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Abstract
�H2 is an ideal candidate for the detailed study of strong-field coherent control strategies inspired

by basic mechanisms referring to some specific photodissociation resonances. Two of them are
considered in this work, namely: zero-width resonances (ZWRs) and coalescing pairs of
resonances at exceptional points (EPs). An adiabatic transport theory based on the Floquet
Hamiltonian formalism is developed within the challenging context of multiphoton dynamics
involving nuclear continua. It is shown that a rigorous treatment is only possible for ZWRs,
whereas adiabatic transport mediated by EPs is subjected to restrictions. Numerical maps of
resonance widths and non-adiabatic couplings in the laser parameter plane help in optimally
shaping control pulses. Full time-dependent wavepacket dynamics shows the possibility of
selective, robust filtration and vibrational population transfers, within experimentally feasible
criteria.

Keywords: photodissociation, strong-field control, resonances, adiabatic transport, vibrational
population transfer, filtration
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1. Introduction

Laser control targeting selective, efficient and robust transfers
between the states of a quantum system remains very pro-
mising in atomic and molecular physics, and opening up a
large variety of applications extending from photochemistry
to quantum information technologies [1–5]. When a mole-
cular species is subjected to strong laser fields, not only can
its structure be greatly altered, but also its dynamical evol-
ution could give rise to spectacular effects within the frame of
above-threshold dissociation (ATD) or ionization (ATI) and
their interplay, up to Coulomb explosion of protons [6, 7].
Moreover, at some critical large internuclear distances of the

dissociation process, enhanced ionization mechanisms are
predicted through non-perturbative models [8]. In addition,
strong non-adiabaticities may take place in the vicinity of
light-induced conical intersections predicted even for dia-
tomic species where the two degrees of freedom required for
such geometries of potential energy surfaces are the vibra-
tional coordinate and the field-induced rotational motion
[9–11]. Most of the basic mechanisms underlying such effects
have been studied, both theoretically and experimentally, on

�H2 and its isotopic parent �D2 , the simplest and lightest sys-
tems, with two energetically well-isolated electronic states,
still presenting enough generic characteristics and potentiality
to be transposed to larger molecules. Control strategies
tracking dynamical changes are used taking advantage of
antagonistic basic mechanisms such as barrier lowering as
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opposed to dynamical dissociation quenching (DDQ) for
selective trapping of a given decaying process, or slowing
down of a given reactivity channel [12, 13]. Other optimal
control schemes are based on the deep structural changes
undergone by the molecular system due to the strength of the
laser field. Among them are the well-known bond-softening
(BS) versus vibrational-trapping (VT) mechanisms [14–16],
which are often referred to as channel-selective molecular
reactivity or alignment and orientation control [17]. Specific
resonances support the interpretation of such basic mechan-
isms. They roughly pertain to two distinct classes with well-
differentiated characteristics: Shape-type, when a single field-
dressed adiabatic potential barrier is concerned, as in the BS
process; or Feshbach-type, involving a quasi-bound state
accommodated by a bound field-dressed adiabatic potential
embedded in, and coupled to, some dissociation continua, as
in the VT process. Tunneling occurs for Shape-type reso-
nances, resulting in an important increase of the decay rates
(imaginary part of eigenenergies) for strong fields. Their short
lifetimes render these resonances less interesting for long-
term control strategies. In contrast, non-adiabatic (kinetic)
couplings characterize Feshbach-type resonances. Such cou-
plings decay with increasing field intensity [18], giving rise to
more robust, long-lived resonances that are well adapted to
long-term control. It is worthwhile noting that the interplay
between these two types of resonances can efficiently be used
not only for coherent control purposes, but also for detailed
analyses and interpretations of the outcome of sub-femtose-
cond to attosecond time-resolved pump-probe interferometric
spectroscopy, as has recently been performed for a dis-
sociative ionization study of H2 [19, 20].

The exotic resonances we refer to in this work lead to
even more unexpected, but still achievable, efficient dis-
sociation quenching or selective transfer processes. Once
again, �H2 and �D2 turn out to be good candidates providing
realistic and generic models. These exotic states can be
reached for some specific laser parameters (namely, wave-
length λ and intensity I). In the following we consider two
such exotic states known as zero-width resonances (ZWR)
and exceptional points (EPs). ZWRs are related to destructive
interference taking place among fluxes contributing to the
outgoing scattering amplitude originating from a vibrational
state decaying through two field-dressed molecular adiabatic
channels, characterizing a Feshbach-type resonance. The
coherent phase peculiarity leading to the destructive inter-
ference pattern can only be achieved for certain couples of
laser parameters (M I, ), leading to (in principle) infinitely
long-lived resonances for both continuous-wave [21, 22] and
pulsed lasers [23]. The consequence is vanishing photo-
dissociation rates in strong as well as weak field regimes,
different in that respect from VT. As for EPs, at least in the

�H2 case, they concern some specific behavior of a pair of
Shape- and Feshbach-type resonances which are coalescing.
The point in the parameter plane (M I, ) corresponding to this
coalescence is called an EP [24, 25]. More precisely, an EP is a
branch point between two resonances with a full degeneracy of
their complex eigenvalues (both energy and decay rate) descri-
bed by a unique wavefunction showing self-orthogonality [26].

The consequence, in terms of bifurcation properties is that, if
laser parameters are varied continuously to encircle such a branch
point, it becomes possible to transfer one resonance on the other
[27, 28]. The efficiency of such a continuous transfer is strongly
dependent on the relative values of the decay rate for the two
resonances involved in the EP. Since only the less dissipative
resonance is a legitimate candidate for an adiabatic following
[29], population transfers between quantum states are only pos-
sible using specific directions when following the laser loop
encircling the EP, leading to an asymmetric state flip [30–34].

In molecular physics examples can be found for both
ZWRs and EPs. The observation of narrow rotational lines
in IBr predissociation, despite strong interchannel couplings,
has been interpreted in terms of ZWRs [35]. The collision
between an electron and a H2 molecule provides an example
of EP [36]. Other recent examples are the use of EPs for
control objectives in hydrogen atomic spectra [37] or in
dressed helium atoms [38]. Until now, there has been no
direct experimental evidence of quantum-controlled pro-
cesses using ZWRs or EPs in the field of molecular physics.
Going beyond photodissociation, an experiment has been
suggested to evidence the footprints of EPs in lithium dimer
photoassociation [39]. In a more general context, an exper-
imental proof has been provided for an asymmetric switch
between different waveguide modes around an EP during the
transmission process [40]. The objective of the present work
is to review adiabatic control schemes using laser-induced
molecular ZWRs and EPs and to improve their robustness
and their selectivity, in order to design laser pulses which
may lead to experimental achievements. Our purpose here is
to produce ZWRs and EPs at will and in a controllable way
in the spectrum of a laser-driven diatomic molecule, by
continuously tuning laser parameters. Our control objective
is either filtration among vibrational states when addressing
ZWRs, or population transfer from a given vibrational state
v to �v 1 using an EP( �v v, 1). More precisely, starting in
field-free conditions, from a vibrational state v of �H2 in its
ground electronic state, the laser pulse has to be shaped in
such a way to transpose v on its parent resonance of the
Floquet Hamiltonian description. The ZWR strategy consists
of building this resonance as a zero-width one and to track it
adiabatically all along the pulse. At the end of the pulse, this
particular vibrational state v is protected against dissocia-
tion, whereas all other a vv v are decaying. This is precisely
the filtration scheme which can be used for various purposes,
as isotope separation in � �H D2 2 mixtures [21], or vibrational
cooling [41]. The EP strategy consists of tracking the reso-
nance originating, in field-free conditions, from v, and to
transport it, while encircling EP( �v v, 1), which at the end
of the pulse merges in the field-free vibrational state �v 1.
Such population transfers can be used for getting specific
vibrational populations (population inversions aiming at
laser applications, for instance), or vibrational cooling
(transferring the whole vibrational population on the ground
v= 0 level).

Finally, as our control schemes are based on finite lifetime
resonances, the most important challenge remains robustness,
that is the vibrational population left non-dissociated at the end
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of the pulse. This precisely addresses the still open question of
adiabaticity in such open quantum systems involving a dis-
sipative continuum. The originality we are claiming is to shape
a control field which drives the resonances avoiding their
mixing (single resonance tracking) and takes as much advan-
tage as possible of the less dissipative process. After a brief
review of ZWRs and EPs within the frame of the multiphoton
Floquet Hamiltonian model as applied to �H2 (section 2), we
proceed to a complete derivation of the adiabatic control theory
both for ZWR and EP (section 3). ZWR filtration and EP
population transfer strategies are illustrated on some specific
vibrational levels of �H2 (section 4).

2. Exotic resonances in strong-field
photodissociation

In this section, we examine the role played by two classes of
(exotic) resonances and the control strategies associated with
the basic mechanisms they are inducing in the strong-field
photodissociation dynamics of �H2 . More precisely, we
address the branch-point properties of EPs [24, 25, 41], or the
trapping properties of ZWRs [22, 42]. Both have recently
been used for efficient adiabatic population transfer with the
purpose of selective preparation (filtration) of a given single
ro-vibrational state and, in particular, for the laser control of
molecular ro-vibrational cooling.

2.1. Multiphoton Floquet formalism as applied to H +
2

The photodissociation dynamics of a rotationless �H2 molecule
can be described by a one-dimensional model within the fra-
mework of Born–Oppenheimer approximation, using only two
electronic states labeled §∣1 and §∣2 . For �H2 , label 1 addresses the
ground electronic state 4�X g

2 which accommodates 19 bound
vibrational levels, whereas label 2 points to the purely repulsive
excited state 4�A u

2 . The time-dependent wavefunction being
written as

G G' § � § § � § §∣ ( ) ∣ ( ) ∣ ∣ ( ) ∣ ( )R t R t R t, , 1 , 2 , 11 2

nuclear dynamics is obtained by solving the time-dependent
Schrödinger equation (TDSE),
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TN represents the nuclear kinetic energy operator, ( )V R1 and
( )V R2 are the Born–Oppenheimer potential energy curves

corresponding to states §∣1 and §∣2 and N ( )R12 is the electronic
transition dipole moment between these two states [43]. �( )t is
the linearly polarized electric field amplitude. In the case of a
continuous-wave (cw) laser, the electric field is simply defined
by its constant amplitude E and angular frequency ω,

� X�( ) ( ) ( )t E tcos , 3

or equivalently by its intensity (I∝E2) and wavelength

M Q X� c c2 , being the speed of light. Since the Hamiltonian is
strictly periodic, the Floquet theorem applies,
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with time-periodic functions D �( ) ( )R t k, , 1, 2k and a com-
plex quasi-energy DE . Their Fourier expansion leads to
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where the R-dependent Fourier components obey, for any n, the
following set of coupled equations:
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It has to be noted that the above coupled equations can
equivalently be formulated as an eigenvalue problem for the
Floquet Hamiltonian,
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where H(t) denotes the molecular Hamiltonian appearing in the
right-hand side of (2). A specific solution (v) is identified in (7),
by labeling both the eigenenergy �DE Ev and the corresp-
onding eigenvector D ( )R t,k v, . For moderate field intensities,
single-photon processes predominate and we usually consider
only a few channels. In the most basic approximation we shall
consider only the Fourier component �( )n 0 of D ( )R t,v1, and
the � �( )n 1 component of D ( )R t,v2, . The left panel of
figure 1 illustrates the potential energy curves of �H2 dressed by
a cw laser field of wavelength M � 440 nm in a six-channel
approach describing the absorption of up to three photons and
the emission of up to two photons. These channels, in relation
with the notations of (6) are labeled with two indices; namely: 1
or 2 for g and u symmetry states respectively, and n for the
number of photons exchanged with the field.

Close-coupled equations (6) are solved referring to two
classes of computational methods. Grid methods lead to very
accurate results using Fox–Goodwin propagation algorithms,
but need an initial guess for the eigenvalue [44, 45]. Global
methods refer to the recursive distorted-wave approximation
algorithm [46] acting in active spaces of small dimension,
leading to eigenvectors of (7). They need the initial guess of an
eigenvector, but the iterative procedure facilitates the calcul-
ation of eigenvalues with progressively varying laser para-
meters. Resonance states are solutions of particular interest.
They are defined by Siegert-type outgoing-wave boundary
conditions [47] leading to discrete complex eigenvalues,

� �( ) ( ) ( )E E ERe iIm , 8v v v

where ( )ERe v is the energy and ( � � ( )E2 Imv v the width or
decay rate, inversely proportional to the resonance lifetime. In
the following, label v denotes both the field-free vibrational
level and the laser-induced resonance originating from this
vibrational state. For weak fields, perturbation models show
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that the resonance widths (v are linearly proportional to field
intensities, in conformity with the Fermi golden rule. This is
to be contrasted with their behavior in both single and multi-
photon processes occurring in strong-field situations, where
two generic types of resonances have abundantly been studied
for �H2 . More precisely, Shape and Feshbach resonances are
associated with bond-softening [14, 15] or vibrational-trapping
[16] basic mechanisms, reciprocally. These mechanisms are
discussed within the frame of adiabatic potentials o( )V R
resulting from the diagonalization of the radiative coupling

N� ( )E R1
2 12 . It should be noticed that, due to the charge

exchange mechanism in �H2 , although the transition dipole is
increasing as R 2 [8], the adiabatic potentials of the central
Floquet block of a multiphoton description are not greatly
affected by this asymptotic behavior. They are displayed in the
right panel of figure 1 in a single-photon (two channel)
approximation. Referring to their field strength dependence,
Shape resonances supported by the lower adiabatic potential
curve �( )V R (leading to bond-softening) have decay rates (v that
grow faster than the field intensity, whereas Feshbach reso-
nances accommodated by the upper adiabatic potential curve
show a saturation of their decay rates followed by a regular
decrease for higher intensities (leading to vibrational trapping).
In both weak and strong-field regimes, some specific field
parameters may unexpectedly induce non-linear behaviors based
on and described by what we are calling exotic resonances.
In this work, we are studying two such situations: ZWR and EP.

2.2. Adiabatic dynamics for ZWRs and EPs

Some Feshbach resonances behave like bound states,
although being embedded and radiatively coupled to a con-
tinuum. These are ZWRs with very long decay times and are
ideally defined by

�( �( ) ( )0, 9v
ZWR

where ò stands for the laser parameters, � Xw { }E, . ZWRs
result from destructive interference between two outgoing-
wave components accommodated by field-dressed adiabatic
potentials. In two-channel situations, the critical phase
matching can be obtained approximately from a semi-classi-
cal analysis [48]. Roughly speaking, this amounts bringing
into coincidence a vibrational energy level ṽ supported by
some field-induced attractive electronic potential (basically
�( )V R for �R Rc and �( )V R for .R R R,c c being the avoided
crossing distance, see figure 1), and any vibrational levels

� y�v 0, 1, 2, of �( )V R by modifying the wavelength λ
[49]. At low field intensities, ṽ merges with the field-free
vibrational level v. Several ZWRs are to be considered for a
given vibrational level, depending on the adiabatic level �v at
the origin of the phase matching [50]. An unambiguous
identification can be attempted by labeling them ZWR( �v v, ).
Field-induced dynamics following such ZWRs is expected to
protect the molecular system against decaying. As for EPs,
they generally involve a couple of Shape- and Feshbach-type
resonances which, once again for specific field parameters,
are coalescing. Their complex eigenenergies are degenerate

Figure 1. Left panel: field-dressed �H2 potentials in Floquet formalism describing up to three photons absorption (channels labeled
� �n2, 1; � �n1, 2; � �n2, 3) and two photons emissions (channels labeled �n2, 1; �n1, 2). The reference single-photon Floquet

block is given in red dotted line. The wavelength is M � 440 nm. Right panel: adiabatic potentials resulting from the diagonalization of the
single-photon two-channel potential matrix for an intensity of � �I 10 W cm13 2.

4

J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 234002 A Leclerc et al



(equality of both real and imaginary parts),

� �� a( ) ( ) ( )E E , 10v v
EP EP

and their eigenvectors merge in a unique wavefunction
showing self-orthogonality:

� �
� �

D D� �
l

a& &( ) ( ) ( )lim 0. 11v vEP

EPs are second-order branch points for quasi-energies [51].
This means that if field parameters are continuously varied
along a closed loop around these points, one can go from one
non-degenerate resonance to another [25, 27]. It is worthwhile
noting that even if dynamical non-adiabatic phenomena are
greatly enhanced in their proximity leading to typical topo-
logical phases, EPs are not to be confused with laser-induced
conical intersections [9, 10], as the real and imaginary energy
surfaces accommodating them are parameterized by the laser
wavelength and intensity, and not by the molecular degrees of
freedom.

To take advantage of the abovementioned exotic reso-
nance peculiarities for vibrational population protection or
transfer, we have to devise some adiabatic dynamical scheme,
either to track a given ZWR during the laser pulse, or to
encircle an EP. We aim at designing some chirped laser
pulses with time-dependent control parameters,

� Xw( ) { ( ) ( )} ( )t E t t, , 12

inducing an adiabatic transformation of the wavefunction.
More precisely, we keep relying on the Floquet formalism to
handle the fast optical oscillations but we assume that the field
envelope and frequency vary slowly enough to be efficiently
described by an adiabatic formalism. The choice of an adia-
batic approach when dealing with fast optical oscillations
could appear as a contradiction. This can, however, be
overcome by considering two timescales [52]: (i) the instan-
taneous amplitude and frequency generate a rapidly oscillat-
ing field which supports some Floquet resonances, as
described in section 2.1. (ii) The slow timescale associated
with the variation of field parameters (either amplitude of
frequency modulations), inducing gradual changes in the
instantaneous resonance states, can advantageously be
described by an adiabatic formalism. In some strong-field
situations (high harmonic generation processes, for instance
[53]) a distinction should be made between effects of ampl-
itude or frequency modulations. In what follows, we consider
simultaneous and interdependent frequency and amplitude
modulations. The selected control schemes are based on this
assumption that the molecule, starting in a given vibrational
state v of the field-free molecule, is adiabatically driven by the
laser pulse. For ZWRs, perfect adiabatic dynamics means that
the resonance �D ( ( ))tv originating from state v is followed
during the whole dynamics. Both bound and continuum states
of the field-free molecular Hamiltonian participate in �D ( ( ))tv
during the pulse, but we can expect that the wavefunction is
the one of the initial state v after the pulse is off. For EPs,
perfect adiabaticity means also tracking of a single resonance
D ( )tv , labeled v up to the vicinity of EP( �v v, 1). However, if
the field parameters vary such as to encircle the EP( �v v, 1),

the system switches on resonance D � ( )tv 1 and merges later
into the field-free vibrational state �v 1. This would produce
a wavefunction exchange between v and �v 1. The adiabatic
flip between states v and �v 1 is efficient only for a specific
orientation of the loop encircling the EP (asymmetric switch)
[30]. Adiabaticity is also related with robustness as we are
considering photodissociation processes which may erase
populations before a ZWR is reached or before the transfer is
completed around an EP. The robustness can roughly be esti-
mated by the overall fraction of non-dissociated molecules [22]:

� �¨� � ( a a�⎡
⎣⎢

⎤
⎦⎥( ) ( ( )) ( )P t t texp d 13v

t

v
1

0

where the decay rate �( ( ( ))tv corresponds to the instantaneous
field parameters. We are looking for optimal parameters � ( )t to
ensure the highest survival probability, ideally x( )P T 1v in the
ZWR case, or the highest possible transferred population

� ( )P Tv 1 in the EP strategy, T being the total pulse duration.
Moreover predicting the effective quality of the adiabatic
dynamics also requires a quantitative description of non-adia-
batic exchanges that obviously occur between different reso-
nances during the pulse.

2.3. ZWRs and EP localization methods

ZWRs are expected to be found along continuous paths in the
parameter plane, as shown in [49]. We have used a two-step
algorithm. The first step consists of fixing a low intensity and
sweeping a wide wavelength interval to identify interesting
domains, where the widths (v show local minima. This is
done for several resonances originating from different vibra-
tional states v. In a second step we perform a two-dimensional
search within smaller intervals: The intensity is slowly
increased and for each value of I an optimal λ is found. Each
ZWR path is finally obtained by merging the set of optimal
parameters into an almost continuous line which can be seen
as a parametric curve, � Mw( ) { ( ) ( )}t I t t,ZWR ZWR ZWR . It has
been observed that ZWR paths are quite efficiently fitted by
linear approximations [54]:

M � � ( )aI b. 14ZWR ZWR

EPs are in turn obtained by a two-step strategy. The first step
compares the real parts of the eigenenergies of single-photon
Floquet resonances D ( )tv and D � ( )tv 1 , for different wave-
lengths as a function of intensity aiming at a rough

M{ }I , -positioning of avoided crossings. The second step
refines this analysis including all multiphoton Floquet chan-
nels up to convergence. The EP is the transition point
involving crossings of both real and imaginary parts of
resonance eigenenergies. Owing to opposite variations of the
imaginary parts with increasing intensity of Shape- and Fes-
hbach-type resonances, the only ones mediating �H2 multi-
photon dynamics [23] and involved in the EP pair, the field
parameters � Mw { }I ,EP EP EP for the EP can be obtained in an
accurate way. All results are confirmed using both grid and
global methods using the wave operator formalism and small-
dimensional effective Hamiltonians [46], allowing for low
calculation costs.
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3. Adiabatic control theory

Our objective is to find optimal laser parameters � ( )t (12)
leading to robust and efficient vibrational control processes,
(i) to produce a population transfer from v to �v 1, taking
advantage of coalescing resonances originating from these
vibrational states (EP strategy), and (ii) to filter one given
vibrational state v of the field-free molecule by an adiabatic
transport along the associated ZWR, looking for a maximum
survival probability for this specific state, while other reso-
nances have strong decay rates. We introduce below some
elements of the adiabatic Floquet theory [52], which apply
well to these two situations.

3.1. Adiabatic formalism

The molecule-plus-field system is described by a TDSE:

� s
s

' § � ' §∣ ( ) ( ) ∣ ( ) ( )
t

t H t ti 15

with

N X� �( ) ( ) [ ( ) · ] ( )H t H E t t tcos . 160

Non-adiabatic, fast-field oscillations R X� ( ) ·t t are fixed by
referring to the Floquet Hamiltonian R( )K operating on an
extended Hilbert space with an additional phase variable θ
[52, 55]. The time-evolution equation in this extended
space is

� R R R
s
s

: § � : §∣ ( ) ( ) ∣ ( ) ( )
t

t K ti , , 17

with

�R X
R

� �
s
s

( ) ( ) ( )K H t i 18eff

where Xeff is the effective frequency given by

X R�( ) ( )t
t

d
d

. 19eff

It can ultimately be shown that, if R: §∣ ( )t, is a solution of
(17), then R' § � : §∣ ( ) ∣ ( ( ) )t t t, is in turn a solution of
(15) [49, 52].

An adiabatic evolution is such that at all times t, the
solution R: §∣ ( )t, follows a specific single resonance eigen-
vector D §∣ v of the instantaneous Floquet Hamiltonian (18)
labeled by its corresponding field-free parent state §∣v . The
eigenstates, already introduced in (7), should be considered
here as parameter-dependent,

� � � �R D R D R§ � §{ ( )}∣ { ( )} { ( )}∣ { ( )} ( )K t t E t t; ; ; , 20v v v

with the instantaneous field parameters � ( )t defined in (12) but
now including the effective frequency � Xw( ) { ( ) ( )}t E t t, eff .
The adiabatic approximation for R: §∣ ( )t, is then

� � �¨R D R: § � � a a §
⎡
⎣⎢

⎤
⎦⎥∣ ( ) { ( )} ∣ { ( )}

( )

t E t t t, exp i d , .

21

v
ad

t

v v
0

The set of resonance eigenvectors D §a a{∣ }v v being a complete
basis, the exact wavefunction R: §∣ ( )t, can be expanded as

�R R: § � : §
a

a a∣ ( ) ( ) ∣ ( ) ( )t d t t, , . 22
v

v v
ad

Once the set of field parameters � ( )t has been adjusted, back-
transforming to the physical Hilbert space is achieved by sol-
ving the differential equation (19), leading to the following
explicit expression for the electric field [49]:

� ¨ X� a a⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )t E t t tcos d , 23

t

0
eff

or in terms of intensity/wavelength parameters

� ¨ Q M� a a⎜ ⎟⎛
⎝

⎞
⎠( ) [ ( )] · ( ) ( )t I t c t tcos 2 d . 24

t
1 2

0

3.2. Adiabatic transport in the vicinity of an EP

As defined in (10) and (11), EPs arise for laser parameters � EP

bringing into coalescence a couple of resonance eigenvectors
�D R §∣ { },w and �D R §a∣ { },w , originating from neighboring

vibrational states, that we assume well separated from all
other resonances. Combining (21), (22) for this specific
subspace a( )w w, , one gets:

K D
K D

: §� � §
� � §a a a

∣ ( ) ( ) [ ( )] ∣ ( )
( ) [ ( )] ∣ ( ) ( )

t d t t t

d t t t

exp i
exp i . 25

w w w

w w w

For convenience, we hereafter adopt a more compact form by
dropping the explicit notation θ and introducing dynamical
phases K ( )tw defined as:

� ¨K � a a�( ) ( ) ( )t E t td . 26w

t

w
1

0

The time evolution of coefficients dw(t) and a( )d tw is obtained
by recasting (25) in its driving TDSE (17):

D D

D D

� § � §

� § � §

K K

K K

� �

a
�

a a
�

aa a

�

�

∣ ( ) ∣ ( )

∣ ( ) ∣ ( ) ( )

d t d
t

t

d t d
t

t

0 e e
d
d

e e
d
d

27

w w w w

w w w w

i i

i i

w w

w w

Upon projection on *D� K∣ew
i w and *D� K

a
a∣ew

i w (the left eigen-
vectors of K being here simply the complex conjugate of the
right eigenvectors), we obtain a system of two inhomoge-
neous coupled differential equations,

* *D D D D� �� § � � §� 8 �(
a a� ( ) ∣ ∣ ( ) ∣ ∣ ( )

( )

( ) ( )d t
t

d t
t

d t
d
d

e
d
d

28

w w w w
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* *D D D D� �� § � � §a a a a
8 �(

a
� ( ) ∣ ∣ ( ) ∣ ∣ ( )

( )

( ) ( )d t
t

d t
t

d t
d
d

e
d
d

,

29

w w w w
t t

w w w
i

where the two real-valued t-functions 8( )t and (( )t are
defined as:

� ¨8 � a � a a�
a( ) ( ( ( )) ( ( ))) ( )t E t E t tRe Re d 30

t

w w
1

0
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� ¨( � a � a a�
a( ) ( ( ( )) ( ( ))) ( )t E t E t tIm Im d . 31

t

w w
1

0

The non-homogeneity appearing in the second terms of the r.
h.s. of (28), (29) is driven through *D D� §� 8 �(

a∣ ∣( ) ( )e t t
w t w

i d
d

and

*D D� §8 �(
a∣ ∣( ) ( )e t t

w t w
i d

d
which directly depend on the non-adia-

batic couplings of the ( aw w, ) subspace, *D D� §a∣ ∣w t w
d
d

.
Obviously, in (28), (29) the sign of (( )t is important when
describing exponentially decaying or growing pre-factors. In
particular, for large (( )t one of the two equations is uncou-
pled, with good accuracy. Within the subspace ( aw w, ) the
TDSE provides local solutions, in terms of two eigenvectors
for each value of the field � ( )t , their complex eigenvalue
ordering being arbitrary. Among three possible conventions
(ordering them in increasing energy, decreasing dissipation,
or following the continuity of eigenvectors, as discussed in
[56]) we adopt the second one, leading to:

- -º ( �a( ( )) ( ( )) ( ) ( )E t E t t tIm Im 0 . 32w w

The system (28), (29) is formally solved using the method of
the variation of the constant, resulting in:

¨ Y� � a aH � 8 a �( a
a⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( ) ( )( ) ( ) ( )d t d t te 0 e d 33w
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i
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w
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⎞
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i
,

w

with so-called geometric phases defined as H �( )tw

*¨ D D� § a
a

∣ ∣ ti d
t

w t w0

d
d

and non-adiabaticity generators

*Y D D� � §H
a
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*Y D D� � §H
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�
a

a( ) ∣ ∣ ( ) ( )( )t
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. 36w w
t
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These solutions are implicit in the sense that dw is expressed
in terms of adw and vice versa, through the non-adiabaticity
generators. Finally, one has, as a solution of (17):
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Adiabatic transport is checked by comparing the populations
of states Dw and D aw , given by:

¨ Y� � a aK� � 8 a �( a
a⎜ ⎟⎛
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It has been shown that the geometric phases should not be
taken into account for the adiabatic populations [57]. One gets
the following exact expression for the population ratio:

¨
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We now proceed to a variable change to the dimensionless
time variable � [ ]s 0, 1 defined as s=t/T and examine for
large values of T, two cases where the initial vibrational state
is either continuously transported on (a) the less dissipative
Feshbach (labeled w), or (b) the most dissipative Shape
resonance (labeled aw ).

(a) In the Feshbach resonance case, with initial condi-
tions �( )d 0 1w and �a( )d 0 0w (with w= v and a � �w v 1,
to fix a choice) one gets:

¨

¨

Y

Y
�

� a a

a aa

� 8 a � ( a
a

8 a ( �( a
a

∣ ( ) ∣
∣ ( ) ∣

( )
( ) ( )

( ) ( ( ) ( ))
P
P

s s

s s

1 e d

e e d
. 41w

w

s T s T s
w w

s ıT s T s s
w w

0
i

,
2

0 ,
2

For large T, the integral in the numerator goes to zero:

¨ Y a a �
l�d

� 8 a � ( a
a( ) ( )( ) ( ) s slim e d 0 42

T

s
T s T s

w w
0

i
,

either in relation with the rapidly oscillating exponential
� 8 a( )e T si when small values of s are considered, or due to

�l�d
( a( )lim e 0T

T s for larger values of s, for which
( �( )s 0. As for the denominator, it is zero for the same
reasons (note that ( � ( a �( ) ( )s s 0, for � a �s s0 ). The
final result is nothing but a�P Pw w , that is a negligible
population on D §a∣ w . An initial state D §∣ w at time t=0 evolves
in pure adiabatic conditions:

D: § §K H��∣ ( ) ∣ ( ) ( )( ) ( )t te e 43ı t ı t
ww w

under the combined effect of dynamical and geometric pha-
ses, without any mixing of the states D §∣ ( )tw and D §a∣ ( )tw . Up
to here, we have not yet referred to any branch cut property of
EP( aw w, ). The tracking of Feshbach resonances w by encir-
cling EP( aw w, ) involves the following steps: (i) referring to
the abovementioned eigenvalue ordering, all along the pulse
and before reaching the locus where � a( ) ( )E E wIm Im ,w w

labels the less dissipative, Feshbach-type resonance origi-
nating at time t=0 from the field-free initial vibrational state
v for the choice under consideration; (ii) the flip between the
widths of resonances w and aw takes place while crossing the
branch cut half-axis � a( ) ( )E EIm Imw w [27]; (iii) subsequent
tracking of the most stable Feshbach resonance is also done
by still labeling it w in conformity with the ordering pre-
scription of (32), but the point to be emphasized is that
encircling EP( aw w, ) and following the adiabatic transport
(43) up to time t=T when the field is over, w would merge
into the vibrational state �v 1 (and not v). In other words, for
the present choice, the Feshbach resonance which is adiaba-
tically tracked corresponds, up to the branch cut, to the
one originating from vibrational state v, and later to the one
merging into vibrational state �v 1, when the pulse is
switched off.
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(b) In the Shape resonance case, with initial conditions
�( )d 0 0w and �a( )d 0 1w one gets:

¨

¨

Y

Y
�

a a

� aa

� 8 a � ( �( a
a

8 a � ( a
a
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e e d

1 e
. 44w
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0
i

,
2

0 ,
2

For small values of s, obviously resulting in
�a �( ( ) ( ))E s E sIm 0w w , the numerator goes to zero,

whereas the denominator remains close to 1, due to the rapid
oscillations. As for large values of s, both the numerator and
the denominator go to infinity:

� � �d
l�d

� ( �( a

l�d

� ( a ( )( ( ) ( )) ( )lim e lim e . 45
T

T s s

T

T s

For this second case corresponding to Shape resonance
tracking, except for very short dynamics, we have _ aP Pw w ,
meaning that both populations on D §∣ w and D §a∣ w have to be
taken into account, with a resulting wavepacket:

¨
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The consequence is that the adiabaticity requirement can
never strictly be fulfilled, except for case (a) of a Feshbach
resonance tracking where a more or less robust transport from
a given v to �v 1 can be expected. It remains however that a
compromise on the total laser pulse duration T can also be
worked out for case (b) in such a way that the rapid oscilla-
tions (requiring large T) still compensate the not too large
values of the exponential (requiring moderate T). The above
discussion of cases (a) and (b), formulated in terms of Shape-
or Feshbach-type resonances, should be related to the primary
work of Uzdin and coworkers [30] which first highlighted this
asymmetry in the adiabatic flips generated by exceptional
points. The consequence of vibrational populations is that a
loop in the parameter plane, followed in a given direction,
will only result in a flip from state v to �v 1, with no
simultaneous flip from �v 1 to v (and conversely if the loop
is followed in the opposite direction) [34]. We will show in
section 4 that short duration pulses following specific laser
loops around EPs can be shaped to selectively track Fes-
hbach-type resonances avoiding any non-adiabatic con-
tamination with Shape-type ones.

3.3. Adiabatic transport with the zero-width resonance strategy

Contrary to what we have shown on rather limited adiabaticity
for the wavefunction dynamics in the vicinity of an EP, full
adiabaticity can be worked out for ZWRs, as has been discussed
in detail in previous works (see for instance, [49]). For com-
pleteness, we just recall here the two steps of the control strategy:
(i) adiabatically tracking the system with D §∣ v in conformity with
(21) and avoiding any degeneracy between complex eigenvalues

�a{ ( )}E tv , at all timest [32]; and (ii) shaping a laser pulse such
that this eigenstate presents the lowest (ideally zero) dissociation

rate. This leads to an optimal choice for the field parameters
� Xw( ) { ( ) ( )}t E t t,ZWR ZWR

eff
ZWR such that (9) is satisfied at all

times,

� � �[ { ( )}] ( )E t tIm 0 . 47v
ZWR

In practice, the control field will be defined in accordance with
ZWR paths as for instance the simple linear approximation (14).
Once the optimal frequency trajectory is defined, the laser pulse
is calculated using (24).

It is worthwhile noting, on mathematical grounds, that the
challenging issue of adiabatic transport involving continuum
spectra can merely be fixed when fulfilling the requirement of
(47): the model of section 3.2, applied to any couple of reso-
nances including a ZWR, leads to the adiabatic case of (41),
(43) because the ZWR is always the less dissipative state. This
is although not sufficient for the short-time success of a fil-
tration strategy. Two additional criteria have to be fulfilled. The
first requirement is a contrast criterion between the selected
resonance width (almost zero) and other resonances widths
(which should be as large as possible). This depends only on
the resonance spectrum structure. The second crucial criterion
is that non-adiabatic couplings with neighboring resonances
remain negligible and do not cause any population loss.

3.4. Non-adiabatic couplings with other resonances

In section 3.2, we have assumed a dynamics taking place
within a two-dimensional subspace spanned by two reso-
nances D §∣ w and D §a∣ w . Non-adiabatic exchanges between those
two states are directly related to non-adiabatic couplings
appearing in (28) and (29). Such exchanges are not only
possible between the two resonances affected by the EP but
also with any other nearby resonances. This applies also to
ZWR dynamics which might be affected by similar non-
adiabatic transitions. The non-adiabatic couplings between
Floquet eigenstates D §∣ w can be calculated using

*
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The parameter derivatives are calculated using (16) and (18),
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resulting in:
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*D D
9 �
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X X
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s
s a
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. 54ww
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eff eff

Since the time derivatives s
s
E
t
and Xs

st
eff strongly depend on

specific choices of frequency and amplitude variations in the
control pulse, we focus on the parameter-derivative terms
9 a

( )
ww
E and 9 X

a
( )
ww

eff of (53), (54). The operators (50), (51) are
already implemented in the iterative algorithm used to com-
pute Floquet eigenstates as part of the matrix-product opera-
tion. Their landscape in the laser parameter plane could guide
an optimal trajectory, avoiding strong coupling regions.

4. Results

The organization of this section is based on an increasing
robustness as regard to the adiabatic transport scenario,
referring first to EPs (vibrational population transfer, as an
application) and later to ZWRs (filtration, as an application).
For each scenarios we have selected, as typical illustrative
examples, some excited vibrational states, v=8, 9 for EP and
v=12 for ZWRs. Finally, we end up with a mixed strategy
combining ZWRs of v=12 and 13 with the nearby EP(12,
13), for an even more robust transfer process, taking advan-
tage of some dissociation quenching for specific portions of
the laser loop in the (M I, ) parameter plane.

4.1. EP(8, 9) localization and nearby non-adiabatic couplings

Energies and widths of Siegert resonances are evaluated from
the numerical solutions of (6) as a function of intensity I, for
various wavelengths λ assuming a continuous-wave laser.
Figure 2 shows the widths for the couple of resonances ori-
ginating from states v=8 and v=9, in the vicinity of EP(8,
9). Calculations performed using the wave operator method of
[49] include eight channels and a four-dimensional active
subspace ( �v 7, 8, 9, 10). In figure 2, the branch point is

precisely the EP(8, 9) localized at

M �
� q � ( )I

441.90 nm
0.3855 10 W cm . 55

EP

EP 13 2

Relevant landscapes for non-adiabatic couplings are dis-
played in figure 3. We focus on the subspace �v 8, 9, 10
which contains the two states affected by the EP and one
neighboring state as an illustrative example. For a trajectory
around EP(8, 9), the most important non-adiabatic couplings
are those between resonances originating from v=8 and
v=9, shown in the top panels (a) and (b) of figure 3. They
are large and become even larger in the vicinity of the EP,
with a diverging maximum centered on it, because of the
eigenvalue coalescence. Efficient adiabatic dynamics encir-
cling the EP must avoid the EP vicinity with relatively large
wavelength variations. In panels (c) to (f) we have selected
non-adiabatic couplings between subspace (8, 9) and the
resonance associated with v=10, which although smaller
than those between states 8 and 9, still remain non negligible.
A maximum is observed in the region of EP(8, 9), even
though the resonance originating from v=10 does not par-
ticipate in the EP crossing.

4.2. Vibrational population transfer based on EP(8, 9)

Encircling the EP(8, 9) with a close contour in the laser
parameter plane results in a label exchange between reso-
nances 8 and 9. Such close contours are defined by:

M M EM Q
Q

� o
�

( ) ( )
( ) ( ) ( )
t t T

I t I t T
sin 2

sin , 56
0

max

t being a parameter varying from 0 to T. This choice obviously
leads to field-free situations for t=0 and t=T. The con-
sequence is that, starting from the vibrational state v=8 for
t=0, the transfer scenario ends up in the vibrational state
v=9 (and vice versa) for t=T. It has also been shown in
strong-field multiphoton absorption, that the transfer still exists
when adding further channels up to convergence in (6) [58]. As
a first illustrative example, the trajectories of the two reso-
nances in consideration parameterized by t are displayed in

Figure 2. Widths of two resonances associated with field-free vibrational states v=8 and v=9. Left panel: ∣ ( ) ∣Elog Im10 8 , right panel
∣ ( ) ∣Elog Im10 9 , with widths in cm−1, in the laser parameter plane M( )I, . Panels are energy-labeled as obtained from the numerical

calculations. The solid black lines indicates the branch cuts for widths, and the black dots the branch point EP(8, 9).
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figure 4, using
M EM� q � ��I 0.5 10 W cm , 432 nm, 20 nmmax

13 2
0 and

sign (+) in (56) (clockwise). We clearly observe that the
resonance corresponding at t=0 to the vibrational state v=8
(reciprocally, v= 9) merges at t=T into the vibrational state
v=9 (reciprocally, v= 8). Two points are worthwhile noting:
(i) all along the trajectories, the imaginary parts of the eigen-
values follow the same ordering as discussed in section 3, (ii)
for large values of T, according to (13), the v=9 vibrational
population is expected to dissociate significantly as compared

to v=8 due to about three times larger decay rates, as illu-
strated in the right panel of figure (4). This is why an adiabatic
v=8 to v=9 transfer seems unlikely as the resulting v=9
population is decaying fast.

Up to now we have merely discussed structural changes
(t being a parameter) in the resonances around their EP and
expected transfer processes assuming perfect adiabaticity.
Such a process taken as a basic mechanism for an external
field control purpose, it remains to shape a physically realistic
laser fulfilling two requirements, namely: (i) selectivity, by

Figure 3. Non-adiabatic couplings (atomic units) 9 a
( )
vv
E (left column) and 9 X

a
( )
vv

eff (right column), related to amplitude and frequency changes as
defined in (53) and (54), respectively. Panels (a) and (b) correspond to couplings between resonances originating from � a �( )v v8, 9 ,
panels (c) and (d) to � a �( )v v8, 10 and panels (e) and (f) to � a �( )v v9, 10 . The blank domains on panels (a) and (b) correspond to very
large values up to divergence at the EP position.
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encircling the EP with an appropriately chirped pulse,
avoiding non-adiabatic transitions to unwanted states; (ii) effi-
ciency or robustness, by adiabatically following the involved
resonances to avoid as much as possible population decay
through photodissociation. To achieve these conditions, we refer
to the effective frequency strategy of section 3. The calculation of
the corresponding effective phase relies on the collection M ( )t
and I(t) as obtained for discrete values of the parameter t through
(56). The laser electric field is built as in (24), where t is now to
be understood as the time variable. Results of figures 2 and 3
should also be used to select favorable trajectories for M ( )t and I
(t). In terms of robustness, the trajectory in the laser parameter
plane should be chosen to stay in domains where the widths are
as small as possible, always following the less dissipative reso-
nance. For a loop aiming at a transfer � l �v v9 8, figure 2
indicates that we should use a trajectory with the (+) sign in
equation (56) to follow the less dissipative resonance (of Fes-
hbach type) all along the pulse. This is equivalent to jumping
from the right to the left panel (panels are energy-labeled), get-
ting around the EP in clockwise sense, and conversely for a
transfer l8 9. The flip occurs when crossing the branch cut for
widths. Moreover, we should choose a rather large variation of
the wavelength to draw a large loop, with a central valueM0 close
to MEP but ideally shifted to larger wavelengths, because of the
asymmetrical shape of the contour lines with respect to wave-
length variations (see right panel of figure 2). The maximum
intensity should also be chosen clearly larger than IEP because

there is no advantage in staying too close to IEP in terms of
dissipation rate. To further improve the control loop, we have
used results of figure 3 and similar ones concerning other reso-
nances. For example, the four bottom panels, showing non-
adiabatic couplings with resonance v=10, are also in favor of a
shift of the central wavelengthM0 towards larger values thanMEP,
to avoid contamination of v=10 in a transfer v=9 to v=8.
The last parameter to adjust is the total time T. T must be long
enough so that the time derivatives do not become too large in
(52), but short enough to keep significant survival probabilities
in bound states. Finally, we present vibrational flip results
using the following parameters: M � 450 nm0 , � qI 0.5max

EM ��10 W cm , 35 nm13 2 (large enough to stay in favorable
domains), with �T 50 fs (obtained as a compromise between
acceptable dissipation and good adiabaticity). In addition this is a
short enough duration, as compared with the shortest rotational
period of �H2 (estimated as 90 fs), to validate the rotationless 1D
model of equation (1).

The time-dependent wavepacket evolution gives the
results gathered on figure 5. Calculations have been done
using two independent codes based on a third-order split
operator technique [59] or a constrained adiabatic trajectory
method [60–62]. The initial state is either v=8 (left panels)
or v=9 (right panels). At each time t, the vibrational
wavepacket is projected on the field-free vibrational wave-
functions leading to the transient populations of these states,
which are plotted. As discussed in previous works

Figure 4. Left panel: resonance trajectories in the complex energy plane as resulting from a pure adiabatic Floquet description with effective
frequency, using laser parameters (56) with M EM� q � ��I 0.5 10 W cm , 432 nm, 20 nmmax

13 2
0 and sign (+). The two dots on the upper

real energy axis indicate the positions of v=8 and v=9. The solid red and dashed black lines correspond to the trajectories of v=8 and
v=9, respectively. Right panel: vibrational populations as a function of time, based on their adiabatic decay rates obtained from their
resonance trajectories as displayed in the left panel. The solid red and dashed black lines correspond to the probabilities of v=8 and v=9,
respectively.
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[30, 32, 63], two loops (clockwise, with the plus sign in
equation (56) and anti-clockwise with the minus sign, as
indicated in the figure caption) are considered to avoid any
Shape-type resonance contamination. With v=8 as an initial
state and the minus sign, the laser induces dynamics driven
only by Feshbach-type resonances which ultimately leads to
the expected flip l8 9. Starting from v=9, the corresp-
onding opposite l9 8 flip is obtained, but now, only with a
clockwise following of the loop (with the plus sign), to track
again Feshbach-type resonances. To emphasize the crucial
role on the dynamics of clock versus anti-clockwise laser
loops, the lower panels of figure 5 display the resulting
populations as a function of time. Contamination with short-
lived Shape-type resonances produces fast decaying vibra-
tional dynamics that washes out the efficiency of any transfer.
It is worthwhile noting that this result is in conformity with
the analysis of section 3, where starting from the less dis-
sipative state (v=8) remains compatible with an adiabatic
population transport. Moreover our results are consistent with
previous ones obtained around EP (9, 10) [34].

4.3. Filtration based on ZWRs

According to section 3, ZWRs, fulfilling precisely the
requirement of (47), are expected to be better candidates for
an adiabatic transport control than EPs. Actually, this has
already been shown in previous works and in the particular
case of Na2 [49]. Hereafter we discuss some general

morphological behaviors of ZWRs involved in �H2 photo-
dissociation, for later applying them to laser control strategies
in a vibrational filtration purpose. Following the discussion of
sections 2.2 and 2.3, the left panel of figure 6 gives an
illustration of such multiple occurrences of ZWRs for a few
vibrational levels v of �H2 by plotting the imaginary parts of
the corresponding Feshbach resonances originating from a
field-free state v, for a fixed low intensity ( � �I 0.2 TW cm 2)
and wavelengths λ varying in the range N[ ]600 nm, 1 m .
Within this window, ZWRs could be classified in three
categories: (i) -v 9 for which no ZWR can be obtained due
to the fact that λ being larger than 600 nm the field-dressed
energies of ( � y�v 0, 1, ) are all above the ones of vibra-
tional levels under consideration; (ii) �v 10, 11, 12 for
which a single ZWR is obtained through the phase matching
between v and ��v 0; (iii) .v 13 for which multiple
occurrences of ZWRs can be reached, the range of λ variation
allowing coincidences successively with ��v 0, 1. Some of
the resulting ZWR paths are gathered in the right panel of
figure 6. As in previous studies, we observe linear behaviors
which, for convenience, are fitted using the analytical form
(14). The black solid path starting from M � 950 nm in the
field-free situation corresponds to a phase matching between
v=13 and ��v 0, whereas the blue dashed path starting
from M � 700 nm is the one of ZWR(13, 1) involving now

��v 1. When tracking a ZWR of a given v with a filtration
purpose, it is important for selectivity that population decays
are the most contrasted among neighboring pairs. An efficient

Figure 5. Vibrational populations as a function of time as resulting from a wavepacket propagation using the adiabatic effective phase
strategy. The laser pulse follows the loop (56) with M � 450 nm0 , EM� q ��I 0.5 10 W cm , 35 nmmax

13 2 and �T 50 fs. The following
signs are used in equation (56): (−) for top left and bottom right panels (anti-clockwise loop), �( ) for top right and bottom left panels
(clockwise loop). The black curve corresponds to v=9 whereas the red one corresponds to v=8 populations. Minor populations of other
vibrational states are also given (mainly v= 7 and v= 10). The thin black curve is for the total undissociated population. Populations are not
renormalized at each time such as to show the final undissociated probability, as a signature of overall robustness.
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control would be achieved if, for the shortest possible pulse
duration T, the population of v being protected against dis-
sociation, the ones of ov 1 are decaying fast enough to reach
almost negligible values at T. ZWR(12, 0) is selected among
the best candidates showing paths well separated from each
other and the largest possible widths for resonances ov 1 along
the ZWR path associated to v. The dynamical wavepacket
evolution is conducted using the field of equation (24) based on
the collection of MZWR and IZWR as given by (14) with
� � q � �a 278.16 10 nm W cm13 1 2 and �b 736.55 nm. The

results are given in figure 7 for a pulse duration of �T 150 fs
and a maximum field intensity of � q �I 0.12 10 W cmmax

13 2.
The laser pulse is decomposed into a 50 fs linear ramp of
intensity from 0 to Imax, followed by a 50 fs plateau and a 50 fs
linear extinction. The initial states are successively taken to be
�v 11, 12, 13, 14. As ZWR tracking concerns v=12, its

population is being quenched up to a final value of about 90%,
which is the signature of an excellent robustness as regard to
dissociation (for comparison, no more than 70% of the initial
state is conserved using an instantaneous frequency [54]). At the
same time, all other neighboring levels populations are decaying,
with final values less than 1%, except the one of v=13 with
about 20% still undissociated, presumably due to the proximity
of ZWR(12, 0) and ZWR(13, 1) paths. This is a measure of
selectivity for the filtration process, which could further be
improved by increasing the pulse durationT.

4.4. Mixed strategy combining ZWRs and EP

We have seen in section 3 that strategies based on EP( aw w, )
lead to severe costs with respect to adiabatic transfer control
when shaping a laser pulse which encircles the branch point.
Strictly speaking, even if in some cases a transfer l aw w is
possible in pure adiabatic conditions, the reverse a lw w is
not. In practical calculations, it turns out that achieving such
transfers (both sides) remains still possible, but with a lost of
selectivity and/or robustness. Non-adiabaticity basically
concerns the unavoidable encountering of MEP while varying
λ. Additional robustness issues are in relation with population
decays and so-called non-adiabatic contamination [32–34].
For example, we consider states v=12 and v=13 affected
by an EP located at � q �I 0.127 10 W cmEP 13 2 and
M � 788.6 nmEP . We have tried to obtain an adiabatic flip
from v=12 to v=13 and vice versa following the strategy
of section 4.2. The loop (56) with M � 789 nm0 ,
EM � 20 nm, � q ��I T0.15 10 W cm , 75 fsmax

13 2 with
the appropriate signs for the wavelength variations gives very
poor results. The flip l12 13 ends with a final dissociation
probability of 92%, with a population of only 5% in the target
state v=13 and 2.2% remaining in the initial state v=12.
The reverse situation for the flip l13 12 does not give better
results. In order to improve robustness, an interesting control
scheme would be to take advantage of two ZWR paths with
characteristic wavelengths MZWR systematically above or

Figure 6. Left panel: imaginary part of resonance eigenvalues originating at low intensity ( � �I 0.2 TW cm 2) from different vibrational states
v as a function of the field wavelength λ. Some typical behaviors with no ZWR (v=8, 9) are illustrated with black solid and dotted lines,
occurrence of single ZWR (v= 12) with a red solid line, occurrence of multiple ZWRs (v= 13) with a blue dashed line. Right panel: ZWR
paths in the laser parameter plane (M I, ) together with the analytical expressions of their linear fit. From the top, ZWR( � ��v v13, 0) with a
black solid line, ZWR( � ��v v14, 0) with a cyan dotted-dashed line, ZWR( � ��v v11, 0) with a dotted magenta line, ZWR
( � ��v v12, 0) with a solid red line, ZWR( � ��v v13, 1) with a blue dashed line. The position of EP(12, 13) is indicated by the black
square at � q �I 0.1267 10 W cmEP 13 2 and M � 788.6 nmEP .
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below MEP leading to wavepacket dynamics without popula-
tion lost up to intensities slightly above IEP. The laser loop
should then be closed by a vertical change in λ from ZWR(v)
to ZWR( av ) paths limiting the population decay to this spe-
cific region of the laser pulse. In our example, we gather all
relevant ingredients in figure 6. More precisely, EP(12, 13) is
positioned between two ZWR paths, namely: ZWR
(13, ��v 0) involving critical wavelengths M M�( )ZWR 13 EP,
and ZWR(12, ��v 0) with M M�( )ZWR 12 EP. A laser loop in
the parameter plane is shaped on these paths extrapolated up
to an intensity �I Imax

EP and closed by a vertical λ-variation
as indicated in figure 8. Our expectation is that only this
vertical jump would affect the overall robustness, the system
dynamics being well protected against dissociation all along
ZWR paths. The pair of resonances involved in EP(12, 13)
has been studied in detail with respect to their Feshbach- or
Shape-type structures [64]. In particular, it has been shown
that resonances originating from v=12 (or respectively,
v=13) are Feshbach-type when driven by laser wavelengths
M M� EP (or respectively, M M� EP). This is to be contrasted
with the same resonances but now driven by laser wave-
lengths M M� EP (or respectively, M M� EP) which are of
Shape-type. A robust scenario not only requires tracking of
Feshbach resonances all along the laser loop, but even more
importantly, it has been shown that contamination by Shape
resonances could practically erase the transfer process
[30, 32, 64], as in the above example of a sinusoidal loop.
Moreover, according to the predictions of positive

(clockwise) or negative (anti-clockwise) chirped laser pulses
of [34], the time asymmetric exchange will allow an adiabatic
switching from state v=13 to v=12 (positive chirp, along
the vertical decrease of wavelengths) or v=12 to v=13
(negative chirp, along the vertical increase of wavelengths).

Here we note that only ZWRs are followed up to
� q �I 0.15 10 W cmmax

13 2, avoiding thus any decay. It is
the λ vertical jump region at Imax, where the laser wavelength
crosses MEP which is responsible for the switching from 12 to
13 (or 13 to 12). This is also the region of the loop where the
system is exposed to photodissociation and, thus, should be
optimized by tracking Feshbach-type resonances exclusively.
Two such loops with well-defined clock- or anti-clockwise
contours are shown in figure 8, both avoiding Shape-type
resonances. The first is anti-clockwise: starting from a
wavelength corresponding to field-free v=12, it follows
ZWR(12) and turns around EP(12, 13) by a vertical increase
of M M� EP. Following of this loop up to M M� EP produces
only Feshbach-type resonances [64]. It is at this crossing
point that the switching between v=12 and v=13 takes
place. Further increase of M M� EP also produces Feshbach-
type resonances but with the peculiarity that they are now
related with v=13. The last section of the loop consists in
following ZWR(13) path up to field-free v=13 state. In the
same spirit, the second scenario is based on a clockwise
contour, still avoiding any Shape-type resonances during the
wavelength vertical jump section. A similar analysis shows
that this is possible with an initial state v=13 and an

Figure 7. Vibrational populations of �v 11, 12, 13, 14 as a function of time for a laser pulse tracking the ZWR path of v=12. Red for
v=12, magenta for v=11, blue for v=13, and cyan for v=14. Initial states are successively v=11 (upper left panel), v=12 (upper
right panel), v=13 (lower left panel) and v=14 (lower right panel). The thin dashed line is for the total undissociated population.
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expected robust transfer to v=12 [64]. Once again, this
behavior turns out to be in close conformity with the analysis
of [34]. Time-dependent wavepacket calculations based on
these schemes are illustrated in the bottom panels of figure 8.
Both turn out to be efficient in producing fairly selective and
robust vibrational population transfers. The first one aiming at
v=12 to v=13 transfer, leads to excellent selectivity
(remaining v= 12 population less than 3%) and a robustness
of about 42% (undissociated population). The second one,
aiming at v=13 to v=12 transfer, although more robust
(58% undissociated population), is slightly less selective
(16% population still remaining on v=13). Finally, going
beyond the strict analysis of an adiabatic transfer, the strategy
mixing EP with ZWRs when shaping laser pulses followed
either clockwise or anti-clockwise, shows a promising pos-
sibility of efficient transfers both from v to �v 1 and the
reverse.

5. Conclusion

We have studied two laser control strategies aiming at
vibrational population transfers in �H2 , based on mechanisms
involving either very long-lived resonances (ZWR), or branch
cuts between two coalescing resonances (EP). Such studies
are advantageously performed for light diatomic species, well
adapted for one-dimensional models involving a frozen
rotation assumption valid for ultra-short, femtosecond

timescale pulses. �H2 is an ideal case both for its two-channel
photodissociation description (due to well-isolated excited
electronic states with respect to the pulse bandwidth) and for
the well-isolated ZWR paths and EPs (due to rather large
vibrational levels separation).

ZWRs and EPs are localized in the laser (wavelength,
intensity)-parameter plane as field-induced structural sig-
natures of the molecular system in a pure adiabatic descrip-
tion, referring to the Floquet Hamiltonian model with periodic
continuous-wave lasers. Control strategies are based on
tracking the resulting resonances either by remaining on some
ZWR paths for vibrational filtration purposes, or turning
around an EP to continuously switch from one resonance to
another, for vibrational population transfer purposes. As we
are dealing with a dissociation mechanism, a crucial issue
turns out to be the shaping of a laser pulse, not only targeting
tracking, but optimized for robustness within the challenging
frame of adiabatic transport in multiphoton processes with
nuclear continua. ZWRs seen as bound states in continuum
are ideal candidates for adiabaticity, which unfortunately is
not the case of EPs, precisely because they involve coales-
cence of full degenerate resonances. The adiabatic theory we
have worked out shows that, in some situations, such trans-
port may be valid on strictly mathematical grounds. More-
over, referring to the time-dependent evolution of the full
vibrational dynamics, we show that the limits of applicability
can even be extended. This is achieved by appropriately
following laser loops in terms of specific clockwise or anti-

Figure 8. Mixed-strategy laser loops in upper panels, and the resulting populations as a function of time in lower panels. The left column
represents anti-clockwise following of the loop to produce the v=12 to v=13 transfer, as indicated by the arrows. Clockwise contour of
the right column produces the v=13 to v=12 transfer. Cases which do not produce an adiabatic switch (initial state 13, with anti-clockwise
loop, and initial state 12, with clockwise loop) are not shown.
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clockwise contours, avoiding non-adiabatic contamination of
Feshbach-type resonances by their short-lived unstable
Shape-type partners. We also show how such control issues
can be improved by mixed strategies, where Feshbach-type
resonances tracking follows ZWR paths, avoiding any
population lost, at least up to the nearby EP position.

The mixed EP/ZWR strategy we are proposing for effi-
cient vibrational transfer can be analyzed both in terms of
robustness and experimental feasibility. An improved
robustness as compared to other EP-based strategies results
from the fact that, all along the dynamical encircling, except
on the vertical wavelength jump region, the system adiaba-
tically connected to its ZWR does not suffer any population
decay. As for the experimental feasibility, we are referring to
rather modest amplitude Vis-IR wavelength regions, with
relatively limited frequency chirp amplitude (not exceeding
15% around the 800 nm carrier wave frequency), within
typical pulse durations of 70fs. ZWR filtration and flips
around EPs are expected to be efficient and robust control
mechanisms that may be evidenced using state-of-the-art
experimental setups, such as those used in [65–67] where
individual vibrational contributions can be resolved in the
kinetic energy release of �H2 , photodissociated by shaped and
chirped Ti:sapphire laser pulses.

An even more systematic future improvement would be
the localization, in the laser parameter plane, of all ZWR
paths together with nearby EPs and their corresponding non-
adiabatic couplings. Optimal paths that the laser loop should
follow could then be built in such a way to avoid both high
dissipative and strong coupling regions. We are actively
pursuing research work on such challenges.
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