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We show that the holonomy of a connection defined on a principal composite
bundle is related by a non-Abelian Stokes theorem to the composition of the ho-
lonomies associated with the connections of the component bundles of the com-
posite. We apply this formalism to describe the non-Abelian geometric phase �when
the geometric phase generator does not commute with the dynamical phase gen-
erator�. We find then an assumption to obtain a new kind of separation between the
dynamical and the geometric phases. We also apply this formalism to the gauge
theory of gravity in the presence of a Dirac spinor field in order to decompose the
holonomy of the Lorentz connection into holonomies of the linear connection and
of the Cartan connection. © 2010 American Institute of Physics.
�doi:10.1063/1.3496386�

I. INTRODUCTION

A composite bundle is a tower of bundles E�T ,F2�→T�B ,F1�→B �the notation T�B ,F�→
�

B
denotes a locally trivial fiber bundle, with base space B, typical fiber F, total space T, and
projection �, with B, F, and T being three C�-manifolds and � being a surjective map�. The
concept of composite bundle was introduced by Sardanashvily in Ref. 1, with E�T ,F2�→T a
vector bundle, to describe both the non-Abelian geometric phase and the non-Abelian dynamical
phase. Sardanashvily2,3 and Tresguerres4 have also used composite bundles to describe the gauge
theory of gravity. To complete the description of a non-Abelian geometric phase with a non-
Abelian dynamical phase, we have introduced in Ref. 5 the concept of principal composite bundle.
A principal composite P�M ,G�-bundle P+�S ,G�→S�R ,M�→M mimes a principal bundle, where
a base fiber bundle S�R ,M�→R plays the role of the base manifold, and where a structure
principal G-bundle P�M ,G�→M plays the role of the structure group �R, M, S, P, and P+ are
C�-manifolds and G is a Lie group�. We have shown that a principal composite bundle defines a
locally defined G-bundle P+�M �R ,G�→M �R called total bundle, and two kinds of “leaf” of
fibers. One consists of bundles isomorphic to P�M ,G�→M, and the others are called transversal
G-bundles �Qx�N ,G�→N�. In the present paper, we specify the principal composite bundle struc-
ture, particularly from the viewpoint of the local data and of the torsion of the total bundle.
Moreover, we study the holonomy of a composite connection and we show that it is related by a
non-Abelian Stokes theorem to the product of the holonomy of the structure bundle connection by
the holonomy of one of the transversal bundle connections.

This paper is organized as follows. Section II presents the principal composite bundle geom-
etry. Section III studies composite connections and the associated holonomies. The link between
composite holonomies and geometric phases, when the geometric phase generator does not com-
mute with the dynamical phase generator, is studied in Sec. IV. Under a relevant assumption we
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find that the non-Abelian phase is the product of the non-Abelian geometric phase and of the
non-Abelian dynamical phase with fixed adiabatic parameters. Finally, we consider the composite
holonomies arising with a Dirac spinor field transport in a curved space-time.

A note about the notations used here: the symbol “� ” between two manifolds denotes that
the two manifolds are diffeomorphic. The symbol “� ” denotes an inclusion between two sets.
�n�M ,g� denotes the set of the g-valued n-forms of the manifold M. dM denotes the exterior
differential of M. TxM denotes the space of tangent vectors of M at x�M and TM denotes the
space of tangent vector fields of M (the tangent bundle of M). LxM denotes the space of smooth
closed loops in M with base point x. f �g�x� denotes the composition f�g�x��. ��U , P� denotes the
set of local sections of a fiber bundle P→M over U�M.

II. THE PRINCIPAL COMPOSITE BUNDLE GEOMETRY

This section presents the relevant definitions concerning the principal composite bundles. The
first part presents the global theory �as in Ref. 5� but with enlightenment concerning the torsion of
the total bundle; the second part introduces the local theory �which is not treated in Ref. 5�.

A. Global geometry of a principal composite bundle

Definition 1: (Principal composite bundle) Let G be a Lie group and P�M ,G�→
�P

M be a
principal G-bundle over a manifold M. A principal composite P�M ,G�-bundle is a tower of fiber

bundles P+�S ,G�→
�+

S�R ,M�→
�S

R, such that

• ∀y�R, �S
−1�y��M,

• for every good open cover �Vi�i of R, there exists a diffeomorphism �S
i :�S

−1�Vi�→
�

Vi�M,
• ∀y�Vi, �+

−1��S
−1�y��=�Sy

i� P.

P�M ,G�→M is called the structure bundle of the principal composite bundle.
�A good open cover of R is a set of simply connected contractible open sets covering R.� �Sy

i�

is the map induced in the bundles by �Sy
i =�S	�S

−1�y�
i �the fiber diffeomorphism of S�R ,M� over y�,

i.e., it is the bundle isomorphism such that the following diagram commutes:

P+ ←‚ �+
−1��S

−1�y�� ←
�Sy

i�

P

�+↓ �+↓ ↓�P

S ←‚ �S
−1�y� →

�Sy
i

M

�S↓ �S↓
R ←‚ �y�

.

As a principal bundle defines a total space which is locally a Cartesian product of manifolds, a
principal composite bundle defines a total space which is locally a fiber bundle.

Definition 2: (Total twisted bundle of a principal composite bundle) Let P+�S ,G�→
�+

S�R ,M�

→
�S

R be a principal composite P�M ,G�-bundle. Let �P
	 :U	�G→

�
�P

−1�U	�� P be the local trivi-
alization of P�M ,G� (�U	�	 being a good open cover of M). We call total twisted bundle of P+

→S→R, the set of principal G-bundles �P+
i �M �Vi ,G�→

�++
i

M �Vi�i defined by the following local
trivialization:
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�++
	i :

U	 � Vi � G → P+
i

�x,y,g� � �Sy
i� �P

	�x,g� ,

where P+
i =�+

−1��S
−1�Vi�� with the projection defined by ∀p� P+

i , �++
i �p�= ��S�S��+�p�

i ��+�p� ;�S

��+�p��.

Since �Sy
i� �P

	�s ,G�=�+
−1��Sy

i−1�x��, for each y�Vi�Vj, �Sy
j��P

	��Sy
j ��Sy

i−1�x� ,G�=�Sy
i� �P

	�x ,G�.

Definition 3: (Torsion functions of the twisted total bundle) We call torsion functions of the

total twisted bundle of a principal composite P�M ,G�-bundle P+�S ,G�→
�+

S�R ,M�→
�S

R, the auto-
morphisms of M defined for all y�Vi�Vj by


y
ij:

M → M

x � �Sy
j � �Sy

i−1�x� ,

where 
y
ij represents the torsion of �P+

i �M �Vi ,G��i since

�++
	i �x,y,G� = �++

	j �
y
ij�x�,y,G� .

The total twisted bundle is a principal G-bundle if and only if 
y
ij = idM, i.e., if S=R�M �the

bundle S�R ,M� is trivial�.

There are three notions of fiber in a principal composite bundle �see Fig. 1�. One is the usual
fiber of the total bundle of the composite, i.e., �++

i−1�x ,y� for �x ,y��M �Vi. The second kind plays
the role in the principal composite bundle of the fiber diffeomorphic to the structure group in a
principal bundle, i.e., �+

−1��S
−1�y��=�Sy

i� P. We call it a longitudinal leaf of fibers. The third kind has
no analog in a simple principal bundle; it is a transversal leaf of fibers.

Definition 4: (Transversal bundles) Let P+�S ,G�→
�+

S�R ,M�→
�S

R be a principal composite
P�M ,G�-bundle and �++

	i be the local trivialization of its total twisted bundle. We call transerval

bundle over x�U	�M the set of principal G-bundles �Qx
	i�Vi ,G�→

�Qx
	

Vi�i defined by the following
local trivializations:

�Qx
i�	�:

Vi � G → Qx
	i � P+

�y,g� � �++
	i �x,y,g�

.

The projection of a transversal bundle is then defined by ∀q�Qx
	i, �Qx

	 �q�=�S ��+�q�.

FIG. 1. Scheme of a principal composite P�M ,G�-bundle P+�S ,G�→S�R ,M�→R. A single fiber over �x ,y� is represented
by a dotted line. This fiber belongs to the longitudinal leaf of fibers �Sy

� P and to the transversal leaf of fibers Qx.
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We remark that if x�U	�U� then there exists two diffeomorphic transversal bundles over x:

Qx
	i�Qx

�i. We denote by �Qx
	��i� :Qx

�i→
�

Qx
	i this diffeomorphism. ∀x�U	�U��U� and for q

�Qx
�i, �Qx

	��i��q�=�Qx

	��i�
��Qy

���i��q� ·hx
	���i���Qx

	 �q�� with hx
	���i��y��G �the dot in the preceding ex-

pression denotes the right action of G on Qx
�i�.

Property 1: The family of the transerval bundles �Qx
	i�R ,G�→R�x�U	,	 of a principal com-

posite bundle is torsion free, i.e., hx
	���i��y�=e (e is the identity element of G).

This property follows from the following commutative diagram:

�Qx
�−1�y� →

�Qx
	��i�

�Qx
	−1�y�

�Sy
i�−1↓� �Sy

i�−1↓�

�P
−1�x� →

�Px
	−1

��Px
� �P

−1�x�

,

∀y � Vi.

Remark: Let �W	i�	,i be the good open cover of S defined by

W	i = �
y�Vi

�Sy
i−1�U	� .

The local trivialization of the principal G-bundle P+�S ,G�→
�+

S is

�+
	i:

W	i → �+
−1�W	i�

�s,g� � �S�S�s�
i� �P

	��S�S�s�
i �s�,g�

.

B. Local data defining a principal composite bundle

A principal bundle, as P�M ,G�→M, is totally determined by the knowledge of the manifolds
P and M and of the local diffeomorphism �P

	 :U	�G→P �or equivalently the fiber diffeormo-
phism �Px

	 =�P
	�x , .��. However, it is often more practical to determine the structure of a principal

bundle by using entities defined only with M and G �without any explicit reference to P�. Indeed
the explicit geometry of the manifold P is often unknown. The local data defining a principal
bundle are the transition functions gP

	���0�U	�U� ,G� �see Ref. 6� which are related to the local
diffeomorphisms by

∀x � U	 � U�, �P
��x,e� = �P

	�x,gP
	��x�� . �1�

They satisfy the cocycle relations

∀x � U	 � U� � U�, gP
	��x�gP

���x� = gP
	��x� , �2�

∀x � U	 � U�, gP
	��x� = gP

�	�x�−1. �3�

Since �Sy
j��P

	�
y
ij�x� ,G�=�Sy

i� �P
	�x ,G�, there exists gQx

ij�	���0�Vi�Vj ,G�, such that

�Sy
j��P

	�
y
ij�x�,e� = �Sy

i� �P
	�x,gQx

ij�	��y�� .

Property 2: ∀x�U	�U� and ∀y�Vi�Vj, we have

gP
	��x�gQx

ij����y� = gQx
ij�	��y�gP

	��
y
ij�x�� �4�

This property follows from the two following calculations:
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�Sy
j��P

��
y
ij�x�,e� = �Sy

j��P
	�
y

ij�x�,gP
	��
y

ij�x��� �5�

=�Sy
i� �P

	�x,gQx
ij�	��y�gP

	��
y
ij�x��� , �6�

�Sy
j��P

��
y
ij�x�,e� = �Sy

i� �P
��x,gQx

ij����y�� �7�

=�Sy
i� �P

	�x,gP
	��x�gQx

ij����y�� �8�

The transition functions of the total twisted bundle of a principal composite P�M ,G�-bundle
P+�S ,G�→S�R ,M�→R are defined by

∀�x,y� � U	 � U� � Vi � Vj, g++
�	i���j��x,y� = gP

	��x�gQx
ij����y� = gQx

ij�	��y�gP
	��
y

ij�x�� . �9�

They are related to the local diffeomorphisms by

∀�x,y� � U	 � U� � Vi � Vj, �++
�j �
y

ij�x�,y,e� = �++
	i �x,y,g++

�	i���j��x,y�� . �10�

Property 3: The transversal transition functions satisfy the twisted cocycle relation

∀y � Vi � Vj � Vk, gQx
ik�	��y� = gQx

ij�	��y�gQ
y
ij�x�

jk�	� �y� . �11�

This property follows from the two following calculations:

�Sy
k��P

	�
y
ik�x�,e� = �Sy

i� �P
	�x,gQx

ik�	��y�� , �12�

�Sy
k��P

	�
y
ik�x�,e� = �Sy

k��P
	�
y

jk � 
y
ij�x�,e� �13�

=�Sy
j��P

	�
Sy
ij �x�,gQ
y

ij�x�
jk�	� �y�� �14�

=�Sy
i� �P

	�x,gQx
ij�	��y�gQ
y

ij�x�
jk�	� �y�� . �15�

Property 4: The transition functions of the total twisted bundle satisfy the twisted cocycle
relation

∀�x,y� � U	 � U� � U� � Vi � Vj � Vk, g++
�	i���k��x,y� = g++

�	i���j��x,y�g++
��j���k��
y

ij�x�,y� .

�16�

Indeed we have

g++
�	i���k��x,y� = gP

	��x�gQx
ik����y� �17�

=gP
	��x�gP

���x�gQx
ij����y�gQ
y

ij�x�
jk��� �y� �18�

=gP
	��x�gQx

ij����y�gP
���
y

ij�x��gQ
y
ij�x�

jk��� �y� �19�

=g++
�	i���j��x,y�g++

��j���k��
y
ij�x�,y� . �20�

The twisted cocycle relation can be rewritten as

g++
�	i���k��x,y� = g++

�	i���j��x,y�g++
��j���k��x,y�h�	i���j���k��x,y� , �21�

with
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h�	i���j���k��x,y� = g++
��j���k��x,y�−1g++

��j���k��
y
ij�x�,y� . �22�

h�	i���j���k���0�U	�U��U��Vi�Vj �Vk ,G� represents the obstruction to lift the total twisted
bundle into a principal bundle. The notion of total twisted bundle introduced in this paper extends
the notions of twisted bundle and bundle gerbes.7–10

Proposition 1: Let g+
�	i���j���0�W	i�W�j ,G� be the transition functions of the principal

G-bundle P+�S ,G�. These transition functions are related to the transition function of the total
twisted bundle by

g++
�	i���j��x,y� = g+

�	i���j���Sy
i−1�x�� . �23�

Indeed ∀s�W	i�W�j we have

�+
�j�s,e� = �+

	i�s,g+
�	i���j��s�� �24�

and

�++
�j �
y

ij�x�,y,e� = �+
�j��Sy

i−1�x�,e� , �25�

�++
	i �x,y,g� = �+

	i��Sy
i−1�x�,g� . �26�

We can note that the usual cocycle relation concerning g+
�	i���j� involves the twisted cocycle

relation concerning g++
�	i���j�,

�27�

Proposition 2: A composite principal P�M ,G�-bundle over S�M ,R�→R is completely deter-

mined by the knowledge of automorphisms 
x
ij :M→

�
M and functions g++

�	i���j���0�U	�U�

�Vi�Vj ,G�, such that g++
�	i���i��x ,y� is independent of y�R and of i, and satisfying the twisted

cocycle relations

∀�x,y� � U	 � U� � U� � Vi � Vj � Vk, g++
�	i���j��x,y�g++

��j���k��
y
ij�x�,y� = g++

�	i���k��x,y� .

�28�

Indeed, we can reconstruct the manifold S by

S = �
i
Vi � M/ 
 �y,x� 
 �y�,x�� ⇔ y = y� and y � Vi � Vj ⇒ x� = 
ij�x� �29�

and the manifold P+ by

P+ = �
	,i

W	i � G/ 
 �s,g� 
 �s�,g�� ⇔ s = s� and s � W	i � W�j ⇒ g� = gg++
�	i���j�

���S�S�s�
i �s�,�S�s�� . �30�

III. COMPOSITE CONNECTIONS AND COMPOSITE HOLONOMIES

A. Global definition of a composite connection

The fibers of P+ being diffeomorphic to G, there exists a tangent vector subspace, such that
TrP+�VrP+�g for r� P+ �where g is Lie algebra of G� called the space of vertical tangent
vectors �see Ref. 6�. A connection is a choice of a supplementary subspace HrP+ called the space
of horizontal tangent vectors, TrP+=VrP+ � HrP+. We want to reduce the choice of the horizontal
tangent space to be compatible with the composite structure.
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Definition 5: (Composite connection) Let P+�S ,G�→S�R ,M�→M be a principal composite
P�M ,G�-bundle. A composite connection is a choice of a horizontal tangent space HrP+ at each
point r of P+, such that there exists a horizontal tangent space HpP at each point p of P with
�Sy�

i� HpP�H�Sy
i� �p�P+.

�Sy�
i� denotes the tangent map of �Sy

i� �the lower star denotes the push-forward�.
A connection being defined by a 1-form �for which the horizontal tangent space is its kernel,

see Ref. 6�, we have the following definition.

Definition 6: (Composite connection 1-form) Let P+�S ,G�→S�R ,M�→M be a principal com-
posite P�M ,G�-bundle. A connection 1-form 
��1�P+ ,g� is a composite principal connection
1-form if there exists a connection 1-form 
P��1�P ,g�, such that ∀y�Vi, �Sy

i��iy
�
=
P, where

iy :�+
−1��S

−1�y��→
�

P+ is the canonical injection.

�Sy
i�� denotes the cotangent map of �Sy

i� �the second upper star denotes the pull-back�. The
important property of a composite connection 1-form is that �Sy

i��iy
�
 is independent of y and of i.

Let ix
	 :Qx

	→
�

P+ be the canonical injection. The transversal bundle is endowed with the con-
nection 1-form 
Qx

	 = ix
	�
��1�Qx

	 ,g�.

B. Local data associated with a composite connection

Let 
��1�P+ ,g� be a composite connection of P+�S ,G�→S�R ,M�→R. Let �M�R
	i ���U	

�Vi , P+� be a local section of the principal bundle P+
i �M �Vi ,G�, such that

∀�x,y� � U	 � U� � Vi � Vj, �M�R
�j �
y

ij�x�,y� = �M�R
	i �x,y� · g++

�	i���j��x,y� . �31�

The gauge potential associated with the connection is A+
	i=�M�R

	i� 
��1�U	�Vi ,g�. By construc-
tion we have

∀�x,y� � U	 � U� � Vi � Vj ,


ij�A+
�j�x,y� = g++

�	i���j��x,y�−1A+
	i�x,y�g++

�	i���j��x,y� + g++
�	i���j��x,y�−1dM�Rg++

�	i���j��x,y� , �32�

where 
ij� :���M �Vi�Vj�→���M �Vi�Vj� denotes the cotangent map of �x ,y��
y
ij�x�. We

have then


ij�A+
�j�x,y� = A+�

�j�
y
ij�x�,y�

�
y
ij��x�

�x� dx� + �A+�
�j�
y

ij�x�,y�
�
y

ij��x�
�ya + A+a

�j�
y
ij�x�,y��dya,

�33�

where 
y
ij��x� is the �-th coordinates of the point 
y

ij�x��M.
Let F+

	i=dA+
	i+A+

	i∧A+
	i��2�U	�Vi ,g� be the curvature of the principal composite bundle.

By construction we have


ij�F+
�j�x,y� = g++

�	i���j��x,y�−1F+
	i�x,y�g++

�	i���j��x,y� . �34�

We can also use the language of the 2-connections on the total twisted bundle �see Ref. 7–10�,

A+
�j�x,y� = g++

�	i���j��x,y�−1A+
	i�x,y�g++

�	i���j��x,y� + g++
�	i���j��x,y�−1dM�Rg++

�	i���j��x,y� + A++
ij����x,y� ,

�35�

where A++
ij����x ,y�=A+

�j�x ,y�−
ij�A+
�j�x ,y� is the potential of the 2-connection. By construction we

have

F+
	j�x,y� − gQx

ij�	��y�−1F+
	i�x,y�gQx

ij�	��y� = F+
	j�x,y� − 
ij�F+

	j�x,y� , �36�
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=dM�RA++
ij�	��x� + �A+

	j�x,y�,A++
ij�	��x,y�� − A++

ij�	��x,y� ∧ A++
ij�	��x,y� , �37�

where F+
	i plays then the role of the curving associated with the 2-connection �usually denoted by

B�.

C. The intertwining curvature

The transversal bundle Qx
	i is endowed with the gauge potential AQx

i�	�=�M�R
	i �x , .��
Qx

	

= jx
�A+

	i��1�Vi ,g�, where jx : R→M�R
y��x,y� . We have then

∀y � Vi � Vj, 
ij�AQx
j�	��y� = gQx

ij�	��y�−1AQx
i�	��y�gQx

ij�	��y� + gQx
ij�	��y�−1dRgQx

ij�	��y� . �38�

For x�U	�U�, the gauge potentials of Qx
	i�R ,G� and Qx

�i�R ,G� are related by

AQx
i����y� = gP

	��x�−1AQx
i�	��y�gP

	��x� . �39�

�Sy
i�−1�M�R

	i �. ,y����U	 , P� is a �y , i�-dependent local section of the principal bundle P�M ,G�.
With it we can define a �y , i�-dependent gauge potential of P, APy

	�i�=�M�R
	i� �Sy

i�−1�
P

=�M�R
	i� �Sy

i�−1��Sy
i��iy

�
= jy
�A+

	i��1�U	 ,g�, where jy : M→M�R
x��x,y� . It is more interesting to endow

P�M ,G� with a gauge potential independent of y. Let �M
	 ���U	 , P� be a local section of P, such

that �M
� �x�=�M

	 �x� ·gP
	��x�, we define the gauge potential AP

	 =�M
	�
P��1�U	 ,g�. The relation

between AP
	 and the family �APy

	�i��y�Vi,i is just a �y , i�-dependent gauge transformation, indeed

∀�x,y� � U	 � Vi, ∃ gy
	i�x� � G, �Sy

i�−1�M�R
	i �x,y� = �M

	 �x� · gy
	i�x� , �40�

and then

APy
	�i��x� = gy

	i�x�−1AP
	�x�gy

	i�x� + gy
	i�x�dMgy

	i�x� . �41�

We note that

∀�x,y� � U	 � U� � Vi, gP
	��x�gy

�i�x� = gy
	i�x�gP

	��x� . �42�

We have then

∀x � U	 � U�, AP
��x� = gP

	��x�−1AP
	�x�gP

	��x� + gP
	��x�−1dMgP

	��x� , �43�

APy
��i��x� = gP

	��x�−1APy
	�i��x�gP

	��x� + gP
	��x�−1dMgP

	��x� . �44�

The gauge potentials of the total, structure, and transversal bundles are related by

A+
	i�x,y� = APy

	�i��x� + AQx
i�	��y� �45�

=gy
	i�x�−1AP

	�x�gy
	i�x� + AQx

i�	��y� + gy
	i�x�−1dMgy

	i�x� .

�46�

We prefer another gauge choice: Ã+
	i�x ,y�=gy

	i�x�A+
	i�x ,y�gy

	i�x�−1+gy
	i�x�dM�Rgy

	i�x�−1, in which
we have

Ã+
	i�x,y� = AP

	�x� + ÃQx
i�	��y� , �47�

with ÃQx
i�	��y�=gy

	i�x�AQx
i�	��y�gy

	i�x�−1+gy
	i�x�dRgy

	i�x�−1. We call this choice the gauge of decompo-
sition since it isolates the gauge potential of P�M ,G�.

Finally, we compute the curvature of the composite bundle,
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F̃+
	i = dM�RÃ+

	i + Ã+
	i ∧ Ã+

	i �48�

�49�

where DP
	 =dM + �AP

	 , .� is the covariant differential associated with the connection of P�M ,G�, FP
	

is the curvature of P�M ,G�, and F̃Qx
i�	� is the curvature of Qx

	i�Vi ,G�. We note that

∀�x,y� � U	 � U� � Vi � Vj, 
ij�F̃+
�j = g̃++

�	i���j�−1F̃+
	ig̃++

�	i���j� and 
ij�DP
�ÃQx

j���

= g̃++
�	i���j�−1DP

	ÃQx
i�	�g̃++

�	i���j�, �50�

with g̃++
�	i���j��x ,y�=gy

	i−1�
y
ij�x��g++

�	i���j��x ,y�gy
�j�x�. We call DP

	ÃQx
i�	� the intertwining curvature of

the composite bundle, since it measures the covariant variations of the connection of Qx
	i�Vi ,G�

with respect to the variations of x �the covariance being defined with respect to the connection of
P�M ,G��.

D. Composite holonomy

Let CM�R�L�x0,y0��M �Vi� be a closed path in M �Vi, CM �Lx0
M be its “image” in M, and

CR�Ly0
Vi be its “image” in R. The holonomy of the path CM�R in the total bundle P+

i �M
�Vi ,G� measures the difference along the fiber �++

i−1�x0 ,y0� between the two end points of the
open horizontal lift of the closed path CM�R. It is defined by �see Ref. 6�

HolÃ+
�CM�R� = PCM�R

e
Ã+, �51�

where PCM�R
is the path-ordering operator along CM�R, i.e., PCe�x0

x A is the solution of the following
equation:

dPCe�x0

x�s�A

ds
= PCe�x0

x�s�AA�

dx��s�
ds

, �52�

where s�x�s� is a parametrization of C.
In the composite bundle, we are interested in the comparison between the holonomy in the

total bundle HolÃ+
�CM�R� and the holonomies in the structure bundle HolAP

�CM� and in a relevant
transversal bundle �for example, the transversal bundle at the base point x0� HolÃQx0

�CR�. Ideally,

we would prefer the composite holonomy to be the composition of the component holonomies:
HolÃ+

�CM�R�=HolÃQx0
�CR�HolAP

�CM� �the product between the two holonomies is the group law of

G�. Obviously this is not the case. The following theorem expresses the difference between the
composite holonomy and the composition of the component holonomies by using the intertwining
curvature �which measures precisely the intertwining between the two connections�.

Theorem 1: Let P+�S ,G�→S�R ,M�→R be a principal composite P�M ,G�-bundle endowed

with a composite connection defined by the gauge potential Ã+
	i�x ,y�=AP

	�x�+ ÃQx
i�	��y� (within the

gauge of decomposition). Let CR�Ly0
R. Let h���CR ,S� be a local section of S�R ,M� over CR. We

suppose that

• there exists a local chart Vi�R, such that CR�Vi,
• there exists a local chart U	�M, such that �S

i h�CR��U	.

The difference between the composite holonomy of the section h in the principal composite
bundle (which is defined as being the holonomy of CM�R in the total bundle) and the composition
of the holonomies of CR and of CM is
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HolÃ+
	i�CM�R�HolAP

	�CM�−1HolÃQx0

i�	��CR�−1 = PCR
e
�x0

�S
i h�y�

T�x,y�DP�
	 ÃQxa

i�	� �y�T�x,y�−1dx�dya
, �53�

where x0=�S
i h�y0�, CM =�S

i h�CR��Lx0
M, and CM�R= ���S

i h�y� ,y� ;y�CR��L�x0,y0��M �R�. The
second integral is along CM (it is not ordered) and

T�x,y� = PCR
e�y0

y ÃQx0

i�	�
PCM

e�x0

x AP
	
. �54�

This theorem can be viewed as an equivalent of the non-abelian Stokes theorem �Ref. 11� in the
composite bundle, and it is proven in Appendix A. The term appearing in the right hand side of
Eq. �53� is gauge equivariant: if

Ã+
	i��x,y� = g�x,y�−1Ã+

	i��x,y�g�x,y� + g�x,y�−1dM�Rg�x,y� , �55�

then

PCR
e
�x0

�S
i h�y�

T��x,y�DP�
	� ÃQxa

i�	��T��x,y�−1dx�dya
= g�x0,y0�−1PCR

e
�x0

�S
i h�y�

T�x,y�DP�
	 ÃQxa

i�	�T�x,y�−1dx�dya
g�x0,y0� .

�56�

The composite holonomy is the composition of the component holonomies if and only if the

intertwining curvature vanishes DP
	ÃQx

i�	�=dMÃQx
i�	�+ �AP

	 , ÃQx
i�	��=0.

If we relax the second assumption by supposing that CM crosses several charts U	, the works
of Alvarez in Ref. 12 show that the correct definition of the holonomy of CM�R is

HolÃ+
�CM�R� = PCM�R

e��x0,y0�
�x	�,y	��Ã+

	i
gP

	��x	��PCM�R
e��x	�,y	��

�x��,y���
Ã+

�i
gP

���x��� . . . . . . gP
�	�x�	�PCM�R

e��x�	,y�	�
�x0,y0�

Ã+
	i

,

�57�

where U	 ,U� , . . . ,U� are the charts crossed by CM, x	� is an arbitrary point on U	�U��CM, and
y	� is the point of CR, such that �S

i h�y	��=x	�. The preceding expression is independent of the
choice of the points �x	��	,�. We can then apply Theorem 1 on each piece of CM�R, i.e.,

HolÃ+
�CM�R� = PCR

e�y0

y	�
�x0

�S
i h�y�

T	i�x,y�DP
	ÃQx

i�	�T	i�x,y�−1
PCR

e�y0

y	�
ÃQx0

i�	�
PCM

e�x0

x	�
AP

	
gP

	��x	��

� PCR
e�

y	�
y��

�
x	�
�S

i h�y�
T�i�x,y�DP

�ÃQx
i���T�i�x,y�−1

PCR
e�

y	�
y��

Ã
Qx	�
i���

PCM
e�

x	�
x��

AP
�
gP

���x��� . . .

� PCR
e�

y�	
y0 �

x�	
�S

i h�y�
T	i�x,y�DP

	ÃQx
i�	�T	i�x,y�−1

PCR
e�

y�	
y0 Ã

Qx�	
i�	�

PCM
e�

x�	
x0 AP

	
. �58�

The simple composition of the component holonomies does not appear because of the higher
degree of intertwining due to the chart transitions.

Now we relax the first assumption by supposing that CR crosses several charts Vi. Let CM
i

= ��S
i h�y� ,y�CR�Vi�. CM and CM�R are now two collections of disconnected paths. Let yij be an

arbitrary point on Vi�Vj �CR, xij�i�=�S
i h�yij�, and xij�j�=�S

j h�yij� be the images of yij on the two
disconnected paths CM

i and CM
j . We note that 
ij�xij�i��=xij�j�. The direct generalization of the

Alvarez formula,

PCM�R
i e��xij�i�,yij�Ã+

	i
g̃++

�	i��	j��xij�i�,yij�PCM�R
j e��xij�j�,yij�Ã+

	j
, �59�

is well defined. Indeed, it is independent of the arbitrary point yij. Let ŷij be another arbitrary point
on Vi�Vj �CR. We have then

PCM�R
j e��x̂ij�j�,ŷij�Ã+

	j
= PCM�R

j e��x̂ij�j�,ŷij�
�xij�j�,yij�

Ã+
	j
PCM�R

j e��xij�j�,yij�Ã+
	j

. �60�

We have, moreover,
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PCM�R
j e��x̂ij�j�,ŷij�

�xij�j�,yij�
Ã+

	j
= P
ij�CM�R

i �e
��
ij�x̂ij�i��,ŷij�

�
ij�xij�i��,yij�
Ã+

	j
�61�

=PCM�R
i e��x̂ij�i�,ŷij�

�xij�i�,yij�

ij�Ã+

	j
. �62�

Since 
ij�Ã+
	j = g̃++

�	i��	j�−1Ã+
	ig̃++

�	i��	j�+ g̃++
�	i��	j�−1dM�Rg̃++

�	i��	j�, we have

PCM�R
i e��x̂ij�i�,ŷij�

�xij�i�,yij�

ij�Ã+

	j
= g̃++

�	i��	j��x̂ij�i�, ŷij�−1PCM�R
i e��x̂ij�i�,ŷij�

�xij�i�,yij�
Ã+

	i
g̃++

�	i��	j��xij�i�,yij� . �63�

We see then that

PCM�R
i e��x̂ij�i�,ŷij�Ã+

	i
g̃++

�	i��	j��x̂ij�i�, ŷij�PCM�R
j e��x̂ij�j�,ŷij�Ã+

	j

= PCM�R
i e��xij�i�,yij�Ã+

	i
g̃++

�	i��	j��xij�i�,yij�PCM�R
j e��xij�j�,yij�Ã+

	j
. �64�

The formula is then well defined since it is independent of the arbitrary choice of points �yij�ij. We
can then defined the composite holonomy by

HolÃ+
��CM�R

i �i� = PCR
e�y0

yij
�x0

�S
i h�y�

T	i�x,y�DP
	ÃQx

i�	�T	i�x,y�−1
PCR

e�y0

yij
ÃQx0

i�	�
PCM

i e�x0

xij�i�
AP

	
g̃++

�	i��	j��xij�i�,yij�

� PCR
e�

yij
yjk

�
xij�j�
�S

j h�y�
T	j�x,y�DP

	ÃQx
j�	�T	j�x,y�−1

PCR
e�

yij
yjk

Ã
Qxij�j�
j�	�

PCM
j e�

xij�j�
xjk�j�

AP
	
g̃++

�	j��	k��xjk�j�,yjk� . . .

� PCR
e�

yzi
y0 �

xzi�z�
�S

zh�y�
T	z�x,y�DP

	ÃQx
z�	�Tzi�x,y�−1

PCR
e�

yzi
y0 Ã

Qxzi�i�
z�	�

PCM
i e�

xzi�i�
x0 AP

	
, �65�

where Vi ,Vj , . . . ,Vz are the charts crossed by CR �we have supposed that ∀i, CM
i �U	�. If we relax

both the two assumptions, then the composite holonomy formula is a mixing of formulas �58� and
�65�.

IV. APPLICATIONS

In this section we apply the formalism of the principal composite bundle to model two
physical problems:

• the dynamics of a quantum system interacting with a classical environment and described by
an active space and non-Abelian geometric phases,

• the transport of a classical Dirac spinor field coupled with the gravitational field associated
with the curved space-time of the general relativity.

In this two situations we present the application of Theorem 1.

A. Non-Abelian geometric phases of a quantum system interacting with a classical
environment

We consider a quantum system described by the Hilbert space H and the free self-adjoint
Hamiltonian H0�L�H� �L�H� denotes the space of linear operators of H�. The quantum system
interacts with an environment described by n classical parameters R� via the self-adjoint interaction
operator R� �HI�R� ��L�H� �we suppose that H0 and the family �HI�R� ��R� �Rn have a common
domain in which each operator is restricted�. The total Hamiltonian H�R� �=H0+HI�R� � describes
the quantum system interacting with its environment. If we suppose that there exists m smooth
constraints on the classical parameters R� : �f l�R� �=0�l=1,. . .,m, f l :Rn→R, then the admissible R� form
a smooth �n−m�-dimensional submanifold M of Rn. These constraints can have for origin the fact
that the parameters could be not physically independent or else they could be chosen by an
experimentalist who controls the environment. We denote by �x���=1,. . .,n−m a coordinate system on
M �and we write R� =x if R� �M�. Let �0,T� be the fixed time interval of the evolution �0 can be the
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date of the preparation of the system and T can be the date of the experimental measurement�. We
consider only closed evolutions �0,T�� t�R� �t��M, such that R� �0�=R� �T�=x0 with HI�x0�=0 �x0

corresponds to the off interaction�. Since R� �0�=R� �T� for all evolutions, we can consider t
� �0,T� as a coordinate on the circle S1.

We suppose that there exist N�dim H orthonormalized x-dependent vectors �	A ,x�	

�H�A=1,. . .,N �depending on a system of local charts �U	�	 on M�, such that

∀t � �0,T�, U�t,0�P�x0� = P�x�t��U�t,0� for all evolution t � x�t� , �66�

where P�x�=�A=1
N 	A ,x�		�A ,x	 is the rank N orthogonal projector on the space spanned by

�	x ,A�	�H�A=1,. . .,N �the active space�, and where U�t ,0� is the evolution operator, i.e.,

ı�
dU�t,0�

dt
= H�x�t��U�t,0�, U�t,0� = Te−ı�−1�0

t H�x�t���dt�, �67�

T is the time ordering operator. ∀x�U	�U�, g	��x�AB= 	�A ,x 	B ,x�	 is an element of a basis
change matrix within the active space. Such a set of vectors is, for example, given by an adiabatic
theorem �see, for example, Ref. 13� �in that case each 	A ,x� is an eigenvector of H�x�=H0

+HI�x��. We suppose that the initial wave function of the quantum system is ��0�= 	A ,x0�	; under
the assumption, Eq. �66�, we can prove �see Refs. 5 and 14� that

��T� = �
B=1

N

�Te−ı�−1�0
TE	�x�t��dt−�0

TAP�
	 �x�t���dx��t�/dt�dt�BA	B,x0�	, �68�

with

E	�x�AB=	�A,x	H�x�	B,x�	, AP�
	 �x�AB=	�A,x	

�

�x� 	B,x�	. �69�

We have, moreover, supposed that CM �the path parametrized by t�x�t�� is totally included in U	.
The quantum dynamics is then described by the composite bundle P+�M �S1 ,U�N��→M

�S1→S1 �where U�N� is the Lie group of the order N unitary matrices�. The structure bundle
P�M ,U�N��→M is defined by the transition function g	���0�U	�U� ,U�M��. Since the base
bundle M �S1→S1 is trivial, the composite transition functions are simply g++

�	i���j��x , t�=g	��x�
for all opens Vi and Vj of S1, and the torsion functions are reduced to the identity map. The
manifold P+ is then P�S1. The transversal bundles are then the trivial bundles Qx

	=S1

��Px
	 �G�→S1 ��Px

	 �G���P
−1�x��. The composite bundle is endowed with the composite connec-

tion defined by the gauge potential

Ã+
	 = ı�−1E	�x�dt + AP�

	 �x�dx� � �1�U	 � S1,u�N�� , �70�

where AP��1�U	 ,u�N�� is the gauge potential of P�M ,U�N�� and where ÃQx
�	��t�= ı�−1E	�x�dt

��1�S1 ,u�N�� is the gauge potential of Qx
	�S1 ,U�N�� �u�N� is the Lie algebra of the order N

anti-self-adjoint matrices�. We note that the gauge of decomposition is conserved while the basis
changes of the active space are assumed to be time-independent. The non-Abelian phase appearing
in the expression of the wave function, Eq. �68�, is the holonomy of the section h���S1 ,M
�S1� defined by h�t�= �x�t� , t�,

Teı�−1�0
TE	�x�t��dt+�0

TAP�
	 �x�t���dx��t�/dt�dt = HolÃ+

�CM�S1� . �71�

The study of quantum dynamics by the non-Abelian geometric phase formulation is well estab-
lished when ∀x ,x��M, ∀�, �E�x� ,A��x���=0 �a such assumption is satisfied when all vectors
	A ,x� are eigenvectors associated with a single N degenerate eigenvalue e�x� of H�x��. In that case
we have
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HolÃ+
�CM�S1� = Teı�−1�0

TE	�x�t��dtPCM
e
AP

	
. �72�

The separation of the dynamical phase and of the geometric phase permits the use of the properties
of each one to understand the dynamics. In the case of an N-fold degenerate eigenvalue,

Teı�−1�0
TE	�x�t��dt=eı�−1�0

Te�x�t��dtidN is just an Abelian phase �idN is the order N identity matrix�, the
properties concerning the state transitions are then encoded only by the geometry of P�M ,G�. This
fact is used to develop quantum control methods �see Ref. 15�. However, if the generators do not
commute, �E�x� ,A��x����0, the usual formulas do not separate the geometric and the dynamical
phase. By applying Theorem 1, we find another separation if

�

�x�E	�x� + �AP�
	 �x�,E	�x�� = 0 ∀ x � U	, ∀ � . �73�

In other words, in place of assuming the nonlocal commutation of the dynamical and the geomet-
ric generators, we assume that the dynamical generator is a local geometric coinvariant �by local
we mean that the condition depends only on one point, and a geometric coinvariant is the analog
of a dynamical invariant where the gauge potential takes the place of the Hamiltonian�. We have
then

HolÃ+
	�CM�S1� = eı�−1E	�x0�TPCM

e
AP
	
. �74�

However, the intertwining curvature vanishing condition can be very drastic. We can relax it, by
assuming the following condition:

�

�x�E	�x� + �A�
	�x�,E	�x�� = ��

	�x�idN ∀ x, ∀ � , �75�

where �� is a real smooth function. In that case, we have

HolÃ+
	�CM�S1� = eı�−1�0

T�x0

x�t���
	�x�dx�dteı�−1E	�x0�TPCM

e
AP
	
. �76�

The intertwining term eı�−1�0
T�x0

x�t�
��

	�x�dx�dt is just an Abelian phase which does not participate in the
transitions between the states �	A ,x�	�A.

By using the Leibniz rule, we have a non-Abelian generalization of the Hellmann–Feynman
theorem,

�

�x�EAB
	 = − �A�

	,E	�AB+	�A,x	
�H

�x� 	B,x�	. �77�

Assumption �75� is then realized if �	A ,x�	�A is a set of eigenvectors of all operators
�HI

�x� associated
with single N degenerate eigenvalues,

�HI

�x� 	A,x�	 = ��
	�x�	A,x�	. �78�

Remark: Even if Qx
	→S1 is trivial, the holonomy in this bundle does not vanish since the base

manifold S1 is topologically untrivial.

B. Dirac spinor field transport in a curved space-time

In this section we suppose that �=c=e=1.
Let M be the space-time manifold which is endowed with a metric g���x� and with a linear

connection �the Christoffel symbols� ���
� �x� ��x���=0,. . .,3 is a space-time coordinates system�. To

describe spinor fields in the curved space-time, we need to consider two other entities. The first
one is a Lorentz connection �the so-called spin-connection� 
=
�

AB�x�MABdx���1�M ,h�, where
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�MAB�A,B=0,. . .,3 are the generators of the Lie algebra h of the Lorentz group H=SO�3,1�. The
second one is a set of vectors forming an orthogonal tangent basis and called tetrads or vierbeins,
�e�

A�x��A,�=0,. . .,3. A vierbein is transformed under a local Lorentz transformation h�x��H as

e�
A��x�=h�x�B

Ae�
B�x� �h�x�B

A is the �A ,B�-matrix element of h�x��. The vierbeins can be interpreted as
the gravitational field. The two representations of the gravity are related by the following equa-
tions:

g���x� = e�
A�x�e�

B�x��AB = e�
A�x�eA��x� , �79�

where � is the Minkowski metric and where eA�=�ABe�
B,

���
� �x� = eA

��x���e�
A�x� + eA

��x�
�
AB�x�eB��x� , �80�

where �eA
���,A is the formal inverse �in the matrix sense� of �e�

A��,A: eA
�e�

A=��
� and eA

�e�
B=�A

B ���
� is

the Kronecker symbol�. Conversely, we have


�
AB�x� = e�

A�x���eB��x� + e�
A�x����

� �x�eB��x� . �81�

A Dirac spinor field � of mass m in the curved space-time satisfies the Einstein–Dirac equation
�Ref. 16�,

�ı�AeA
��x��� − m���x� = 0, �82�

where ��A�A=0,. . .,3 are the Dirac matrices and where �� is the spinorial covariant derivative defined
by

�� =
�

�x� + 
�
AB�x�D�MAB� , �83�

where D is �1 /2,0� � �0,1 /2� representation of the Lorentz group H �we denote by the same
symbol the induced representation of its Lie algebra�, i.e.,

D�MAB� =
1

4
��A,�B� . �84�

Following Sardanashvily,2,3 the gauge theory is described by a composite bundle. Let G
=GL�4,R� be the group of invertible order 4 matrices. Let P+�M ,G�→M be the principal
G-bundle of the tangent frames of M. For a good open cover �Vi�i of M, let �TF

i :Vi�G→P+ be
the local trivialization of this bundle. Viewed as a �fixed� matrix e with elements e�

A, the vierbeins
belong to G ��e−1�A

�=eA
��. The equivalence class of the vierbeins under the constant Lorentz

transformations, eH= �e�
Ah�

� ,h�H�, belongs to G /H. We must then view the group G as a prin-
cipal H-bundle, G�G /H ,H�→G /H, with local trivialization �G

	 :U	�H→G for a good open
cover �U	�	 of the manifold G /H. It is then natural to consider the manifold S= P+ /H which has
the fiber bundle structure S�M ,G /H�→M. We have then the following principal composite
G�G /H ,H�-bundle P+�S ,H�→S�M ,G /H�→M, where the map �+ : P+→S is the canonical pro-
jection associated with the quotient P+ /H. The diffeomorphism �S

i :�S
−1�Vi�→Vi�G /H is just the

map induced by �TF
i−1 : P+→Vi�G. The total twisted bundle �P+

i �G /H�Vi ,H�→G /H�Vi�i is

then defined by the local trivialization �++
	i :

U	�Vi�H→P+
i

�eH,x,h���TF
i �x,�G

	�eH,h�� .

This composite bundle permits consideration of the Lorentz connection as a composite con-
nection. We endow the structure bundle G��G /H� ,H�→G /H by the Cartan connection associated
with the following gauge potential:

AG�eH� = e�
AdeB�MAB � �1�G/H,h� , �85�

and the transversal bundle QeH�M ,H�→M by the spinorial representation of the linear connection
which is associated with the following gauge potential:
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ÃQeH�x� = e�
A���

� �x�eB�MABdx� � �1�M,h� . �86�

�We omit the chart indices, which play no role in this discussion.� Let �= �x�e�x�H����M ,S�
be a local section of S�M ,G /H�→M. We have

��Ã+�x� = �e�
A�x���eB��x� + e�

A�x����
� �x�eB��x�MAB�dx� �87�

=
 . �88�

The Lorentz gauge potential is then the composition of the Cartan gauge potential and of the linear
potential. D�
� is the gauge potential associated with the spinorial covariant derivative ��, Eq.
�83�. In contrast to the approach of Tresguerres4 in which the vierbeins appear as a translational
gauge potential of a Poincaré gauge theory of the gravity, in this approach the vierbeins are not
fixed by the connection, whereas their equivalence classes form the auxiliary space-time G /H on
which the gauge theory is built.

Holonomies associated with the Lorentz connection play an important role in the quantization
of the gravity �see Refs. 17 and 18�. Let two separate particles at the space-time point x0 with the

same spinor state �̂0. The first particle is transported along the worldline Ca from x0 to x1 and the
second particle is transported along another worldline Cb from x0 to x1. This situation means that

the particles are described by the semiclassical spinor fields as �a�x�=��̂a�s���x−xa�s��ds, where

s�xa�s� is the parametrization of the worldline of the particle a and �̂a�s� is the spinor state at the

proper time s along the worldline with �̂a�s0�= �̂0 �xa�s0�=x0�. After the transportations �xa�s1a�
=xb�s1b�=x1�, the spinor states of the two particles are related by

�̂a�s1a� = D�HolÃ+
�CM�G/H���̂b�s1b� , �89�

where CM =Ca �Cb
−1�Lx1

�M� and CM�G/H= ��x�s� ,e�x�s��H� ,s� �0,s1a+s2b−2s0���L�x1,e�x1�H��M
�G /H�, s being the curvilinear coordinate along CM and x�e�x�H being a local section of
S�M ,G /H�→M over CM �associated with the vierbeins x�e�

A�x��. By applying Theorem 1, we
have

PCM
eı

 = HolÃ+

�CM�G/H� �90�

=PCM
e
�e�x1�H

e�x�H T�eH,x�DGÃQeH�T�eH,x�−1dx�
HolÃQe�x1�H

�CM�HolAG
�CG/H� , �91�

where HolÃQe�x1�H
�CM� is the holonomy associated with the representation of the linear connection

on the spinor states at the base point x1 and where HolAG
�CG/H� is the holonomy associated with

the Cartan connection. The intertwining curvature is �see Appendix B�

DGÃQeH = �e�
Bde�

Ag�� − eB�deA�g��� ∧ ���
� dx�MAB. �92�

We can note an interesting analogy between the non-Abelian geometric phases treated in the
previous application: the Cartan connection AG�eH� plays the role of the geometric phase genera-

tor, ÃQeH plays the role of a dynamical phase generator, the vierbeins play the role of the active
space basis vectors, and the Christoffel symbol ���

� takes the place of the Hamiltonian.
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APPENDIX A: DEMONSTRATION OF THEOREM 1

Since all relevant quantities are defined on the single local chart U	�Vi, we omit the indices
	 and i,

PCM�R
e
Ã+ = PCR

e
�ÃQ�Sh�y��y�+�h��S
�AP��y��. �A1�

We split this expression by using the intermediate representation theorem �see Ref. 19�,

PCM�R
e
Ã+ = PCR

e
PCM
e�x0

�Sh�y�APÃQ�Sh�y�PCM
e−�x0

�Sh�y�APPCM
e
AP. �A2�

Moreover, we have

PCM
e�x0

x APÃQxPCM
e−�x0

x AP − ÃQx0
= �

x0

x

dM�PCM
e�x0

x APÃQxPCM
e−�x0

x AP� . �A3�

By using the Leibniz rule with dM in the right hand side of the preceding equation and the fact that

dMPCM
e�x0

x AP =PCM
e�x0

x APAP and dMPCM
e−�x0

x AP =−APPCM
e−�x0

x AP, we find that

PCM
e�x0

x APÃQxPCM
e−�x0

x AP − ÃQx0
= �

x0

x

PCM
e�x0

x AP�dMÃQx + �AP,ÃQx��PCM
e−�x0

x AP �A4�

=�
x0

x

PCM
e�x0

x APDPÃQxPCM
e−�x0

x AP. �A5�

We then have

PCM�R
eÃ+ = PCR

e
��x0

�Sh�y�PCM
e�x0

x APDP�ÃQxaPCM
e−�x0

x APdx�+ÃQx0a�dya
PCM

e
AP. �A6�

Finally, by using again the intermediate representation theorem, we have

PCM�R
eÃ+ = PCR

e
PCR
e�y0

y ÃQx0�x0

�Sh�y�PCM
e�x0

x APDP�ÃQxaPCM
e−�x0

x APdx�PCR
e−�y0

y ÃQx0dya
PCR

e�y0

y ÃQx0PCM
e
AP.

�A7�

APPENDIX B: INTERTWINING CURVATURE OF GRAVITY

DGÃQeH = de�
A ∧ ���

� dx�eB�MAB + e�
A���

� deB� ∧ dx�MAB + e�
AdeB� ∧ e�

C���
� dx�eD��MAB,MCD� .

�B1�

The commutation relations of the Lorentz algebra h being

�MAB,MCD� = − �BDMAC + �BCMAD + �ADMBC − �ACMBD, �B2�

we have
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DGÃQeH = de�
AeB� ∧ ���

� dx�MAB + e�
AdeB� ∧ ���

� dx�MAB �B3�

− e�
AdeB�e�

CeB
� ∧ ���

� dx�MAC + e�
AdeB�eB�eD� ∧ ���

� dx�MAD �B4�

�B5�

After the exchange of some double indices, we find

DGÃQeH = �de�
AeB� + e�

AdeB� − e�
AdeC�e�

BeC
� + e�

AdeD�eD�eB� + deA�e�
B − deA�eB�g��� ∧ ���

� dx�MAB.

�B6�

Since eD�eD�=��
� ⇒deD�eD�=−eD�deD�, we have

e�
AdeD�eD�eB� = − e�

AeD�deD�eB� = − de�
AeB�. �B7�

Since e�
AeC�=�AC⇒de�

AeC�=−e�
AdeC�, we have

e�
AdeC�eC

� e�
B = − de�

AeC�eC
� e�

B = e�
Bde�

Ag��. �B8�

We then have

DGÃQeH = �e�
AdeB� + deA�e�

B + e�
Bde�

Ag�� − eB�deA�g��� ∧ ���
� dx�MAB. �B9�

Moreover, we have

e�
AdeB�MAB = e�

BdeA�MBA = − e�
BdeA�MAB �B10�

because MBA=−MAB. Finally, we have

DGÃQeH = �e�
Bde�

Ag�� − eB�deA�g��� ∧ ���
� dx�MAB. �B11�
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