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dynamical phase

David Viennot®
Observatoire de Besancon (CNRS UMR 6091), 41 bis Avenue de I'Observatoire, BP1615,
25010 Besancon cedex, France

(Received 15 November 2004; accepted 28 April 2005; published online 21 Jung 2005

A geometric model is proposed to describe the Berry phase phenomenon when the
geometric phase does not commute with the dynamical phase. The structure used is
a principal composite bundle in which the adiabatic transport appears as a horizon-
tal lift. The formulation is applied to a simple quantum dynamical system con-
trolled by two lasers. @005 American Institute of Physics.
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I. INTRODUCTION

Principal bundle theory is a classic tool of modern theoretical physics. The notation
(P,M,G, ) will be used throughout this paper to designate a principal bundle on the right-hand
side with base spackl, total spaceP, structure grougs, and projectionsr. First we quote an
important result of principal bundle theory. Suppose tRas endowed with a connection de-
scribed by the gauge potentiaf associated to the local sections I'(M, P). Let C be a curve in
M, parametrized by the functidi®, 1] = t— y(t) e M. Then the horizontal lift o’ at the point
a(y(0)) is given by

P 5 p(t) = o(y(t)) Pe A7), (1)

whereP is the path-ordering operator aife/A"") ¢ G acts onP by the group canonical right
action.

In 1984, Berry proved, in the context of the standard adiabatic approximation, that the wave
function of a quantum dynamical system takes the form

Y(t) = @ IR TRl AR |5 Rit)), 2)

whereE, is a nondegenerate instantaneous eigenvalue isolated from the rest of the Hamiltonian
spectrum with instantaneous eigenvedayR(t)) andR is a set of classical control parameters

used to model the time-dependent environment of the system. The set of all configuralﬁ)iss of
supposed to form &*-manifold M. The important result is the presence of the extra phase term,
called the Berry phase /@RI 2R’ Simorf later found the mathematical structure which
models the Berry phase phenomenon, namely a principal bundle with base./spacel with
structure group (). If we eliminate the dynamical phase by a gauge transformation which
involves redefining the eigenvector at each time, then the expre&imthe horizontal lift of the
curveC described byt— ﬁ(t) with the gauge potentia4\:<a,§|dM|a,§>. If C is closed then the
Berry phasee ¥ e U(1) is the holonomy of the horizontal lift.

In 1987, Aharonov and Anandﬁproved that geometric phases such as the Berry phase are
not solely attached to the adiabatic approximation but appear in a more general context. Let
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t— y(t) be a wave function such thai(T)=¢€'?y(0) andH(t) be the Hamiltonian of the system.
Suppose that the Hilbert spacenislimensionalithe casen=+ is not excludefi then the wave
function defines a closed curdein the complex projective spa¢#P" L. If one redefines the wave

function such thath(T)=z~p(0) then

Pt) = O IR DAt =T o [t ek 3)

The extra phase in addition to the dynamical phase is called the Aharonov-Anandan(@hase
nonadiabatic Berry phasé/Ne can eliminate the dynamical phase by a gauge transformation; then
the Aharonov-Anandan phase appears as the horizontal liftiofthe principal bundle with base
spaceCP"1, the structure group (1) and with the(2n-1)-dimensional spher&"* as total
space. The Berry-Simon model and the Aharonov-Anandan model are related by the universal
classifying theorem of principal bundI&S; more precisely, the Aharonov-Anandan principal
bundle is a universal bundle for the Berry-Simon principal bundle.

The two geometric phases described above are called Abelian because they are related to the
Abelian group U1). In 1984, Wilczek and Zéeproduced a non-Abelian Berry phase phenom-
enom in the context of the adiabatic approximation. IEgIIi(t)) be anM-fold degenerate instan-
taneous eigenvalue isolated from the rest of the spectrun{|aﬁd§(t)>}i:1,__,M be an orthonor-

mal basis for the associated eigensubspace. Suppose that the initial gi@e=is, i ,§(0)>; then
the wave function is

M
_ 571t St ’ R UNT Y .2
Y(t) = 2 e TR RENM T JARIN |3 j R(1)), (4)
=1

where the matricial 1-forni has the element4;; :<a,i,lfi|dM|a,j ,FE) andT is the time-ordering
operator. By elimination of the dynamical phase, this expression becomes a horizontal lift of the

curve C described bytHFi(t) into a principal bundle with base spadel and structure group

U(M). If C is closed therPe#AR < U(M) is the holonomy of the horizontal lift.

In 1994, Bohm and Mostafazadebonstructed a non-Abelian Aharonov-Anandan phase as
the universal bundle of the preceding one. Bét) be anM-fold degenerate projector such that
P(T)=P(0). t— P(t) defines a closed cur«&in the Grassmanian manifold,,(C"). If one chooses
a local section of the bund[&/,,(C") ,GM(‘CH),U(M),W\/M(Cn)] [whereVy,(C") is the Stiefel mani-
fold] s(P)={#1(P), ... ,¢n(P)}, then the evolution of the wave function for whigh0) = ¢;(0) is
given by

M
w0 = S, [Ted U] (et A, g 1), (5
j k=1
where Aij:<¢i|dGM(l‘,”)|¢j>a Eij()=(¢i(D|H(1)|¢;(1)), and where we suppose thaflt
[[HE(t)dt’, [HA(t')]=0. By eliminating the dynamical phase, we obtain a horizontal lift in the
universal bundle.

The gauge potentials defined in the four previous cases have the particulaA fdciidU
whereU is a M X n matrix (T denotes the transconjugatio® connection with such a gauge
potential is called a Stiefel connection. It is in fact the form of the universal connection in the
universal bundle, a form which is unique, since Narasimhan and Rarfiapnaved that all
universal connections can be written in this form. Then the above four examples of geometric
phase each have an explicit Stiefel structure.

In the previous example, the dynamical phase commutes with the geometric phase, but this is
not the case in general. More usually we haies” ToEt)dt' ~[oAR") o« Terih ™ EX )t g ToAL) gnd
it is then impossible to eliminate the dynamical phase and to obtain a simple geometric structure
which reduces the phenomenom to a horizontal lift in a principal bundle.
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Sardanashvily introducéd® a model based on a vector composite bundle, so as to obtain a
geometric structure which can describe both the dynamical and the geometric phases when they do
not commute. His formulation defines the covariant derivative

Vit = (6 + AL (), ) (ah“(D) + i H(h(D), )¢, (6)

whereh is a map fromR to M (the manifold of classical parametgrand.4 and’+ are bounded
operators. This leads to the result that if a secijois an integral section of the connecti@re.,
V,=0) then

l,//(t) - Te—f})(/\ﬂﬁtrhl’%bh_l?{)dt’ l,//(o) . (7)

Sardanashvily finally claims that if one can think of the equaliqir=0 as being the Schrdédinger
equation of a quantum system depending on the parar@jethen.A generates the Berry phase
and H generates the dynamical phase. We now explain why we are not in agreement with this
claim. First his whole analysis is made in the framework of a vector bundle. This is basically not
incorrect; however the Berry phase is usually described in the framework of a principal bundle and
its associated vector bundle, giving a principal structure which is more rich. Also, the definition of
the covariant derivative used by Saradanashvily is only indirectly justified by noting that it gives
a correct final result. More precisely, Sardanashvily does not explicitly defiaed 7, whereas

the adiabatic potential and the dynamical phase have well-defined matricial expressions. Finally,
Eq. (7) is not the expression of a dynamical phase added to a geometric phase, because the
expression of Sardanashvily is of the fogft) =Ug,(t) (0), whereas the expression of a parallel

transport with geometric phase is of the foW(t):UphaSgt)Tp(t) Wheresz(t) is a known function

or a known basis set dependent on the tiinehe case of the Berry phase it is the instantaneous
eigenvector basis gefThis known functionor basis setdefines the local section used to describe
the horizontal lift. ThenUg, is not a non-Abelian phase but is the evolution operator. Conse-
quently we have#i.A,dh*+H=H, whereH is the Hamiltonian of the system, which is split into
two parts.A and H. Since Sardanashvily does not defide this spliting is totally arbitrary.
Moreover, ifA is the generator of the Berry phase dads the generator of the dynamical phase,
we havelaA+E+# H. Thus the affirmation of Sardanashvily in Ref. 9, namely/ i responsible

for the Berry phase phenomenon” appears to be unjustified.

In this paper we construct a geometric structure to give a correct description of the transport
when the Berry phase does not commute with the dynamical phase. We apply Sardanashvily’s idea
of using a composite bundle, but we take a principal structure in place of the vector structure. We
thus construct a connection consistent with the geometric model of the adiabatic transport and with
the bundle formulation of nonrelativistic quantum dynamics. Our approach reveals that the non-
commutativity of A and E introduces a modified gauge structure. Similar modifications of the
gauge have been used by Attal in Ref. 11 in a treatment of the non-Abelian gerbes conféfion.
note that in the literature of fiber bundle theory the words “gerbe” and “sheaf” are used by various
authors to name the same mathematical eptite introduced a gauge theory with generalized
Cartan structure equatiori“s:dA+%[A,A]+B and G=dB+[A,B], and a Bianchi identity @
+[A,G]=[F,B] whereA is a 1-form,B andF are 2-forms, ands is a 3-form. In the same way,
Larssor in his treatment of the Yang-Baxter equation with non-Abelian gerbes, found a gauge
theory with the usual Cartan equation and the usual Bianchi identity, but limited by restrictions
concerning the possible gauge transformations. It should be stressed that the modified gauge
theory induced by the noncommutativity fand E in our approach is similar to the modified
gauge theories of Attal and Larsson which are induced by noncommutativity in the gerbes.

This paper is organized as follows. Section Il introduces the generalized adiabatic theorem
with a Berry phase which does not commute with the dynamical phase. Section Il is devoted to
some remarks about the principal composite bundles constituting the fundamental structure of our
model. Section IV presents the geometric model used for the description of quantum adiabatic
dynamics. Finally, Sec. V presents an application to a simple quantum dynamical system. Differ-
ent quantum dynamical aspects of this system are presented in our geometric representation.
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A note about some of the notation used here: the syfibdlbetween two manifolds denotes
that the two manifolds are diffeomorphic, the symbel” denotes an inclusion between two sets
and“Q"M” denotes the set of thedifferential forms of the manifold M

Il. GENERALIZED ADIABATIC TRANSPORT

Theorem 1: Let U(t, 0) be an evolution operator of a quantum dynamical system governed by
the self-adjoint Hamiltonian K). Let {E,(t)}, and{|a,t)}, be the instantaneous eigenvalues and
eigenvectors of H). We suppose that there exists a set of indices | such that the projector
Pu(t)=2.c/]a,t)a,t| satisfies the adiabatic condition

U(t,0)Pr(0) = Pry()U(t,0) (8

(to satisfy this assumption, see for example, Nenciu's adiabatic thé%)rehhat t=0 the wave
function is¢(0)=|a,0) (with aI) then at time t we have

Y = S Upa()]b,) ©
bel
with the matrix
U(t) = Te oEM )t ~EA). (10)

Here Ay(t)=(a,t|g|b,t)dt and we also havé&la,b e | E p(t) =E,(t) Sap.

Proof: The condition(8) states that the evolution is inside RQ so that for allt the wave
function can be expanded on the basis(&it)),.,. This justifies the use of E9), in which U
is a unitary matriXthe unitarity ofU results from the normalization of the wave functiofihe use
of Eq. (9) in the Schroédinger equation leads to the result

> hUp(D]b, 1) + 2 iU ()d]b,ty = X Up(DE(1)[b,1). (11)
b b b
By projecting this expression aft,t| we obtain
ilUca+ 2 thUp(C,t3]b,t) = U E, (12)
b
which leads to the result
(VU= 2 Ul (13
a
== D h T EU UL — X (ctafb,hUpUsS (14)
a a,b
== i EL(UU g = 2 (ctab,tHUU ™) (15)
b
== i E S, (G t|ad,b). (16)
[

This expression manifestly displays a matrix dynamical phase and a matrix geometric phase,
in other words a non-Abelian dynamical phase and a non-Abelian geometric phase. In general
[E,A]+0. If the Hamiltonian is time-dependent with respect to some classical control parameters

R which describe a*-differentiable manifoldM, then we can rewrite the non-Abelian phase
(20). For a dynamicdH(R(t)) described by a patfi in M we can set
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u(e) = Te HHERE DA ~§eAR) (17)
with A(R),»=(a,R|d,|b,R), whered, is the exterior differential of\1.

I1l. PRINCIPAL COMPOSITE BUNDLES
A. Definition of a composite bundle

A composite bundle is defined by five kinds of data, three manif@sS, andR) and two
surjective mapsr,:P*— S and 75: S—R. We denote the composite bundle By —S—R. We
assert that a composite bundle is a principal composite bun@e-iR is a locally trivial fiber
bundle with as typical fiber a manifolsl: (S,R,M, mrg), and if P*— Siis a principal bundle with
as structure group a Lie grow: (P*,S,G, m,). Oy € R, we haverg'(y) =M and we denote by}
the associated fiber diffeomorphism. We suppose $hhaas a structure of a cell complex; then
wgl(y) andM are cell complexes. The theorem of universal classification of principal butedies
Refs. 4 and bis used to define the universal bundlé, B, G, ;) whereB is the classifying space
of M, g the universal map fronM to B, and Quoxf the universal map from-rgl(y) to B. We
finally define the principal bundléP,M,G, 7p) such that the following diagram commutes:

S*

Pt —— xJ'P X p oty

m | [ R |

Xi M ouU B

§ —— 75'(y)

whereP—gLU and)(fP—(QUoXy) U. We know thatU is mdependent of(s P and thus indepen-

dent ofy Moreover, smce}(y is a diffeomorphism theo(y is a principal bundle isomorphism, so
that Xy P=m, ws(y)) and wpy—mlxy p. Let U' be an open local chart okl. We consider the

Iocal trivialization of(P,M,G, wp) overU' gbp u' ><G—>77P1(U) then the local trivialization of

(Xy P wsl(y) G, wpy) is p[y]= Xy b Xy (U)XG—»W;l(Xy (U ")). Let Vi be an open local chart
of R, ¢k be the local trivialization ofS,R,M,7g) over Vi, and ¢} be the local trivialization of

(P*,S,G,m,) over w5 (V). It is clear that the local trivializations are related by

.75 (V) X G — (s (V) |
(8,9) = ¢p[Pr ¢ (9)1(Pr, #57(9),9),
where we have supposed that, Bg_ l(s) eU'. Py and Py are the canonical projections &
XM overR andM. We call(P,M,G, 7p) the structure bundle of the composite bundle.
Finally one can define a principal bundle related to the principal composite bundle. Consider
the map
i UXVIXG—P*
(%.Y,0) = P (¢KY.%),0) = gp[yl(x,0).

+++
This map is a local trivialization of a principal bundle*,M X R, G, m,,) with 7T++:¢§10 m,. Itis
called the total bundle of the principal composite bundle.

Let xe U' be a fixed point oM. Define the map

(v,9) — #L.(x,y,9).

If we consider this map as a local trivialization, it defines a principal bu(@|eR,G, G, ) with
mQ, =Pr° ¢ [x]™L. We call it the transversal bundle of the principal composite bundle. The situa-
tion is schematlcally summarized in Fig. 1.
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R

FIG. 1. Scheme of a composite bundi. is the three-dimensional space delimited by the three planes.

B. Connection on a principal composite bundle

Consider a principal composite bundi® —S—R. (P*,S,G,w,) and (P*,M XR,G, 7,.)
have the structures of principal bundles. We can then define a common connection for these
bundles. Letw e QX(P*,g) be the connection 1-forrty denotes the Lie algebra of the gro®).
Let oJMXReF(U'xV' P*) be a local section of the principal bund(@" MXR,G,m,,). The
gauge potential of this bundle is by definitioAl,, = =wooy g € QM XR,g). Let a"s
e I'(wX(V}),P*) be a local section of the bund(®*,S,G, =.). In order to simplify the passage
from one bundle to another one, the two sections are chosen to be compatibld]si.e.,
e m{(V)), o&9) =0l (¢ '(9)) [we suppose that E’q&él(s) eU'], and O(x,y) e U X Vi,
UMXR(X y) os(&s(x y)) Usmg these relations the gauge potential of the bufteS,G, m,) is

A= O'Jsf“ d’s Tuxr ©= ¢Js Alre QXS 0).
Xy :P— m,  (m!(y)) is a diffeomorphism, thefremark about the notation: the first st,a?

denotes the map induced l;n? in the principal bundles ovefrsl(y) and M, the second sta;(y

denotes the map induced béf in the cotangent bundles & andx P] X QO (M (mgy)))
—Q'P. Leti iy wzl(wsl(y));» P* be the canonical |nject|on We deflne a famlly of connecuons of

(P,M,G, mp) by wy= Xy N yo € QYP,g), foryeR. Let oM el(U',P) be a local section which is
supposed to be compat|ble with the sectiorPéf Ox e M, o},(x) = Xy OJMXR(X y) (this section

depends ony). The gauge potential |sAy (x)= aJ w, UMxR Xy Xy Iyw Jy “Al uxrGY)
e QY(M,g), wherejy Mt -

Finally, leti,: 7, %(x,R)— P* be the canonical |nject|onux—| w is a connection of the trans-
versal bundl€Q,,R,G, mq ). Let jy: ROMXR 'S0 thatA =] Auxre QYR,g) is the gauge potential

y—=>(Xy) ?
of this bundle.

C. Horizontal lift in a principal composite bundle

In the theory of principal bundles, the notion of a horizontal lift of a curve of the base space

is fundamental. In a principal composite bun@e— S— R, there exists a natural generalization

of this notion, but the horizontal lift concerns a section of the base buigiR,M, 7g). Let h

e I'(€r,S be a section, wherég is a curve inR. h defines a curv€ in M X R parametrized by

y e R with the function ¢’js 1(h(y)) (to simplify the discussion we suppose thatC V). Let
in:h(€g)— S be the canonical injection. We consider the local sectiba I'(C,P*) of the bundle
(P*,MXR,G,m,,) defined bye"=cle g, Oy e R, o(¢k 1(h(y))):crjs(h(y)). Then the horizontal

lift of his defined as the usual horizontal lift 6fin the total bundle of the composite bundle,

g,=Pe fCAMxR—}Pe Tnee hAs— Pe /e n AS (18)
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IV. GEOMETRIC STRUCTURES OF GENERALIZED ADIABATIC TRANSPORT

Consider again the generalized adiabatic transport characterized by the non-Abelian phase
(17) in the framework of our quantum mechanical study. The quantum dynamical system is

described by a self-adjoint HamiltoniamH(ﬁ(t) ,t) in a separable Hilbert spad# whereR is a
set of classical parameters which evolve adiabatically with respect to the quantum proper time.

These parameters form&-differential manifold M. t— FE(t) represents a particular dynamics
described by a curvé in M. To have a more general description, we assume that the dynamics
possesses a part which changes rapidly and which cannot be modeled by a classical parameter. The

Hamiltonian then has an explicit dependencet dmesides having the adiabatic parameté(ns).

To control the physical processes it is necessary to model numerous different dynamics,
without fixing any particular path in the classical parameter manifold and without fixing the
duration of the evolution. Hence we must consider the generic Hamiltonian

MXR— L(H)

. R (19
(Rt) =~ H(R)t)

To study this dynamical system, we should separate the dynamical and the geometric contri-
butions to the dynamics. To do this we fixc R in a first step and obtain a purely adiabatic

(geometrig¢ evolution R— H(Ii,t). Next we fixRe M and obtain a purely quantum dynamical
evolutiont—H(R,t). These two steps are analyzed successively in the next sections A and B.

A. The fiber bundle of the geometry

Lettye R be fixed.R— H(ﬁ,to) is the Hamiltonian of an adiabatic system. We suppose that
{Ea(R,tp)}ac) areM point eigenvalues ofi(R,t,) which form a group which is isolated from the

rest of theH spectrum, and we denote b, Ii,t())}ae, the corresponding eigenvectdthe case of
a globally degenerate eigenvalue is not excluded, but in this dasdel such that

DliEa(lfi,to)=Eb(§,to) Where(|a,§,t0>,|b,§,t0>) is an orthonormal basis of the eigensubspace
The case of an isolated degenerdey eigenvalue crossipgor which [R such thatE,(R,ty)

=Eb(§,t0) can also be included. The works of Be}rf)?;imon,2 Wilczek and Ze assert that the
adiabatic evolution is described mathematically by using a principal buila1,U(M), 7p)
where the connection is represented by the gauge poténidb(M ,u(M)),

Aa(Roto) = (a,R toldp|b, R to). (20)

Here d,, is the exterior differential ofM. This expression is associated with the section of the
associated vector bundR— (|a,R,to))ac)-
By introducing the eigenvector-matriXR, to) € M gim 2,xm(C), We can writeA=T'dT, giving

a Stiefel connection in agreement with the Narasimhan-Ramaman thésgerRefs. 14 and)8lt
is evident that after a change of sectidra |a,R,ty) ~ g(R)|a,R,ty) with g(R) e U(M)) the gauge
potential satisfies the usual relation
AR o) = g(R AR t)g(R) +g(R) d,g(R). (21)
Note that a family of connectionﬁA(ﬁ,t) e QY (M, u(M))},. is generated it is continuously
modified. IfC is a closed curve inV, then its horizontal lift is characterized by a Wilson loop,
W(C,to) = Pe cAuRIR", (22)

If the adiabatic bundle is not trivial thew(C,ty) # 1 is the holonomy of the horizontal lift which
is called the Berry phase.
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B. The fiber bundle of the dynamics

Consider now a fixed poirﬁ?o e M. t— H(Iio,t) is the Hamiltonian describing the quantum
dynamics in a static environment which is characterized by the fixed parantgtet®t ty,t;
e R; the evolution of the system betwegnandt; which is described by the evolution operator

U(Iio,to,tl)Pm(to) e U(RanP,;)=U(M) which is assumed to satisfy the adiabatic condit{B)
while also being the solution of the Schrddinger equation

J - R -
LﬁEU(ROIOyt) = H(R()at)U(ROvtOvt) (23)
with U(Ii’o,to,to):l. It is well known that the solution of this equation is

U(Ro,to,ty) = Tt~ 2HRo . o

Expressiong22) and(24) are very similar, and an interpretation of the quantum dynamics as
a parallel transport has been developed by Asamegll.15 in the general framework of infinite-
dimensional Hilbert space and by II\in the context of a general fiber bundle model of non-
relativistic quantum mechanics. In the context of the adiabatic condi{Bprthe evolution is
condensed into atM-dimensional space, leading to a description which involves a principal
bundle(Q,io,R,U(M),quéO) and its associated vector bundEﬁO,R,CM,wEéo), with a state ap-

pearing as a section of the vector bundle I'(R, E,io).
Suppose thaire I'(R, Eg ) is a solution of the Schrédinger equation. lygt)=U(t) (t) be a
change of section such that

B340 = AR DT (25
Inserting gAt) =U(t) into Eq. (25) leads to the result
b 2git) = (U R DU - AU 00y (26
so that
B IH(Ro, 1) = U(1) i *H (R, U ()L + U U(1) (27)
and, finally,
"I (Rg, ) dt = U(t) i H(Ro,HdtU(H) 1 + (dU(H)U ()2, (28)

where dis the exterior differential oR: df(t)=(df/dt)dt. Equation(28) is the familiar formula of
gauge transformation theory, andi *H(R,,t)dte QY(R,u(M)) is the gauge potential of
(QFEO,R,U(M),WQ%). zpeF(R,EF}D) is horizontal if the covariant differentialD=d,

+Lﬁ‘1H(§0,t)¢/xdt is zero, i.e., ifyy obeys the Schrodinger equation. A horizontal lift of the curve
[to,t1]CR is well characterized by the expressi@#).

Let Ugyn(M) be the set of maps frof to U(M) which satisfies the Schrédinger-von Neumann
equation[we note that this equation is the analogue for unitary operators of the equation associ-
ated to the Hermitian dynamical invariarisee Ref. 1Y, which are used by Mostafazadeh in Ref.

18 to define the non-Abelian nonadiabatic geometric pHases

A1) =[U(0),HR,1)]. (29)
In the framework of the adiabatic conditid®), the previous gauge potential is not used, because
(24) is not the expression for the dynamical phase factor appearing in Ref. 1818, 1)},
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be theM isolated eigenvalues M(ﬁo,t) and{|a, ﬁo,t)}ae, be the corresponding eigenvectors. Let
E(Ry,t) be the matrix such thatE(Ry,t),,=Ei(Rg,t)8. It is clear that E(Rg,t)ap
=(a,Ry,t|H(Ry,t)|b,Ry,t). A gauge transformatiorilae I, |a,Ry,t)=U(t)|a,Ry,t), leads to

E.5(Royt) = (@, Ro,tH(Ro, )| B, Ro, V) (30)
=(a, Ry, t|U(t) H(Ro,hU(1)|b, Ro, ) (31)

=(a,Ro,t{U() V() H(Ry,1)[b, Ro,t) + (@, Ro, t{U (1) [H(Ro, 1), U(1)]b, Ry, ) (32

=(a, Ry, t|H(Ro, )b, Ro,t) + (2, Ro, t{U(t) [H(Ro, ), U (1), Ry, t) (33
=(a, Ry, U H (R, U (1) ™18, Ro,t) + (, R, T H(Ro, 1), U(H) JU (1) Y| B, R, t) (34)
=(U®H R, HU® ™) 45+ (TH(Ro, 1), UM TU®) ™) o (35)

Thus we have
E=UEU+[H,UU™ (36)

E does not satisfy the usual gauge transformation formula. But if wellak&), (M) we obtain

B IE(Ry, tdt = U(t) o 1E(Ry, dtU(t) 2 + (dU(1)U(t) 2 (37)

we see that Lﬁ_lE(ﬁo,t)dt e QYR,u(M)) is a gauge potential of the principal bundle
(Q%’R'U(M)’Wééo) but with a restriction of the gauge transformations to thelkgt(M) of the
sections OKQFEO'R’U(M)'”QFSO) which are horizontal for the connectioh‘lH(l':’o,t)dt. The hori-
zontal lift of [ty,t;]CR is then

D(Ry,to,ty) = T TEERovat (39)

which is effectively the dynamical term ¢17).
The expression for the gauge potential is associated with the section of the associated vector

bundlet— (|a, Ry, t)a..

C. The composite bundle of the geodynamics and its connection

The discussion in the two preceding sections A and B suggests that the appropriate entities to
give a correct description of the geometric structure of the geodynamical evolution characterized
by the expressiofil7) would be the principal composite bund® — S— R with structure bundle
(P, M,U(M),p), base bundléS,R, M, mg), transversal bundleeQF;,R,U(M),wQé) and total
bundle (P*, M XR,U(M), m,,). Note that, following the treatment of Sec. Il, the structures of
(P,M,UM),mp), (Qﬁ,R,U(M),wQF;) and of (S,R,M,mg completely determine(P*, M
XR,U(M),m,,). P and Qg have been introduced in the preceding paragraph. By fiigrgR
arbitrarily, the transition functiongo define a principal bundle, there are three equivalent ways,
by invoking the local trivializations, by invoking the transition functions or by invoking the fiber
diffeomorphisms gil(R,to) € UM) of P are obtained by settingl(R)=(a,R,to,i|b,R,to,])
wherei andj represent two possible conventions in the matrix representation of the eigenvectors
(see the example of Berry phase in Ref).IBhe topology of the bundl€ is determined by the
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map)(t, for which P; as defined by the transition functloﬁ'$R,t,|)TT(R,t,j) is such that)(t

= Xt Pt P.. Clearly, if we considefa, R ,t) as a section of with values in the associated vector
bundle ofP;, then we have

aRt)=laRt = x> =URtyt), (39)

S
Xt*

U(R,to, 1) is defined by Eq(24), andy3 is the map induced by? in the sections.
This naturally leads us to take as the gauge potentigPof M X R,U(M), 7,,) the quantity

Apcr(RY) = AR + i E(R Dt € QM X R,u(M)) (40)

with A being defined by Eq(20). Note that we can use this expression because the two local
sections used to express the gauge potentials are compatible. Introduci MXR and

(R t)
ir: ‘H*/(\;T)H we haveA(Ii,to):j:OAMXR(Ii,tO) and Lﬁ‘lE(ﬁo,t)dt:j;oAMXR(RO,t).

As a gauge potential is locally defined, andSais locally diffeomorphic toM X R, we can
write AdR, 1) =A,,(R,H)/dR*+ /i 1E(R, t)dt e QX(S,u(M)). Lethe I'([0,t,],S) be a sectionh de-
fines a curvel in M X R, where£=h([0,t;]) is a closed path described i by R*(t)=h*(t).
Consider the pullback df,

Q'S— Q'R
. oh*
h":dR* — —dt.
ot

dt— dt

Then we have

(W"AY(t) = Aﬂ(h(t),t)%dt + i EE(h(), b)at. (42)

Using expressioli18), the horizontal lift ofh is characterized bjwith the notationh(t):lfi(t)]
9= Pe—chMXR(Rt = Te oAl R(t),t)[aRM(t)/m]dt—Lh‘lng(ﬁ(t),t)dt_ (42)

Suppose now that we do not have a fast evolution in addition to the adiabatic evolution, in such a
way thatH(R,t) has no explicit time dependence; then we have

g, = Te¥chiu (RdR-ui L HE(R(®) (43)

which is the expression for the non-Abelian phas¢lin).

Note that the connectioAg of (P*,S,U(M), m,) is restricted to the gauge transformations of
the formU(M) = g(ﬁ,t):g(ﬁ)u(t), whereg(R) is a map fromM to U(M) without restrictive
conditions and wheréJ(t) € Ug,((M). We thus have a principal structure but with a restricted
choice of gauges.

It should be stressed that @ we introduce the local fiberd coordinatésy) where(y) is
a system of coordinates d&f(M). In the same way we introduce the fiberd coordinates of
(R*, %)) and the fiberd coordinates & (R“,t,/). By calling on the theorem of Ehresmafsee
Ref. 19, it is possible to construct a connection 1-form with gauge potedtjgky. Let o
e I(M XRR,P*) be the section used to express the gauge potehiialy. D(Ii,t,y) e P, let
g(li,t, v) such that(li,t, y):o(li,t)g(li,t,y). The connection 1-form oP* is
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o:(Rt,%) =gR YA RDIRLNIR: + di'g(Rt,9) ER YR, y)dt
- J - - J - - J - :
Rt,v) 1—g(Rt,ydR* + g(Rt, ) *—g(Rt,y)dt + g(R t,y) *—g(Rt,»)d
*OR LYo IR ELYAR 4 gR LY g(REy)dt+g(R ) Wg( y)dy

the connection 1-form oP for a fixedt, is
17
0p(R7) = 9(R to, 7) A (R 1) g(R o, AR + g(R t0,)” R LO(Rto, y)dR"

+ g(R to,y) " (R to,y)dy

V

and the connection 1-form @ for a fixedli’0 is

g (.7) = 67 9(Ry ) (R, DRy 7)1l + 0(Re, ) g(Rost

+g(Rot,y) = g(Rot, y)dy

2%

we can see then thaip+ # wpt o

D. A pseudo-Stiefel structure

In the preceding section C we considered a fiber bundle with a restriction concerning the
allowed gauge transformations. If we give up this restriction we must deal with the nonstandard

equation(36) of gauge tranformation theoerE UEU™+[H,U]JU™. In order to find a structure
associated with this formula we first consider the bur(d)ﬁo R,U(M), Qg ) endowed with the

gauge potentiakh™ lH(I‘-\’O t)dt. This gauge potential satisfies the correct gauge transformation
formula and it is then possible to define a covariant d|1°ferer11)(=\;!-{0 Let yeI'(R, ERo) be a

section of the associated vector bundle. We have

DQF;O¢: S dt + A" Hyp dt. (44)

LetU e F(R,QFQO) be a section fronk to Q,i0 considered as the space of the operatorEF;%mc
then we have

DQ'ioU = &tU dt + Lh_l[H,U]dt. (45)

With DQFEO we define a differential in\ X R,

D7(RY) = dyn(Rt) + Do (R Y. (46)

We can then define a gauge potential in the style of Stiefel but with the differéwtiaplace
of dy xr. We set

A.=T'DT, (47

whereT is the matrix of the eigenvectors &f. Note thatD?+ 0 so that the connection is not

rigourously a Stiefel ondb,ﬁ,t) e'(M XR,E,) is a section of the associated vector bundle of
P*, so that
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I, R,t) + ofi” (49)
and
Aran=(a,Rtd,|b,Rt) + (a,R t|a|b,R tydt + i~ (49)
so that we have
A=A+ Ay + i ECL, (50

whereA is the adiabatic gauge potential defined by Ef) andA, is the matrix with elements
|b,|§,t>dt, namely the expression of a Berry gauge potential for the variableenR is
fixed. ConsideringA, as a gauge potential ¢P*, M XR,U(M),m,,), the horizontal lift ofh
e I'(R, M) is characterized by

gy = Te/dAu (R DLoh# (0ot FAo(R() Ddt—eh "L HER(D), Dl (51)

Note that this equation is identical {@0) if one considers the change of variable»(li(t),t).
Consider a gauge transformation, it is clear that

A, =A+Ay+ i IE dt (52)
=UAU 1+ (d,U) U+ UAQU L+ (dU)U T+ U E dt U™ + 27 [H,UJU? (53

=UA, U+ (d,,U +dU+ & [H,U)U (54)

=UA,Ul+ (DU)UL. (55)

A, satisfies a gauge transformation formula analogous to the usual one but with the replacement of
dyxr by D. The use of the pseudodlfferentlalmodlﬂes the gauge field theory. Let the curvature

F, be
F.=DA, +A, DA, (56)
=dyxrAc+ A DA, + T E dt, AL (57
=dyxrA, + AL OA, + i {E dt,Al. (58)

Let B=wA [Edt,A]l € Q2(M XR,g) be the curvingB is the field which characterizes the non-
commutativity between the dynamical and the geometric phases. Not& th& is a standard
curvature which satisfies the usual Bianchi identity and the usual Cartan structure equation. Using
the standard covariant differential associated withwe obtain the generalized Cartan equations

Fie=dyxrAs+ AL DA, +B, (59

G=dyxzB+[A,B]. (60)

Ge O3(MXR,g) is called the fake curvature.
The fake-curvature satisfies a pseudo-Bianchi identity.
Property 1: Let G be a fake-curvature defined by generalized Cartan structure equations; then

dyxrG +[G,A ] =[F.,B]. (61)

Proof:
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dG=dA, 0OB-A . 0dB-dBOA,-BOdA,, (62
[F.B]-[G,A,]=F,0B-BOF,-GOA,-A,0G (63)

=dA,0B+A,0A.0B+BUB-BUOJA,-BOA, A, -BOB-dBOA,-A.OBUA,

+BOA, DA, - A, OdB-A, OA, OB+A, OBOA, (64)
=dA, 0B-BOdA, - dB A, - A, OdB. (65)
]

V. ILLUSTRATION: THE EXAMPLE OF A SIMPLE QUANTUM DYNAMICAL SYSTEM

This final section illustrates the formal concepts introduced in the preceding sections by using
a concrete physical example taken from atomic physics. We consider a particular three-level atom
interacting with two lasers. Before explaining how the model illustrates the formal theory of the
preceding sections we give a brief description of three-level systems.
A. Preliminary discussion

We consider a three-level quantum system, described by the Hilbert =& The generic
form of a three-level Hamiltonians is

H=x)\;, i=0,...,8, (66)

where), is the identity matrix ofH=C2 and{\;}i-; ... gare the Gell-Mann matrices,

010 0 -.0 100 001
M=[1 0 0] a={e 0 0f a=[0 -1 0], a=[0 0 0],
000 00 0 00 0 100
00 - 000 00 0 10 0
n={00 0] a=lo0 1] nm=lo00 i) r=%lo1 0
L 0 0 010 0. 0 oo -2

The Gell-Mann matrices can be considered as the generators of the Lie algé®raMoreover
we introduce the following matrices:

=\ +i)\ +2)\ (67)
M1 = N3 \5 87 g0
==\ +i)\ +g)\ (68)
M2 = 3 \58 30'
I 9
M3 = \"5 8T gl

It is clear that{\, u;}i-174567-123 generate the Lie algebra(3). We are interested in

particular Hamiltonians of the form

H =X\ + X\, + XENg + X'N7 +Xup. (70)
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la>

FIG. 2. Scheme of the three-level atom.

Since{\4,\s5, i1, 1o} are the generators of the Lie algeh@) as a subalgebra af(3), then
the Hamiltonian(70) is an element ofi(3)/u(2) [this is a vector space quotient(2) is not an
ideal of u(3) and sou(3)/u(2) is a vector space without the Lie algebra structuire other words
the Hamiltonian(70) characterized byx!,x?,x®,x”,X) is determined by a point of the manifold
U(3)/U(2), and we know(see Ref. #that

U(3)/U(2) = SU3)/SU(2) = S°. (71

Thus, the control parameter space associated with a Hamiltonian of thg76yroan always be
chosen as a submanifold of the 5-sph8&te

B. A concrete example: a three-level atom interacting with lasers

We consider a three-level atom in theconfiguration interacting with two lasers, denoted by
P (for pump andS (for Stokes. The three bare states of the atom are labellethhpyb), and|c).
The control parameters of the system are the amplitudes and the phases of th8 damsHpPs \We
denote bywp the frequency of the lasét which is quasiresonant with the transiti@— |b), with
the detuningA. The laserS of frequencywg is supposed to be in perfect resonance with the
transition|b) — |c), see Fig. 2.

The dressed Hamiltonian of the system in the rotating wave approxim@i&#) is (see, for
example Ref. 2D

. 0 WwWef o
H=E We¥ 2A Ve |, (72
0 Vew 0

whereW=|(a|z-Ep|b)| andV=|<b|,42-I§5[c>|, Ep andEs being the laser amplitudes agidbeing the
electric dipole moment of the atom. To simplify the notation, we/setl. The HamiltoniarH is
of the form(70) and we can compute the three eigenvaluebl pf

E;=0, (73
ol TV
Ep=2(1-V1+V +WP), (74)
h 1T +V2+ W2
E3:§(1+\J1+V +WA), (75

We see thak,=E, if V=0 andW=0, and moreover
inf dist({E,Ex(V,W)}; E3(V,W)) =#. (76)
V,W

Let P;(W,V,a,B), P,(W,V,a,B), andP3(W,V, «, B) be the eigenprojectors associated with
E;, E,, andE;. It is evident that for all particular dynamid¢s> (W(t),V(t), a(t), B(t)) the Hamil-
tonian H(t) and the decomposition Spd(t))=o(t) U o () satisfy the assumptions of Nenciu's
adiabatic theorem(see Ref. 18 where oy(t)={E;,E;(t)} and o, (t)={Es(t)} and with
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inf, dist(o(t), o, (t)) =%. In accordance with Nenciu's theorem, we have at the adiabatic limit
[this limit is approximately obtained if the variations @#/(t),V(t)) are slow with respect to the
proper quantum time iffi/Es(t)—E,]; for classical parameters such\sor V this hypothesis is
consistentt

U(t,0)Pr(0) = Pr(HU(t,0), (77)

whereU(t, 0) is the evolution operator associated whtkt) and P,(t) =P;(t) + P,(t). We can apply
the formalism of the previous part with R&g, (dim RanP,,=2), for all particular dynamics.
The eigenvectors dfl can be chosen as follows fof# 0 andW# 0:

_earp Y
1 w
|1,<a,/s,w,V>>—\/:Vz o | (78)
1+W 1
arp) WV
Y
1 ——s
12,(a, B,W,V)) = — (1-V1+V2+W?) |, (79
W2 (1-\1+V2+WP)?| e v
1+W+ V2
1
elarp)V
Y
1 ——
13,(a, B,W,V)) = — (1+V1+V2+W2) |. (80)
W2 (L+V1+V2+WP)2| e v
1+?+ VZ
1

Let r=v1+V2+W? and (0, ¢) be such thatW=r sin¢ cosé, V=r sing sin# andr cose=1
(#e10,7/2[ and ¢ € ]0,7/2[). With these variables we can write

- e sin g

11.(c. 8,6, 0)) = 0 ) (81)
coséd

eL(a+,3)S'” ¢ cosf

V1 - cose

[2,(a, 8,6, 0)) = 1 - cose . (82
singsin @
V1 - cose

Let (a,8,v,0,¢) be the angles which genera2 The submanifold of° defined by

0<op< 2
P>
a
o<o< —

>

Downloaded 27 Jun 2005 to 193.52.185.11. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



072102-16  David Viennot J. Math. Phys. 46, 072102 (2005)

v=0,

is the control manifold; in the following we denote it I5}.

C. The composite bundle modelling the qguantum dynamical system

We will now apply the theoretical construction introduced in the preceding sections. First we
note that the choice of the eigenvect®4) and(82) is not unique. They can be

eb(a"'ﬂ)*
NE=| e |, (83

*

where* replace the functions d#, ¢) in the expressions di) (81) or |2) (82). By another choice
of phase convention we can choose the following eigenvectors:

e eL’B* %
|i>NW: eb(a—ﬁ)* ) |i>SE: * , |i>SW: e—L,B>l< ) (84)
g P iy g Uothy

These different conventions are associated with four open local charts} ofUNE
={(a,B,0,0) S_ﬂa el-ml2-€,72+€,Be]-ml2-€,m2+{, UNW={(a,B,6,0) € Sil| a
el-wl2-€,ml2+d,Belml2-€,3m/2+d, USE={(a,B,0,0)c Sﬂ ae|ml2-€,372+€,B
el-ml2-€,m2+d, andUSV={(a, 3,0, ¢) € Sﬂ ael|ml2—€,3wl2+€ ,Be|m/2—€,3m2+€,
wheree is a small parameter. The ﬂéﬂi}izNE’NW’SESWiS an atlas ofS}. We want to construct the
principal bundle of the geometric phase. D&t (|1)',]2)') e M3.,(C) be the matrix of eigenvec-

tors selected by the adiabatic theorémNE,NW, SE,SW. We setF-i:(a,,B, 0,0) S

Oi,j,0Re U NU, ¢gl(R=TRM(R) e UQ). (85)

The functions g are the transition functions of the principal bundle of the geometry
(P,S!,U(2), mp). More precisely we have

NENW _ SESW_ NESE_— qNW,SW_
=g =g B, =g =

9 9 gl gNE,SW: eL(a+B)_ (86)

Note that[i, ] g e U(1) CU(2), because the two eigenvectors are never globally degenerate in
U'N Ul These functions define completely the total spRagf the principal bundle of the geom-
etry. Indeed let- be the equivalence relation & x U(2) defined by

(x,k) ~ (y,h) if x=y and if Oi,j such thatx e U' N U’ andk=hg’.

The total space is the quotient manifde S} X U(2)/ ~. Let 7 : S} X U(2) — P be the projection
associated toe-, thenmp is defined by the commutative diagram

SixU@) I P
Pn \ /1rp
st

The principal bundle of the geomett,S}, U(2), 7p) is then completely defined. Moreover it is
the structure bundle of the principal composite bundle of the geodynamics. The conneckon on
is obtained by the gauge potential
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ORe U, A=T(RT4T(R e QX u(2) (87

with Al=(g")*Algl +(g")tdgeg! in U'N U’ Let {ai}-1.25 be the Pauli matricefgenerators of
su(2)] and o be the identity ofC2, with

01 0 - 10
17\1 o) 27\, o) %7\0 -1/

The calculus of the gauge potential shows that

sin sin(26)sin
ANE= L,=¢02 do- L/— Lgoa'l(da +dpB) + ¢ sin ik Uo(da +dp)
V1 - cose 2y2 V1 -cose
L co% Osirf ¢ oy — 03 L 09— 03
= da+dpB)+=(1-cos da. 88
> 1 cosy 2 (dardB( %) a (89)

The transversal bundle fd§=(a,,8,¢9,cp) e S! fixed is the trivial bundle of the dynamics
(R*XU(2),R,U(2),Pr;)) endowed with the connection

0 0
1 |[dt. (89)
COS¢

Ot e R,E(R1) = —
2lo 1-

Let X’[ be the fiber diffeomorphism of the base bun@®&R,S!, 7g). By definition we have
P.= Xt P, but the HamiltoniarH does not have an explicit dependencetomhen it is clear that
Ote R, P,=P and theny? is the identity map. We conclude thaE'(t)=S;} and thenS=S} X R.
The base bundle is the trivial bundi&! xR, R,S}, Pr,). The local trivializations of the total
bundle are

#1(Rt,9) = SHtIR Q) = #p(R.0) (90)

becauseP; is independent oft. Let {U'X R}i-nenwsesw be the atlas ofS!XR, D(Ifi,t)
e (U'NU’) xR we have the transition functions of the total spdeof the total bundle by

i (R,1)=gl(R). Then it is clear thaP*=P X R, the total bundle of the geodynamics is théh
XR,SHXR,U(2), (mpoPr) X Pr,). Note that the triviality of the fibration on the time is due to the
nonexplicit dependence &f ont. When this is not the case, then the base bundle is not trivial.

D. Different aspects of the quantum dynamical system in our formalism

All the ingredients of the composite bundle formalism have now been explicitly identified for
our example. We now want to consider a particular dynamics in order to complete the description
of the quantum dynamical system in our composite bundle representation. In order to simplify and
to clarify the discussion, we consider a dynamics suchfihat=8=0 (chartUNF) and we use the
orginal variables(W,V) in place of (6, ¢); this restricted manifold is denoted byt in this
paragraph. In the sequgl=1,2,R'=W, R?=V andR°=t. In these conditions, the gauge potential
of the total bundleP* over M is

A, = A TIE(W,V)dt + A(W,V) = é(l =1 +V2+ W) (0 — op)dt

dw dV)

2\/17\/2\/1+V2+W2—\1+V2+\/\/2<W v
\r

(91)
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1 2 3 4 5 6
W

FIG. 3. The path induced by in M.

We consider the dynamics described e I'([ty=-25,T=90], M X R) defined by y(t)
=(3 cog27(t—25/90)+3.1,3 sifi27(t—25)/90) +3.1) (the units are arbitrajy y induces a patl@
in M XR. (See Fig. 3.

The horizontal lift ofC defines the holonomy operator

Ot e [to,T], Jrlot= ped NEGMN SAU NG WVd'd ¢ P(Af x R,PY).  (92)

Let (E*, M X R,(C?,me+) be the associated vector bundleRsf by the action of 2) on (2
defined by the matrix product. The states of the system are described &(1heX R, C)-module
I'(M X R,E"), which is the space of the sections Bf. At t=0 we suppose thap(O):(l/\"E)
X (|1,%(0))+|2,%(0))); then for allt=t,

=2 \_15<[J%‘°vt]b,l +[3701, 2)|b, /(1)) € T(C,E). (%3
=1,2 V

The state spacE(M X R,E*) is endowed with th&”(M X R,C)-valued inner product

Ox.¢ € TIM X R,E"), (x|#es(Rt) = (x(RO| AR D)2 (94)

0i=1,2|i ,Ii) e '(M XR,E") [in the composite bundle representation it is the canonical basis
|1y=(5) and|2)=(3)]. With the scalar product we obtain the instantaneous occupation probabilities
of the eigenleveE; and E5(V,W),

Pi(t) = i e+ (v(D), D] (95)

These probabilities are drawn in Fig. 4.

In Sec. IV, we have introduced some fielelg, B and G in M X R associated with the
structure of the composite bundle. An illustration of these fields are shown in Fig. 5.

Let (V*, M XRR,u(2),m+) be the associated vector bundleRf by the adjoint action Ad of
U(2) on u(2) (Ad(U)X=U"1XU, OU e U(2), OX e u(2)). The algebral'(M X R,V*) endowed
with the Lie bracket

OAB e T(M X RV, [ABl+RH=[ARH),BR]ye (96)

is the observables space. In our example of a three level system, a set of observables has a
particular importance. Lﬁ:%)\i fori=1,...,8, and le§(t)=U(t,t))SU(t,t,) ", whereU(t,ty) is

the evolution operator associated with the Schrédinger equation. The role of the set of operators
S(t) for a three level system has been extensively studied by Ho, eElali** 3 Let po be the

density matrix of the initial condition of the system. We introduce the vaé(@re R® such that
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Probability Probability
1 1
0.8 0.8
o Y

-20 20 40 60 80 -20 20 40 60 80
t t

FIG. 4. Left, occupation probabilities of the stai¢ (plain line), |2) (dash ling, and|3) (strong ling computed by direct
integration of the Schrédinger equation GA. Right; occupation probabilities of the stdf (full line), and|2) (dashed

line) computed with the formul#93) based on the holonomy operator of the composite bundle. We see that the results
obtained by the use of the holonomy operator are in perfect agreement with the direct integration. Moreover the left figure
reveals that the level 3 is never occupied, in agreement with its adiabatic elimination in the bundle representation.

S(t)=tr(peS(t)) [the average value of the observaglé)]. §(t) is called a coherent vector. From
the trajectory of this vector we can obtain information about the dynamical syfteim complete
exposition of this subject see Refs. 21%28/ithin an approach using our bundle formalism the
analogues of the observablgét) are

SR =T(R'ST(R) € [(M X R,u(2), (97)

and the coherent vectdi(t) is obtained by(in our quantum systemy=|¢(0)){((0)|

SO =(YSPe(HD.1). (98)

Figure 6 illustrates the computation &fin the composite bundle formalism.

3
w
FIG. 5. Left, the(1, 2-matrix element of F,),, with respect taM. Right, the(1, 1)-matrix element 0fGy;, with respect
to M. The white area is characterized by a strong field intensity whereas the black area corresponds to vanishing fields
(arbitrary unit3. We have moreover indicated some points of the gath, t=-25; ¢, t=-12; ], t=40; andA, t=80. By

comparison with Fig. 4 we see that the wave function changes significantly only when the control parameters are localized
in the strong field area. This shows that these fields are related to the dynamical properties of the quantum system.
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FIG. 6. Trajectories of the coherent vectﬁn) projected in different planes, for different time intervals, computed in the
composite bundle representation.

The example of the three-level system shows that we can use the composite principal bundle
representation to obtain all the physical ingredients of the quantum dynamics. This formalism,
coupled with a numerical procedure to compute the holonomy operator, could be used as a
powerful method to study a more complex quantum dynamical system.

VI. CONCLUSION

The principal composite bundle appears as a highly appropriate structure to describe the
adiabatic transport with a Berry phase which does not commute with the dynamical phase. Nev-
ertheless the use of the standard gauge theory requires us to restrict the gauge transformations to
the sections which satisfy the Schrodinger-Von Neumann equation. This feature reveals that it is
impossible to describe quantum dynamics with a purely geometric model without a dynamical
postulate. If one does not accept any restriction on the gauge transformations, the price to pay is
the implementation of an unusual gauge theory which introduces, in addition to the curvature, a
field, the curvingB, which is precisely the commutator 8fwith H. It is remarkable that such a
situation is very similar to the gauge fields of non-Abelian gerbes, but with the important differ-
ence that in the non-Abelian gerbe thedBydoes not have values in the Lie algelyésee Ref.

11). (See Refs. 24-25.

One can easily generalize this description to the problem of the non-Abelian Aharonov-
Anandan phase which does not commute with the dynamical phase; this is done by replacing the
principal bundle (P, M,UM),mp) by the universal principal bundle
(Vm(CM,Gu(CM,U(M), ). The analysis of Bohm and Mostatazafétas effectively showed
that (Vi (C"),Gy(C"),U(M), ) is the universal bundle ofP, M ,U(M),p), and our work
demonstrates that the same relationship exists between the adiabatic composite bundle and the
universal composite bundle.
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