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A geometric model is proposed to describe the Berry phase phenomenon when the
geometric phase does not commute with the dynamical phase. The structure used is
a principal composite bundle in which the adiabatic transport appears as a horizon-
tal lift. The formulation is applied to a simple quantum dynamical system con-
trolled by two lasers. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1940547g

I. INTRODUCTION

Principal bundle theory is a classic tool of modern theoretical physics. The notation
sP,M ,G,pd will be used throughout this paper to designate a principal bundle on the right-hand
side with base spaceM, total spaceP, structure groupG, and projectionp. First we quote an
important result of principal bundle theory. Suppose thatP is endowed with a connection de-
scribed by the gauge potentialAs associated to the local sectionsPGsM ,Pd. Let C be a curve in
M, parametrized by the functionf0,1g{ t°gstdPM. Then the horizontal lift ofC at the point
ssgs0dd is given by

P { pstd = ssgstddPe−e0
t Assgstdd, s1d

whereP is the path-ordering operator andPe−e0
t AssgstddPG acts onP by the group canonical right

action.
In 1984, Berry1 proved, in the context of the standard adiabatic approximation, that the wave

function of a quantum dynamical system takes the form

cstd = e−i"−1e0
t EasRW st8dddt8−e0

t ka,RW st8du]t8ua,RW st8dldt8ua,RW stdl, s2d

whereEa is a nondegenerate instantaneous eigenvalue isolated from the rest of the Hamiltonian

spectrum with instantaneous eigenvectorua,RW stdl and RW is a set of classical control parameters

used to model the time-dependent environment of the system. The set of all configurations ofRW is
supposed to form aC`-manifoldM. The important result is the presence of the extra phase term,

called the Berry phasee−e0
t ka,RW st8du]t8ua,RW st8dldt8. Simon2 later found the mathematical structure which

models the Berry phase phenomenon, namely a principal bundle with base spaceM and with
structure group Us1d. If we eliminate the dynamical phase by a gauge transformation which
involves redefining the eigenvector at each time, then the expressions2d is the horizontal lift of the

curveC described byt°RW std with the gauge potentialA=ka,RW udMua,RW l. If C is closed then the
Berry phasee−rCAPUs1d is the holonomy of the horizontal lift.

In 1987, Aharonov and Anandan3 proved that geometric phases such as the Berry phase are
not solely attached to the adiabatic approximation but appear in a more general context. Let
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t°cstd be a wave function such thatcsTd=eıfcs0d andHstd be the Hamiltonian of the system.
Suppose that the Hilbert space isn-dimensionalsthe casen= +` is not excludedd; then the wave
function defines a closed curveC in the complex projective spaceCPn−1. If one redefines the wave

function such thatc̃sTd=c̃s0d then

cstd = e−i"−1e0
t kc̃st8duHst8duc̃st8dldt8−e0

t kc̃st8du]t8uc̃st8dldt8c̃std. s3d

The extra phase in addition to the dynamical phase is called the Aharonov-Anandan phasesor
nonadiabatic Berry phased. We can eliminate the dynamical phase by a gauge transformation; then
the Aharonov-Anandan phase appears as the horizontal lift ofC in the principal bundle with base
spaceCPn−1, the structure group Us1d and with thes2n−1d-dimensional sphereS2n−1 as total
space. The Berry-Simon model and the Aharonov-Anandan model are related by the universal
classifying theorem of principal bundles;4,5 more precisely, the Aharonov-Anandan principal
bundle is a universal bundle for the Berry-Simon principal bundle.

The two geometric phases described above are called Abelian because they are related to the
Abelian group Us1d. In 1984, Wilczek and Zee6 produced a non-Abelian Berry phase phenom-

enom in the context of the adiabatic approximation. LetEasRW stdd be anM-fold degenerate instan-

taneous eigenvalue isolated from the rest of the spectrum andhua, i ,RW stdlji=1,. . .,M be an orthonor-

mal basis for the associated eigensubspace. Suppose that the initial state iscs0d= ua, i ,RW s0dl; then
the wave function is

cstd = o
j=1

M

e−i"−1e0
t EasRW st8dddt8fTe−e0

t AsRW st8ddg ji ua, j ,RW stdl, s4d

where the matricial 1-formA has the elementsAij =ka, i ,RW udMua, j ,RW l andT is the time-ordering
operator. By elimination of the dynamical phase, this expression becomes a horizontal lift of the

curve C described byt°RW std into a principal bundle with base spaceM and structure group

UsMd. If C is closed thenPe−rCAsRW dPUsMd is the holonomy of the horizontal lift.
In 1994, Bohm and Mostafazadeh7 constructed a non-Abelian Aharonov-Anandan phase as

the universal bundle of the preceding one. LetPstd be anM-fold degenerate projector such that
PsTd=Ps0d. t° Pstd defines a closed curveC in the Grassmanian manifoldGMsCnd. If one chooses
a local section of the bundlefVMsCnd ,GMsCnd ,UsMd ,pVMsCndg fwhereVMsCnd is the Stiefel mani-
foldg ssPd=hf1sPd , . . . ,fMsPdj, then the evolution of the wave function for whichcs0d=fis0d is
given by

cstd = o
j ,k=1

M

fTe−i"−1e0
t Est8ddt8g jkfTe−e0

t Ast8dgkif jstd, s5d

where Aij =kfiudGMsCnduf jl, Eijstd=kfistduHstduf jstdl, and where we suppose that∀t
fe0

t Est8ddt8 ,e0
t Ast8dg=0. By eliminating the dynamical phase, we obtain a horizontal lift in the

universal bundle.
The gauge potentials defined in the four previous cases have the particular formA=U†dU

where U is a M 3n matrix s† denotes the transconjugationd. A connection with such a gauge
potential is called a Stiefel connection. It is in fact the form of the universal connection in the
universal bundle, a form which is unique, since Narasimhan and Ramaman8 proved that all
universal connections can be written in this form. Then the above four examples of geometric
phase each have an explicit Stiefel structure.

In the previous example, the dynamical phase commutes with the geometric phase, but this is

not the case in general. More usually we haveTe−ı"−1e0
t Est8ddt8−e0

t Ast8dÞTe−ı"−1e0
t Est8ddt8Te−e0

t Ast8d and
it is then impossible to eliminate the dynamical phase and to obtain a simple geometric structure
which reduces the phenomenom to a horizontal lift in a principal bundle.
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Sardanashvily introduced9,10 a model based on a vector composite bundle, so as to obtain a
geometric structure which can describe both the dynamical and the geometric phases when they do
not commute. His formulation defines the covariant derivative

¹hc = s]t + Amshstd,tds]th
mstdd + i"−1Hshstd,tddc, s6d

whereh is a map fromR to M sthe manifold of classical parametersd, andA andH are bounded
operators. This leads to the result that if a sectionc is an integral section of the connectionsi.e.,
¹hc=0d then

cstd = Te−e0
t sAm]t8h

m+i"−1Hddt8cs0d. s7d

Sardanashvily finally claims that if one can think of the equation¹hc=0 as being the Schrödinger
equation of a quantum system depending on the parameterhstd, thenA generates the Berry phase
and H generates the dynamical phase. We now explain why we are not in agreement with this
claim. First his whole analysis is made in the framework of a vector bundle. This is basically not
incorrect; however the Berry phase is usually described in the framework of a principal bundle and
its associated vector bundle, giving a principal structure which is more rich. Also, the definition of
the covariant derivative used by Saradanashvily is only indirectly justified by noting that it gives
a correct final result. More precisely, Sardanashvily does not explicitly defineA andH, whereas
the adiabatic potential and the dynamical phase have well-defined matricial expressions. Finally,
Eq. s7d is not the expression of a dynamical phase added to a geometric phase, because the
expression of Sardanashvily is of the formcstd=USarstdcs0d, whereas the expression of a parallel

transport with geometric phase is of the formcstd=Uphasestdc̃std wherec̃std is a known function
or a known basis set dependent on the timesin the case of the Berry phase it is the instantaneous
eigenvector basis setd. This known functionsor basis setd defines the local section used to describe
the horizontal lift. ThenUSar is not a non-Abelian phase but is the evolution operator. Conse-
quently we haveı"Am]th

m+H=H, whereH is the Hamiltonian of the system, which is split into
two partsA and H. Since Sardanashvily does not defineA, this spliting is totally arbitrary.
Moreover, ifA is the generator of the Berry phase andE is the generator of the dynamical phase,
we haveı"A+EÞH. Thus the affirmation of Sardanashvily in Ref. 9, namely “A is responsible
for the Berry phase phenomenon” appears to be unjustified.

In this paper we construct a geometric structure to give a correct description of the transport
when the Berry phase does not commute with the dynamical phase. We apply Sardanashvily’s idea
of using a composite bundle, but we take a principal structure in place of the vector structure. We
thus construct a connection consistent with the geometric model of the adiabatic transport and with
the bundle formulation of nonrelativistic quantum dynamics. Our approach reveals that the non-
commutativity of A and E introduces a modified gauge structure. Similar modifications of the
gauge have been used by Attal in Ref. 11 in a treatment of the non-Abelian gerbes connection.sWe
note that in the literature of fiber bundle theory the words “gerbe” and “sheaf” are used by various
authors to name the same mathematical entity.d He introduced a gauge theory with generalized
Cartan structure equationsF=dA+ 1

2fA,Ag+B and G=dB+fA,Bg, and a Bianchi identity dG
+fA,Gg=fF ,Bg whereA is a 1-form,B andF are 2-forms, andG is a 3-form. In the same way,
Larsson,12 in his treatment of the Yang-Baxter equation with non-Abelian gerbes, found a gauge
theory with the usual Cartan equation and the usual Bianchi identity, but limited by restrictions
concerning the possible gauge transformations. It should be stressed that the modified gauge
theory induced by the noncommutativity ofA and E in our approach is similar to the modified
gauge theories of Attal and Larsson which are induced by noncommutativity in the gerbes.

This paper is organized as follows. Section II introduces the generalized adiabatic theorem
with a Berry phase which does not commute with the dynamical phase. Section III is devoted to
some remarks about the principal composite bundles constituting the fundamental structure of our
model. Section IV presents the geometric model used for the description of quantum adiabatic
dynamics. Finally, Sec. V presents an application to a simple quantum dynamical system. Differ-
ent quantum dynamical aspects of this system are presented in our geometric representation.
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A note about some of the notation used here: the symbol“.” between two manifolds denotes
that the two manifolds are diffeomorphic, the symbol“�” denotes an inclusion between two sets
and “VnM” denotes the set of the n-differential forms of the manifold M.

II. GENERALIZED ADIABATIC TRANSPORT

Theorem 1: Let Ust ,0d be an evolution operator of a quantum dynamical system governed by
the self-adjoint Hamiltonian Hstd. Let hEastdja and hua,tlja be the instantaneous eigenvalues and
eigenvectors of Hstd. We suppose that there exists a set of indices I such that the projector
Pmstd=oaPIua,tlka,tu satisfies the adiabatic condition

Ust,0dPms0d = PmstdUst,0d s8d

(to satisfy this assumption, see for example, Nenciu’s adiabatic theorem13). If at t=0 the wave
function iscs0d= ua,0l (with aP I) then at time t we have

cstd = o
bPI

Ubastdub,tl s9d

with the matrix

Ustd = Te−i"−1e0
t Est8ddt8−e0

t Ast8d. s10d

Here Aabstd=ka,tu]tub,tldt and we also have∀a,bP I Eabstd=Eastdda,b.
Proof: The conditions8d states that the evolution is inside RanPm so that for allt the wave

function can be expanded on the basis setsua,tldaPI. This justifies the use of Eq.s9d, in which U
is a unitary matrixsthe unitarity ofU results from the normalization of the wave functiond. The use
of Eq. s9d in the Schrödinger equation leads to the result

o
b

i"U̇bastdub,tl + o
b

i"Ubastd]tub,tl = o
b

UbastdEbstdub,tl. s11d

By projecting this expression onkc,tu we obtain

i"U̇ca + o
b

i"Ubakc,tu]tub,tl = UcaEc s12d

which leads to the result

sU̇U−1dcd = o
a

U̇caUad
−1 s13d

=− o
a

i"−1EcUcaUad
−1 − o

a,b
kc,tu]tub,tlUbaUad

−1 s14d

=− i"−1EcsUU−1dcd − o
b

kc,tu]tub,tlsUU−1dbd s15d

=− i"−1Ecdcd − kc,tu]tud,tl. s16d

j

This expression manifestly displays a matrix dynamical phase and a matrix geometric phase,
in other words a non-Abelian dynamical phase and a non-Abelian geometric phase. In general
fE,AgÞ0. If the Hamiltonian is time-dependent with respect to some classical control parameters

RW which describe aC`-differentiable manifoldM, then we can rewrite the non-Abelian phase

s10d. For a dynamicsHsRW stdd described by a pathC in M we can set
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UsCd = Te−i"−1e0
t EsRW st8dddt8−rCAsRW d s17d

with AsRW dab=ka,RW udMub,RW l, wheredM is the exterior differential ofM.

III. PRINCIPAL COMPOSITE BUNDLES

A. Definition of a composite bundle

A composite bundle is defined by five kinds of data, three manifoldssP+, S, andRd and two
surjective mapsp+:P+→S and pS:S→R. We denote the composite bundle byP+→S→R. We
assert that a composite bundle is a principal composite bundle ifS→R is a locally trivial fiber
bundle with as typical fiber a manifoldM : sS,R,M ,pSd, and if P+→S is a principal bundle with
as structure group a Lie groupG: sP+,S,G,p+d. ∀yPR, we havepS

−1syd.M and we denote byxy
S

the associated fiber diffeomorphism. We suppose thatS has a structure of a cell complex; then
pS

−1syd andM are cell complexes. The theorem of universal classification of principal bundlesssee
Refs. 4 and 5d is used to define the universal bundlesU ,B,G,pUd whereB is the classifying space
of M, %U the universal map fromM to B, and%U +xy

S the universal map frompS
−1syd to B. We

finally define the principal bundlesP,M ,G,pPd such that the following diagram commutes:

whereP=%U
* U andxy

S*
P=s%U +xy

Sd*U. We know thatU is independent ofxy
S*

P and thus indepen-

dent ofy. Moreover, sincexy
S is a diffeomorphism thenxy

S*
is a principal bundle isomorphism, so

that xy
S*

P=p+
−1spS

−1sydd and pPy
=p+1xy

S*
P. Let Ui be an open local chart onM. We consider the

local trivialization ofsP,M ,G,pPd over Ui, fP
i :Ui 3G→pP

−1sUid; then the local trivialization of

sxy
S*

P,pS
−1syd ,G,pPy

d is fP
i fyg=xy

S*
fP

i :xy
S−1

sUid3G→p+
−1sxy

S−1
sUidd. Let Vj be an open local chart

of R, fS
j be the local trivialization ofsS,R,M ,pSd over Vj, andf+

j be the local trivialization of
sP+,S,G,p+d over pS

−1sVjd. It is clear that the local trivializations are related by

f+
j :

pS
−1sVjd 3 G → p+

−1spS
−1sVjdd

ss,gd ° fP
i fPr1 fS

j −1ssdgsPr2 fS
j −1ssd,gd,

where we have supposed that Pr2 fS
j−1

ssdPUi. Pr1 and Pr2 are the canonical projections ofR
3M over R andM. We call sP,M ,G,pPd the structure bundle of the composite bundle.

Finally one can define a principal bundle related to the principal composite bundle. Consider
the map

f++
i j :

Ui 3 Vj 3 G → P+

sx,y,gd ° f+
j sfS

j sy,xd,gd = fP
i fygsx,gd.

This map is a local trivialization of a principal bundlesP+,M 3R,G,p++d with p++=fS
−1+p+. It is

called the total bundle of the principal composite bundle.
Let xPUi be a fixed point ofM. Define the map

fQ
j fxg:

Vj 3 G → P+

sy,gd ° f++
i j sx,y,gd.

If we consider this map as a local trivialization, it defines a principal bundlesQx,R,G,pGx
d with

pQx
=Pr1+fQ

j fxg−1. We call it the transversal bundle of the principal composite bundle. The situa-
tion is schematically summarized in Fig. 1.
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B. Connection on a principal composite bundle

Consider a principal composite bundleP+→S→R. sP+,S,G,p+d and sP+,M 3R,G,p++d
have the structures of principal bundles. We can then define a common connection for these
bundles. LetvPV1sP+,gd be the connection 1-formsg denotes the Lie algebra of the groupGd.
Let sM3R

ij PGsUi 3Vi ,P+d be a local section of the principal bundlesP+,M 3R,G,p++d. The
gauge potential of this bundle is by definitionAM3R

ij =v +sM3R*

i j PV1sM 3R,gd. Let sS
j

PGsp−1sVjd ,P+d be a local section of the bundlesP+,S,G,p+d. In order to simplify the passage
from one bundle to another one, the two sections are chosen to be compatible, i.e.,∀s

PpS
−1sVjd, sS

j ssd=sM3R
ij sfS

j−1
ssdd fwe suppose that Pr1 fS

j−1
ssdPUig, and ∀sx,ydPUi 3Vj,

sM3R
ij sx,yd=sS

j sfS
j sx,ydd. Using these relations the gauge potential of the bundlesP+,S,G,p+d is

AS
j =sS

j*v=fS
j−1*

sM3R
ij *v=fS

j−1*

AM3R
ij PV1sS,gd.

xy
S*

:P→p+
−1spS

−1sydd is a diffeomorphism, thenfremark about the notation: the first starxy
S*

denotes the map induced byxy
S in the principal bundles overpS

−1syd andM, the second starxy
S* *

denotes the map induced byxy
S*

in the cotangent bundles ofP and xy
S*

Pg xy
S* *

:V*sp+
−1spS

−1syddd
→V*P. Let iy:p+

−1spS
−1sydd�P+ be the canonical injection. We define a family of connections of

sP,M ,G,pPd by vy=xy
S* *

iy
*vPV1sP,gd, for yPR. Let sM

i PGsUi ,Pd be a local section which is

supposed to be compatible with the section ofP+: ∀xPM, sM
i sxd=xy

S*−1
sM3R

ij sx,yd sthis section

depends on yd. The gauge potential isAy
i sxd=sM

i *vy=sM3R
ij *xy

S* −1*

xy
S* *

iy
*v= j y

*AM3R
ij sx,yd

PV1sM ,gd, where j y: M→M3R
x°sx,yd .

Finally, let ix:p++
−1sx,Rd�P+ be the canonical injection.vx= ix

*v is a connection of the trans-
versal bundlesQx,R,G,pQx

d. Let jx: R→M3R
y°sx,yd , so thatAx= jx

*AM3RPV1sR,gd is the gauge potential
of this bundle.

C. Horizontal lift in a principal composite bundle

In the theory of principal bundles, the notion of a horizontal lift of a curve of the base space
is fundamental. In a principal composite bundleP+→S→R, there exists a natural generalization
of this notion, but the horizontal lift concerns a section of the base bundlesS,R,M ,pSd. Let h
PGs,R,Sd be a section, where,R is a curve inR. h defines a curveC in M 3R parametrized by

yPR with the function fS
j−1

shsydd sto simplify the discussion we suppose that,R,Vjd. Let
ih:hs,Rd�S be the canonical injection. We consider the local sectionshPGsC ,P+d of the bundle

sP+,M 3R,G,p++d defined bysh=sS
j +fS

j , ∀yPR, shsfS
j−1

shsyddd=sS
j shsydd. Then the horizontal

lift of h is defined as the usual horizontal lift ofC in the total bundle of the composite bundle,

gh = Pe−eCAM3R
sh

= Pe−ehs,Rdih
*AS

j
= Pe−e,R

h*AS
j

s18d

FIG. 1. Scheme of a composite bundle.P+ is the three-dimensional space delimited by the three planes.
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IV. GEOMETRIC STRUCTURES OF GENERALIZED ADIABATIC TRANSPORT

Consider again the generalized adiabatic transport characterized by the non-Abelian phase
s17d in the framework of our quantum mechanical study. The quantum dynamical system is

described by a self-adjoint Hamiltoniant°HsRW std ,td in a separable Hilbert spaceH whereRW is a
set of classical parameters which evolve adiabatically with respect to the quantum proper time.

These parameters form aC`-differential manifoldM. t°RW std represents a particular dynamics
described by a curveC in M. To have a more general description, we assume that the dynamics
possesses a part which changes rapidly and which cannot be modeled by a classical parameter. The

Hamiltonian then has an explicit dependence ont besides having the adiabatic parametersRW std.
To control the physical processes it is necessary to model numerous different dynamics,

without fixing any particular path in the classical parameter manifold and without fixing the
duration of the evolution. Hence we must consider the generic Hamiltonian

H:
M 3 R → LsHd

sRW ,td ° HsRW ,td
s19d

To study this dynamical system, we should separate the dynamical and the geometric contri-
butions to the dynamics. To do this we fixtPR in a first step and obtain a purely adiabatic

sgeometricd evolution RW °HsRW ,td. Next we fix RW PM and obtain a purely quantum dynamical

evolution t°HsRW ,td. These two steps are analyzed successively in the next sections A and B.

A. The fiber bundle of the geometry

Let t0PR be fixed.RW °HsRW ,t0d is the Hamiltonian of an adiabatic system. We suppose that

hEasRW ,t0djaPI areM point eigenvalues ofHsRW ,t0d which form a group which is isolated from the

rest of theH spectrum, and we denote byhua,RW ,t0ljaPI the corresponding eigenvectorsfthe case of
a globally degenerate eigenvalue is not excluded, but in this case∃a,bP I such that

∀RWEasRW ,t0d=EbsRW ,t0d wheresua,RW ,t0l , ub,RW ,t0ld is an orthonormal basis of the eigensubspaceg.
The case of an isolated degeneracysan eigenvalue crossingd for which ∃RW such thatEasRW ,t0d
=EbsRW ,t0d can also be included. The works of Berry,1 Simon,2 Wilczek and Zee6 assert that the
adiabatic evolution is described mathematically by using a principal bundlesP,M ,UsMd ,pPd
where the connection is represented by the gauge potentialAPV1sM ,usMdd,

AabsRW ,t0d = ka,RW ,t0udMub,RW ,t0l. s20d

Here dM is the exterior differential ofM. This expression is associated with the section of the

associated vector bundleRW ° sua,RW ,t0ldaPI.

By introducing the eigenvector-matrixTsRW ,t0dPMdim H3MsCd, we can writeA=T†dT, giving
a Stiefel connection in agreement with the Narasimhan-Ramaman theoremssee Refs. 14 and 8d. It

is evident that after a change of sections∀a ua,RW ,t0l gsRW dua,RW ,t0l with gsRW dPUsMdd the gauge
potential satisfies the usual relation

ÃsRW ,t0d = gsRW d−1AsRW ,t0dgsRW d + gsRW d−1dMgsRW d. s21d

Note that a family of connectionshAsRW ,tdPV1sM ,usMddjtPR is generated ift is continuously
modified. If C is a closed curve inM, then its horizontal lift is characterized by a Wilson loop,

WsC,t0d = Pe−rCAmsRW ,t0ddRm
. s22d

If the adiabatic bundle is not trivial thenWsC ,t0dÞ1 is the holonomy of the horizontal lift which
is called the Berry phase.
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B. The fiber bundle of the dynamics

Consider now a fixed pointRW 0PM. t°HsRW 0,td is the Hamiltonian describing the quantum

dynamics in a static environment which is characterized by the fixed parametersRW 0. Let t0,t1
PR; the evolution of the system betweent0 and t1 which is described by the evolution operator

UsRW 0,t0,t1dPmst0dPUsRanPmd.UsMd which is assumed to satisfy the adiabatic conditions8d,
while also being the solution of the Schrödinger equation

i"
]

]t
UsRW 0,t0,td = HsRW 0,tdUsRW 0,t0,td s23d

with UsRW 0,t0,t0d=1. It is well known that the solution of this equation is

UsRW 0,t0,t1d = Te−i"−1et0

t1HsRW 0,tddt. s24d

Expressionss22d ands24d are very similar, and an interpretation of the quantum dynamics as
a parallel transport has been developed by Asoreyet al.15 in the general framework of infinite-
dimensional Hilbert space and by Iliev16 in the context of a general fiber bundle model of non-
relativistic quantum mechanics. In the context of the adiabatic conditions8d the evolution is
condensed into anM-dimensional space, leading to a description which involves a principal
bundlesQRW 0

,R ,UsMd ,pQRW 0
d and its associated vector bundlesERW 0

,R ,CM ,pERW 0
d, with a state ap-

pearing as a section of the vector bundlecPGsR ,ERW 0
d.

Suppose thatcPGsR ,ERW 0
d is a solution of the Schrödinger equation. Letc̃std=Ustdcstd be a

change of section such that

i"
]

]t
c̃std = H̃sRW 0,tdc̃std. s25d

Insertingc̃std=Ustdc into Eq. s25d leads to the result

i"
]

]t
cstd = sUstd−1H̃sRW 0,tdUstd − i"Ustd−1U̇stddc s26d

so that

i"−1H̃sRW 0,td = Ustdi"−1HsRW 0,tdUstd−1 + U̇stdUstd−1 s27d

and, finally,

i"−1H̃sRW 0,tddt = Ustdi"−1HsRW 0,tddtUstd−1 + sdtUstddUstd−1, s28d

where dt is the exterior differential ofR: dt fstd=s]f /]tddt. Equations28d is the familiar formula of

gauge transformation theory, andi"−1HsRW 0,tddtPV1sR ,usMdd is the gauge potential of
sQRW 0

,R ,UsMd ,pQRW 0
d. cPGsR ,ERW 0

d is horizontal if the covariant differentialDc=dtc

+i"−1HsRW 0,tdc dt is zero, i.e., ifc obeys the Schrödinger equation. A horizontal lift of the curve
ft0,t1g,R is well characterized by the expressions24d.

Let UdynsMd be the set of maps fromR to UsMd which satisfies the Schrödinger-von Neumann
equationfwe note that this equation is the analogue for unitary operators of the equation associ-
ated to the Hermitian dynamical invariantsssee Ref. 17d, which are used by Mostafazadeh in Ref.
18 to define the non-Abelian nonadiabatic geometric phasesg

i"U̇std = fUstd,HsRW 0,tdg. s29d

In the framework of the adiabatic conditions8d, the previous gauge potential is not used, because

s24d is not the expression for the dynamical phase factor appearing in Ref. 19. LethEasRW 0,tdjaPI
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be theM isolated eigenvalues ofHsRW 0,td andhua,RW 0,tljaPI be the corresponding eigenvectors. Let

EsRW 0,td be the matrix such thatEsRW 0,tdab=EasRW 0,tddab. It is clear that EsRW 0,tdab

=ka,RW 0,tuHsRW 0,tdub,RW 0,tl. A gauge transformation:∀aP I, ua ,RW 0,tl=Ustdua,RW 0,tl, leads to

ẼabsRW 0,td = ka,RW 0,tuHsRW 0,tdub,RW 0,tl s30d

=ka,RW 0,tuUstd−1HsRW 0,tdUstdub,RW 0,tl s31d

=ka,RW 0,tuUstd−1UstdHsRW 0,tdub,RW 0,tl + ka,RW 0,tuUstd−1fHsRW 0,td,Ustdgub,RW 0,tl s32d

=ka,RW 0,tuHsRW 0,tdub,RW 0,tl + ka,RW 0,tuUstd−1fHsRW 0,td,Ustdgub,RW 0,tl s33d

=ka,RW 0,tuUstdHsRW 0,tdUstd−1ub,RW 0,tl + ka,RW 0,tufHsRW 0,td,UstdgUstd−1ub,RW 0,tl s34d

=sUstdHsRW 0,tdUstd−1dab + sfHsRW 0,td,UstdgUstd−1dab. s35d

Thus we have

Ẽ = UEU−1 + fH,UgU−1. s36d

E does not satisfy the usual gauge transformation formula. But if we takeUPUdynsMd we obtain

i"−1ẼsRW 0,tddt = Ustdi"−1EsRW 0,tddtUstd−1 + sdtUstddUstd−1 s37d

we see that i"−1EsRW 0,tddtPV1sR ,usMdd is a gauge potential of the principal bundle
sQRW 0

,R ,UsMd ,pQW RW 0
d but with a restriction of the gauge transformations to the setUdynsMd of the

sections ofsQRW 0
,R ,UsMd ,pQW RW 0

d which are horizontal for the connectioni"−1HsRW 0,tddt. The hori-

zontal lift of ft0,t1g,R is then

DsRW 0,t0,t1d = Te−i"−1et0

t1EsRW 0,tddt s38d

which is effectively the dynamical term ofs17d.
The expression for the gauge potential is associated with the section of the associated vector

bundlet° sua,RW 0,tldaPI.

C. The composite bundle of the geodynamics and its connection

The discussion in the two preceding sections A and B suggests that the appropriate entities to
give a correct description of the geometric structure of the geodynamical evolution characterized
by the expressions17d would be the principal composite bundleP+→S→R with structure bundle
sP,M ,UsMd ,pPd, base bundlesS,R ,M ,pSd, transversal bundlessQRW ,R ,UsMd ,pQRW

d and total

bundle sP+,M3R ,UsMd ,p++d. Note that, following the treatment of Sec. II, the structures of
sP,M ,UsMd ,pPd, sQRW ,R ,UsMd ,pQRW

d and of sS,R ,M ,pSd completely determinesP+,M
3R ,UsMd ,p++d. P and QRW have been introduced in the preceding paragraph. By fixingt0PR
arbitrarily, the transition functionssto define a principal bundle, there are three equivalent ways,
by invoking the local trivializations, by invoking the transition functions or by invoking the fiber

diffeomorphismsd gijsRW ,t0dPUsMd of P are obtained by settinggab
ij sRW d=ka,RW ,t0, i ub,RW ,t0, jl

wherei and j represent two possible conventions in the matrix representation of the eigenvectors
ssee the example of Berry phase in Ref. 19d. The topology of the bundleS is determined by the

072102-9 Bundle structure of quantum adiabatic dynamics J. Math. Phys. 46, 072102 ~2005!

Downloaded 27 Jun 2005 to 193.52.185.11. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



map xt
S, for which Pt as defined by the transition functionsTsRW ,t , id†TsRW ,t , jd is such thatxt

S*
P

=xt
S*

Pt0
=Pt. Clearly, if we considerua,RW ,tl as a section ofM with values in the associated vector

bundle ofPt, then we have

xt
S
* ua,RW ,t0l = ua,RW ,tl ⇔ xt

S
* = UsRW ,t0,td, s39d

UsRW ,t0,td is defined by Eq.s24d, andxt*
S is the map induced byxt

S in the sections.
This naturally leads us to take as the gauge potential ofsP+,M3R ,UsMd ,p++d the quantity

AM3RsRW ,td = AsRW ,td + i"−1EsRW ,tddt P V1sM 3 R,usMdd s40d

with A being defined by Eq.s20d. Note that we can use this expression because the two local
sections used to express the gauge potentials are compatible. Introducingj t :

M→M3R
RW °sRW ,td

and

jRW : R→M3R
t°sRW ,td

we haveAsRW ,t0d= j t0
* AM3RsRW ,t0d and i"−1EsRW 0,tddt= j

RW 0

*
AM3RsRW 0,td.

As a gauge potential is locally defined, and asS is locally diffeomorphic toM3R, we can

write ASsRW ,td=AmsRW ,tddRm+i"−1EsRW ,tddtPV1sS,usMdd. Let hPGsf0,t1g ,Sd be a section.h de-
fines a curveC in M3R, whereL=hsf0,t1gd is a closed path described inM by Rmstd=hmstd.
Consider the pullback ofh,

V*S→ V*R

h* :dRm °
]hm

]t
dt.

dt ° dt

Then we have

sh*ASdstd = Amshstd,td
]hm

]t
dt + i"−1Eshstd,tddt. s41d

Using expressions18d, the horizontal lift ofh is characterized byfwith the notationhstd=RW stdg

gh = Pe−eCAM3RsRW ,td = Te−e0
t1AmsRW std,tdf]Rmstd/]tgdt−i"−1e0

t1EsRW std,tddt. s42d

Suppose now that we do not have a fast evolution in addition to the adiabatic evolution, in such a

way thatHsRW ,td has no explicit time dependence; then we have

gh = Te−rLAmsRW ddRm−i"−1e0
t1EsRW stdddt s43d

which is the expression for the non-Abelian phase ins17d.
Note that the connectionAS of sP+,S,UsMd ,p+d is restricted to the gauge transformations of

the form UsMd{gsRW ,td=gsRW dUstd, wheregsRW d is a map fromM to UsMd without restrictive
conditions and whereUstdPUdynsMd. We thus have a principal structure but with a restricted
choice of gauges.

It should be stressed that inQRW we introduce the local fiberd coordinatesst ,gid wheresgid is
a system of coordinates ofUsMd. In the same way we introduce the fiberd coordinates ofP
sRm ,gid and the fiberd coordinates ofP+ sRm ,t ,gid. By calling on the theorem of Ehresmannssee
Ref. 19d, it is possible to construct a connection 1-form with gauge potentialAM3R. Let s

PGsM3R ,P+d be the section used to express the gauge potentialAM3R. ∀sRW ,t ,gdP P+, let

gsRW ,t ,gd such thatsRW ,t ,gd=ssRW ,tdgsRW ,t ,gd. The connection 1-form ofP+ is
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Downloaded 27 Jun 2005 to 193.52.185.11. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



v+sRW ,t,gd = gsRW ,t,gd−1AmsRW ,tdgsRW ,t,gddRm + i"−1gsRW ,t,gd−1EsRW ,tdgsRW ,t,gddt

+ gsRW ,t,gd−1 ]

]RmgsRW ,t,gddRm + gsRW ,t,gd−1 ]

]t
gsRW ,t,gddt + gsRW ,t,gd−1 ]

]gi gsRW ,t,gddgi

the connection 1-form ofP for a fixed t0 is

vPsRW ,gd = gsRW ,t0,gd−1AmsRW ,t0dgsRW ,t0,gddRm + gsRW ,t0,gd−1 ]

]RmgsRW ,t0,gddRm

+ gsRW ,t0,gd−1 ]

]gi gsRW ,t0,gddgi

and the connection 1-form ofQRW 0
for a fixedRW 0 is

vQRW 0
st,gd = i"−1gsRW 0,t,gd−1EsRW 0,tdgsRW 0,t,gddt + gsRW 0,t,gd−1 ]

]t
gsRW 0,t,gddt

+ gsRW 0,t,gd−1 ]

]gi gsRW 0,t,gddgi

we can see then thatvP+ÞvP+vQRW
.

D. A pseudo-Stiefel structure

In the preceding section C we considered a fiber bundle with a restriction concerning the
allowed gauge transformations. If we give up this restriction we must deal with the nonstandard

equations36d of gauge tranformation theory,Ẽ=UEU−1+fH ,UgU−1. In order to find a structure
associated with this formula we first consider the bundlesQRW 0

,R ,UsMd ,pQRW 0
d endowed with the

gauge potentiali"−1HsRW 0,tddt. This gauge potential satisfies the correct gauge transformation
formula and it is then possible to define a covariant differentialDQRW 0

. Let cPGsR ,ERW 0
d be a

section of the associated vector bundle. We have

DQRW 0
c = ]tc dt + i"−1Hc dt. s44d

Let UPGsR ,QRW 0
d be a section fromR to QRW 0

considered as the space of the operators ofERW 0
;

then we have

DQRW 0
U = ]tU dt + i"−1fH,Ugdt. s45d

With DQRW 0
we define a differential inM3R,

D̃hsRW ,td = dMhsRW ,td + DQRW
hsRW ,td. s46d

We can then define a gauge potential in the style of Stiefel but with the differentialD̃ in place
of dM3R. We set

A+ = T†D̃T, s47d

whereT is the matrix of the eigenvectors ofH. Note thatD̃2Þ0 so that the connection is not

rigourously a Stiefel one.ub,RW ,tlPGsM3R ,E+d is a section of the associated vector bundle of
P+, so that
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D̃ub,RW ,tl = dMub,RW ,tl + dtub,RW ,tl + i"−1HsRW ,tdub,RW ,tldt s48d

and

A+ab = ka,RW ,tudMub,RW ,tl + ka,RW ,tu]tub,RW ,tldt + i"−1ka,RW ,tuHsRW ,tdub,RW ,tldt s49d

so that we have

A+ = A + A0 + i"−1Edt, s50d

whereA is the adiabatic gauge potential defined by Eq.s20d andA0 is the matrix with elements

ka,RW ,tu]tub,RW ,tldt, namely the expression of a Berry gauge potential for the variablet whenRW is
fixed. ConsideringA+ as a gauge potential ofsP+,M3R ,UsMd ,p++d, the horizontal lift ofh
PGsR ,Md is characterized by

gh = Te−e0
t1AmsRW std,tdf]hmstd/]tg−e0

t1A0sRW std,tddt−i"−1e0
t1EsRW std,tddt. s51d

Note that this equation is identical tos10d if one considers the change of variablet→ sRW std ,td.
Consider a gauge transformation, it is clear that

Â+ = Â + Â0 + i"−1Ê dt s52d

=UAU−1 + sdMUdU−1 + UA0U
−1 + sdtUdU−1 + Ui"−1E dt U−1 + i"−1fH,UgU−1 s53d

=UA+U−1 + sdMU + dtU + i"−1fH,UgdU−1 s54d

=UA+U−1 + sD̃UdU−1. s55d

A+ satisfies a gauge transformation formula analogous to the usual one but with the replacement of

dM3R by D̃. The use of the pseudodifferentialD̃ modifies the gauge field theory. Let the curvature
F+ be

F+ = D̃A+ + A+ ∧ A+ s56d

=dM3RA+ + A+ ∧ A+ + i"−1fE dt,A+g s57d

=dM3RA+ + A+ ∧ A+ + i"−1fE dt,Ag. s58d

Let B=i"−1fE dt,AgPV2sM3R ,gd be the curving.B is the field which characterizes the non-
commutativity between the dynamical and the geometric phases. Note thatF+−B is a standard
curvature which satisfies the usual Bianchi identity and the usual Cartan structure equation. Using
the standard covariant differential associated withA+ we obtain the generalized Cartan equations

F+ = dM3RA+ + A+ ∧ A+ + B, s59d

G = dM3RB + fA+,Bg. s60d

GPV3sM3R ,gd is called the fake curvature.
The fake-curvature satisfies a pseudo-Bianchi identity.
Property 1: Let G be a fake-curvature defined by generalized Cartan structure equations; then

dM3RG + fG,A+g = fF+,Bg. s61d

Proof:
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dG = dA+ ∧ B − A+ ∧ dB − dB ∧ A+ − B ∧ dA+, s62d

fF,Bg − fG,A+g = F+ ∧ B − B ∧ F+ − G ∧ A+ − A+ ∧ G s63d

=dA+ ∧ B + A+ ∧ A+ ∧ B + B ∧ B − B ∧ dA+ − B ∧ A+ ∧ A+ − B ∧ B − dB ∧ A+ − A+ ∧ B ∧ A+

+ B ∧ A+ ∧ A+ − A+ ∧ dB − A+ ∧ A+ ∧ B + A+ ∧ B ∧ A+ s64d

=dA+ ∧ B − B ∧ dA+ − dB ∧ A+ − A+ ∧ dB. s65d

j

V. ILLUSTRATION: THE EXAMPLE OF A SIMPLE QUANTUM DYNAMICAL SYSTEM

This final section illustrates the formal concepts introduced in the preceding sections by using
a concrete physical example taken from atomic physics. We consider a particular three-level atom
interacting with two lasers. Before explaining how the model illustrates the formal theory of the
preceding sections we give a brief description of three-level systems.

A. Preliminary discussion

We consider a three-level quantum system, described by the Hilbert spaceH=C3. The generic
form of a three-level Hamiltonians is

H = xili, i = 0, . . . ,8, s66d

wherel0 is the identity matrix ofH=C3 and hliji=1,. . .,8 are the Gell-Mann matrices,

l1 = 10 1 0

1 0 0

0 0 0
2, l2 = 10 − i 0

i 0 0

0 0 0
2, l3 = 11 0 0

0 − 1 0

0 0 0
2, l4 = 10 0 1

0 0 0

1 0 0
2 ,

l5 = 10 0 − i

0 0 0

i 0 0
2, l6 = 10 0 0

0 0 1

0 1 0
2, l7 = 10 0 0

0 0 − i

0 i 0
2, l8 =

1
Î311 0 0

0 1 0

0 0 − 2
2 .

The Gell-Mann matrices can be considered as the generators of the Lie algebrasus3d. Moreover
we introduce the following matrices:

m1 = l3 +
1
Î3

l8 +
2

3
l0, s67d

m2 = − l3 +
1
Î3

l8 +
2

3
l0, s68d

m3 = −
1
Î3

l8 +
2

3
l0. s69d

It is clear thathli ,m jji=1,2,4,5,6,7;j=1,2,3 generate the Lie algebraus3d. We are interested in
particular Hamiltonians of the form

H = x1l1 + x2l2 + x6l6 + x7l7 + x̃m2. s70d
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Sincehl4,l5,m1,m2j are the generators of the Lie algebraus2d as a subalgebra ofus3d, then
the Hamiltonians70d is an element ofus3d /us2d fthis is a vector space quotient;us2d is not an
ideal ofus3d and sous3d /us2d is a vector space without the Lie algebra structureg. In other words
the Hamiltonians70d characterized bysx1,x2,x6,x7, x̃d is determined by a point of the manifold
Us3d /Us2d, and we knowssee Ref. 4d that

Us3d/Us2d = SUs3d/SUs2d = S5. s71d

Thus, the control parameter space associated with a Hamiltonian of the forms70d can always be
chosen as a submanifold of the 5-sphereS5.

B. A concrete example: a three-level atom interacting with lasers

We consider a three-level atom in theL configuration interacting with two lasers, denoted by
P sfor pumpd andS sfor Stokesd. The three bare states of the atom are labelled byual, ubl, anducl.
The control parameters of the system are the amplitudes and the phases of the lasersS andP. We
denote byvP the frequency of the laserP which is quasiresonant with the transitionual→ ubl, with
the detuningD. The laserS of frequencyvS is supposed to be in perfect resonance with the
transitionubl→ ucl, see Fig. 2.

The dressed Hamiltonian of the system in the rotating wave approximationsRWAd is ssee, for
example Ref. 20d

H =
"

21 0 Weib 0

We−ib 2D Veia

0 Ve−ia 0
2 , s72d

whereW= ukaumW ·EW Publu andV= ukbumW ·EW Suclu, EW P andEW S being the laser amplitudes andmW being the
electric dipole moment of the atom. To simplify the notation, we setD=1. The HamiltonianH is
of the form s70d and we can compute the three eigenvalues ofH,

E1 = 0, s73d

E2 =
"

2
s1 −Î1 + V2 + W2d, s74d

E3 =
"

2
s1 +Î1 + V2 + W2d. s75d

We see thatE1=E2 if V=0 andW=0, and moreover

inf
V,W

distshE1,E2sV,Wdj;E3sV,Wdd = ". s76d

Let P1sW,V,a ,bd, P2sW,V,a ,bd, andP3sW,V,a ,bd be the eigenprojectors associated with
E1, E2, andE3. It is evident that for all particular dynamicst° sWstd ,Vstd ,astd ,bstdd the Hamil-
tonian Hstd and the decomposition SpesHstdd=s0stdøs'std satisfy the assumptions of Nenciu’s
adiabatic theoremssee Ref. 13d, where s0std=hE1,E2stdj and s'std=hE3stdj and with

FIG. 2. Scheme of the three-level atom.
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inft distss0std ,s'stddù". In accordance with Nenciu’s theorem, we have at the adiabatic limit
fthis limit is approximately obtained if the variations ofsWstd ,Vstdd are slow with respect to the
proper quantum time inftf" /E3std−E1g; for classical parameters such asW or V this hypothesis is
consistentg

Ust,0dPms0d = PmstdUst,0d, s77d

whereUst ,0d is the evolution operator associated withHstd andPmstd=P1std+P2std. We can apply
the formalism of the previous part with RanPm sdim RanPm=2d, for all particular dynamics.

The eigenvectors ofH can be chosen as follows forVÞ0 andWÞ0:

u1,sa,b,W,Vdl =
1

Î1 +
V2

W2
1− eisa+bd V

W

0

1
2 , s78d

u2,sa,b,W,Vdl =
1

Î1 +
W2

V2 +
s1 −Î1 + V2 + W2d2

V2 1 eisa+bdW

V

eia s1 −Î1 + V2 + W2d
V

1
2 , s79d

u3,sa,b,W,Vdl =
1

Î1 +
W2

V2 +
s1 +Î1 + V2 + W2d2

V2 1 eisa+bdW

V

eia s1 +Î1 + V2 + W2d
V

1
2 . s80d

Let r =Î1+V2+W2 and su ,wd be such thatW=r sinw cosu, V=r sinw sinu and r cosw=1
suP g0,p /2f andwP g0,p /2fd. With these variables we can write

u1,sa,b,u,wdl = 1− eisa+bd sinu

0

cosu
2 , s81d

u2,sa,b,u,wdl =1eisa+bdsinw cosu

Î1 − cosw

eiaÎ1 − cosw

sinw sinu

Î1 − cosw

2 . s82d

Let sa ,b ,g ,u ,wd be the angles which generateS5. The submanifold ofS5 defined by

0 , w ,
p

2
,

0 , u ,
p

2
,
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g = 0,

is the control manifold; in the following we denote it byS+
4.

C. The composite bundle modelling the quantum dynamical system

We will now apply the theoretical construction introduced in the preceding sections. First we
note that the choice of the eigenvectorss81d and s82d is not unique. They can be

uilNE = 1eisa+bdp

eiap

p
2 , s83d

wherep replace the functions ofsu ,wd in the expressions ofu1l s81d or u2l s82d. By another choice
of phase convention we can choose the following eigenvectors:

uilNW= 1 eiap

eisa−bdp

e−ibp
2, uilSE= 1

eibp

p

e−iap
2, uilSW= 1 p

e−ibp

e−isa+bdp
2 . s84d

These different conventions are associated with four open local charts ofS+
4, UNE

=hsa ,b ,u ,wdPS+
4 uaP g−p /2−e ,p /2+ef ,bP g−p /2−e ,p /2+ef, UNW=hsa ,b ,u ,wdPS+

4 ua
P g−p /2−e ,p /2+ef ,bP gp /2−e ,3p /2+ef, USE=hsa ,b ,u ,wdPS+

4 uaP gp /2−e ,3p /2+ef ,b
P g−p /2−e ,p /2+ef, andUSW=hsa ,b ,u ,wdPS+

4 uaP gp /2−e ,3p /2+ef ,bP gp /2−e ,3p /2+ef,
wheree is a small parameter. The sethUiji=NE,NW,SE,SW is an atlas ofS+

4. We want to construct the
principal bundle of the geometric phase. LetTi =su1li , u2lidPM332sCd be the matrix of eigenvec-

tors selected by the adiabatic theoremsi =NE,NW,SE,SWd. We setRW =sa ,b ,u ,wdPS+
4,

∀ i, j , ∀ RW P Ui ù Uj, gijsRW d = TisRW d†TjsRW d P Us2d. s85d

The functions gij are the transition functions of the principal bundle of the geometry
sP,S+

4 ,Us2d ,pPd. More precisely we have

gNE,NW= gSE,SW= eib, gNE,SE= gNW,SW= eia, gNE,SW= eisa+bd. s86d

Note that∀i , j gij PUs1d,Us2d, because the two eigenvectors are never globally degenerate in
Ui ùUj. These functions define completely the total spaceP of the principal bundle of the geom-
etry. Indeed let; be the equivalence relation onS+

43Us2d defined by

sx,kd , sy,hd if x = y and if ∃ i, j such thatx P Ui ù Uj andk = hgij .

The total space is the quotient manifoldP=S+
43Us2d /,. Let p, :S+

43Us2d→P be the projection
associated to;, thenpP is defined by the commutative diagram

The principal bundle of the geometrysP,S+
4 ,Us2d ,pPd is then completely defined. Moreover it is

the structure bundle of the principal composite bundle of the geodynamics. The connection onP
is obtained by the gauge potential
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∀RW P Ui, Ai = TisRW d†dS4TisRW d P V1sS+
4,us2dd s87d

with Aj =sgijd−1Aigij +sgijd−1dS4gij in Ui ùUj. Let hsiji=1,2,3 be the Pauli matricesfgenerators of
sus2dg ands0 be the identity ofC2, with

s1 = S0 1

1 0
D, s2 = S0 − i

i 0
D, s3 = S1 0

0 − 1
D .

The calculus of the gauge potential shows that

ANE = i
sinw

Î1 − cosw
s2 du −

i

2Î2

sins2udsinw

Î1 − cosw
s1sda + dbd + i sinu

s3 + s0

2
sda + dbd

+
i

2

cos2 u sin2 w

1 − cosw

s0 − s3

2
sda + dbd +

i

2
s1 − coswd

s0 − s3

2
da. s88d

The transversal bundle forRW =sa ,b ,u ,wdPS+
4 fixed is the trivial bundle of the dynamics

sR3Us2d ,R ,Us2d ,Pr1d endowed with the connection

∀t P R,EsRW ,td =
i

210 0

0 1 −
1

cosw
2dt. s89d

Let xt
S be the fiber diffeomorphism of the base bundlesS,R ,S+

4 ,pSd. By definition we have

Pt=xt
S*

P, but the HamiltonianH does not have an explicit dependence ont. Then it is clear that
∀tPR, Pt=P and thenxt

S is the identity map. We conclude thatpS
−1std=S+

4 and thenS=S+
43R.

The base bundle is the trivial bundlesS+
43R ,R ,S+

4 ,Pr2d. The local trivializations of the total
bundle are

f++
i j sRW ,t,gd = fP

i ftgsRW ,gd = fP
i sRW ,gd s90d

becausePt is independent oft. Let hUi 3Rji=NE,NW,SE,SW be the atlas ofS+
43R, ∀sRW ,td

P sUi ùUjd3R we have the transition functions of the total spaceP+ of the total bundle by

g++
i j sRW ,td=gijsRW d. Then it is clear thatP+=P3R, the total bundle of the geodynamics is thensP

3R ,S+
43R ,Us2d ,spP+Pr1d3Pr2d. Note that the triviality of the fibration on the time is due to the

nonexplicit dependence ofH on t. When this is not the case, then the base bundle is not trivial.

D. Different aspects of the quantum dynamical system in our formalism

All the ingredients of the composite bundle formalism have now been explicitly identified for
our example. We now want to consider a particular dynamics in order to complete the description
of the quantum dynamical system in our composite bundle representation. In order to simplify and
to clarify the discussion, we consider a dynamics such that∀t a=b=0 schartUNEd and we use the
orginal variablessW,Vd in place of su ,wd; this restricted manifold is denoted byM in this
paragraph. In the sequelm=1,2,R1=W, R2=V andR0= t. In these conditions, the gauge potential
of the total bundleP+ over M is

A+ = i"−1EsW,Vddt + AsW,Vd =
i

2
s1 −Î1 + V2 + W2dss0 − s3ddt

+
is2

Î2Î1 +
V2

W2
Î1 + V2 + W2 − Î1 + V2 + W2

V2

SdW

W
−

dV

V
D . s91d
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We consider the dynamics described bygPGsft0=−25,T=90g ,M3Rd defined by gstd
=s3 coss2pst−25d /90d+3.1,3 sins2pst−25d /90d+3.1d sthe units are arbitraryd. g induces a pathC
in M3R. sSee Fig. 3.d

The horizontal lift ofC defines the holonomy operator

∀t P ft0,Tg, Jg,t0,t = Pe−i"−1et0
t Esgst8dddt8−e0

t Amsgst8dddgmst8d/dt8dt8 P GsM 3 R,P+d. s92d

Let sE+,M3R ,C2,pE+d be the associated vector bundle ofP+ by the action of Us2d on C2

defined by the matrix product. The states of the system are described by theC`sM3R ,Cd-module
GsM3R ,E+d, which is the space of the sections ofE+. At t=0 we suppose thatcs0d=s1/Î2d
3su1,gs0dl+ u2,gs0dld; then for all tù t0

cstd = o
b=1,2

1
Î2

sfJg,t0,tgb,1 + fJg,t0,tgb,2dub,gstdl P GsC,E+d. s93d

The state spaceGsM3R ,E+d is endowed with theC`sM3R ,Cd-valued inner product

∀x,f P GsM 3 R,E+d, kxuflE+sRW ,td = kxsRW ,tdufsRW ,tdlC2 s94d

∀i =1,2 ui ,RW lPGsM3R ,E+d fin the composite bundle representation it is the canonical basis
u1l= s 1

0
d andu2l= s 0

1
dg. With the scalar product we obtain the instantaneous occupation probabilities

of the eigenlevelE1 andE2sV,Wd,

Pistd = uki uclE+sgstd,tdu2. s95d

These probabilities are drawn in Fig. 4.
In Sec. IV, we have introduced some fieldsF+, B and G in M3R associated with the

structure of the composite bundle. An illustration of these fields are shown in Fig. 5.
Let sV+,M3R ,us2d ,pV+d be the associated vector bundle ofP+ by the adjoint action Ad of

Us2d on us2d sAdsUdX=U−1XU, ∀UPUs2d, ∀XPus2dd. The algebraGsM3R ,V+d endowed
with the Lie bracket

∀A,B P GsM 3 R,V+d, fA,BgV+sRW ,td = fAsRW ,td,BsRW ,tdgus2d s96d

is the observables space. In our example of a three level system, a set of observables has a
particular importance. LetSi =

1
2li for i =1, . . . ,8, and letSistd=Ust ,t0dSiUst ,t0d†, whereUst ,t0d is

the evolution operator associated with the Schrödinger equation. The role of the set of operators
Sistd for a three level system has been extensively studied by Ho, Chuet al.21–23 Let r0 be the

density matrix of the initial condition of the system. We introduce the vectorSW stdPR8 such that

FIG. 3. The path induced byg in M.
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Sistd=trsr0Sistdd fthe average value of the observableSistdg. SW std is called a coherent vector. From
the trajectory of this vector we can obtain information about the dynamical systemsfor a complete
exposition of this subject see Refs. 21–23d. Within an approach using our bundle formalism the
analogues of the observablesSistd are

SisRW d = TsRW d†SiTsRW d P GsM 3 R,us2dd, s97d

and the coherent vectorSW std is obtained bysin our quantum systemr0= ucs0dlkcs0du

Sistd = kcuSiclE+sgstd,td. s98d

Figure 6 illustrates the computation ofS in the composite bundle formalism.

FIG. 4. Left, occupation probabilities of the stateu1l splain lined, u2l sdash lined, and u3l sstrong lined computed by direct
integration of the Schrödinger equation inC3. Right; occupation probabilities of the stateu1l sfull lined, and u2l sdashed
lined computed with the formulas93d based on the holonomy operator of the composite bundle. We see that the results
obtained by the use of the holonomy operator are in perfect agreement with the direct integration. Moreover the left figure
reveals that the level 3 is never occupied, in agreement with its adiabatic elimination in the bundle representation.

FIG. 5. Left, thes1, 2d-matrix element ofsF+d12 with respect toM. Right, thes1, 1d-matrix element ofG012 with respect
to M. The white area is characterized by a strong field intensity whereas the black area corresponds to vanishing fields
sarbitrary unitsd. We have moreover indicated some points of the pathC, s, t=−25;L, t=−12;h, t=40; andn, t=80. By
comparison with Fig. 4 we see that the wave function changes significantly only when the control parameters are localized
in the strong field area. This shows that these fields are related to the dynamical properties of the quantum system.
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The example of the three-level system shows that we can use the composite principal bundle
representation to obtain all the physical ingredients of the quantum dynamics. This formalism,
coupled with a numerical procedure to compute the holonomy operator, could be used as a
powerful method to study a more complex quantum dynamical system.

VI. CONCLUSION

The principal composite bundle appears as a highly appropriate structure to describe the
adiabatic transport with a Berry phase which does not commute with the dynamical phase. Nev-
ertheless the use of the standard gauge theory requires us to restrict the gauge transformations to
the sections which satisfy the Schrödinger-Von Neumann equation. This feature reveals that it is
impossible to describe quantum dynamics with a purely geometric model without a dynamical
postulate. If one does not accept any restriction on the gauge transformations, the price to pay is
the implementation of an unusual gauge theory which introduces, in addition to the curvature, a
field, the curvingB, which is precisely the commutator ofA with H. It is remarkable that such a
situation is very similar to the gauge fields of non-Abelian gerbes, but with the important differ-
ence that in the non-Abelian gerbe theory,B does not have values in the Lie algebrag ssee Ref.
11d. sSee Refs. 24–26.d

One can easily generalize this description to the problem of the non-Abelian Aharonov-
Anandan phase which does not commute with the dynamical phase; this is done by replacing the
principal bundle sP,M ,UsMd ,pPd by the universal principal bundle
sVMsCnd ,GMsCnd ,UsMd ,pUd. The analysis of Bohm and Mostatazadeh7 has effectively showed
that sVMsCnd ,GMsCnd ,UsMd ,pUd is the universal bundle ofsP,M ,UsMd ,pPd, and our work
demonstrates that the same relationship exists between the adiabatic composite bundle and the
universal composite bundle.
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