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We propose a geometric formulation of the theory of effective Hamiltonians asso-
ciated with active spaces. We analyze particularly the case of the time-dependent
wave operator theory. This formulation is related to the geometry of the manifold of
the active spaces, particularly to its Kihlerian structure. We introduce the concept
of quantum distance between active spaces. We show that the time-dependent wave
operator theory is, in fact, a gauge theory, and we analyze its relationship with the
geometric phase concept. © 2007 American Institute of Physics.

[DOLI: 10.1063/1.2723552]

I. INTRODUCTION

The numerical study of the interaction of a molecule with a strong laser field leads to a need
for long computational times and large computer memory capacity when use is made of a wave
packet approach, which involves a direct integration of the time-dependent Schrédinger equation.
This computational problem is even greater for the study of control processes, since the repetition
of many propagations is needed to find the optimum values of several adjustable parameters which
describe the nonlinear effects due to ultrashort laser pulses.

Fortunately, it turns out that a reasonable description of the matter-field interaction can often
be made by using an active space of small dimension, provided that the basis sets used consist of
instantaneous Floquet eigenvectors1 or generalized Floquet eigenvectors.2 This feature makes an
effective Hamiltonian approach attractive, and Guérin and Jauslin® have proposed such an ap-
proach, based on the quantum analog of the Kolmogorov-Arnold-Moser (KAM) transformation,”
with resonant effects being treated by a rotating wave approximation. The superadiabatic Floquet
approach,5 which uses a sequence of unitary transformations to produce bases which follow the
nonadiabatic evolution, is also very similar to an effective Hamiltonian approach. Finally, the
constrained adiabatic trajectory method® is a method consisting to define an effective Hamiltonian
by adding a time-dependent complex potential. The time-dependent wave operator theory is an-
other example of effective Hamiltonian theory for time-dependent systems. It has long been used
to describe photoreactive processes7’8 and has several features which make it useful in the search
for an efficient description of nonadiabatic effects. The theory of time-dependent wave operators,
and their stationary equivalents, the Bloch wave operators, has been the subject of several
works.” !

We consider a separable Hilbert space H which is used to describe the states of a quantum
system. The dynamical system is described by a time-dependent Hamiltonian H(z), and its asso-
ciated time-dependent Schrodinger equation and has the time evolution operator U(z,0)
(Vre[0,T]). The idea of the wave operator theory is to consider a fixed active subspace Sy of H,
such that the dynamics projected into this subspace can be integrated by using an effective
Hamiltonian. S, should be chosen to describe the strong and fast part of the dynamics issuing from
the initial state; this choice has been made previously by using artificial intelligence
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approaches and a wave operator sorting algorithm.”™ ™ After the solution of the Schrodinger
equation in the active space S, the wave operator {} which generates H*'" is used to transform the
solution in S, into the true solution in the Hilbert space H. The above description can be summa-
rized as follows:

S(t) —H
v, Q): (1)
(1) = (1),
where #(t) is a solution of the Schrédinger equation
thd (1) = H(1) 1) (2)
and where (), defined as the projection of ¢ into S, is a solution of the equation
ih (1) = H (1) o (7). 3)

The effective Hamiltonian (which describes the approximate dynamics in Sy) is defined by
He(1)= PyH()Q(7), and the target space is S(¢)=P,U(t,0)S,C Sy, with P, being the projector on
So- The time-dependent wave operator can be written as

Q1) = U (PU(1,0)Py) ", 4)
where  (PyU(t,0)Py)~'=Py(PyU(t,0)Py)~'P, is the inverse of U(r) within S,

[dom(PoU(2,0)Py)~"=S,].
Finally, the wave function can be written as follows:

(1) = Q) U(1,0) . (5)

where 14.9,U%(¢,0)=H(¢r) U°'(z,0).
It is possible to define a stationary analog to the time-dependent wave operator. We will now
consider (in the same separable Hilbert space ) the operator H and the eigenvalue equation

Hip=\y. (6)

We consider two subspaces S, and S of . We call them the active and target subspaces, and
we denote the projectors of these subspaces by P, and P. We are interested in eigenvectors
included in S such that Py=¢. As for the previous time-dependent problem, we reduce this
problem to one within the active subspace. We then introduce the Bloch wave operator:

SO — S
QO: , (7)
o=
where i is a solution of the eigenvalue equation [Eq. (6)] and ¢, is a solution of
H iy = Nify. ()

The effective operator is defined by H'=P,H(). The Bloch wave operator is formally given by
the expression

Q=P(P,PPy)", )

where (PoPP,)~" is the inverse of P within S,.

The time-dependent wave operator is a generalization of the Mgller wave operators *
=lim,ﬂ;we"ﬁle’e’ﬁleO’, which compare the dynamics induced by a time-independent Hamil-
tonian H with the dynamics induced by a simplest Hamiltonian H,. The time-dependent wave
operator has the same function; it compares the true dynamics with the effective dynamics con-
densed in a fixed active space. The time-dependent wave operator techniques consist then to

separate the subdynamics governed by H!(¢) from the dynamics outside S, which is induced by

Downloaded 10 May 2007 to 193.52.184.2. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



052102-3 Geometry of quantum active subspaces J. Math. Phys. 48, 052102 (2007)

Q(¢). The aim of this paper is to show that this method has a geometric formulation very close to
usual geometric theories of dynamical systems. We show that the separation in two parts of the
dynamics is associated with a fiber bundle formalism; the effective dynamics is associated with the
base manifold of the bundle, whereas the true dynamics is associated with the total space of the
bundle. The wave operator action, consisting to built the true wave function from the effective
one, is, in fact, a horizontal lift of the effective dynamics in the bundle with respect to a particular
connection explicated in this paper. The effective dynamics, which is condensed in the base
manifold, can be geometrically formulated by a complexification of the Poincaré form formulation
of classical dynamics. With this geometric formulation of the dynamics in the base manifold, we
have a consistent geometric point of view of the time-dependent wave operator method. Section
III is dedicated to this analysis.

Since the time-dependent wave operator geometric formulation is associated with a principal
bundle, it is very close to the non-Abelian geometric phase theory. We show in this paper that the
time-dependent wave operator can be assimilated with an operator which multiplies the effective
wave function by a non-Abelian geometric phase.

In 1984, Berry15 proved, in the context of the standard adiabatic approximation, that the wave
function of a quantum dynamical system takes the form

1) = e—:ﬁ*‘f@E,xR(z’))dz’—fg<a,R<z’)\a,fla,mr’»dz’| a,R(1)), (10)

where E, is a nondegenerate instantaneous eigenvalue isolated from the rest of the Hamiltonian
spectrum and having instantaneous eigenvector |a,R(7)). R is a set of classical control parameters
used to model the time-dependent environment of the system. The set of all configurations of R is

supposed to form a C*-manifold M. The important result is the presence of the extra phase term,
JotaR(")ayla.RG" )"

called the Berry phase e~ . Simon'® found the mathematical structure which
models the Berry phase phenomenon, namely, a principal bundle with base space M and with
structure group U(l). If we eliminate the dynamical phase by a gauge transformation which
involves redefining the eigenvector at each time, then expression (10) is the horizontal lift of the
curve C described by t—R(t) with the gauge potential A={a,R|d \s|a,R). If C is closed, then the
Berry phase e~%¢4 € U(1) is the holonomy of the horizontal lift.

In 1987, Aharonov and Anandan'’ proved that the appearance of geometric phases such as the
Berry phase is not restricted to the use of adiabatic approximation but arises in a more general
context. Let #— i(t) be a wave function such that y(T)=e'?y(0) and H(t) be the Hamiltonian of
the system. Suppose that the Hilbert space is n dimensional (the case n=+ is not excluded); then
the wave function defines a closed curve C in the complex projective space CP""!. If one redefines

the wave function such that (T)=y/0), then

Y1) = e SO H I )t =Foahe o [9Ae ' gy (11)

The extra phase in addition to the dynamical phase is called the Aharonov-Anandan phase (or
nonadiabatic Berry phase). We can eliminate the dynamical phase by a gauge transformation; the
Aharonov-Anandan phase then appears as the horizontal lift of C in the principal bundle with base
space CP""!, the structure group U(1), and with the (2n—1)-dimensional sphere S**~! as total
space. The Berry-Simon model and the Aharonov-Anandan model are related by the universal
classifying theorem of principal bundles;'*" more precisely, the Aharonov-Anandan principal
bundle is a universal bundle for the Berry-Simon principal bundle. The base space CP"! is
endowed with a natural metric called the Fubini-Study metric. Anandan and Aharonov®® have
proved that this metric measures the quantum distance between the quantum states. The connec-
tion bewteen geometric phases and universal classifying spaces is explained in Refs. 21-23

A non-Abelian geometric phase (based on the gauge group U(M)) was introduced by Wilczek
and Zee in 1984 Ref. 24 and its universal structure was studied by Bohm and Mostafazadeh in
1994 In a previous article,” we have proposed a geometric structure based on the concept of
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principal composite bundle to describe in the context of the adiabatic approximation, the non-
Abelian geometric phase when it does not commute with the dynamical phase (see also the works
of Sardanashvily**?’).

The wave operator formalism is associated with a fixed active space. In the present work, we
are also interested by the possibility to use an evolutive active space, i.e., a time-dependent active
space which adapts to the time evolution rather than the use of a time-dependent wave operator to
lift an effective dynamics within a fixed subspace. Although these two concepts seems to have
radically different philosophies, we show that they have very close geometric formulations and
that they differ only from the choice of the connection in the principal bundle of the active spaces.
Section II is devoted to the geometric formalism of the evolutive active space theory. The methods
of effective Hamiltonians [Egs. (1)-(6)] based on a Floquet eigenbasis can be viewed as methods
using an evolutive active space, the space spanned by the Floquet eigenvectors depending on the
time through the Floquet variable.

The results of this paper could permit to clarify the connections between some techniques
used in quantum dynamics (effective Hamiltonians, geometric phases, and time-dependent basis
representation) by showing that the geometric formulation unifies them.

The theory of active subspaces could be a fruitful framework for the study of problems of
quantum computing in the context of realistic dynamical systems (atoms or molecules interacting
with a field). Indeed, an elementary quantum computation unit, a qubit, is a two-dimensional space
which can be identified with a two-dimensional active space of a quantum dynamical system.
More generally, a system of n qubits can be assimilated to a 2"-dimensional active space. More-
over, the logical operations are represented by unitary operators. In a geometric method of quan-
tum computing called holonomic quantum computation (see Refs. 28-34), the logical operations
are described by a gauge theory in the bundle of the active spaces. The present work, analyzing the
geometric representation of dynamical systems in the context of evolutive active spaces, could be
a first step to the application of the efficient methods of the quantum dynamics (wave operator
theory, adiabatic assumption, evolutive active space method, effective Hamiltonian methods, etc.)
to quantum computation.

At this point we give a brief summary of our notation. We denote a principal bundle with base
space M, total space P, projection 77, and structure group G by (P,M,G, ). The set of the
sections of a bundle is denoted by I'(M, P). The set of differential n forms of M is denoted by
("M. The tangent space of a manifold M at the point p e M is denoted by T,M. The set of

complex matrices with n rows and p columns is denoted by M, ,(C). The Z denotes the complex
conjugation, whereas Z" or Z# denote other involutions specified by the context.

Il. GEOMETRY OF EVOLUTIVE QUANTUM ACTIVE SPACES

We consider a quantum dynamical system described by the Hamiltonian — H(z) in the
Hilbert space H. Let U(#,0) be the evolution operator of the dynamical system, i.e., the unitary
operator which is the solution of the Schrédinger equation

1ha,U(t,0) = H(t)U(£,0), U(0,0)=1. (12)

We denote by {|i)} a reference orthonormal basis of 7. In practice, if the quantum system is
a molecule interacting with a field, then {|i)}; is the eigenbasis of the unperturbed molecule. We
want to describe the quantum dynamical system by using evolutive active subspaces. This section
presents the mathematical theory of this concept. We first need to define the evolutive active
subspaces.

Definition 1: An M dimensional evolutive active subspace of a quantum dynamical system
(H(1),’H) is defined by specifying two kinds of data:

e a map t—S(t) from the time line to the M-dimensional subspaces of H such that ¥
e S(0), U(1,0) ¢y € S() V>0 and
e a map t—{|a(t))}, from the time line to a basis of S(t).
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We note that if S(¢) is an evolutive active subspace associated with a self-adjoint Hamiltonian,
then the orthogonal projector associated with S(z), P(z), satisfies the Schrodinger—von Neumann
equation

dP(1)
dr

h =[H(zr),P(1)]. (13)

(The equation for a non-self-adjoint Hamiltonian is studied in Sec. II C). The concept of an
evolutive active space is particularly interesting if it is possible to find a basis {|a(?))}, without
integrating the Schrodinger equation, as, for example, happens in the adiabatic theory where
{la(2))}, is a set of instantaneous eigenvectors.

Regarding Eq. (13), the time-dependent projection operator can be identified with a specific
example of a dynamical invariant (Ref. 35). Indeed, the definition of an active subspace i,
e Sy=U(t,0) ¢y € S(¢) is similar to the definition of an invariant subspace & under the action of
the semigroup t— U(¢,0), i.e., € G=U(r,0)y e &. The evolutive active space is an example
of “dynamical invariant subspaces” which are generally spanned by eigenvectors of a Lewis
invariant. The relation between periodic or cyclic dynamical invariants and non-Abelian geometric
phases is discussed in Refs. 36—38. The present work focuses on the connection between geomet-
ric phases with nonperiodic and noncyclic dynamical invariants which satisfy the projection pre-
scription P(f)?=P(t). Since we want to relate this analysis to the wave operator theory, we prefer
to refer to the range of P(r) (the active space) rather than to the dynamical invariant theory.

Sections II A and II B explore the connection between the geometric phase concept and the
evolutive active space theory. They show that the complete dynamics of the wave function can be
computed by a horizontal lift from the dynamics of the evolutive active space governed by the
Schrodinger—von Neumann equation. This dynamics appears then as a subdynamics condensed in
the base space of the bundle where the horizontal lift takes place. Section II C shows that this
subdynamics, analytically defined by the Eq. (13), can be geometrically formulated. We have then
a consistent geometric formulation of the quantum dynamics in the active space formalism.

A. Generalized geometric phases

The following proposition proves that the geometric phase phenomenon is associated with the
evolutive active space description.

Proposition 1: Let (H(t),H) be a quantum dynamical system and (S(t) ,{|c(1))} o=, y) be an
evolutive active space. Let {|a(t)#)} -1 v be a set biorthogonal to {|a(t))} o=y .y ice.,

Vi,Va,B=1,....M, {(at) #|B(1)=S,p. (14)

(We do not suppose that {|a(t))} is orthonormal). Let ,(t) be the solution of the Schridinger
equation

thd (1) = Ht) (1), ,(0) = [(0)). (15)

By the definition of the evolutive active space, we have ,(t) € S(t). Then, the representation of i,
on the active space is

M
Palt) = X [T TR SN 1 Bp)), (16)
p=1

where the matrices E and A of My« (C) are defined by

E(t)ap={alt) # [HD|BD), A1) ap=(a(t) #[3,|B(0)). (17)

Te is the time-ordering exponential (the Dyson series), i.e., D(t)=Tef6X(’) is a solution of 9,D(t)
=X(t)D(t) for all X € My« (C). The matrices E and A generate, respectively, the non-Abelian
dynamical and geometric phases.
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Proof: We know that ¢,(t) € S(¢) V¢, since {|a(t))} is a basis of S(¢), Va and V1, HUgu1)
€ Chgoy. . m such that

M
Y1) = X Ug(D|B(1)). (18)
B=1

We group the numbers {Ug,},p into a matrix U € M ;5 (C). i, is a solution of the Schrodinger
equation. By using expression (18), we find the equation

12 Uga(D|B0) +1h 2 Upa(0)3|B(10)) = 2 Uo()H(1)| B(1)). (19)
B B B
We project this equation on {y(¢)#| to give
Uye=—th™ 2 Upal 1) # [H()|B1)) = 2 Ul (1) # [0 a(1)). (20)
B B

This equation can be written in a matrix form,

U= (=th'E(t) - A1) U. (21)

This last equation has for its solution the Dyson series

U = et [GEG)d' ~[(AG" )i’ .

By virtue of the intermediate representation theorem (Ref. 40), we can write
U(t) = TeFAW)a it [GTefoA I ot yTefo A gyt (23)

We can then isolate for study the pure geometric term Te ™/ AW The precise relation between
the pure non-Abelian geometric phase and the non-Abelian geometric and dynamical phase is
explained in Refs. 25-27. This proposition defines a more general context in which a geometric
phase appears in quantum dynamics. If S(¢) is an instantaneous spectral subspace, with {|a())}
being an orthonormalized set of instantaneous eigenvectors of a self-adjoint Hamiltonian H(7),
then the proposition reproduces the non-Abelian Berry phase of the adiabatic approximation; if
{la(z))} is an orthonormalized cyclic basis, then the proposition reproduces the non-Abelian
Aharonov-Anandan phase (in these cases, |a# )=|a)). If H(t) is a non-self-adjoint Hamiltonian,
with {|a(?))} a set of generalized eigenvectors of H(t) and {|a() # )} the associated generalized
eigenvectors of H(¢)", then the proposition gives rise to the Berry phase of a non-self-adjoint
Hamiltonian in the adiabatic approximation.

If H is finite dimensional with dim H =N, then one can then introduce the matrices
Z € Myyxy(C) and Z*# € My ,,(C) defined by

(1@ ... (M) (1@ #) ... (1M@)#)
Z(1) = : : . ZYn= : : , (24)
(N[1(1)) ... (NIM(2)) (N[1(0) #) ... (NIM(1) #)
where {|1)} is a reference Hermitian basis on which the Hamiltonian has a finite N X N matrix
representation,
E(t)=Z*)"H()Z(1), A(t)=Zﬁ(t)T%Z(t). (25)

We now introduce an important property.
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Property 1: Let {t— (1)}, be a set of wave functions within the evolutive active S(t) such
that ,(0)=|a(0)). {1} are the wave functions of the evolutive active space without dynamical

phase, i.e.,
M
Yalt) = 2 [Te IO B(0)), (26)
B=1
if and only if
Va.B. (CHOY(0|9] (1)) =0, (27)

where C*(1) is an operator of S(t) defined by

Ya, CHola(n)=|at) ). (28)

Proof: First, we suppose that i, is the evolutive active space wave function, i.e., ()
=23Uﬁa|,8(t)>, with U(t)=Te‘f6A(”>d”. We then have

Othe= = 2 AgyUel BW)) + 2 Upadi| B(1)). (29)
By B
By projecting this equation on to (C*y]=2sU.8(r) |, we obtain
(C*ypdalire) =~ [UAU) (o + [U'AUL, = 0. (30)

Second, we suppose that (C*r,|d,h,)=0. 1,(1) € S(t) and {|a(1))} is a basis of S(z), then
3Up,(1) € C such that ,(t)=2 gUp,(1)|B(t)). Then

<Cﬁl/"'y|(9t|¢a> =0= E l_](?'yUBa<5(t) ﬁ' |B(t)> + E l_]&'yU,Ba<6(t) ﬂ |O7t|ﬁ(t)> (31)
Y B,6
=[UTU],,=~-[U'AU,,. (32)
and finally U=—-AU. |

B. The principal bundle of the active spaces

To simplify the discussion, we suppose that H is self-adjoint and that we can choose an
orthonormal basis of the active space (i.e., Z¥=Z). In this section we explore the geometric
structure describing the evolutive active space of the dynamical system. Initially, we suppose that
the Hilbert space is finite dimensional, H=C", and we select evolutive active spaces with dimen-
sion equal to M. By using a matrix representation associated with a basis of CV, we can consider
the evolution operator U(z,0) associated with the dynamical system as an application from the
time line to U(N) (the Lie group of unitary matrices of order N). We do not choose the fixed basis
{|i)}, but the following time-dependent basis B(£)=(|1(1)},...,|M(®)),[1(t) L),...,|IN-M(z) L)),
where By(t)=(1(1)), ...,|M(2))) is the orthonormal basis of S(), the evolutive active space, and
where B, (1)=(|1(t) L), ...,|[N=M(t) L)) is a basis of S*(¢), the orthogonal supplement of S(z).
The time-dependent representation Dy, (U(t,0)) of U(z,0) in the basis B(f) is a unitary matrix.
Since S() is an evolutive active space, and since we choose the initial conditions of the dynamics
inside S(0), then a transformation which only affects the region outside the active space has no
influence on the wave function. In the Lie group U(N), we have then the equivalence relation
defined by VU, Ve UN), U~ V& U=VG, with G e UIN-M). 1t is then clear that the space of
evolution operators associated with the inner dynamics of the active space is U(N)/U(N—M). This
manifold is known in the literature'® as the complex Stiefel manifold V,,(CN)=U(N)/U(N-M). As
we have seen in previous paragraph, the evolution inside the active space gives rise to a non-
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Abelian phase Te"h_]fBE(t’)dt’— JtA(t')dt’. The manifold describing the evolution without this
non-Abelian phase is G,(CY)=U(N)/(U(N-M) X U(M)) called the complex Grassmannian mani-
fold (Ref. 18). We can show Ref. 18 that

VM(‘CN) = {Z € MNXM(C)

Z'z=1,}. (33)

A matrix Z e V,;(C) can be interpreted as the matrix of the basis vectors of an active space,
as expressed in the fixed basis of CV, {|i)}. The Stiefel manifold V,,(C") is then the space of all
M-dimensional active spaces of CV endowed with an orthonormal basis. The Grassmannian mani-
fold G,,(CY)=V,,(CN)/U(M) is the space of all M-dimensional active spaces without a particular
basis. Moreover, we can show that

Gu(CY) ={P € Myxn(C)|P>=P,P'=P,tr P=M}. (34)

P e G,(CN) can be identified with the orthogonal projector of the active space. To summarize,
we now have produced the structure of the principal bundle on the right
U=V (CY), Gy, (CN),UM) , ) with VZ e V,, (CN), 7(2)=ZZ". Let E=(E, Gy (CN),CM 1) be
the associated vector bundle of /. The active space (with a vector space structure), defined on
P e Gy(CM), is WEI(P). In other words, if P(f) € G,,(CV) is the solution of a Schrédinger—von
Neumann equation, then the evolutive active space is S(t):ﬂ'gl(P(t)) and it is endowed with a
basis chosen in I'(G,,(C"), V,,(C") (the set of the sections of ).

By virtue of the Narasimhan-Ramaman theorem,41 we can endow U with a natural connection,
called universal, defined by the gauge potential

A(ZZN) =7TdZ € QNG (CN),u(M)), (35)

where u(M) is the Lie algebra of U(M) (the set of anti-self-adjoint matrices of order M). Let
t—>(|1(2)), ...,|M(t)))=Z(t) be a section of U over the path 7,(Z(t))=P(1) € G,,(CY) [P(t) being
a solution of the Schrodinger—von Neumann equation]. The horizontal lift of this path which
passes by |a(0)) € E is

M
YolD) = 2 [Te T 200 13(1)) (36)
B=1

This is precisely the non-Abelian geometric phase. It is possible to explain the connection in
more detail. VX € u(M), its associated fundamental vector field is X defined by

dt

A d d
VF e Vy,(CY), X(F)= {—R(e"X)F = [—Fefx] =FX, (37)
dr =0 =0
where R is the canonical right action of U(M) on V,,(CM). The tangent space TjV,,(C") can be
identified with M vectors of CV and so to a matrix of M yy,,(C). Let w € Q'V,,(C) be the 1-form
defined by

VF e Vy(CY), VY& eTV,(CY), w®)=Fd. (38)

It is clear that w(FX)=X € u(M), and the equivariance of w follows immediately from its
definition; @ is then a connection 1-form. Let [-1,1]3t—F(t) € V), (CY), w([dF/df],_)
=[FT(d/dt)F],.y € u(M). Let Z(t) € V,;,(C") be such that 7(Z(t)) is a solution of the Schrodinger—
von Neumann equation. Letting W(z) be a matrix of M wave functions such that 7 ,(W(z))
=my(Z(1)), then

V(1) = Z(1) Te " 107 26" gy = 0 = w(9,F) = 0. (39)

We see that the relation W9, W'=0 proved in the previous section is, in fact, the horizontality
condition.
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If H is infinite dimensional, then we can define the manifolds of the active spaces by an
inductive limit,

Gu(C*)={P € B(H)|P>*=P,P"=P,tr P=M}, (40)

Vu(C) ={(hy, ... h) € HM| v i,j<¢i|¢j> = 51]} (41)

with B(H) being the Banach space of bounded operators of H. If H(z) is not self-adjoint, then the
structure is the same with the replacement of U(M) by GL(M,C), of V,,(CY) by the noncompact
Stiefel manifold (see Ref. 18) V},(CN)=GL(N,C)/GL(N-M,C), and of Z by Z*7, where Z" is the
matrix of the eigenvectors of H'. Note that

Vin(CY) = Vi (CY) X T(M, ), (42)

with T(M,C) being the manifold of upper triangular matrices of order M with positive diagonal
elements. To simplify the analysis, in the sequel we will suppose that H is self-adjoint.

Let [0,T] 5 t—Z(t)Z'(t) € G1,(CY) be a map which satisfies the Schrodinger—von Neumann
equation, and let C be the path in G,,(CV) associated with this map. The non-Abelian geometric
phase associated with this map is then the horizontal lift of C, i.e.,

Te- Jeztwazidr _ PeleA 43)

where Pe is the exponential order with respect to the path (see Ref. 42). In general, the non-
Abelian geometric phase does not commute with the dynamical phase. It is then necessary to have
a structure describing simultaneously the two phases. This structure is a principal composite
bundle as explained in Refs. 25-27. Following Ref. 25, let U be the principal bundle describing the
geometric phase endowed with the connection with gauge potential A=Z'dZ, and let Q
:(Q,R,U(N),WQ) be the principal bundle with the time line as base space, endowed with the
connection describing the evolution operators. Consider the space G, (CV)XR as the trivial
bundle S with base space the time line R and with the typical fiber G,,(CY). If we consider U as
a structure bundle, Q as a transversal bundle, and S as a base bundle (see Ref. 25 for the
definitions of these notions), we construct a composite principal bundle (this construction is based
on the local trivializations of the different bundles, see Ref. 25). The connections of ¢/ and of Q
define a natural connection in the composite principal bundle (see Ref. 25) associated with the
gauge potential,

A, (2200 =i Z'H (1) Zdt + ZdZ € Q' (G (CY) X R). (44)

Let t—Z(t)Z'(t) be the solution of thd,(Z(t)Z'(¢))=[H(1),Z(t)Z'(1)], [0,T] 3 t—(Z(t)Z'(¢) ,1)
that appears as a path in G,,(CY) X R, and its horizontal lift in the principal composite bundle is

U(T) — Te—zh_lng(l)dr—ng(r)*ﬁtZ(t)dt. (45)

The dynamics is then described as follows. Let 1 'H(f)dt be a connection in Q; then the
horizontal lift of [0,77] in Q induces a path in G,,(CY) parametrized by Z(1)Z'(¢) satisfying the
Schodinger—von Neumann equation. t—> (Z(£)Z'(¢),1) is a path in G,,(CV) X R for which the hori-
zontal lift in the composite bundle, associated with the connection A, g, describes the non-Abelian
total phase. The integration of the dynamics is then decomposed in two steps. The first one
consists to find the path 1—Z(¢)Z(t)" € G,,(C") and the second one consists to lift the result of this
first step. Section II C presents the geometric formulation of the subdynamics in G,,(C") consti-
tuting the first step.
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C. Geometric formulation of the subdynamics of the evolutive active space in the
base manifold

This section shows that the subdynamics of the evolutive active space can be geometrically
formulated.

1. The self-adjoint case

Definition 2: Let C € L(H) be a self-adjoint operator of the Hilbert H=CN (with possibly
N=+%) considered as an observable of the quantum system. Let f: G,(CN)—C be the function
defined by

fz2.2)=CZlz! =uw(Z'C2). (46)

We call f the weak version of the observable C.
Let f and g be the weak versions of two observables C and B, and the Poisson bracket of f and
g is the weak version of the commutator of C and B; indeed,

G R

fet="o—-———% (47)
0z o7 o7 IZi

=Z}(CiB} - BiC))Z}! (48)

=tr(Z'[C,B]Z). (49)

Proposition 2: Let H be the self-adjoint Hamiltonian of the quantum system supposed to be
time independent. Let H(Z,Z") :H;ZLZ? be its weak version. Let F=tr F=dZ' AdZ" be the Kiihler
form of Gy (CV) (see the Appendix). A curve t—V ())W(t) e G,,(CN) satisfies the Schrodinger—von
Neumann equation if and only if

iyF=1h""dH, (50)

where X=(dV/dt)(d/ IZ) +(d‘I_f"a/ dr)(a/ ﬁZ’a) is the tangent vector field to the curve and where i
is the inner product of G, (CN).

Proof:
dw!, dwe _
iyF= dzf - ——dz,. (51)
dt dr
Moreover,
dH =H|ZdZ, + HZ,dZ}". (52)
Then,
iyF=1h "dH(¥,¥") (53)
dw!, dawe _ o
Sih dzf —ih——dZ,,=- HVdZ - HV dZ}, (54)
dt dt J J
and then,
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dv! . dve _.
(zﬁ “+H’-\If’a)dZ?+ (—zﬁ—L+H’-‘I’§’)d 7,=0. (55)
dr J dr J

Since (Z?,Z’;) are degenerate coordinates for G,,(CV), these variables are not independent. We

have the relation

7'z=1, (56)
=dZ'Z+7'dZ=0 (57)
eV a.p, ZidZg+ZdZ=0. (58)

For all functions {Ag(t)}, we have Ag(Z;’dZ;ﬁZ;de):O. {Ag(t)} are Lagrange factors asso-
ciated with the constraint on the variables. Equation (55) is then equivalent to the two following

equations:
d‘q’a . d - ’ ’ - ! ’
=t + ARV = BV e i (VT oAD"y = e oA ear (59)
AVe  \peoi i d L aany | —h AG A
—th= 4 ABT = HiW, & | it (W T MO | (et ey (60)

Finally, we have

YT wYYY

ih P ih P (61)
Y . APY)T
=ifi P YW+ iAWY (FY) (62)
=HUYY W'+ YY" UTH (63)
=[H,¥¥], (64)
where Y=Te"h_lf6A(t’)dt’ with YTY=YY =1. ]

We remark that we recover the invariance of the Schrodinger equation with respect to the local
gauge choice Te"ﬁ_lﬂ)[\(z")dt’.

We suppose now that the system Hamiltonian is time dependent. Let A +,H=zh‘1Z"H(t)Zdt
+Z'dZ be the connection of the composite bundle. Let F wy=dA, g+A, yAA, ybe the curvature of
the composite bundle. Moreover, we consider the following forms:

A, =te(A, ) = ZLdZ + b7 Hdt (65)
and
Fo=te(F, ) =dZ, AdZ{ + 157\ dH A dt, (66)
where H(Z,Z,1) =H;.(t)ZQZf‘.

Proposition 3: Let H(Z,Z",1) be the weak version of the time-dependent self-adjoint Hamil-
tonian of the quantum system. A curve t— (V(t), V(1)) satisfies the Schridinger equation if and

only if
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TABLE I. Comparison between classical dynamics and quantum dynamics with active spaces.

Classical dynamical systems Quantum dynamical systems
Phase space: R?M Grassmannian: G, (CV)
Variables: ¢/ Variables: Z{*
Conjugate variables: p; Conjugate variables: Z,
Symplectic metric: d€*=dp,dg’ Kahlerian metric: d¢*=dZ,dZ}-dZ, 2 Zj,AZ¢
. (CF(R2M .
Observables algebra: (C*(R*,C), +.,{.,.}) Weak observables algebra: ({C/Z,Z}, + 1., .})
Poincaré 1-form: A=p;dq’ Trace of the gauge potential: A=Z' dZ*
A=pdqg'—Hdt A, =Z dZ8+ih~"Hdr
Poincaré 2-form: w=dp;Adq’ Kihler form: F= dZix,\leF“
Q=dp;adg'~dH Adt Fo=dZ adZ&+1h~ ' dH adt
Fundamental equation: iyw=-dH Fundamental equation: 1hiyF=—dH
ix2=0 iy F,=0
ix.7: += O, (67)

where X=(dV{'/dt)(d/ L?Zi“)+(d‘l_f;/ dr)(a/ &Z’é)—&/ ot is the tangent vector field to the curve and
where i is the inner product of G,,(CN) X R.

Proof:
ixF(Z,Z",0)=0 (68)
d\l_,la a d\I’la ~1 —1 i ad‘l_j{x —1 gy TV dq,la
& dz - dZ, + 1™ H(1) ¥ dt —ih Hi(1) W/, dr=0 (69)
dr dr / dr / dr
dw!, ave _ o
=3 ” dz¥ —ih ” dzZ,=H{()W¥dZ], - H()V,dZ}. (70)
The demonstration is then totally equivalent to the previous one. |

We see that the quantum dynamics with active spaces has a geometric formalism very close to
that of classical dynamics, with A or A, playing the role of the Poincaré 1-form and F or F,
playing the role of the Poincaré 2-form. A comparison between classical and quantum systems is
given Table L.

To summarize, we obtain the active space dynamics as being a curve on G,(C") satisfying
iyJ,.=0, with the state dynamics being obtained by the horizontal lift of this curve with respect to
the composite connection of gauge potential A, .

2. The non-self-adjoint case

If H(#) is not self-adjoint, the dynamics is quite different. Let {|a(t))}, be the generalized
eigenvectors of H(t), i.e., the states satisfying for some n e N the equation (H(t)—E(t))"|a(t))
=0, where E;(7) is an eigenvalue of H(¢). The number of generalized eigenvectors satisfying this
equation for a particular E; is equal to the algebraic multiplicity of E; (see Ref. 39, Remark 6.5).
{la(t))}, are not orthonormalized but are biorthogonal to the generalized eigenvectors of
H(1)":{|a*(t))},. The operator C such that C|a(t))=|a*(¢)) is antilinear with CH=H'C (see Refs.
44 and 45). The general case can be difficult since, in general, C is time dependent. However, if
we suppose that H is symmetric (i.e., H'=H, where the symbol t denotes the transposition), it is
easy to show that C is then the complex conjugation (without the transposition), and then
|a())=|a(?)). In the sequel, we assume that H is symmetric or more generally that the antilinear
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operator C associated with the transformation of the eigenvectors of H(r) to the eigenvectors of
H'(t) is independent of time and so defines an operation extensible to any vectors of H indepen-
dent of ¢.

Let t—W4(¢) be the solution of the Schodinger equation with ¥*(0)=|a(0)) (now {|a(t))}, is
the basis of the active space and it is not necessarily generated by eigenvectors). The equation of
the dual solution W*¥=CW¢ is obtained by setting

dwe
C(zﬁ ) =C(HV?), (71)
dr
dcwe
—ih =H'CV?, (72)
dorre .
—ih =Hp"e, (73)
dr

The operator P(1)=W(1)W(1)"" does not satisfy the Schrodinger—von Neumann equation but

obeys the equation 1iP=HP+PH=[H,P],. We refer to this equation as being the anti—
Schrodinger—von Neumann equation.

Let Z,Z" € My (C) be such that Z*7Z=1,,, where Z" is the conjugate matrix by C of Z. Z
now represents a point of the noncompact Stiefel manifold V4 (CV). Z& and Z,' can be considered

as another degenerate coordinate system for G, (CV). Let J be the almost complex structure of
Gy(CN) (see Refs. 42 and 43) defined by Va,i:

Jd J
J—=1——, (74)
aze " aze
J J
J—=—1—, (75)
AR A

where J2=-1. Moreover, let J* be the adjoint of J for the duality bracket of the tangent space, i.e.,
VX e TGy, (CN) and ¢ € Q'G,,(CY), (p,JX)=(J*¢,X). It is easy to show that

JHZ® = —1dZ8, (76)

JHZ =1dZ)!. (77)

Proposition 4: Let H be the non-self-adjoint Hamiltonian of the quantum system supposed to
be time independent. Let H(Z,Z ") =H'Z"7%=tr(Z"THZ) be its weak version. Let F= dZ?Ade‘ be

Joai

the pseudo-Kdhler form. A curve t—V(t)W* (1) € G,,(CN) satisfies the anti-Schridinger—von Neu-
mann equation if and only if

JhiyF=—dH (78)
ohiyF=-dH, (79)

where X=(dW{*/dr)(d/ &Zf’)+(d\ff2f/ dr)(a/ &Zzi) is the tangent vector field to the curve and where
i is the inner product of G (CN).
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Proof:
dv} dawe _.
iyF= dzf - ——dz,, (80)
dr dr
JhiyF=—1h _*“idZ“ $ Y 47 (81)
DEETITy T g e
By a demonstration similar of the previous one, we have
JhiyF=-dH (82)
v’ . dwe -y
@(—zﬁ < +H’.\I’af>dZ?+ (—zh—L+H’-‘lf§’)dZa’=0 (83)
dr I dr J
d —ﬁ_l tA ’ ’ ot ’ ’
lﬁ_(\PTe ™ [oA(e")de ) = HVTe ™ [o A" )de
dr
= d : (84)
(_ lh_(qf*Telhlﬁ)A(t’)d,,)> — (HT\I,*Telﬁflng(t')dt')f‘
dr
|

By comparison of the equation J*fiyF=-dH with the equation of the self-adjoint case
thiyF=—dH, we see that the non-self-adjoint case arises mainly by substituting ¢ by the almost
complex structure J*.

In the same way, if H is a time-dependent non-self-adjoint Hamiltonian, the dynamical equa-
tion 1s

JhiyF, =0, (85)

where

Fo=dZ] AdZF + 7 dH A dt (86)

(and with, by convention, J*dr=1dr).

lll. GEOMETRIC FORMULATION OF THE TIME-DEPENDENT WAVE OPERATORS

The previous section has analyzed the geometry of a dynamics in the evolutive active space
formalism. Now we consider the status of the time-dependent wave operator in the bundle of the
active spaces. We assume in this section that the Hamiltonian is self-adjoint, and the non-self-
adjoint case can be easily obtained by substitutions as Z" by Z'" for example. We use in this
section the distances in G,,(C") defined in the Appendix.

A. Bloch wave operators and time-dependent wave operators

Let Py,P € Gy(CY), Z e 7 (P), and Z, € 77 (Py). If dists(Z,Zy) < /2 then (PyPP,)™" ex-
ists and we can define a type of Bloch wave operator P(PyPP,)~". Let {| )} and {|@)} be the bases
defined by Z, and Z. We have

PoPPy= 2, |ag)aol BXBlvo) 7ol (87)

apy
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=E [Z(T)ZZ*Zo]ayl ao) ’)’o| (88)
ay
and then
(PoyPPy)~" = > [(ZTZO)_I(ZSZ)_I]ay| o) ol (89)
ay
from which we find
P(PyPPy)™" = 2 [(Z'20) ™ (Z§2) ™| BYBleo) %0l (90)
aBy
=2 [Z2)(Z 20) " (Z§2) "1, Bl (o1)
By
=2 [(Z52) 16,870 (92)
By

The Bloch wave operator P(PyPP)~" is then a linear map from ;' (Py) to ;' (P) represented
by the matrix (ZZ)~".

Now we focus on the time-dependent wave operator Q(r)=U(z,0)(P(0)U(¢,0)P(0))~". Let
V(1) =Te "™ ToEC ) ~TAC Nt where E(1)=Z' () H(1)Z(1), A(t)=Z"(1)3,2(r), and my(Z())=P(t) is a
solution of the Schrodinger—von Neumann equation. We have

Ya(1) = U(1,0)]a(0)) = % V() gal BD)), (93)
and then (B(1)|U(,0)[(0))= V() g, and
U(1,0) = EB V(1) gal B (0)]. (94)
We can then write
P(0)U(1,0)P(0) = %’5 V(1) gal 00| B(1) X (0)| 8(0) ) 5(0)| (95)
=% [Z7(0)Z()V(1)],0 1(0)(0)], (96)
giving
(PO)U(1,0)P(0))™" = 2 [V() ™ (Z'(0)Z(1) ™ ],a (0)X(0)] (97)
and thus y

U(5,0)(P(O)U(1,0)P(0))™ = X V(1) g V(D)™ (Z'(0)Z(1)) ™1l B(1)){8(0)| 10) (e 0)]

afyd
(98)

=2 [VV(O) ™ (Z(0)Z(1)) ™15l B (0)] (99)
Ba
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=2 [(ZH(0)Z(1) 1 al B (0)]. (100)
Ba

We see that the time-dependent wave operator is, in fact, a type of Bloch wave operator
Q(1)=P(t)(P(0)P(t)P(0))~', where P() is solution of the Schrodinger—von Neumann equation.

B. The time-dependent wave operator as a horizontal lift of the bundle of active
spaces

Let Z € V), (CY), VW e V,,(CV), such that distps(W,Z) < 7/2, and Zy,=W(Z'W)~! is such that
Z;,Z:I s indeed, ZTWZ=(WTZ)‘1WTZ=I - The set of vectors defined by Zy, is biorthogonal to the
basis defined by Z. Now consider Z(¢) such that 7 (Z(r))=P(¢) is a solution of the Schrédinger—
von Neumann equation and such that V1, distpg(Z(z),Z(0)) < /2. We know by Proposition 1 that
the wave function W, a solution of the Schrodinger equation, is

W(1) = Z()Te ™ ToEL U Tl har (101)
where
AS (1) = (ZH0)2(0) 12 (0)8,2(r),  E§(1) = (Z'(0)Z(2)) ' ZH(0)H(1) Z(1). (102)

In other words, A =Z}(O)(t)&,Z and Ef =Z}<0)(I)H(t)Z(t). Letting Q(1)=(Z1(0)Z(¢))™", then

%(z*w)zm)-' - (z*(o>z<r>>-lz*(o>dﬁ—i”(z*(mzm)-‘ . (103)
In other words,
i(z(t) =—AL(DQ@). (104)
dr
We conclude that
Q) = 3 [Te oA ], 181N a(0). (105)
ap

The time-dependent wave operator is a horizontal lift for the connection defined by the gauge
potential Ag(o)(zzg(o))=(z(0)'?Z)-‘ZT(0)dZ e 01 (K0, 9l(M (), where Ky={2Z},|z
e Vy (CN), distpg(Z, W) < 7/2} [Ky can be injected in its universal classifying space G4;(CY)]. In
fact, the time-dependent wave operator theory is associated with a family of connections defined
by

VM(CN) - Q](KW’Q[(M7C))5

W Ab(ZZ)) = (W'Z)'Widz = Z},dz. (106)
This family of connections is also defined by a family of connection 1-form wy:
VF e Vo, (CN),V ® e TV, (C),  wy(®)=(WF)'Wo, (107)
for which the horizontality conditions are
(W () 'Wio,¥(r) =0. (108)

We thus recover the general structure of generalized geometric phases. In the usual time-
dependent wave operator theory, we choose the connection associated with the initial condition
Z(0).
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Note that to define the wave operator connection, we have considered the group extension
(Vi (CN) Ky, UM) , g) — (VZA;(*’CN),KW,GL(M ,C), k), because the wave operator theory does
not preserve the self-adjointness of the Hamiltonian representation.

In the expression for ¢,, we wish to separate the geometric phase from the dynamical phase.
By virtue of the intermediate representation theorem [Eq. (40)], we have

Wall) = % [T kG =IATu a1 1 By (109)

$o. - N A TP TPAT I
=E [Te—ﬂ)AO(r )dr]ﬁy[Te—zh L e EE Qe ]7a1ﬁ([)>‘

By ————

Qg (110)
However, we also have
O OEL()Q) = Z/(0)Z(0)(Z'(0)2(1))™' Z/ (0 H(W) Z(1)(Z (0)Z(1)) ™! (111)
=Z/(OH()Z()(Z (0)2(1))™, (112)
and thus
(O DEH (D) ] = E (@l 0)[HI YYD 1) BO)). (113)
Finally, we obtain
aEB [0 (DL (01 0(1) ]l a(0) ) B0)| = PoH(NU1) = H(r), (114)
and thus
Y1) = Q0 Te" 003 | o 0. (115)

We see that the time-dependent wave operator theory is just a geometric phase phenomenon
where we have separated the geometric and the dynamical phases. The effective Hamiltonian of
the wave operator theory emerges spontaneously as being the generator of the dynamical phase
conjugated by the geometric phase (the wave operator).

We wish to add an important comment. In contrast with the universal connection, the wave
operator connections are not defined for all the manifold V{,(CY). Letting W e V,,(C), the wave
operator gauge potential A%=(WiZ)"'W'dZ is only defined for m;(Z) in the open ball of center
7y(W) and of radius 77/2 (in the Fubini-Study distance); in other words, the domain of the
connection 1-form is

T
The wave operator connection is flat; indeed, if we compute the wave operator curvature, we find
Fl=dAl + AL A AL =— (W 2)"'WidzZ(Wi2)™' A WidZ+ (WiZ)"'WidZ A (WiZ)"'WidZ = 0.
(117)

Let W e My (C) be a solution of the Schrodinger equation A9,V (r)=H(t)W(r) and let
Wy (1) =W(¥ (1) 'W)™,

dv dot
i dtW S Wzﬁ(\IfTW)“FW(\I’TW)_' (118)
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=WWIW) 'O H WP Tw) ! (119)
=W(IwW) {(W) "W HP)T (120)
=W\ (V,HPY) (121)

=W, EfT (122)

This last equation, lﬁ&,‘lfwz‘lfWEﬁV’T@—tﬁ&,‘l’észa,‘I’;V, is the dual equation of the
Schrodinger equation with the new local conjugate variables Z"Wa. In a geometric framework, the

wave operator theory consists then to the lift with respect to the connection A€V+lﬁ_1E€le of the
curve V()W (1)}, obtained as a solution of the equation th(dWWV | /df)=HYV |~V HUW.

IV. CONCLUSION

We have seen that the theory of active spaces, effective Hamiltonians, and wave operators is,
in fact, a gauge theory. The active space theory is defined by the principal bundle U/
=(Vy(CN), G, (CN),U(M), 7)), where the Grassmannian manifold models the space of the active
space projectors, and where the Stiefel manifold models the space of the active space basis. The
fibers WEI(P) of the associated vector bundle £=(E, G,,(CN),CM ;) model the active spaces with
the vector space structure. The Grassmannian manifold is endowed with a metric associated with
its Kihlerian structure. This metric measures the quantum distance between the active spaces, i.e.,
the probabilistic compatibility between the active spaces (see Appendix).

U is endowed with the connection A=Z"dZ, which is universal in the sense of the Narasimhan-
Ramaman theorem (see Ref. 41). The universal connection is, in fact, the single connection
compatible with the Kéhlerian metric of the Grassmannian, like the Levi-Civita connection in the
Riemannian case. The horizontal lifts in this connection define the non-Abelian Aharonov-
Anandan geometric phases. Moreover, U° is also endowed with a family of connections Ay
=(W'Z)"'W'dZ for which the horizontal lifts define the time-dependent wave operators. The wave
operator appears then as a geometric phase, and the effective Hamiltonian of the wave operator
theory emerges spontaneously in the geometric framework as being the generator of the dynamical
phase conjugated by the geometric phase.

In a more general framework, if Z € My ,,(C) represents a basis of an evolutive active space
with Z¥ € My, (C), a biorthogonal basis (Z#7Z=1I,,) such that the passage from Z to Z* is a
time-independent procedure. The evolution path of the active space on the Grassmannian is then
a solution of

thiyF, =0 if H is self-adjoint,

JhiyF, =0 if H is non-self-adjoint, (123)
where X is the tangent vector field of the curve, and with

F,=dZ¥ Adz® +1h7'd w(Z* HZ) A dt, (124)
with J* being the dual of the almost complex structure

J =, = (125)

The wave functions are obtained by the horizontal lift of this curve with respect to the composite
connection A,=Z*'dZ+i1h~'Z*"Hzdr. Z*'HZ (or its conjugate by the geometric phase) is the
effective Hamiltonian associated with the evolutive active space.
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APPENDIX: GEOMETRY OF THE BASE MANIFOLD

G(CN) is the base manifold of the bundle of active spaces. In this present appendix, we
explore some geometric properties of G,/(CV) where the subdynamics of the evolutive active
space or where the effective dynamics of the wave operator theory takes place.

Let A be the gauge potential of I/, so that

A=7'dz, (A1)

where Z € My ,(C) such that Z'Z=1I,,. Z represents a point in the Stiefel manifold V,,(C"), and
the equivalence class of Z for the relation Z~ZU with U e U(M) represents a point in the
Grassmann manifold G, (CY) (m/(2)).

The curvature associated with the connection is obtained by the Cartan structure equation

F=dA+AAA=dZ"AdZ+(Z'd2Z) A (Zd2), (A2)

and it satisfies the Bianchi identity

dF +[A,F]=0. (A3)

We note, moreover, that

72'7=1=2d7'7=-7dZAT=-A. (A4)

We know that the complex Grassmannian G,,(C") is endowed with the structure of a Kihle-
rian manifold,*>* with its Kéhler potential being

1
K= 5 In det(W'Z), (A5)

with In being the principal value of the complex natural logarithm. The Kéhler form F can be
deduced from K by the relation

F= (ZlgﬂK)ww:Z, (A6)

where ¢ and g are the Dolbeault differentials.**** Introducing Z*=(i|a) and Z =(a|i) with a
=1,...,M and i=1,...,N, as a degenerate coordinate system, we find that

F=tr F=dZ,ndZP - (ZdZp) A (ZAZF). (A7)

Proof: In this section, we adopt the Einstein convention for the Latin indices but not for the
Greek indices. We denote by S, the group of permutations of (1,...,M) and by (-1)? the
signature of the permutation . The detailed derivative associated with Eq. (A7) is as follows.

M
detWiz= 2> (- D71l Wi,z (A8)

ageSy a=1

1 M
dlndet Wiz=— -1)° W ZeW . dZP, A9
nde det WTZUEM( )%al;[ﬁ a(@)™i "M a(B)VE) (A9)

Downloaded 10 May 2007 to 193.52.184.2. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



052102-20  David Viennot J. Math. Phys. 48, 052102 (2007)

33 1n det W'z = > (—1)“2 > 1 W, ze Wl o2 dwh ) A dZ?

de tWZo’ES B=1 y#B a# B,y

> (- 1)”2 [T Wi ZedWi 5 A dz? - —( D
TgeSy B=1 a#pB (@ @ (det WTZ)Z ogeSy

—1)”2 11 Wi zizlaw: <,e)) ( > (‘1)02 [T Wi z'w &w)dzf)’

B=1 a#p geSy B=1 a#p

T det WTZ

(A10)

(39 In det W'2) oy = 2 (—1)02 > 1l @22, 521dZ5 ., ~dZP
geSy B=1 y#B a# B,y

M

+ 2 02 1 @2 dZh g~ dZP
agesSy B=1 a# B

( > (- 1)02 11 z'2)3,20dz, ﬁ))

ageSy B=1 a#p

M
A ( > 02 1 225 ZpdZ ) (A11)

ogeSy B=1 a#

M M M M M
=2 D ZWZ)AZ A dZE - 3 D ZZYdZi A dZE + 2 dZjy A dZf - (E Zde;'g) (E deﬁ)

B=1 y#B B=1v#B = =1
(A12)
M M M M M
- ( > Z,ZdZ’;) A (E Zf,;dzf) E ZZAZE A AZE - X D (ZYdZy) A (ZAZP)
y=1 B=1 B=1 y=1
M M M
+ 2 ZPZIAZ; A dZ8 + 3 dZ A dZP - (E Zfdzfl;) A (E Z@Zf) (A13)
B=1 B=1 B=1 B=1
M M
= dZpadZf - 3 (Z}dZ) A (Z4ZP). (A14)
B=1 B.y=1
u

The natural metric of the Grassmannian is then the Kéhler form where we “replace” the

exterior product A by the tensor product, i.e., d?=2i(K/ (W_V{}_;(?Z’;(1 sz)dZ"ang. By the same
approach as that given in this appendix, we then have

P=tr(dZ'dZ) + tr((Z'dZ2)?) (A15)
=tr(dZ'dZ) - tr(dZ'zZ7dZ) (A16)
a7 @ ~i 7B~j @
=dZ,dZ{ - dZ,ZPZ)[dZ; . (A17)

Note that F=tr F=dZjAdZ? since tr([Z'dZ,Z7dZ])=0.
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The equivalence class 7(Z) of Z represents an M-dimensional active space. The particular
choice of a particular element of the equivalence class is associated with a particular choice of
basis (|a)), for the active space. We wish to find a distance in G,,(C") which characterizes the
quantum distance between active spaces. We have two choices. The first is the chordal distance

. [y ——————
disty,(W,2) = \2\M — te(W'ZZ'W) = 2\ M - |[WiZ|]2, (A18)
where ||| is the Frobenius norm of the matrices: [A[;=tr(AA)=3Y SI |44 The second
possible choice is the Fubini-Study distance

distpg(W, Z) = arccos(det(W'Z)det(Z'W)) = arccos|det W'Z|*. (A19)
Note that these are distances for G,,(C") (the set of equivalence classes), and not for V,,(CV).
We see that
J—
0 < dist,(W,Z2) < \2M, (A20)
. T
0= dlSth(W,Z) = 5 (AZI)

The fact that the distances are bounded just reflects the fact that G,,(C") is a compact mani-
fold. The interpretation as quantum distances follows from the fact that if W and Z represent the
same active space W=ZU, then the distance between W and Z is zero, and also from the following
property.

Property 2: Let E; be the active space represented by W and E, be the active space repre-
sented by Z. Then disty,(W,Z)=\2M if and only if E, L E, and distpg(W,Z)=7/2 if and only if
E{ NE,#{0} or E; NE,; #{0}.

Proof: W=(|¢l>’ ’|¢M>) and Z=(|¢’l (R ’|(IIM>),

w(WZZ'W) =0« 2 Kl o> =0 Vij, (gile)=0. (A22)
isj

If det W'Z=0, then the column vectors of Z'W are not linearly independent, and then 3¢; such
that 3;a(¢;|;)=0, Vi. Letting |§)==,a/|;), Vo € E,, we ha\ie (p| =0, zind then i € E{. We
conclude that det WIZ=0=E; NE, ¢~{0} We suppose that E|¢~e Ef ﬂE2,~¢¢ 0. Since ¢; is an
orthonormal basis of E,, we have §=3;a|i);) with a;=(i;|4). Since yeE;, we have Vi,

(¢:| #)=0 and then VX a{;| ;)=0. The column vectors of WZ are not linearly independent and
then det W'Z=0. [ |

The two quantum distances are associated with the two notions of quantum incompatibility of
active spaces. We say that two active spaces are incompatible in the strong sense if they are
orthogonal: the probability of obtaining the same experimental results with a system in a state of
E, and with a system in a state of E, is zero. We say that two active spaces are incompatible in the
weak sense if E; N E,={0}: there exists a state of E, for which the probability of obtaining the
same measures as that with a system in a state of E, is zero.

Property 3: The two quantum distances induce the Kdihlerian metric of G,,(CN).

Proof:
dist.,(Z,Z+d2)*=2(M - t((Z'(Z + dZ)(Z" + dZ")2)) (A23)
=2(M -tr((1 + Z'd2)(1 + dZ72))) (A24)
=2tr(-Z'dZ-dZ'dZ) - w(Z'dzdZ'z) (A25)
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=2 tr(dz'dz) - 2 r(Zz'dzdZ'2) (A26)

=2d12, (A27)

where we have used the property (Z'+dZ")(Z+dZ)=1<dZ'dZ+Z'dZ+dZ'Z=0.
We recall that if ||A|| is in a neighborhood of 0 and if A is diagonalizable, then det(1+A)=1
+trA+%((tr A)?~1tr(A?))+ O(JA|’). We can further obtain the result

cos distps(Z,Z + dZ) = det(1 + Z'dZ)det(1 + dZ'Z) (A28)
1 1
:(1 +tr Z'dz + E(tr Z'dz)? - Etr(ZT dz)* + (9(||dZ||3)> (A29)
o1 . 1
X (1 +dZ'Z+ S( dz'z)* - Etr(dZTZ)Z + O(||dZ||3)> (A30)
=1+t ZldZ+tdZ'Z+ (tr Z'dZ)(tr dZ72) (A31)
1 T 2 1 T 2 1 T7\2 1 Tr7\2 3
+ (0 Z42)° = Zu(Z'dZ) + - (w dZ'Z)? - Jw(dZ'2)° + O(|dz|?) (A32)
=1-t(dZ'd2) - (r Z'd2)* + (tr Z1d2) - w(Z!d2)* + O(|dZP) (A33)
=1-t(dZ'dZz) - (z'd2)* + O(|dZ|?) (A34)
=1-dP. (A35)
Since cos distpg(Z,Z+dZ) = 1-[distpg(Z, Z+dZ)?]/2, we have distpg(Z,Z+dZ)*=2d/%. [ |

Letting C be a geodesic for d/? in G,,(C") linking Z and W, then

1
c V2

Moreover, we know that G, (CY) C Myxn(C). WWT is self-adjoint VW e V,,(CY), and then
2 2
Gy(CNYCRM [a vector vy, of RV being the list of the real and the imaginary parts of the

components (WVVr)j with j<i]. G,,(C") is then a submanifold of RM. We endow RV with the
Euclidian metric. VWW' e G,,(CN), since WIW=1,,, we have

(WWOUAWWH] = WiW, WEW), (A37)
=W, WEW,W (A38)

=55 (A39)

=M. (A40)

Then
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disty,(WW',2Z") = \2\M — (WiZZ'W)“ (A41)
=\2\M - W' ZfZpw (A42)

=\2M - 2(WW")i(zZ")] (A43)
=N(WWHIWWH]+ (221221 - 2(WWh(zZ)] (A44)
=\N(WW' - ZZY(WW' - 2Z'): (A45)
=\(Vy=v) - (Vi =V, (A406)

=[lvw = vl (A47)

The chordal distance is then the distance through the space RNz, whereas the Fubini-Stuty
distance is the distance on the “surface” of G,,(CV).

Remark: In practice, we consider a manifold M associated with the classical control param-
eters characterizing the environment of the quantum system. For example, if the quantum system
is an atom driven by a laser field, then M is the manifold generated by the intensity, the polar-
ization, and the frequency of the field. This control manifold is closer to the experimental situation
than the active space manifold G,,(C"). The relation between the control parameters and the active

spaces is characterized by an immersion map from M to G,,(CY) (or equivalently to RNZ). The
role of this map is (locally) analyzed in the adiabatic case in Ref. 46.

The Kihlerian structure of G,,(CV) is particularly important, since the metric measures the
variations of the evolutive active space and then measures the change of the quantum properties
induced by the subdynamics of the evolutive active space.
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