involves only the
incoherent jump F̄ (a)

eff,i ⊗ F (a)
eff,i from |kaka〉 to |gigi〉 that restores

population to the states gi. From the above expressions the
specific cases in the examples section (Sec. III) can be
straightforwardly derived.

APPENDIX D: Leff (z) FOR A � SYSTEM
AT FINITE TEMPERATURE

We give the general expression for the effective operator
of a 
 system with incoherent transitions from the ground-
state manifold to the excited states. The generalization of the
operator presented in the main text is

Leff(z) =
(
1 + M�

z + �

) 4∑
j=1

h j

z − ξ j

(
1 + M ′�′

z + �

)

+ 1

2

MM ′��′

z + �
, (D1)

where we have used the notation ξ j = {±iωe1g1 − �/2 −
�′1

1 /2,±iωe1g2 − �/2 − �′1
2 /2} and � = �1

1 + �1
2. The h j ma-

trices are defined as follows:

h1 = σσ † ⊗ S†
0S0, ξ1 = −iωe1g1 − �/2 − �′1

1 /2,

h2 = S†
0S0 ⊗ σσ †, ξ2 = iωe1g1 − �/2 − �′1

1 /2,

h3 = σ †σ ⊗ S†
0S0, ξ3 = −iωe1g2 − �/2 − �′1

2 /2,

h4 = S†
0S0 ⊗ σ †σ, ξ4 = iωe1g2 − �/2 − �′1

2 /2, (D2)

where S0 = ∑
i V 1

i |e1〉〈gi|, M = −∑2
i=1

Mi�
1
i

�
, M1 = σ †σ ⊗

σ †σ + σ † ⊗ σ †, M2 = σσ † ⊗ σσ † + σ ⊗ σ and M ′ =
−∑2

i=1
M ′

i �
′1
i

�′ , �′ = �′1
1 + �′1

2 , M ′
1 = σ †σ ⊗ σ †σ + σ ⊗ σ ,

M ′
2 = σσ † ⊗ σσ † + σ † ⊗ σ †. The operator σ is defined as

σ = |g2〉〈g1|.

APPENDIX E: L0 GENERATOR OF A
TRACE-PRESERVING DYNAMICS

Let us recall the expression for L0:

L0 = PLP − PLQ(QLQ)−1QLP . (E1)

We can rewrite this equation as

L0 = LA − G, (E2)

where we have defined the operators A and G as follows:

A = P − (QLQ)−1QLP, (E3)

G = [1 − QLQ(QLQ)−1]QLP = Q′QLP . (E4)

In all the above equations, A−1 signifies the Moore-Penrose
inverse of A [75] which coincides with the matrix inverse
when A is invertible. Finally, we have defined Q′ = 1 −
QLQ(QLQ)−1, which is an orthogonal projector [76] to
ker [(QLQ)†] = ran[QLQ]⊥, where ⊥ stands for the orthogo-
nal complement.
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In order for L0 to be a generator of a trace-preserving
map, the maximally mixed state [ρ] = 1

N 1H must be a left
eigenvector for L0 with eigenvalue 0, where N is the di-
mension of H. In vector form, we can associate with �ρ
the maximally entangled state |1H〉 ∈ H ⊗ H. Therefore, the
trace-preserving condition can be written as

L†
0 |1H〉 = G†|1H〉 = 0, (E5)

where we have used the fact that L is a Lindblad operator,
hence generating a trace-preserving dynamics. If we define
the set X as

X = ran[QLQ]⊥ ∩ ran[QLP], (E6)

then a sufficient condition for L0 to generate a trace-preserving
dynamics is that |1H〉 is orthogonal to the set X . Equivalently,
since X ⊆ ran[Q], we can write this condition as

|�Q〉 ⊥ X , (E7)

where we have defined the state |�Q〉 = ∑
iq

|iq〉 ⊗ |iq〉, with
the index iq enumerating the left eigenvectors of Q corre-
sponding to eigenvalue 1.

In all the examples considered in this article, we had
ran[QLP] ⊆ ran[QLQ] = ran[Q] implying that X is an
empty set and, therefore, the fulfillment of the above
condition.

APPENDIX F: KELDYSH THEOREM

For the sake of completeness, we recall here the Keldysh
theorem. We consider only the case where the nonlinear
eigenvalues are simple. This section is based on the material
of Ref. [59]. To connect our notation with the usual statement
of the theorem, we define T (z) such that T (z) = z1 − Leff(z);
therefore PG(z)P = [T (z)]−1.

First we recall the definition of a nonlinear eigenvalue λ

of T (z): λ is an eigenvalue of T (z) if T (λ)v = 0 for some
nonzero vector v. The vector v is the right eigenvector of T .
The eigenvalue is called simple if in addition

ker[T (λ)] = span{v}, v �= 0, T ′(λ)v /∈ ran[T (λ)].

In this case the adjoint T † of T satisfies

ker[T †(λ)] = span{w}
for some nonzero vector w, and furthermore, w†T ′(λ)v �= 0.
Without loss of generality we can choose

w†T ′(λ)v = 1, (F1)

where T ′(λ) is the value of the derivative of T (z) with respect
to z, taken at z = λ.

The Keldysh theorem states the following: Let D be a
compact subset that contains only simple eigenvalues λn, n =
1, . . . , N , with right and left eigenvectors vn and wn, respec-
tively; then there is a neighborhood U of D and a holomorphic
function R(z) such that

T (z)−1 =
N∑

n=1

1

z − λn
vnw

†
n + R(z). (F2)

Now, if we assume that all the eigenvalues of T are simple,
then we can use Eq. (F2) to calculate Pρ(t ), performing the

integration of Eq. (6), and we obtain

Pρ(t ) =
N∑

n=1

eλntvnw
†
nρ(0), (F3)

where we recall that we use the normalization w†
nT ′(λ)vn = 1.

In particular for λ = 0, we have T ′(0) = 1 − L1; thus w
†
0 (1 −

L1)ρ = 1, where ρ = v0 is the kernel of L(z = 0) = L0.

APPENDIX G: CORRECTION
TO THE STEADY-STATE TRACE

We know that the steady state ρ f of the system will be in
the kernel of L0; that is, ρ f = αρ̄, where L0ρ̄ = 0 and tr[ρ̄] =
1. We are only left with determining the constant α. This can
be done from the final value theorem:

ρ f = lim
z→0

zPG(z)Pρ(0) = lim
z→0

z[z − Leff(z)]−1ρ(0). (G1)

We expand Leff(z) as Leff(z) = L0 + zL1 + z2L2 + · · · and get

ρ f = lim
z→0

z[z − Leff(z)]−1ρ(0)

= lim
z→0

z

z(1 − L1) − L0 + O(z2)
ρ(0). (G2)

Multiplying by (1 − L1), and taking the limit, we obtain

[1 − L1]ρ f = [1 − L1]αρ̄ = lim
z→0

[
1 − 1

z
L0(1 − L1)−1

]−1

ρ(0).

Taking the trace of both sides, we obtain

α = 1

tr[(1 − L1)ρ̄]
, (G3)

where we have used the fact that the dynamics generated by L0

is trace preserving, implying that tr[L0ρ] = 0 for all operators
ρ and where we have considered that tr[ρ(0)] = 1.

The same result can be obtained using the Keldysh the-
orem. Indeed, taking the limit t → ∞ of Eq. (F3), we get
ρ f = ρ̄w

†
0ρ(0) = αρ̄ and thus α = w

†
0ρ(0), which in matrix

form means

α = tr[w†
0ρ(0)],

where w0 is such that L†
0w0 = 0, and w

†
0T ′(0)ρ̄ = 1; that is,

w
†
0 (1 − L1)ρ̄ = 1. (G4)

But in matrix form, [w0] is proportional to the identity, [w0] =
β1H. This is a consequence of the trace-preserving dynamics
induced by L0. Therefore, Eq. (G4) gives β∗tr[(1 − L1)ρ̄] =
1, and α = β∗tr[ρ(0)]. Considering that tr[ρ(0)] = 1, we
obtain the same result as in Eq. (G3).

APPENDIX H: SIMULATIONS FOR THE � SYSTEM
USING AN EXACT RESOLVENT

Figures 10 and 11 show the same dynamics as Figs. 5 and
6, but using an exact form of the resolvent (QLQ)−1 valid to
all orders of the Hamiltonian couplings between P and Q.
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FIG. 10. Same as Fig. 5, but using an exact form of the resolvent
(QLQ)−1 valid to all orders of the Hamiltonian couplings between P
and Q.

FIG. 11. Same as Fig. 6, but using an exact form of the resolvent
(QLQ)−1 valid to all orders of the Hamiltonian couplings between P
and Q.
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[62] K.-J. Boller, A. Imamoğlu, and S. E. Harris, Phys. Rev. Lett. 66,
2593 (1991).
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