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Abstract
We explore emergent geometry of the spacetime at the microscopic scale by
adiabatic transport of a quasi-coherent state of a fermionic string, with quantum
spacetime described by the matrix theory (BFSS matrix model). We show that
the generator of the Berry phase is the shift vector of the spacetime foliation by
spacelike surfaces associated with the quasi-coherent state. The operator-valued
generator of the geometric phase of weak adiabatic transport is the Lorentz con-
nection of the emergent geometry which is not torsion free at the microscopic
scale. The effects of the torsion seem consistent with the usual interpretation of
the Berry curvature as a pseudo magnetic field.
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1. Introduction

Matrix models [1] provide a description of the quantum spacetime as a noncom-
mutative manifold associated with a D-brane. Such an interesting model is the
Banks–Fischler–Shenker–Susskind (BFSS) matrix theory [2]. Some works [3–6] show
that gravity emerges at macroscopic scale from the noncommutativity of the manifold
obtained by quantisation of an embedding flat spacetime. More precisely, the semi-classical

limit 1
ı h̄ [ f̂ , ĝ]

h̄→0−→ θi j∂i f ∂ jg (for f̂ and ĝ two observables of the quantum spacetime) induces a
Poisson structure (θi j) describing an emergent geometry at the macroscopic scale (the semi-
classical limit being equivalent to the thermodynamical limit where the number of strings tends
to infinity). The effective metric of this emergent geometry is gi j = θikθ jl∂kxa∂lxbηab where
(xa) are the coordinates onto the embedding flat spacetime and which are the semi-classical
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limits of operators (Xa) describing the D-brane. At the microscopic level (with a ‘small’
number of strings), the spacetime is purely quantum since it is described in matrix models
as a noncommutative manifold. To compare this one to classical spacetimes, we can use two
usual methods of quantum mechanics. The first one consists to consider the mean values of
the quantum spacetime observables which obey to classical laws by the Ehrenfest theorem
(and so to consider the ‘mean value’ of the noncommutative manifold as a classical manifold).
The second one consists to consider equivalents to coherent states for the algebra of quantum
spacetime observables. Such states are the quantum states closest to classical states, since they
minimise the quantum uncertainties. We call emergent geometry at the microscopic level,
the one defined by the quasi-coherent states |Λ(x)〉〉 [8] (which are strongly related to the
Perelomov coherent states of a Lie algebra [7]) and which minimise the spacetime quantum
uncertainties (see [8]). These quasi-coherent states are eigenvectors of the noncommutative
Dirac operator �Dx of a probe fermionic string (gravity and spacetime geometry are physically
revealed by test particles).

An interesting point of view has been presented in [9–11]. The D-brane defines a U(1)-
principal bundle endowed with the Berry connection A = −ı〈〈Λ|d|Λ〉〉 [12] and in some exam-
ples θ seems to identify with a dual tensor of the Berry curvature F = dA. But this point,
and the precise role of the Berry connection, seem to be unclear in these previous works.
This suggests a possible link between the emergent geometry and the adiabatic dynamics
of the probe fermionic string. Indeed, adiabatic evolution can be defined by the adiabatic
limit Uad(s) = limT→+∞ Te

←
−ı T

h̄

∫ s
0 Ĥ(s′)ds′ where T is the duration of the dynamics, s = t/T is the

reduced time and Ĥ is a time-dependentHamiltonian (Te
←

denotes the time-ordered exponential,

i.e. the Dyson series). By application of an adiabatic theorem [13] we have

Uad(s) =
∑

i

e−ı
T
h̄

∫ s
0 (λi(s

′)+Ai(s
′))ds′ |λi(s)〉〈λi(0)|, (1)

where (λi) are the instantaneous eigenvalues of Ĥ (supposed without crossing) with instanta-
neous eigenvectors (|λi〉) and Ai is the Berry connection (the Berry phase generator) for the
ith eigenvector. We see that for the evolution operator it is equivalent to consider the adiabatic
limit T →+∞ or to consider the semi-classical limit h̄→ 0 (or in other words, the relevant
limit is h̄

T → 0). Reciprocally, if we rewrite the Heisenberg equation with the reduced time

d f̂
ds = T

ı h̄ [ f̂ , Ĥ], we see that T
ı h̄ [ f̂ , Ĥ]

h̄
T→0−→{ f , H} (where the braces denote the Poisson bracket).

Another heuristic argument is in favour of the relevance of the adiabatic regime in matrix
model. The emergent geometry being revealed by dynamics of a test particle (probe fermionic
string), the time ratio appearing is tP

T where T is the characteristic duration of the particle
transport and tP is the Planck time which characterises the inner quantum evolution of the
quantum spacetime. We have clearly tP

T 
 1 justifying the adiabatic limit. Since the quasi-
coherent states are eigenvectors of �Dx , at the adiabatic limit they define the time-dependent
mean values of the spacetime quantum observables. And so, the two approaches to compare
quantum spacetimes to classical spacetimes (Ehrenfest theorem and coherent states) are in this
context the same thing. The quasi-coherent state ensures a behaviour closest to a classical one
for the space, and the adiabatic limit ensures a time evolution closest to a classical one ( h̄

T → 0).
The emergent geometry at the microscopic level is the one which emerges from the adiabatic
limit with the quasi-coherent state.

The strict adiabatic limit defines strong adiabatic regimes. But weaker adiabatic regimes
can be also considered (with eigenvalue crossings, with non-adiabatic transitions restricted to
a small group of eigenvectors, . . . ). In past works [14–16], we have studied a weak adiabatic
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regime where a quantum system is submitted to a competition between the adiabatic transport
and the entanglement with another system (called environment). In that case, we can define a
dynamics which is adiabatic with respect to the environment but not with respect to the studied
system itself. In such an approach the Berry connection becomes operator-valued. In the case of
the adiabatic transport of a probe fermionic string, we can have also entanglement between the
spin degree of freedom with the D-brane. What does the weak adiabatic regime provide from
the viewpoint of the emergent gravity? The previous works [3–6] concerning the emergent
geometry at the thermodynamical limit only focus on the emergent metric (or equivalently on
the emergent tetrads). At the thermodynamical limit, to find the usual general relativity at the
macroscopic scale, only torsion free geometries are considered. But is it really the case at the
microscopic scale? The existence of a torsion in string theory is discussed in different models
[17–20]. In the context of a matrix model at the semi-classical limit, a torsion has been found
in [21] which is significant at the cosmic scale and it could be a candidate to explain the dark
matter problem. In this paper, we want to show that a torsion can also arise in the BFSS matrix
model with manifestations at the microscopic scale (in the quasi-coherent picture). This one
is related to the adiabatic limit and seems consistent with the usual interpretation of the Berry
curvature.

After a presentation of the emergent geometry theory from the viewpoint of the adiabatic
approach in section 2 (where we discuss the role of the Berry connection in matrix model),
we show section 3 that the Berry connection of the weak adiabatic regime defines a Lorentz
connection which completes the emergent geometry and which is not necessarily torsion free.
Section 4 presents simple applications. Moreover, in appendix A we prove a weak adiabatic
theorem which is applicable in the present context, justifying mathematically the consistency
of the adiabatic ansatz. Appendix B explores in more details the relation between the adiabatic
formalism developed in this paper with the noncommutative geometry and treats the diffeo-
morphism gauge changes. Appendix C generalises the developments of the core of this paper
to fast evolving spacetimes. A last appendix presents some technical calculations used for the
examples.

From this point, throughout this paper, we consider the unit system such that h̄ = c = G = 1
(�P = tP = mP = 1 for the Planck units).

Moreover we denote by Ωn(M, g) the set of the g-valued differential n-forms of the classical
manifold M, where g is an algebra.

We adopt the Einstein notations with lowercase Latin indices starting from 1 and Greek and
capital Latin indices starting from 0.

2. Strong adiabatic transport and emergent geometry

2.1. Dirac–Einstein equation

In order to fix some notations and to introduce some reference equations, we start by recalling
some basic facts about the Dirac equation in curved spacetime:

ıγIeμI (∂μ + ωμ)Ψ = 0, (2)

whereΨ is a massless spinor field, (γI) are the Dirac matrices, (eμI ) are the spacetime tetrads and
ω = ωIJ

μ D(LIJ)dxμ ∈ Ω1(M, sl(2,C)) is the Lorentz connection (D denoting a representation
of the sl(2,C) algebra, (LAB) are the generators of the Lorentz group, M denotes the spacetime
manifold). The metric is defined by gμν = eI

μeJ
νηIJ (where (ηIJ) is the Minkowski metric of

the flat spacetime viewed by an ideal local Galilean observer) and the Christoffel symbols are
Γμ
ρν = eμI ∂ρeI

ν + eμI ω
IJ
ρ eJν .
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In synchronous coordinates (i.e. metric in Gaussian normal form ds2 = dt2 −
gab dxa dxb⇐⇒eμ0 = δμ0 and e0

a = 0, [22, 23]) the Dirac equation becomes

ıγ0∂0Ψ+ ıγ iea
i ∂aΨ+ ıγIeμI ωμΨ = 0 (3)

and by adopting the Weyl representation, we have

ı∂0ψ̃ − ıσiea
i ∂aψ̃ + ı(ω0 − σiea

i ωa)ψ̃ = 0 (4)

where (σi) are the Pauli matrices and ψ̃ is the half-part of the Dirac spinor. Let ψ = U−1
ω ψ̃ with

Uω ∈ D(SL(2,C)) be a new representation of the spinor field such that

ı∂0ψ − ıσiea
i ∂aψ = 0. (5)

By replacing ψ̃ by Uωψ in the Dirac equation, we have:

[
ı(∂0 − σiea

i ∂a)Uω

]
ψ + Uω

[
ı(∂0 − σiea

i ∂a)ψ
]
+ ı(ω0 − σiea

i ωa)Uωψ = 0 (6)

⇐⇒ (∂0 − σiea
i )Uω = −(ω0 − σiea

i ωa)Uω (7)

⇐⇒ σμ
e ∂μUω = −σμ

e ωμUω (8)

⇐⇒ ∂μUω = −ωμUω (9)

(with σμ
e = σ̄IeμI , σ̄ = (id,−σ1,−σ2,−σ2)). In particular, if the spacetime dependence of ψ̃ is

a ‘wave packet’ strongly localised (with small width) around a classical worldline s �→ x(s),

we have Uω � Te
←
−
∫ s

0 ωμ
dxμ
ds . Note that

ω = ωIJD(LIJ) (10)

=
ı

2

(
ω12 ω23 − ıω31

ω23 + ıω31 −ω12

)
+

1
2

(
ω03 ω01 − ıω02

ω01 + ıω02 −ω03

)
. (11)

2.2. BFSS model

We consider a stack of N D0-branes in an embedding 4D Minkowski (flat) spacetime, repre-
sented by three Hermitian operators Xi ∈ L(H) (where H is a separable Hilbert space, the
case dim H = +∞ being not excluded). The reduction to 3 + 1 dimensions (the original
BFSS model presents 9 + 1 dimensions) results from a truncation by taking a supersym-
metric orbifold C3/Zk as explained in details section 2 of reference [9]. In this paper, we
suppose that (Xi) (eventually by adding idH) generates a Lie algebra X. (Xi) can be assimilated
to coordinates operators of a noncommutative manifold M (the C∗-algebra of the observ-
ables of M is generated by (Xi)). From the viewpoint of string theory, M is a D2-brane

formed by the stack. Intuitively Xi =

(
xi

1 si
12

si
12 xi

2

)
represents a stack of two D0-branes of

coordinates x1 and x2 in the embedding space linked by a bosonic string of oscillation radii
{|si

12|}i. We consider a massless fermionic string linking M to a probe D0-brane described
by a spinor: |ψ〉〉 = |0〉 ⊗ |ψ0〉+ |1〉 ⊗ |ψ1〉 ∈ C2 ⊗H. We can interpret the component ψα

a as
ψα(xa) where xa is the pseudo-position of the ath D0-brane in the embedding space (the spatial
delocalisation of quantum point particle is replaced by the quantum superposition of dim H
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attachment points for the string). (|0〉, |1〉) are the spin states. M can be then viewed as a quan-
tised space (in the BFSS model the time is not quantised). The fermionic string state obeys to
the following noncommutative Dirac equation [9, 24]:

ıΨ̇ = σi[Xi,Ψ] (12)

with Xi =

(
Xi 0
0 xi

)
∈ L(H⊕ C), Ψ =

(
0 |ψ〉〉
〈〈ψ| 0

)
∈ L(H⊗ C2 ⊕ C), which is equiva-

lent to

ı|ψ̇〉〉 = �Dx|ψ〉〉 with �Dx = σi ⊗ (Xi − xi) (13)

where x is the pseudo-position of the probe D0-brane in the embedding space. Formally this
equation can be viewed as the space quantisation of equations (4) and (5) for a flat spacetime
(ea

i = δa
i and ωμ = 0).

2.3. Emergent geometry

As explained in the introduction, we want to define an emergent geometry by invoking a gener-
alisation of the notion of coherent state for M . This state will constitute the foundation of the
adiabatic representation of the dynamics of |ψ〉〉. We start then by considering the eigenequation
associated with �Dx.

Let MΛ = {x ∈ R3, s.t. det �Dx = 0} and |Λ(x)〉〉 ∈ C2 ⊗H be the quasi-coherent state of
M , i.e. the state of the probe fermionic string such that

∀ x ∈ MΛ, �Dx|Λ(x)〉〉 = 0. (14)

Equation (14) can be rewritten as σi ⊗ Xi|Λ(x)〉〉 = E(x)|Λ(x)〉〉 with E(x) = σixi which can be
viewed as a noncommutative eigenequation in the sense where the E(x) is a ‘noncommutative
eigenvalue’ (matrix-valued eigenvalue) of σi ⊗ Xi. Since the solutions of the noncommutative
eigenequation define the classical manifold MΛ, this one can be viewed as an ‘eigenmanifold’
of M . Indeed:

�D2
x = δi j(Xi − xi)(X j− x j) + ıεi j

kσk ⊗ XiX j (15)

= |X − x|2 + ı

2
εi j

kσk ⊗ [Xi, X j]. (16)

|X − x|2 is the operator measuring the square distance between the probe D0-brane and M ,
and for a separable state |ψ〉〉 = |s〉 ⊗ |φ〉 we have the Heisenberg uncertainty relation:

εi j
k〈s|σk|s〉ΔφXiΔφX j � 1

2
|〈〈ψ|εi j

kσk ⊗ [Xi, X j]|ψ〉〉|. (17)

More precisely, reference [8] shows that |Λ〉〉 minimises the displacement energy, intuitively
the ‘tension energy’ of the probe fermionic string which increases if the probe D0-brane is
moved away from M or if the dispersion

∑
i(ΔΦXi)2 is large:

(ΔΦXi)2 = 〈〈Φ|(Xi)2|Ψ〉〉 − 〈〈Φ|Xi|Φ〉〉2. (18)

|Λ〉〉 is then the state for which the probe D0-brane ‘runs’ onto MΛ (the probe fermionic
string—the test particle—reveals the geometry). Moreover,

1
2
{σi, �Dx} = δi j(X

j − x j) ⇒ 〈〈Λ(x)|Xi|Λ(x)〉〉 = xi. (19)

5
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The ‘location’ of the probe D0-brane on MΛ indicates then the mean value of the ‘location
of M ’. From the other side, |Λ(x)〉〉 is also the state of a fermionic string which is close to a
point particle (|X − x|2 is small) strongly localised at the point x (the dispersion (ΔΦXi)2 is
small). To reveal the geometry at the microscopic scale, it is obvious that we need to move a
strongly localised point particle.

For these reasons, MΛ is the classical manifold closest to M (it is both the ‘mean value’
of M and the manifold associated with the state minimising the quantum uncertainties of the
space observables). It is then the space manifold of the emergent geometry at the microscopic
scale (in the sense defined in introduction, i.e. in the quasi-coherent picture).

As previously explained, we think that the adiabatic regime is relevant to analyse the
emergent gravity of matrix models. We start here by considering the main ingredients of the
(strong) adiabatic transport. Let (ua) be a local coordinates system onto MΛ (and u �→ x(u) be
a parametrisation of MΛ embedded in R3). We consider the slow transports of the probe D0-
brane along MΛ: t �→ u(t). The adiabatic solutions of equation (13) are local sections of the
line bundle associated with a U(1)-bundle PΛ over MΛ endowed with a connection described
by the gauge potential A = −ı〈〈Λ|d|Λ〉〉 ∈ Ω1(MΛ,R) (where d stands for the exterior deriva-
tive onto MΛ) and the local curvature F = dA ∈ Ω2(MΛ,R) (as introduced in [9]). Or in other
words

Aa(u) = −ı〈〈Λ|∂i|Λ〉〉|x=x(u)
∂xi

∂ua
(20)

Fab(u) = −ı
[
(∂i〈〈Λ|)(∂ j|Λ〉〉)− (∂ j〈〈Λ|)(∂i|Λ〉〉)

]
|x=x(u)

∂xi

∂ua

∂x j

∂ub
(21)

= −ı〈〈Λ|
[
∂PΛ

∂ua
,
∂PΛ

∂ub

]
|Λ〉〉 (22)

where ∂xi

∂ua stands for the partial derivative of the parametrisation u �→ xi(u) and with PΛ =
|Λ〉〉〈〈Λ|.

For a slow transport t �→ u(t) describing a closed path C on MΛ starting and ending at u0,
the adiabatic solution of equation (13) is

|ψ〉〉 = e−ı
∮
CA|Λ(x(u0))〉〉 (23)

= e−ı
∫
SF|Λ(x(u0))〉〉 (24)

where S is the surface of MΛ with C as border. F defines a symplectic two-form of MΛ, and
the bivector θ̃ = F−1 (where the inverse denotes the matrix inverse) defines a Poisson bracket
{ f , g}θ̃ = θ̃ab ∂ f

∂ua
∂g
∂ub (∀ f , g ∈ C1(MΛ)).

MΛ is naturally endowed with the metric of its embedding in R3: γab = ∂xi

∂ua
∂x j

∂ub δi j. Moreover
note that γab = 〈〈∂aΛ|�D2

x|∂bΛ〉〉, indeed

�Dx|Λ〉〉 = 0 ⇒ �Dx∂a|Λ〉〉 =
∂xi

∂ua
σi|Λ〉〉 (25)

⇒ 〈〈∂aΛ|�D2
x|∂bΛ〉〉 = 〈〈Λ|σiσ j|Λ〉〉

∂xi

∂ua

∂x j

∂ub
(26)

= δi j
∂xi

∂ua

∂x j

∂ub
(27)

= γab. (28)
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We can remark that 〈〈Λ|σi|Λ〉〉∂i is a normal vector to MΛ.
The metric γab is the second element of the emergent geometry, implying emergent grav-

itational effects (in the quasi-coherent/adiabatic picture) as manifestations of the curvature
of the classical space MΛ. By equation (16) we see that γab = γdist

ab + γNC
ab where γdist =

〈〈∂aΛ‖X − x|2|∂bΛ〉〉dua dub is the quadratic variation of the mean value of the square dis-
tance observable, and where γNC

ab = 1
4〈〈∂aΛ|[σi, σ j]⊗ [Xi, X j]|∂bΛ〉〉 is the contribution of the

non-commutativity of M to the emergent metric.
As in [3–5] we can also define a Poisson structure issued from the noncommutativity of

the coordinates operators θi j(x) = −ı〈〈Λ(x)|[Xi, X j]|Λ(x)〉〉. But in contrast with references
[3–5] we do not consider the semi-classical limit of θ. To understand the role of θ in the
emergent geometry defined by the quasi-coherent state, it is necessary to formalise the oper-
ations of quantisation and of classical emergence (replacing the semi-classical limit in our
approach). Let Env(X) be the universal C∗-enveloping algebra of X, which plays the role
in noncommutative geometry of the algebra of ‘functions’ on M . Let ωΛ,x : Env(X)→ R

be the normal pure state of Env(X) defined by ωΛ,x(Y) = tr(PΛ(x)Y) with PΛ = |Λ〉〉〈〈Λ|.
We can see ωΛ : x �→ ωΛ,x as a map from Env(X) (‘noncommutative functions’ of M ) to
C∞(MΛ) (commutative functions of MΛ), or also ωΛ : M →MΛ ⊂ R3 with ωΛ(Xi) = xi (by
identifying a point of MΛ with its coordinates). ωΛ is then the map providing the classi-
cal analogues of the quantum space observables (as their mean values in the quasi-coherent
state).

We recall that DerX (the algebra of derivatives of X) plays the role of the noncommutative
tangent vector fields of M . The set of Z(X)-multilinear antisymmetric maps from (DerX)n to
Env(X), Ωn

DerX, plays the role of the noncommutative n-forms of M (Z(X) is the centre of X).
We can introduce ωΛ∗ the push-forward (tangent map) and ω∗Λ the pull-back (cotangent map)
of ωΛ:

ωΛ∗ : DerX → TR3
|MΛ

= TMΛ ⊕ NMΛ

L �→ tr(PΛL(Xi))∂i,
(29)

where TxMΛ and NxMΛ denote respectively the tangent space and the normal space in R3 onto
MΛ at the point x,

ω∗Λ : Ω1
R

3
|MΛ

→ Ω1
DerX⊗ C∞(MΛ)

ηi dxi �→ ηi dXi,
(30)

where d is the noncommutative derivative defined by the Koszul formula: dXi(L) = L(Xi).
These definitions are chosen in order to ∀ η ∈ Ω1

R3
|MΛ

, ∀ L ∈ DerX,

〈η,ωΛ∗(L)〉R3 = ωΛ

(
〈ω∗Λη, L〉X

)
, (31)

where 〈·, ·〉R3 : Ω1
R3 × TR3 →C∞(R3) and 〈·, ·〉X : Ω1

DerX× DerX→ Env(X) are the duality
brackets. ω∗Λ : dxi → dXi can be viewed as the quantisation map, so its dual ωΛ∗ should be the
‘classical geometry emergence map’ as the reverse operation, except that it provides vectors
not tangent to MΛ. It is then necessary to introduce a projection. Let

7
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πΛ : TR3
|MΛ

→ TMΛ

ui∂i �→ uiδi jγ
ab ∂x j

∂ub
∂a

(32)

be the orthogonal projection onto TMΛ:

πΛ(∂a) = δi jγ
cb ∂xi

∂ub

∂x j

∂ua
∂c (33)

= γcbγba∂c (34)

= ∂a (35)

and

πΛ(〈〈Λ|σi|Λ〉〉∂i) = 〈〈Λ|σi|Λ〉〉
∂xi

∂ua
γab∂b = 0 (36)

(we recall that 〈〈Λ|σi|Λ〉〉∂i ∈ NMΛ). Let

π∗Λ : Ω1MΛ → Ω1
R

3
|MΛ

ηa dua �→ ηaγ
abδi j

∂x j

∂ub
dxi

(37)

be the dual map of the projection: ∀η ∈ Ω1MΛ, ∀ u ∈ TR3
|MΛ

,

〈η, πΛu〉R3 = 〈π∗Λη, u〉R3 . (38)

We have then πΛωΛ∗ : DerX→ TMΛ and ω∗Λπ
∗
Λ : Ω1MΛ → Ω1

DerX⊗ C∞(MΛ) the maps relat-
ing the (co)tangent spaces of M and MΛ.

We return now to the role of the Poisson structure. Let Θ ∈ Der2 X be the fundamental
biderivative of X defined by the commutator: Θ(Y, Z) = −ı[Y, Z]. By extension of ωΛ∗ onto
Der2 X, the pull-back of Θ defines the following bivector of R3, θ ∈ (TR3)⊗2

|MΛ
:

θ = ωΛ∗Θ = tr(PΛΘ(Xi, X j))∂i ⊗ ∂ j = −ı tr(PΛ[Xi, X j])∂i ⊗ ∂ j. (39)

Let f : x �→ f0 + fixi be a linear function, we have f (X) = f0 idH + f iXi ∈ X, ωΛ,x( f (X)) =
f (x) and ωΛ(L( f (X))) = (ωΛ∗L) f . Let f and g be two linear functions, we have

−ıωΛ([ f (X), g(X)]) = θi j∂i f ∂ jg = { f , g}θ. (40)

ωΛ transforms then the commutator Θ of X into a Poisson bracket of R3 restricted onto linear
functions of MΛ (note that this is not a Poisson bracket of MΛ since it includes derivatives in

8
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R3 and not only derivatives tangent to MΛ).1 Note moreover that:

1
2
{σk, �D2

x} = σk ⊗ |X − x|2 + ı

2
εi j

k[Xi, X j] (45)

⇒ −ı[Xi, X j] = εi jkσk ⊗ |X − x|2 − 1
2
εi jk{σk, �D2

x} (46)

⇒ θi j(x) = εi jk〈〈Λ(x)|σk ⊗ |X − x|2|Λ(x)〉〉. (47)

πΛθ = θi jγacγbdδikδ jl
∂xk

∂uc
∂xl

∂ud ∂a ⊗ ∂b is a bivector of MΛ, but it does not define a Poisson
structure on MΛ because it does not satisfy the Jacobi identity.

To summarise and compare with the semi-classical emergence approach we have:

Quantum geometry Classical geometry

Semi-classical approach (Env(X),−ı[·, ·]) N→+∞−→ (C∞(M), {·, ·})
(Env(X),−ı[·, ·]) ←−

Moyal quantisation
(C∞(M), {·, ·})

Quasi-coherent approach (Env(X),Θ)
ωΛ−→ (P1

|MΛ
(R3), θ)

DerX
πΛωΛ∗−→ TMΛ

Ω1
DerX ←−

ω∗
Λ
π∗
Λ

Ω1MΛ

P1
|MΛ

(R3) denoting the linear functions of R3 restricted to MΛ and N being the number of
strings. The semi-classical approach focus mainly on the algebras of functions, but in the quasi-
coherent approach we focus mainly on the tangent vectors fields and the differential forms.
This is because a part of the emergent geometry is inherited from the geometric properties
of the adiabatic bundle which are encoded in the differential forms A and F. The discussion
concerning the role of A is in the next section.

It can be surprising to have two different structures, θi j associated with the commutator
of X, and θ̃ab associated with the Berry curvature, which seems to be not directly related. To
understand this point, it is necessary to compare the present formalism with usual general rel-
ativity. In a synchronous frame, the space defined by t = cst is a curved three dimensional

1 Note that we cannot extend this correspondence to Env(X) and analytical functions of MΛ. For example with f (x) =
f0 + fixi + fi jxix j:

ωΛ,x( f (X)) = f0 + fix
i + fi j〈〈Λ(x)|XiX j|Λ(x)〉〉 �= f (x) (41)

and

(ωΛ∗LY ) f (x) = fi〈〈Λ(x)|[Y , Xi]|Λ(x)〉〉+ fi j〈〈Λ(x)|[Y , Xi]|Λ(x)〉〉x j

+ fi jx
i〈〈Λ(x)|[Y , X j]|Λ(x)〉〉 (42)

�= fi〈〈Λ(x)|[Y , Xi]|Λ(x)〉〉+ fi j〈〈Λ(x)|[Y , Xi]X j|Λ(x)〉〉

+ fi j〈〈Λ(x)|Xi[Y , X j]|Λ(x)〉〉 = ωΛ,x(LY f (X)) (43)

(with LY (Z ) = [Y , Z]); and then

−ıωΛ([g(X), f (X)]) = −ıgiωΛ(LXi f (X)) �= {g, f }θ (44)

(with g a linear function).

9
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commutative manifold M. An ideal local Galilean observer see a flat three dimensional com-
mutative space R3. The triads (ea

i ) (spacial part of the tetrads) define a map e : TR3 → TM
(with e(ηi∂i) = ηiea

i ∂a) transforming the tangent vectors viewed by the ideal observer to true
tangent vectors of the curved space. In particular the reduced Dirac equation in a curved space,
equation (5), can be rewritten as:

ı∂0ψ − ıσie(∂i)ψ = 0 (48)

and is then just the transformation of the Dirac equation in a flat space. Moreover, (ei
a)

define a dual inverse map e∗−1 : Ωn
R3 → ΩnM (with e∗−1(ηi dxi) = ηiei

a dua) transform-
ing infinitesimal variations viewed by the ideal observer to true infinitesimal variations
of the curved space. In particular, the space metric can be rewritten as γab dua dub =
ei

ae j
bδi j dua dub = e∗−1(δi j dxi dx j). The duality condition 〈dxi, ∂ j〉R3 = δi

j induces by invari-
ance that 〈e∗−1(dxi), e(∂ j)〉M = δi

j⇐⇒ei
aea

j = δi
j, the dual triads (ea

i ) are then the inverse matrix
of the triads (ei

a).
In emergent geometry, X defines a non-commutative manifold M and a target space R3;

the emergent manifold MΛ is a curved two dimensional commutative manifold. The triads are
defined by πΛωΛ∗ : DerX→ TMΛ the map transforming ‘noncommutative tangent vectors’ of
M to tangent vectors of the emergent manifold:

ea
i ∂a = −ıπΛωΛ∗(LXi) (49)

⇐⇒ ea
i = δilθ

l jδ jkγ
ab ∂xk

∂ub
(50)

(where L• : X→ DerX denotes the Lie derivative, LY (Z) = [Y , Z]). In particular, equation (12):

ı∂0Ψ− σiLXiΨ = 0 (51)

generates a reduced Dirac equation on MΛ:

ı∂0ψ − σiπΛωΛ∗(LXi)ψ = 0 (52)

⇐⇒ ı∂0ψ − ıσiea
i ∂aψ = 0. (53)

In contrast with the case of usual general relativity, the dual triads (ẽi
a) are not the inverse

matrix of the triads (ea
i ). Firstly, dim X = 3 and dim MΛ = 2, so (ẽi

a) and (ea
i ) are not square

matrices. Moreover, there is an important difference between inner derivatives as LXi ∈ DerX
and outer derivatives as ∂

∂xi ∈ TR3, which can be expressed by the failure of the duality relation
〈dXi, LX j〉X �= δi

j, indeed:

〈dXi, LX j〉X = [X j, Xi] ⇐⇒ ωΛ(〈dXi, LX j〉X) = ıδ jkθ
ki. (54)

So we should have ẽi
aea

j = δ jkθ
ki. Because of δipγ

cd ∂xp

∂ud
∂xi

∂ua = γcdγda = δc
a we have

∂xi

∂ua
ea

j = δ jlθ
li (55)

⇒ ea
j = δ jlθ

liδipγ
ad ∂xp

∂ud
. (56)

10
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We have then 〈ẽ∗Λ(dXi), πΛωΛ∗(−ıLX j)〉MΛ
= ωΛ(〈dXi,−ıLX j〉X), with ẽ∗Λ(dXi) = ∂xi

∂ua dua. It

follows that the choice of defining the dual triads (ẽi
a = ∂xi

∂ua ) to obtain the embedding metric
of MΛ whereas the triads (ea

i ) are defined with the commutation relations of X, ensures the
consistency of the duality relations.

2.4. Role of the geometric phase in matrix model

Now we want to examine the role of the geometric phase (or of its generator A) in the emergent
geometry, since until now we have examined only the aspects related to the quasi-coherent
picture and not the aspects directly related to the adiabatic assumption. We start by a re-
examination of the dynamical equations. The dynamics of the fermionic string in the strong
adiabatic approximation is then |ψ(t)〉〉 = e−ı

∫ t
0 Aau̇adt|Λ(x(u(t)))〉〉. By injecting this expression

in equation (13) we find

ı∂0|Λ〉〉 − �Dx|Λ〉〉+ Aau̇a|Λ〉〉 = 0. (57)

Consider the Dirac–Einstein equation (in the representation eliminating the Lorentz connec-
tion) with e0

i = 0, e0
0 = 1 but with ea

0 �= 0:

ı∂0ψ − ıσiea
i ∂aψ + ıea

0∂aψ = 0. (58)

In the WKB approximation ψ � ζ
√
� eıS with S the classical action, ζ ∈ C2 (‖ζ‖ = 1) and

� = ψ†ψ. If ψ is strongly localised around a classical trajectory (∂a
√
� = ua(t)−ua

Δu2
√
� � 0) we

have

ı∂0ψ − ıσiea
i ∂aψ − ea

0kaψ = 0 (59)

with ka = ∂aS. By identifying ka with u̇a, the comparison of the equations provides

ea
0 = −Aa = −ıγab〈〈Λ|∂b|Λ〉〉. (60)

The generator of the geometric phase is then the triad (ea
0). The analysis of the previous section

provided only the emergent geometry for the space part (ea
i ). The analysis of the geometric

phase provides then the emergent geometry for the time part (ea
0). To continue the analysis, it

is necessary to find the associated dual tetrads and so to extend to spacetime the analysis of the
(co)tangent vector fields.

The C∗-algebra of time-dependent observables of M (or of the Heisenberg representations
of the observables of M ) is EnvX⊗ C∞(R). Its algebra of derivatives is Der(X⊗ C∞(R)) =
DerX⊕ TR and Ω1

Der(X⊗ C∞(R)) = Ω1
DerX⊕ Ω1

R. It follows that 〈dXi, ∂0〉X⊗C∞(R) =
〈dx0, LX j〉X⊗C∞(R) = 0 and 〈dx0, ∂0〉C∞(R) = 1. It follows that the dual triads must satisfy

ẽi
μeμj = δk jθ

ki ⇒ 0 + ẽi
aea

j = δk jθ
ki ⇒ ẽi

a =
∂xi

∂ua
(61)

ẽi
μeμ0 = 0 ⇒ ẽi

0 − ẽi
aAa = 0 ⇒ ẽi

0 = Aa ∂xi

∂ua
(62)

ẽ0
μeμj = 0 ⇒ 0 + ẽ0

aea
j = 0 ⇒ ẽ0

a = 0 (63)

ẽ0
μeμ0 = 1 ⇒ ẽ0

0 − ẽ0
aAa = 1 ⇒ ẽ0

0 = 1. (64)

11
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Finally, the metric of the spacetime R×MΛ is

ds2 = ẽI
μẽJ

μηIJ duμ duν (65)

= dt2 − (Aa dt + dua)(Ab dt + dub)γab (66)

= (1− AaAbγab)dt2 − 2Aaγab dub dt − γab dua dub (67)

= (1− AaAbγ
ab)dt2 + 2Aa dua dt − γab dua dub (68)

which is the usual metric for a spacetime defined by a foliation of spacelike surfaces where

Aa∂a is the shift vector of the foliation (dt Aa(u)∂a =
−−→
P′P′′ where P is the point of coordinates

u on the leaf M(t)
Λ , P′ is the point at the intersection of the normal vector at P and M(t+dt)

Λ ; and
P′′ is the intersection of the line with constant spacial coordinates passing by P and M(t+dt)

Λ )
[25, 26]. (Aa, γab) constitutes then the variables of the ADM formulation of the gravity (the
lapse function is identically equal to 1 here). This is in accordance with the fact that A is the
connection of the U(1)-principal bundlePΛ describing the adiabatic transport and defines then
the holonomy in this bundle. |Λ〉〉 is a local section of the line bundle associated with PΛ which
is associated with the eigenmanifold MΛ. The parallel transport of |Λ〉〉 along an infinitesimal
displacement du (during the interval dt) is then |Λ(u)〉〉 �→ e−Aadua |Λ(u + du)〉〉.

The role of the geometric phase generator A for the point of view of the non-commutative
geometry is considered appendix B.

2.5. Epistemological digression

In comparison with other approaches of quantum gravity, emergent gravity presents a very
special point of view. We cannot try to quantify the ‘gravitational field’ ((eμI ,ωIJ

μ ) or gravi-
tational waves field hμν in gμν = ημν + hμν +O(h2)) nor the curved spacetime. In emergent
gravity we start from the epistemological argument that the quantisation rules used in quantum
mechanics are written from the point of view of an observer (they consist to describe the quan-
tum observables as operators from the classical observables) and not from the point of view
of the quantised physical system. In a classical general relativity context, this corresponds to
the point of view of an ideal local Galilean observer. But such an observer seems to see a flat
Minkowski spacetime (the spacetime of metric ηIJ). It is then epistemologically consistent to
consider the quantisation of the observed flat Minkowski spacetime, with for example the rules
used in the BFSS model: xi � Xi and ∂i � LXi . And it can be consistent to consider, as in the
BFSS ansatz, that time is not quantised since this is the one measured by the classical observer’s
clock and not the proper time of the test particle (the synchronous frame being defined in the
neighbourhood of the observer). At a second step, micro gravitational effects result from the
noncommutativity of the quantised spacetime, as viewed on the emergent curved manifold
MΛ (‘mean value of the space’): properties issued from the noncommutativity become micro
gravitational effects in the sense of the Ehrenfest theorem. So gravity (at the Planck scale) is
not a force, is not directly the manifestation of the spacetime curvature, but is the manifesta-
tion of spacetime noncommutative structure (the curvature emerging at the quantum averaging
or at the semi-classical limit for the macroscopic scale). For this point of view, the quantisa-
tion consists well to the transformation of the Dirac operator (for massless fermions) in flat
spacetime to the BFSS Dirac operator: ı∂0 − ıσi∂i � ı∂0 − σiLXi . A Dirac–Einstein opera-
tor of the emerging gravity is then obtained by application of the ‘geometric emergence map’
πΛωΛ∗ : DerX→ TMΛ (which can be viewed as dual to the quantisation mapω∗Λ : dxi �→ dXi).
The emergent manifold MΛ being associated with an eigenvector of the BFSS Dirac operator
�Dx , it is consistent that the dynamics of the test particle (the probe D0 brane) revealing the

12
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emergent geometry be an adiabatic dynamics (it is only in the adiabatic regime that the quan-
tum dynamics remains projected onto an instantaneous eigenvector). Adiabatic dynamics is
characterised by a U(1)-principal bundle over MΛ with the connection defined by the gauge
potential A ∈ Ω1(MΛ,R). It is natural in these conditions to identify this U(1)-gauge theory
with an emerging gravity gauge theory. More precisely, it is well known that quantum dynam-
ics can be assimilated to the transport of a particle in a space (here MΛ) where the field F
(usually assimilated to a virtual magnetic field) lives. The singularities of F (corresponding
to the level crossings) are usually assimilated to virtual Dirac magnetic monopoles. In this
analogy, the classical analogue of the virtual particle is submitted to a ‘pseudo Laplace force’
associated with F which can be viewed here as an emergent gravity force. From the princi-
ple of the Einstein’s elevator, the free falling ideal local Galilean observer does not see the
gravity force, and then this one defines its frame. This can epistemologically explain that the
local Galilean frame in the emergent geometry is such that ẽi

0 = Aa ∂xi

∂ua . The role of the gauge
structure associated with the Berry connection which is unclear in [9] is then explained in the
present context. We will see section 4 that the interpretation of F as a pseudo magnetic field in
MΛ is also consistent in matrix model.

Nevertheless we can see that the adiabatic approximation does not seem to make emerge a
Lorentz connection. One could imagine that this one is totally determined by the knowledge
of gμν and ẽi

μ/eμi by supposing that the geometry is torsion free (Levi-Civita connection). If
it is the case at the macroscopic scale for the usual general relativity theory, nothing force
that it is the case at the microscopic scale. It is usual to consider a non zero torsion in string
theory [17–20] for example. It can be then not impossible that the emergent geometry be not
torsion free. We need then to see how a Lorentz connection can emerge from the adiabatic
approach.

3. Weak adiabatic transport and emergent geometry

In this section we want to show that it is possible to define an emergent Lorentz connection
with an adiabatic transport. In strong adiabatic transport we have a u(1)-connection defined by
the generator of the geometric phase A. We have viewed that this one generates the shift vector
of the emergent geometry. The idea of this section consists to find a gl(2,C)-connection (sum
of the u(1)-connection of the previous section and of a sl(2,C)-connection playing the role
the Lorentz connection) generalising the geometric phases. The representation of the group
GL(2,C) ⊂M2×2(C) is a set of spin operators. We search then an operator-valued geometric
phase. In previous works [14–16], we have prove that such an operator-valued geometric phase
arises in weak adiabatic regimes. Translated to the present context, such a regime is adiabatic
with respect to the quantum space M but not with respect to spin degree of freedom (the oper-
ator valued geometric phase modifying the spin state with respect to the eigenstate); whereas
the strong adiabatic regime used in the previous section is adiabatic with respect both M and
the spin.

3.1. Emergent metric and emergent Lorentz connection

Now we want to consider a weak adiabatic regime as in [14–16]. To this, it is necessary to
change the point of view concerning the mathematical structure of the state space. Firstly, we
consider C2 ⊗H not as an Hilbert space, but as a left Hilbert C∗-module over the C∗-algebra
a = L(C2) = M2×2(C) (spin observable algebra). The representation of a onto C

2 ⊗H being

13
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defined by:

S|ψ〉〉 = S ⊗ idH|ψ〉〉, ∀ S ∈ a, ∀ |ψ〉〉 ∈ C
2 ⊗H. (69)

The inner product of the C∗-module (〈·|·〉∗ : (C2 ⊗H)2 → a) is defined by ∀ |ψ〉〉, |φ〉〉 ∈
C2 ⊗H:

〈φ|ψ〉∗ = trH|ψ〉〉〈〈φ|, (70)

where trH denotes the partial trace over H. Equation (14) can be viewed as a noncommuta-
tive eigenequation in the sense of this C∗-module, |ψ〉〉 is eigenvector of σi ⊗ Xi with eigen-
value E(x) = σixi ∈ a. Note that the square C∗-module norm ‖ψ‖2

∗ = trH|ψ〉〉〈〈ψ| is the density
matrix (mixed state) of the fermionic string’s spin (if ‖ψ‖2

∗ is not pure, it represents the spin
state entangled with states of M , the noncommutative manifold playing the role of a quantum
environment for the spin of the fermionic string).

For a transport t �→ u(t) on MΛ in a weak adiabatic regime (see appendix A and [14–16])
the solution of equation (13) is

|ψ(t)〉〉 = Te
→
−ı

∫ t
0Aa(u(t′))u̇a(t′)dt′ |Λ(x(u(t)))〉〉, (71)

where Te
→

denotes the time counter-ordered exponential and A ∈ Ω1(MΛ, a) is the operator-

valued geometric phase generator defined by

AρΛ = −ı〈Λ|∂i|Λ〉∗
∂xi

∂ua
dua, (72)

where ρΛ = 〈Λ|Λ〉∗ = trH|Λ〉〉〈〈Λ| is the density matrix of the spin of the fermionic string

in the quasi-coherent state. The operator-valued geometric phase Te
→
−ı

∫ t
0Aau̇adt′ ∈ a repre-

sents changes of spin orientation occurring during the adiabatic transport of |Λ〉〉 viewed,
in accordance with the interpretation of section 2.3, as the transport of a strongly localised
particle in the curved spacetime MΛ × R (this one does not affect the localisation shape
of the particle but can induce changes of the spin state by Thomas or de Sitter preces-
sion phenomenon for example). The adiabatic solutions are local sections of a vector bun-
dle associated with a non-abelian bundle gerbe (a categorical principal bundle) PΛ over
MΛ endowed with a two-connection with gauge two-potential (a gauge potential specific to
bundle gerbes) A (see [14] for the details). Note that tr(ρΛA) = A and then the quantum
statistical mean value of A corresponds to the discussion about the strong adiabatic regime.
It is then interesting to split the gauge potential onto abelian and purely non-abelian parts:
A = Aoff + 1

2 Ã with trAoff = 0 and Ã = trA. This splitting is associated with the central exten-
sion of groups 1→ C∗ → GL(2,C)→ GL(2,C)/C∗ = SL(2,C)→ 1, where Aoff is a gauge
potential of a SL(2,C)-principal bundle over MΛ supporting the non-abelian bundle gerbe PΛ

(see [29, 30]).
We have then

|ψ(t)〉〉 = e−
ı
2

∫ t
0 Ãau̇adt′

Te
→
−ı

∫ t
0A

off
a u̇adt′ |Λ(x(u(t)))〉〉. (73)

Along a specific path t �→ ua, equation (9) becomes U̇ω = −ωau̇aUω and then Uω =

Te
←
−
∫ t

0ωau̇adt′ . But following equation (5), |ψ〉〉 = U−1
ω |ψ̃〉〉. By identification, it follows that

Uω = Te
←
−
∫ t

0ωau̇adt′ =
(
Te
→
−ı

∫ t
0A

off
a u̇adt′

)−1
= Te

←
ı
∫ t

0A
off
a u̇adt′ (74)
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and then that ω = −ıAoff. The non-abelian gauge potential of the weak adiabatic regime
generates a Lorentz connection.

Finally the emergent geometry is described by a metric associated with the abelian gauge
potential 1

2 Ã ∈ Ω1(MΛ,R) and a Lorentz connection defined by a the non-abelian gauge poten-
tial Aoff ∈ Ω1(MΛ, sl(2,C)). In [31], it is proved that gravity in noncommutative space needs
to extend the gauge symmetry from SL(2,C) to GL(2,C), adding a U(1)-gauge potential to the
Lorentz connection. This one is in the present model the Berry phase generator Ã. This gauge
theory in MΛ provides then from the Lorentz connection during the central extension of the
symmetry group needed by the noncommutative origin of the gravity.

The curvature tensor RIJ
ab is obtained by

R =
1
2

RIJ
abD(LIJ)dua ∧ dub = dω + ω ∧ ω (75)

and is related to the curving of the two-connection of PΛ (see [14, 29, 30]): B = dA− A ∧
A = −R + 1

2 F̃ (where the Berry curvature F̃ = d Ã is the fake curvature of the two-connection).
Since 〈〈Λ(x)|Xi|Λ〉〉 = xi (with minimal dispersion

∑
i(ΔΛXi)2), |Λ(x)〉〉 can be viewed as a

fermion state strongly localised at x. In this strongly localised state, Uω appears as the evolution
operator of the fermion’s spin. The dynamics of the spin is then governed by the Hamiltonian
−ıωau̇a. This is in accordance with previous results concerning the dynamics of localised qubit
in curved spacetimes [33] (a detailed study of this spin dynamics can be found in [33]). The
localised qubit model comes from a WKB analysis. We find the heuristic argument of the
introduction, the (weak) adiabatic approximation at the spacetime microscopic scale (i.e. in a
quasi-coherent state) is similar to the semi-classical limit at the spacetime macroscopic scale.

At this stage, the details of the emergent geometry depends on the separable or entangled
nature of |Λ〉〉.

3.1.1. Separable quasi-coherent state case. In this section we suppose that the quasi-
coherent state is separable: |Λ(x)〉〉 = |0x〉 ⊗ |λ0(x)〉 ∈ C2 ⊗H. In that case ρΛ = |0x〉〈0x| is
not invertible, and is its own pseudo-inverse. We have then

A = −ı|d0x〉〈0x| − ı〈λ0|d|λ0〉|0x〉〈0x| (76)

(due to the non-invertible character of ρΛ this expression is a specific gauge choice of A, see
[14] for a discussion about the gauge changes of gauge two-potentials). It follows that

Ã = trA = −ı〈0x|d|0x〉 − ı〈λ0|d|λ0〉 (77)

= A (78)

which defines then the same metric than the strong adiabatic regime.
Let |1x〉 ∈ C2 be a state orthogonal to |0x〉 (forming both a basis of C2).

A
off = A− 1

2
A (79)

=
ı

2
〈〈Λ|d|Λ〉〉(|1x〉〈1x| − |0x〉〈0x|)− ı〈1x|d|0x〉|1x〉〈0x|. (80)

Let |ax〉 = a0
x|0〉+ aa

x|1〉 be the decomposition of the x-dependent basis into the canonical
basis of C2. We choose |1x〉 = 0̄1

x|0〉 − 0̄0
x|1〉. In this canonical basis we have
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Aoff = − ı

2

(
0̄0

xd00
x − 0̄1

xd01
x 20̄1

xd00
x

20̄0
xd01

x −0̄0
xd00

x + 0̄1
xd01

x

)

− ı

2
〈λ0|d|λ0〉

(
|00

x|2 − |01
x|2 200

x0̄1
x

20̄0
x01

x |01
x|2 − |00

x|2
)

(81)

= − ı

2

(
〈〈Λ|σ3d|Λ〉〉 〈〈Λ|(σ1 − ıσ2)d|Λ〉〉

〈〈Λ|(σ1 + ıσ2)d|Λ〉〉 −〈〈Λ|σ3d|Λ〉〉

)
. (82)

It follows that the Lorentz connection is

ωi j
a = −εi j

k Re〈〈Λ|σk∂a|Λ〉〉 (83)

ω0i
a = Im〈〈Λ|σi∂a|Λ〉〉. (84)

3.1.2. Entangled quasi-coherent state case. Now we suppose that the quasi-coherent state is
entangled and we write |Λ〉〉 = |0〉 ⊗ |Λ0〉+ |1〉 ⊗ |Λ1〉 = (|Λ0〉|Λ1〉) in the canonical basis of
C2. We have then

ρΛ =

(
〈Λ0|Λ0〉 〈Λ1|Λ0〉
〈Λ0|Λ1〉 〈Λ1|Λ1〉

)
(85)

ρ−1
Λ =

1
|Λ|

(
〈Λ1|Λ1〉 −〈Λ1|Λ0〉
−〈Λ0|Λ1〉 〈Λ0|Λ0〉

)
(86)

with |Λ| = det ρΛ �= 0 because |Λ〉〉 is entangled. It follows that

A = −ı trH|dΛ〉〉〈〈Λ|ρ−1
Λ (87)

= −ı
(
〈Λ0

∗|d|Λ0〉 〈Λ1
∗|d|Λ0〉

〈Λ0
∗|d|Λ1〉 〈Λ1

∗|d|Λ1〉

)
(88)

where the dual quasi-energy state 〈〈Λ∗| is defined by

〈Λ0
∗| =

1
|Λ| (〈Λ

1|Λ1〉〈Λ0| − 〈Λ0|Λ1〉〈Λ1|) (89)

〈Λ1
∗| =

1
|Λ| (−〈Λ

1|Λ0〉〈Λ0|+ 〈Λ0|Λ0〉〈Λ1|). (90)

Note that (〈Λ0
∗|, 〈Λ1

∗|) is bi-orthogonal to (|Λ0〉, |Λ1〉), i.e. 〈Λα
∗ |Λβ〉 = δαβ . Equation (87) is then

similar to a non-abelian geometric phase generator associated with a non-Hermitian Hamilto-
nian (see for example [32], and see [33] for an application to a localised spin adiabatically
transported in a curved spacetime). The difference is that here the dissipative process onto the
spin is not induced by the non-selfadjointness of the spin Hamiltonian but by the entanglement
between the spin with the noncommutative manifold.

It follows that the metric is defined with 1
2 Ã = 1

2 trA = − ı
2〈〈Λ∗|d|Λ〉〉. When the den-

sity matrix is the microcanonical distribution ρΛ = 1
2 id (|Λ〉〉 is maximally entangled) then

1
2 Ã = A and the metric is the same than in the strong adiabatic regime. Aoff = A− 1

2 Ã and by
comparison with equation (11) the Lorentz connection is
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ωi j
a = −εi j

k Re〈〈Λ∗|σk∂a|Λ〉〉 (91)

ω0i
a = Im〈〈Λ∗|σi∂a|Λ〉〉. (92)

The expressions in the two cases are totally similar, with in the separable case 〈〈Λ∗| ≡
〈〈Λ|.

3.2. Emergent geometry: Christoffel symbols and torsion

The tetrads of the emergent geometry have be found in section 2.4 and the Lorentz connection
have be found in the previous section. We are now able to compute the Christoffel symbols of
the emergent geometry:

Γμ
0ν = 0 (93)

Γ0
b0 = ω0

b jẽ
j
0 (94)

Γa
b0 = Ξa

e

(
ee

i∂bẽi
0 + ee

i ω
i
b0 + ee

i ω
i
b jẽ

j
0

)
(95)

Γ0
bc = ω0

b jẽ
j
c (96)

Γa
bc = Ξa

e

(
ee

i ∂bẽi
c + ee

iω
i
b jẽ

j
c

)
(97)

where Ξ is the inverse matrix of (ea
i ẽi

b) (since ea
i ẽi

b �= δa
b , it is necessary to renormalise the

product between triads and dual triads) and with

ẽi
a =

∂xi

∂ua
ea

i = εi j
l〈〈Λ|σl ⊗ |X − x|2|Λ〉〉γab ∂x j

∂ub

ea
0 =

ı

2
γab〈〈Λ∗|∂b|Λ〉〉 ẽi

0 =
ı

2
γab〈〈Λ∗|∂b|Λ〉〉

∂xi

∂ua
.

(98)

We see that the emergent geometry is in general not torsion free: Tα
βγ = Γα

βγ − Γα
γβ �= 0. More

precisely, since εi j
kσ

k = 1
2ı [σ

i, σ j] we have

Ti
bc =

1
2

Im tr
(
[σi, τc]Ab − [σi, τb]Ac

)
(99)

=
1
2

Im tr
(
σi([τc,Ab] − [τb,Ac])

)
(100)

T0
bc = Im tr (τbAc − τcAb) (101)

T0
b0 = −1

2
Im tr(AAb) (102)

Ti
b0 =

1
2
∂bAi − Im tr(σiAb) +

1
4

Im tr
(
[σi, A]Ab

)
(103)

with τa ≡ σi
∂xi

∂ua , A ≡ γabAaτb, Ai ≡ γabAa
∂xi

∂ub and Ta
βγ = Ξa

eee
i T

i
βγ .

Since these formulae are strongly dependent on the spin degree of freedom of the fermionic
string, we can think that the origin of this non-zero torsion is the same than in Einstein–
Cartan theory. By consideringΓa

b0 = Ta
b0, we see that this part of the torsion essentially depends

on two elements: the Lorentz connection (which is by construction related to the effects of the
spin of the fermionic string) and derivatives of Ã (which permits to think that the torsion is
related to F̃). In section 4, we will see that the effects of the torsion in some examples are
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consistent with the usual interpretation of the Berry curvature as a pseudo magnetic field in
MΛ. In [21], a torsion on a quantum spacetime described by the IKKT matrix model is consid-
ered at the semi-classical limit. A comparison between this torsion and the one of the present
work can found appendix B.3.

The extrinsic curvature of MΛ (see [25, 26]) is Kab = 1
2 (∂aAb − Γc

baAc + ∂bAa − Γc
abAc).

And in a same way, we can compute the Riemann tensor with:

R0
0cd = R0

jcdẽ j
0 + R0

0cd (104)

R0
bcd = R0

jcdẽ j
b (105)

Ra
0cd = ea

0R0
jcdẽ j

0 + Ξa
e(ee

i R
i
0cd + ee

i Ri
jcdẽ j

0) + ea
0R0

0cd

)
(106)

Ra
bcd = ea

0R0
jcdẽ j

b + Ξa
eee

i Ri
jcdẽ j

b (107)

with RI
Jcd =

[
∂cωd − ∂dωc +

1
2 [ωc,ωd]

]I
J
.

3.3. Generalisation

Until now we have considered an algebra X of three dimensions, involving an eigenmanifold
MΛ of two dimensions. To obtain a three dimensional eigenmanifold it is necessary to con-
sider an algebra with four generators. Moreover we have considered only time independent
generators {Xi}, but in some cases these operators can be time dependent with fast evolutions
hampering the use of an adiabatic limit. In fact these two questions are related. To apply an
adiabatic limit with fast evolutions, we use the Schrödinger–Koopman approach [35] in which
the degrees of freedom of the fast evolution becomes new quantum variables associated with
a new observable, which is here a fourth coordinate operator X4. With this one, we can have a
three dimensional eigenmanifold. It is natural than X4 emerges from the dynamics of {Xi}i=1,2,3

without introducing another operator. We start with a quantum space M of three dimensions
(generated by {Xi}i=1,2,3), which defines a three dimensional classical space MΛ, the fourth
operator X4 resulting from the inner dynamics of M . In this approach, the time dimension is
split into a time of the slow evolution which remains classical, and a time of the fast evolution
which is quantised as X4. So the signature of the new embedding spacetime is (+,−,−,−,+).
As interpreted in section 2.5, t the time of slow evolutions can be viewed as the time indicated
by the clock of the ideal Galilean observer. X4 as the manifestation of the fast inner evolution
of M can be interpreted as a quantum time observable.

We have considered only massless fermions in the previous sections. With massive
fermions, in the Weyl representation considered here, the evolution of the state |ψ〉〉 is submit-
ted to fast chiral oscillations. We can also used the same approach to treat this fast oscillations
by introducing a quantum variable θ on the oscillation phase circle S1 and an associated fourth
operator −ıω∂θ (where ω/2 is the mass) which can be interpreted as the coordinate operator
on a compact dimension.

These two generalisations are treated in details in appendix C. An interesting fact with the
generalisation to massive fermions, is that the approach deals not only with the ground quasi-
energy state, solution of �Dx|Λ0〉〉 = 0, as in the previous sections, but also with generalised
excited states, solutions of �Dx|Λn〉〉 = nω|Λn〉〉, where n ∈ N defines a mode of chiral oscilla-
tions. As |Λ0〉〉 these states define classical geometries (MΛ,n, gn,ωn) (eigenmanifold, spacetime
metric, Lorentz connection) in the same manner that in the previous sections. We can interpret
(MΛ,n, gn,ωn) as the geometry ‘warped’ by the mass ω of the test particle when this one is in
the mode n of chiral oscillations. The justification of the use of the excited states can be found
in appendix C.2.
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4. Examples

Now we apply the formalism developed in the previous sections to specific examples of Lie
algebrasX. The structure of X is defined by the contents of the spacetime in the neighbourhood
of the local Galilean observer, but this is not the subject of this paper, where we suppose that
X is previously known.

The noncommutative manifold M defines a quantum spacetime (with no quantisation of
time). To compare it with the usual theory of gravity (and then with classical geometries), the
quasi-coherent state, as being the quantum state of M closest to a classical state (since it min-
imises the quantum dispersion), provides the classical geometry closest to M . This geometry
is described by three classical entities:

• The eigenmanifold MΛ, described by the set of noncommutative eigenvalues E(x) = xiσi:
MΛ = {x ∈ R3, det(σi ⊗ Xi − E(x)) = 0};

• The metric gμν on MΛ, provided by the derivatives of the associated eigenvector (the quasi-
coherent state):

g00 = 1− ÂaÂbγ
ab with Âa = 〈〈Λ∗|∂aΛ〉〉 (108)

g0a = Âa (109)

gab = γab = 〈〈∂aΛ|�D2
x|∂bΛ〉〉 (110)

• The Lorentz connection ωIJ
a (or equivalently the Christoffel symbols Γμ

ρν), defined with
〈〈Λ∗|σi|∂aΛ〉〉.

Since the Lorentz connection does not correspond to the Levi-Civita connection associated
with gμν , the geometry is not torsion free (Γμ

ρν �= Γμ
νρ). This is the geometry defined by the

classical quantities (MΛ, gμν,ωIJ
a ) that we call emergent geometry, since it emerges from the

purely quantum eigenequation �Dx|Λ〉〉 = 0. In the following examples, we solve this equation
for different models of M (different algebras X) to compute these classical geometric enti-
ties. In the spirit of the meaning of the adiabatic transport of the probe brane, the geometry
can be revealed by the movement of a test classical particle. A useful manner to illustrate the
emergent geometry (MΛ, gμν ,ωIJ

a ) consists then to draw the involved geodesics. Due to the
non vanishing torsion Tμ

ρν = Γμ
ρν − Γμ

νρ, there are two notions of geodesics. The minimising
geodesics are defined as curves on MΛ × R which are of minimal length (with respect to gμν)
between two any closed points. Since γab is the metric induced by the embedding of MΛ,
these ones are obvious with regard to the shape of MΛ in R3. The auto-parallel geodesics are
defined as curves on MΛ × R such that the tangent vectors at any two infinitesimally closed
points be parallel. They are computed with the non symmetric Christoffel symbols Γμ

νρ. In
torsion free geometry, the two notions are the same. The comparison of the auto-parallel
geodesics with the minimising geodesics provide then the direct effect of the torsion which
is the main souvenir of the quantum nature of M in the emergent classical geometry of the
quasi-coherent picture. The deviation of the geodesics by the torsion can be then interpreted
as the irreducible spacetime quantum effect, since this one remains in the state closest to a
classical one.

The methodology to treat a concrete example is the following. After the definition of
the algebra X defining the quantum spacetime R×M , we compute the quantum entities
(|Λ〉〉, Â,A) with the quasi-coherent state solution of �Dx|Λ〉〉 = 0 (or its generalisation for
excited states in the case a massive fermion). Â and A are respectively geometric phase gener-
ators of the strong and weak adiabatic transports. The three kinds of data (|Λ〉〉, Â,A) encode
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the behaviour of the quantum spacetime R×M at the adiabatic limit. Since this behaviour is
the quantum regime closest to a classical one, we can compute the associated classical entities
(MΛ, gμν ,ωIJ

a ) and study with the auto-parallel geodesics the effects of the torsion, signature
of the quantum nature of M surviving in the more classical regime.

4.1. The noncommutative plane

We consider the case where M is defined by X1 = a+a+

2 , X2 = a−a+

2ı and X3 = 0 where a and
a+ are the harmonic oscillator annihilation and creation operators (dim H = +∞).

4.1.1. Ground state. The solutions of equation (14) are (see appendix D.1.1)

MΛ = R
2 = {(x1, x2, 0), x1 = Re(α), x2 = Im(α)}α∈C (111)

|Λ(α)〉〉 = |0〉 ⊗ |α〉 (112)

where |α〉 = e−|α|
2/2
∑+∞

n=0
αn√

n!
|n〉 is an harmonic oscillator coherent state [7, 27]. It follows that

A = −ı〈α|∂|α〉 − ı〈α|∂̄|α〉 (where ∂ and ∂̄ denote the Dolbeault derivative operators).

∂

∂ᾱ
|α〉 = −α

2
|α〉 (113)

∂

∂α
|α〉 = − ᾱ

2
|α〉 + e−|α|

2/2
+∞∑
n=1

αn−1

√
(n− 1)!

|n〉 (114)

= − ᾱ

2
|α〉 + a+|α〉. (115)

We have then

〈α|∂̄|α〉 = −α

2
dᾱ (116)

〈α|∂|α〉 =
(
− ᾱ

2
+ 〈α|a+|α〉

)
dα =

ᾱ

2
dα (117)

and finally

A = −ı ᾱ dα− α dᾱ
2

= x1 dx2 − x2 dx1 (118)

F = ∂A + ∂̄A =
ı

2
dα ∧ dᾱ = dx1 ∧ dx2. (119)

The metric of R×MΛ is then

ds2 =
(

1−
(
x1
)2 −

(
x2
)2
)

dt2 + 2x1 dx2 dt − 2x2 dx1 dt − d
(
x1
)2 − d

(
x2
)2
.

(120)

Moreover we have simply A = A|0〉〈0| and Aoff = A
2σ

3, and the unique non-zero component
of the Lorentz connection is ω03

a = Aa.
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The triads and the dual triads are

e0
0 = 1 e0

i = 0 e1
0 = −x2 e2

0 = x1 ea
i =

1
2
εi

a

ẽ0
0 = 1 ẽ0

a = 0 ẽ1
0 = x2 ẽ2

0 = −x1 ẽi
a = δi

a.
(121)

The non-zero Christoffel symbols are only Γ1
20 = −Γ2

10 = 1. It follows that the (auto-parallel)
geodesic equations are⎧⎪⎪⎨

⎪⎪⎩
ẗ = 0

ẍ1 + ẋ2 ṫ = 0

ẍ2 − ẋ1 ṫ = 0

(122)

(where the dots denote here the derivative with respect to the proper time s). It follows that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t(s) = βs

x1(s) =
v0

β
sin(βs + ϕ) + x1(0)− ẋ2(0)

β

x2(s) = −v0

β
cos(βs + ϕ) + x2(0)− ẋ1(0)

β

(123)

with v0 =
√

ẋ1(0) + ẋ2(0) and tan ϕ = ẋ2(0)
ẋ1(0)

. The geodesics on MΛ are then circles: the effect
of the non-zero torsion Ta

b0 = Γa
b0 twists the geodesics.

The geodesic equations can be rewritten as ẍa = βFa
bẋb which are the equations of a clas-

sical particle of charge −β moving on the plane MΛ where lives a normal magnetic field F,
in accordance with the usual interpretation of the Berry curvature. This example is interesting
since because of the zero curvature (MΛ is flat) it exhibits a pure effect of torsion. In the gen-
eral case, the torsion has complicated expressions equations (99)–(103) due to the non-trivial
geometry and the non-trivial operator-valued Berry phase generator. But in this pure torsion
example, the torsion reduced to be Ta

b0 = Fa
b the Berry curvature, providing an interpretation

of this one in this matrix model.

4.1.2. Excited states. We consider now a fermion of mass ω
2 and then the excited states

of �Dx (see appendix C.2). The solutions of �Dx|Λp,n〉〉 = pω|Λp,n〉〉 with p ∈ Z∗ are (see
appendix D.1.2):

MΛ,p,n = R
2 = {(x1, x2,

√
p2ω2 − n), x1 = Re(α), x2 = Im(α)}α∈C (124)

with n ∈ {0, 1, . . . , �p2ω2�} which is the degeneracy index of the Floquet value pω.

|Λn〉〉 =
1√
2

(|0〉 ⊗ |n〉α + |1〉 ⊗ |n − 1〉α) (125)

(the excited quasi-coherent states do not depend of p), where |n〉α = (a+−ᾱ)n
√

n!
|α〉 (α = x1 + ıx2)

(in the case n = 0, we have |Λ0(w = 1)〉〉 = |0〉 ⊗ |α〉). The excited quasi-coherent states are
maximally entangled and the density matrices of the spin are the microcanonical distribution
ρΛ,n = 1

2 id (n �= 0).
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∂

∂α
|n〉α = − ᾱ

2
|n〉α + a+|n〉α (126)

=
ᾱ

2
|n〉α + b+

α |n〉α (127)

=
ᾱ

2
|n〉α +

√
n + 1|n + 1〉α (128)

∂

∂ᾱ
|n〉α = −

√
n(a+ − ᾱ)n−1

√
(n− 1)!

|α〉+ (a+ − ᾱ)n

√
n!

∂

∂ᾱ
|α〉 (129)

= −
√

n|n− 1〉α −
α

2
|n〉α. (130)

It follows that the Berry phase generator is

An = −ı〈〈Λn|d|Λn〉〉 (131)

= −ı ᾱ dα− α dᾱ
2

(132)

= x1 dx2 − x2 dx1 (133)

and then the metric of MΛ,n,p × R are the same than for the ground state.
〈〈Λn∗| =

√
2(〈0| ⊗ α〈n|+ 〈1| ⊗ α〈n− 1|), and then

〈〈Λn∗|σi ∂

∂α
|Λn〉〉 =

√
n〈0|σi|1〉 (134)

〈〈Λn∗|σi ∂

∂ᾱ
|Λn〉〉 = −

√
n〈1|σi|0〉. (135)

It follows that

〈〈Λn∗|σi∂1|Λn〉〉 =
√

n
2

(〈0|σi|1〉 − 〈1|σi|0〉) (136)

〈〈Λn∗|σi∂2|Λn〉〉 = ı

√
n

2
(〈0|σi|1〉+ 〈1|σi|0〉). (137)

The Lorentz connection is then ωi j
n = 0, ω01

n =
√

n dx2, ω02
n = −

√
n dx1 and ω03

n = 0. Finally
the non-zero Christoffel symbols are

Γ0
10 =

√
nx1 Γ0

20 =
√

nx2

Γ0
12 = −

√
n Γ0

21 =
√

n

Γ2
10 = −1 +

√
n Γ1

20 = 1−
√

n

. (138)

The (auto-parallel) geodesics are then solutions of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẗ +

√
n

2
d|x|2

ds
ṫ = 0

ẍ1 + (1−
√

n)ẋ2 ṫ = 0

ẍ2 − (1−
√

n)ẋ1 ṫ = 0

. (139)
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Figure 1. Geodesics in the emerging gravity for the noncommutative plane for n = 0 to
n = 10 (left) and for n = 11, 12 and 20 (right) with x1(0) = x2(0) = 0, ẋ1(0) = ẋ2(0) =
0.4 and β = 1.

The geodesics are straight lines on the plane MΛ for n = 1. In that case, the fact to find usual
geodesics is accidental, resulting from the killing of the contribution to the torsion of A by the
contribution of Aoff. We recall that n is a label defining an excited state, which is, in accordance
with the interpretation of appendix C.2, a quasi-coherent state in a mode of chiral oscillations
of the massive fermion.

We have ṫ = β e−
√

n
2 |x(s)|2 and the geodesics in the plane are drawn figure 1. For small values

of |x|2, the effect of the torsion is anew similar to that of a magnetic field normal to MΛ. For
large values of |x|2 (with n �= 0), ẍa � 0 and the geodesics become straight lines (the effect of
the torsion becomes negligible). MΛ × R is the emergent spacetime at the microscopic scale.
But its space part is non-compact, it is then consistent than at large distance on MΛ (reaching
the macroscopic scale) we find the behaviour of a (torsion free) classical spacetime. This is
for large values of |x|2 that we find the purely classical behaviour. We can interpret this by
the structure of the coherent state |α〉 = e−|α|

2/2
∑+∞

m=0
αm√

m!
|m〉. For small values of |α|, a few

number of modes |m〉 are significantly populated. We can roughly identify each mode to a

string linking two D0-branes of the stack, in the sense than a =

⎛
⎜⎜⎜⎜⎝

. . .
0
√

m
0 0

. . .

⎞
⎟⎟⎟⎟⎠ can be

interpreted as representing a string of oscillation radius
√

m linking two D0-branes at 0 in the
complex plane. For |α| small, the number of strings contributing to the coherent geometry is
then small. Conversely, for |α| large the number of modes significantly populated in |α〉 is
large and the number of strings contributing to the coherent geometry is large. In this sense,
the macroscopic limit is identified with |x| →∞.
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4.2. The noncommutative Minkowski space

We consider anew the noncommutative plane but with time dependent operators: X1(t) =
w(t) a+a+

2 , X2(t) = w(t) a−a+

2ı and X3 = 0. The dynamics of M is described by

Ẍi − [X j, [Xi, X j]] = 0 ⇐⇒ ẅ = 0 (140)

⇐⇒
{
ẇ = p

ṗ = 0
(141)

p being a constant of motion, we can consider it as a parameter. Because we want to con-
sider the case of a fast evolution of M , p is large. We promote w as a new quantum variable
associated with a fourth coordinate observable defined as being the Koopman generator (see

appendix C.1). This one is X4 = −ıp ∂
∂w

, with Sp(X4) = R (X4 e−ıx
4 w

p = x4 e−ıx
4 w

p ), in the
Hilbert space L2(R, �(w)dw). Since the phase space is not compact, we do not have a natu-

ral choice for the density �. In order to the Koopman eigenfunctions e−ıx
4 w

p be normalisable, it
needs that

∫ +∞
−∞ �(w)dw = 1. Physically, the emergent geometry is valid in the neighbourhood

measured by the Galilean observer in which the synchronous coordinates are defined. We can
then consider that � is uniform on a domain corresponding to this neighbourhood and outside
it decreases fastly.

We consider the total Dirac operator �DK
x = σI ⊗ (XI − xI) (with I ∈ {1, 2, 3, 4} and

σ4 = id2). The quasi-coherent states are then such that

�DK
x |Λn〉〉〉 = 0 ⇐⇒ ıp

∂

∂w
|Λn(w)〉〉 = �Dx(w)|Λn(w)〉〉 (142)

⇐⇒ Te
←
− ı

p

∫ w
1 �Dx (w)dw|Λn(w = 1)〉〉 (143)

with

�Dx(w) =

(
−x3 − x4 wa+ − ᾱ
wa− α x3 − x4

)
(144)

and with by continuity for p→ 0:

�Dx(w = 1)|Λn(w = 1)〉〉 = 0. (145)

The solutions of this equation are (see appendix D.1.2):

MΛ,n = {x ∈ R
4, x4 = ±

√
(x3)2 + n} n ∈ N (146)

|Λn(w = 1)〉〉 = 1√
2

(|0〉 ⊗ |n〉α + |1〉 ⊗ |n− 1〉α) (147)

where |n〉α = (a+−ᾱ)n
√

n!
|α〉 (α = x1 + ıx2) (in the case n = 0, we have |Λ0(w = 1)〉〉 = |0〉 ⊗

|α〉). The quasi-coherent eigenspace is degenerate, and it follows that we have a collection of
disconnected three dimensional eigenmanifolds {MΛ,n}n∈N in R4. The hypersurfaces MΛ,n can
be viewed as ‘parallel’ brane worlds in the ‘bulk’ R4 with matter confined onto them.

MΛ,n is parametrised by R3 � u �→ x(u) = (u1, u2, u3,±
√

(u3)2 + n) ∈ R4. The metric of
MΛ is then
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d�2
n = −

∂xI

∂ua

∂xJ

∂ub
ηIJ dua dub (148)

= d(u1)2 + d(u2)2 +
d(u3)2

1 + (u3)2/n
. (149)

For n = 0 we have d�2
0 = d(u1)2 + d(u2)2, and MΛ,0 can be considered as being two dimen-

sional and is the eigenmanifold of the static noncommutative plane treated at section 4.1.
limn→+∞ MΛ,n is the flat space, MΛ,n is also the flat space with the coordinates change ũ3 =√

n arsinh(u3/
√

n).
The Berry phase generator is

An = −ı〈〈〈Λn|d|Λn〉〉〉 (150)

= −ı
∫ +∞

−∞
〈〈Λn|Ux(w)−1dUx(w)|Λn〉〉�(w)dw − ı〈〈Λn|d|Λn〉〉 (151)

with Ux(w) = Te
←
− ı

p

∫ w
1 �Dx(w)dw and by denoting |Λn(w = 1)〉〉 simply by |Λn〉〉.

−ı〈〈Λn|d|Λn〉〉 = −ı
ᾱ dα− α dᾱ

2
= u1 du2 − u2 du1. (152)

This part is the Berry phase generator of the static noncommutative plane.

�Dx(w) = w

(
0 a+

a 0

)
− σI xI ⇒ ∂ �Dx(w)

∂xI
= −σI . (153)

We have then

Ux(w)−1dUx(w) =
ı

p
(w − 1)σI

∂xI

∂ua
dua +O(1/p2) (154)

〈〈Λn|σI |Λn〉〉 = tr σI , it follows that

−ı
∫ +∞

−∞
〈〈Λn|Ux(w)−1dUx(w)|Λn〉〉�(w)dw = ±C

p
u3√

(u3)2 + n
du3

+O(1/p2) (155)

where C =
∫ +∞
−∞ (w − 1)�(w)dw. Finally:

An = u1 du2 − u2 du1 ± C
p

sinh(ũ3/
√

n)dũ3 +O(1/p2). (156)

The Berry curvature is only F = du1 ∧ du2 (independent of n). Finally the metric of the
spacetime MΛ,n × R is

ds2
n = (1− (u1)2 − (u2)2)dt2 + 2u1 du2 dt − 2u2 du1 dt

∓ 2C
p

sinh(ũ3/
√

n)dũ3 dt − d(u1)2 − d(u2)2 − d(ũ3)2 +O(1/p2) (157)
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〈〈〈Λn∗|σi∂a|Λn〉〉〉 =
∫ +∞

−∞
〈〈Λn∗|U−1

x (w)σi ∂Ux(w)
∂xJ

|Λn〉〉�(w)dw
∂xJ

∂ua

+ 〈〈Λn∗|σi∂a|Λn〉〉 (158)

=
ıC
p

tr(σiσJ)
∂xJ

∂ua
+ 〈〈Λn∗|σi∂a|Λn〉〉+O(1/p2) (159)

=
ıC
p

∂xi

∂ua
+ 〈〈Λn∗|σi∂a|Λn〉〉 +O(1/p2) (160)

=
ıC
p
δi

a + 〈〈Λn∗|σi∂a|Λn〉〉 +O(1/p2). (161)

The Lorentz connection is then (at order 1/p2)

ωi j
n = 0 ω03

n =
C
p

du3 (162)

ω01
n =

C
p

du1 +
√

n du2 ω02
n = −

√
n du1 +

C
p

du2. (163)

The nonzero Christoffel symbols are then (at order 1/p2)

Γ0
10 =

√
nu1 +

C
p

u2 Γ0
20 =

√
nu2 − C

p
u1

Γ1
20 = 1−

√
n Γ2

10 = −1 +
√

n

Γ0
21 =

√
n Γ0

12 = −
√

n

Γ1
10 = −

C
p

Γ2
20 = −

C
p

Γ0
11 =

C
p

Γ0
22 =

C
p

Γ3̃
3̃0

= −C
p

cosh(ũ3/
√

n)(1/
√

n + cosh(ũ3/
√

n))

Γ0
3̃3̃

=
C
p

cosh2(ũ3/
√

n).

(164)

Some (auto-parallel) geodesics are drawn figure 2. Anew the effect of the torsion is similar
to the effect of a magnetic field in the direction ∂3̃, the same comments that those of the previous
example occur.

4.3. The fuzzy sphere

4.3.1. Ground state. We consider the case where M is defined by Xi = rJi with r ∈ R+∗ and
(Ji) the angular momentum operators in an irreducible representation (dim H = 2 j + 1). The
solution of equation (14) are (see appendix D.2)

MΛ = {x ∈ R
3, |x| = r j} (165)

|Λ(x)〉〉 = |ζ〉1/2 ⊗ |ζ〉 j (166)
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Figure 2. Geodesics in emergent gravity for a noncommutative Minkowski space (with
p = 100 and C = 1) for different values of n with u1(0) = u2(0) = ũ3(0) = 0, u̇1(0) =
u̇2(0) = 0.4, ˙̃u3(0) = 0.1, t(0) = 0 and ṫ(0) = 1.

with ζ = eıϕ tan θ
2 , the embedding of the sphere MΛ into R3 being

x(θ,ϕ) = r j(sin θ cos ϕ, sin θ sin ϕ, cos θ) (167)

and |ζ〉 j is a Perelomov su(2) coherent state [7, 27]. The abelian gauge potential is then

A = −ı(1/2〈ζ|d|ζ〉1/2 + j〈ζ|d|ζ〉 j) (168)

with d = ∂ + ∂̄.

d|ζ〉 j = − j
ζ̄ dζ + ζ dζ̄

1 + |ζ|2 |ζ〉 j

+
1

(1 + |ζ|2) j

j−1∑
m=− j

√
(2 j)!

( j + m)!( j− m)!
( j− m)ζ j−m−1| jm〉dζ (169)

j〈ζ|d|ζ〉 j = − j
ζ̄dζ + ζdζ̄

1 + |ζ|2 +
ζ̄dζ

1 + |ζ|2
j−1∑

m=− j

(2 j)!
( j + m)!( j− m− 1)!

|ζ|2( j−m−1).

(170)

But by the binomial theorem:

j−1∑
m=− j

(2 j)!
( j + m)!( j− m− 1)!

|ζ|2( j−m−1) =

2 j−1∑
m=0

(2 j)!
m!(2 j− m− 1)!

|ζ|2(2 j−1−m)

(171)

= 2 j(1 + |ζ|2)2 j−1. (172)
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It follows that

j〈ζ|d|ζ〉 j = − j
ζ̄ dζ + ζ dζ̄

1 + |ζ|2 + 2 j
ζ̄ dζ

1 + |ζ|2 = j
ζ̄ dζ − ζ dζ̄

1 + |ζ|2 . (173)

Finally

A = −ı
(

1
2
+ j

)
ζ̄ dζ − ζ dζ̄

1 + |ζ|2 = (2 j + 1)sin2 θ

2
dϕ. (174)

The Berry curvature is then

Fθϕ = ∂θAϕ =
2 j + 1

2
sin θ (175)

γab dua dub = (r j)2(dθ2 + sin2 θ dϕ2) is the usual metric of a sphere of radius r j. R×MΛ is
endowed with the metric

ds2 =

(
1−

(
2 j + 1

2r j

)2

tan2 θ

2

)
dt2 + 2(2 j + 1)sin2 θ

2
dϕ dt

− (r j)2(dθ2 + sin2 θ dϕ2). (176)

The triads are then

ẽ1
θ = r j cos θ cos ϕ ẽ2

θ = r j cos θ sin ϕ ẽ3
θ = −r j sin θ

ẽ1
ϕ = −r j sin θ sin ϕ ẽ2

ϕ = r j sin θ cos ϕ ẽ3
ϕ = 0

(177)

and eθi = θi jgθθ ∂x j

∂θ
and eϕi = θi jgϕϕ ∂x j

∂ϕ
are then

eθ1 = r sin ϕ eθ2 = −r cos ϕ eθ3 = 0

eϕ1 = r cos ϕ cotan θ eϕ2 = r sin ϕ cotan θ eϕ3 = −r
(178)

and

eϕ0 =
2 j + 1
4(r j)2

(
tan2 θ

2
+ 1

)
eθ0 = 0

ẽ1
0 =

2 j + 1
2r j

tan
θ

2
sin ϕ ẽ1

0 = −2 j + 1
2r j

tan
θ

2
cos ϕ ẽ3

0 = 0

(179)

〈〈Λ|σi d|Λ〉〉 = 1/2〈ζ|σid|ζ〉1/2 + 1/2〈ζ|σi|ζ〉1/2 j〈ζ|d|ζ〉 j. j〈ζ|d|ζ〉 j = 2ı j sin2 θ
2 dϕ,

1/2〈ζ|�σ|ζ〉1/2 = �n and

1/2〈ζ|σ1 d|ζ〉1/2 = (cos ϕ cos θ + ı sin ϕ)
dθ
2

+ ı eıϕ sin θ
dϕ
2

(180)

1/2〈ζ|σ2d|ζ〉1/2 = (sin ϕ cos θ − ı cos ϕ)
dθ
2

+ eıϕ sin θ
dϕ
2

(181)

1/2〈ζ|σ3d|ζ〉1/2 = − sin θ
dθ
2
− ı sin2 θ

2
dϕ. (182)

The Lorentz connection is then
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ω12 = sin θ dθ (183)

ω23 = − cos ϕ cos θ dθ + sin ϕ sin θ dϕ (184)

ω31 = − sin ϕ cos θ dθ − cos ϕ sin θ dϕ (185)

ω01 = sin ϕ dθ + 2 cos ϕ sin θ

(
1
2
+ 2 j sin2 θ

2

)
dϕ (186)

ω02 = − cos ϕ dθ + 2 sin ϕ sin θ

(
1
2
+ 2 j sin2 θ

2

)
dϕ (187)

ω03 = 2 sin2 θ

2
(−1 + 2 j cos θ)dϕ (188)

Ξθ
ϕ = − 1

r2 j sin θ, Ξϕ
θ = 1

r2 j sin θ
and Ξθ

θ = Ξϕ
ϕ = 0, the non zero Christoffel symbols are then

Γ0
θ0 =

2 j + 1
2r j

tan
θ

2
Γ0
θϕ = −Γ0

ϕθ = −r j sin θ

Γθ
ϕ0 = − sin θ

r j
+

2 j + 1
2(r j)2

tan
θ

2
cos θ Γϕ

θ0 =
1

r j sin θ
− 2 j + 1

4(r j)2

1 + tan2 θ
2

sin θ

Γθ
ϕϕ = − cos θ sin θ Γϕ

θϕ = Γϕ
ϕθ = cotan θ

.

(189)

The restriction to the space components corresponds to the Levi-Civita connection on the
sphere. Induced (auto-parallel) geodesics are drawn figures 3 and 4. We find usual geodesics
on a sphere for the thermodynamical limit j→+∞ (the number of D0-branes in the stack is
2 j + 1) where the effects of the nonzero torsion are negligible. The torsion generates a preces-
sion of the classical geodesics (the speed of this precession decreasing with increasing values
of j). In this case, the Berry curvature is equivalent to a radial magnetic field emitted by a
magnetic monopole at the centre of the sphere, in accordance with the observed precession (a
Laplace force normal to the particle trajectory and tangent to the surface of the sphere).

4.3.2. Excited states. We consider now a fermion of mass ω
2 . The solutions of �Dx|Λp,m〉〉 =

pω|Λp,m〉〉 with p ∈ Z∗ are (see appendix D.2):

MΛ,p,m =

{
x ∈ R

3, |x| =
(

2m + 1±
√

(2m + 1)2 − (2 j + 1)2 + 1 +
2pω

r

)
r
2

}

with m ∈ {− j, . . . , j} and |2m + 1| �
√

2 j( j + 1)− pω
r (the case −√ exists only if pω

2r �
j( j + 1)).

|Λm,p〉〉 = D1/2⊗ j(�n)(k0
m,p|0〉 ⊗ | j, m〉+ k1

m,p|1〉 ⊗ | j, m + 1〉) (190)

with

k0
m,p = κ

(
pω
r

+ m + 1− |x|
r

)
(191)

k1
m,p = κ

√
j( j + 1)− m(m + 1) (192)
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Figure 3. Geodesics on the sphere MΛ in emergent gravity of a fuzzy sphere with θ(0) =
π
4 , φ(0) = 0, θ̇(0) = 0.8, φ̇(0) = 0.8, t(0) = 0 and ṫ(0) = 1 for different values of j.

(κ being just a normalisation factor such that ‖kpm‖2 = 1) and

D j(�n) = eıθ(sin ϕJ1−cos ϕJ2) (193)

�n = (sin θ cos ϕ, sin θ sin ϕ, cos θ). MΛ,n,p is then the sphere of R3 of radius:

r j,m,p =

(
2m + 1±

√
(2m + 1)2 − (2 j+ 1)2 + 1 +

2pω
r

)
r
2

(194)

and then d�2
m,p = r2

j,m,p(dθ2 + sin2 θ dϕ2). The density matrix of the spin is then

ρΛ,m,p = D1/2(�n)

(
|k0

m,p|2 0
0 |k1

m,p|2
)

D1/2(�n)† (195)
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Figure 4. Same as figure 3 but with a representation in the complex plane of ζ =
eıϕ tan θ

2 (stereographic projection of the sphere).

with

D1/2(�n) =

⎛
⎜⎝ cos

θ

2
−e−ıϕ sin

θ

2
eıϕ sin

θ

2
cos

θ

2

⎞
⎟⎠ . (196)

It follows that

〈〈Λp,m∗| = 〈〈Λp,m|ρ−1
Λ,p,m (197)

=

(
1

k0
m,p
〈0| ⊗ 〈 j, m|+ 1

k1
m,p
〈1| ⊗ 〈 j, m + 1|

)
D†1/2⊗ j. (198)

The Berry phase generator is then

ıÃp,m = 〈〈Λp,m∗|d|Λp,m〉〉 (199)

= 〈 j, m|D†jdD j| j, m〉+ 〈 j, m + 1|D†jdD j| j, m + 1〉+ 〈0|D†1/2dD1/2|0〉

+ 〈1|D†1/2dD1/2|1〉 (200)

D j = e−ζ̄J+ eln(1+|ζ|2)J3
eζJ− = eζJ− e− ln(1+|ζ|2)J3

e−ζ̄J+ (201)

with ζ = eıϕ tan θ
2 [7, 27]. It follows that

D†j
∂

∂ζ
D j =

ζ̄

1 + |ζ|2 e−ζJ−J3 eζJ− + J− (202)

=
ζ̄

1 + |ζ|2 (J3 − ζJ−) + J− (203)

D†j
∂

∂ζ̄
D j = −

ζ

1 + |ζ|2 eζ̄J+J3 e−ζ̄J+ − J+ (204)

= − ζ

1 + |ζ|2 (J3 − ζ̄J+)− J+ (205)
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(because ∂
∂ζ

(e−ζJ−J3 eζJ− ) = e−ζJ− [J3, J−]eζJ− = −J−). Finally we have

〈 j, m|D†jdD j| j, m〉 = m
ζ̄ dζ − ζ dζ̄

1 + |ζ|2 (206)

and
Ãp,m

2
= − ı

2
(2m + 1)

ζ̄ dζ − ζ dζ̄
1 + |ζ|2 = (2m + 1)sin2 θ

2
dϕ. (207)

The spacetime metric is then

ds2 =

(
1−

(
2m + 1
2r jmp

)2

tan2 θ

2

)
dt2 + 2(2m + 1)sin2 θ

2
dϕ dt

− r2
jmp(dθ2 + sin2 θ dϕ2) (208)

〈〈Λ∗|σi d|Λ〉〉 = 〈〈Λ∗(0)|σiD†jdD j|Λ(0)〉〉+ 〈0|D†1/2σ
idD1/2|0〉

+ 〈1|D†1/2σ
idD1/2|1〉. (209)

Let si
a = 〈〈Λ∗(0)|σiD†j∂aD j|Λ(0)〉〉.

s1
a =

k0
mp

k1
mp
〈 j, m + 1|D†j∂aD j| jm〉+

k1
mp

k0
mp
〈 jm|D†

j∂aD j| j, m + 1〉 (210)

s2
a = ı

k0
mp

k1
mp
〈 j, m + 1|D†j∂aD j| jm〉 − ı

k1
mp

k0
mp
〈 jm|D†j∂aD j| j, m + 1〉 (211)

s3
a = 〈 jm|D†j∂aD j| jm〉 − 〈 j, m + 1|D†j∂aD j| j, m + 1〉 (212)

with

〈 j, m + 1|D†jdD j| jm〉 =
ζ(ζ̄ + 1)
1 + |ζ|2

√
j( j + 1)− m(m + 1)dζ̄ (213)

〈 jm|D†jdD j| j, m + 1〉 = ζ̄(1− ζ)
1 + |ζ|2

√
j( j + 1)− m(m + 1)dζ (214)

and finally

s1
θ =

tan θ
2

2κk0
mp

(
1 +Δk2

mp cos ϕ tan
θ

2
− ı sin ϕ tan

θ

2

)
(215)

s1
ϕ =

ı sin2 θ
2

κk0
mp

(
−Δk2

mp − cos ϕ tan
θ

2
+ ıΔk2

mp sin ϕ tan
θ

2

)
(216)

s2
θ =

ı tan θ
2

2κk0
mp

(
Δk2

mp + cos ϕ tan
θ

2
− ıΔk2

mp sin ϕ tan
θ

2

)
(217)

s2
ϕ =

sin2 θ
2

κk0
mp

(
1 +Δk2

mp cos ϕ tan
θ

2
− ı sin ϕ tan

θ

2

)
(218)
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s3
θ = 0 (219)

s3
ϕ = −2ı sin2 θ

2
(220)

with Δk2
mp = (k0

mp)2 − (k1
mp)2 the difference of populations. The Lorentz connection is then

ω12 = 0 (221)

ω23 = − tan θ
2

2κk0
mp

(
1 +Δk2

mp cos ϕ tan
θ

2

)
dθ +

sin2 θ
2

κk0
mp

sin ϕ tan
θ

2
dϕ (222)

ω31 = −
Δk2

mp

2κk0
mp

sin ϕ tan2 θ

2
dθ − sin2 θ

2

κk0
mp

(
1 +Δk2

mp cos ϕ tan
θ

2

)
dϕ (223)

ω01 = − 1
2κk0

mp
sin ϕ tan2 θ

2
dθ − sin2 θ

2

κk0
mp

(
Δk2

mp + cos ϕ tan
θ

2

)
dϕ

+ sin ϕ dθ + cos ϕ sin θ dϕ (224)

ω02 =
tan θ

2

2κk0
mp

(
Δk2

mp + cos ϕ tan
θ

2

)
dθ − sin2 θ

2

κk0
mp

sin ϕ tan
θ

2
dϕ

− cos ϕ dθ + sin ϕ sin θ dϕ (225)

ω03 = −4 sin2 θ

2
dϕ. (226)

The Lorentz connection of the excited states is then very different from the one of the
ground state. The usual space components of the sphere are not present and very complicated
expressions depending on the population difference Δk2

pm appear and are difficult to interpret.

5. Conclusion

The mean geometry of a quantum spacetime can be revealed by transporting adiabatically a
probe D0-brane (a test particle). The emerging geometry at the microscopic scale is defined
by the push-forward of the quantum averaging map ωΛ of space quantum observables in
the quasi-coherent state. Its dual map, the pull-back of ωΛ appears as the quantisation map.
The Berry connection of the adiabatic transport is the shift vector of the emergent geometry
(which appears as a foliation by spacelike surfaces). The non-abelian part of the operator-
valued Berry connection of the weak adiabatic regime defines the Lorentz connection of the
emergent geometry, which is not torsion free. The effects of this torsion seems to be con-
sistent with the interpretation of the Berry curvature as a pseudo magnetic field. Generalised
quasi-coherent states can be introduced as excited states of the quantum spacetime which corre-
sponds to the Fourier modes of chiral oscillations (implying that massless particles reveal only
the emergent geometry of the spacetime ground state). This paper is focussed on the emergent
geometry at the microscopic scale by transport of fermions, which is related to their spins as
in Einstein–Cartan theory.

It would be interesting to compare with the emergent geometry revealed by transport of
bosons. Indeed, in the case of scalar bosons the quasi-coherent state is eigenvector of the
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non-commutative Laplacian �x = |X − x|2 (see [8]). But we have:

�D2
x = �x +

ı

2
εi j

kσk ⊗ [Xi, X j]. (227)

The analysis in [8] suggests that the geometries described by the eigenvector minimising the
displacement energy is the same in the two cases. At least when the ground quasi-coherent
state of �Dx is separable |Λ(x)〉〉 = |0x〉 ⊗ |λ0(x)〉, we can imagine that |λ0(x)〉 is close to the
quasi-coherent state of �x , maybe up to a gauge change. But for excited states or for an entan-
gled ground state, differences must arise because of the lack of spin degree of freedom in the
bosonic case. In the fermionic case, this one especially ‘feels’ the non-commutative character
of M via ı

2εi j
kσk ⊗ [Xi, X j]. The emergent geometry at the macroscopic level is obtained by

the semi-classical limit (which is equivalent to the thermodynamical limit of infinite number
of strings) and has been studied in a lot of previous papers. We have seen that the two limits are
consistent with each other for the case of the strict adiabatic limit. Is there a decoherence pro-
cess inducing the transition from the emergent geometry at the microscopic level to the one at
the macroscopic level? For the weak adiabatic regime, the answer to this question depends on
the behaviour of A at the semi-classical limit. This one is not obvious and need more analyses.
In a previous work [16] we have proved that if we consider the weak adiabatic limit of some
bipartite quantum systems both with a perturbative expansion, at the second order of pertur-
bation A must be accompanied by several operators involving that the density matrix obeys to
an effective Lindblad equation (encoding decoherence effects). Maybe such corrections occur
in the semi-classical limit of the weak adiabatic transport in the present framework at order
1/N2 (representing the intermediate regime between the purely quantum and classical ones).
But such a study needs to extend the results of [16] (the structure of �Dx is not compatible with
the assumptions used in [16]).

In this paper we have considered only academic models for the algebra X which are totally
analytical. Future works could be dedicated to apply the present adiabatic formalism to more
realistic operators {Xi}i issued from the integration of the equations governing them. For
example in [34] it is shown that such operators exhibit behaviours of higher derivative cor-
rections to the gravity. These ones can maybe then be incorporated in the non-commutative
manifold M and finally in the emergent geometry defined by the quasi-coherent state. But
such an analysis needs the development of specific numerical methods to compute the adiabatic
entities from a numerical simulation of M .

A last question concerns the possibility to observe the consequences of the torsion associ-
ated with the emergent geometry. At the macroscopic scale this question is related to the one
concerning the thermodynamical limit ofA. With another matrix model, in [21] it is shown that
a torsion arises at the cosmic scale and it can be a ‘source’ of dark matter. This torsion has sim-
ilarities with the one introduced in this paper (see appendix B.3). Nevertheless, in the examples
treated section 4, we have seen that the effects of the torsion emerging from the quasi-coherent
state of the quantum spacetime seem disappear at large scale. For the noncommutative plane
or for the noncommutative Minkoswki space, the effects of the torsion exponentially decrease
with the distance to the starting point. For the fuzzy sphere, the effects of the torsion decrease
with the number of strings (at the thermodynamical limit, the geodesics become the usual
geodesics of a sphere). No argument proves that this behaviour is universal, maybe the exam-
ples treated here are too simples. Because the emergent geometry considered in this paper is at
the microscopic level, in the sense of being the classical geometry closest to the quantum one
(by using quasi-coherent states), it might be more relevant to test the effects of the torsion at
the quantum level. Unfortunately, in the treated examples, the extinction of its effects seems
very fast with the increase of the scale. Anew, maybe the examples are too simples and other
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systems maybe can exhibit some effects continuing on a larger scale, since the existence of a
torsion at large scale in a matrix model has been shown in [21].

Data availability statement

No new data were created or analysed in this study.

Appendix A. Weak adiabatic theorem

In the context of the present paper, the weak adiabatic regime physically means that the trans-
port of the probe D0-brane onto MΛ can modify the spin of the fermionic string but not its
space degree of freedom. This is consistent with the interpretation of the quasi-coherent state
|Λ(x)〉〉 which represents a state of a strongly localised fermion at the point x onto the clas-
sical manifold (corresponding to the state of the noncommutative manifold M closest to a
classical one). During a localised transport, the spin of the particle can rotate (Thomas and de
Sitter precessions) but the mean value of the particle position is supposed to follow the path of
the transport. This assumption means that |ψ(t)〉〉 = g(t)|Λ(x(t))〉〉 with g ∈ GL(2,C) (and not
in GL(C2 ⊗H)) and x(t) ∈ MΛ. For the point of view of �Dx = σi ⊗ (Xi − xi) ∈ a⊗ Env(X),
this means that the transport is adiabatic with respect to the noncommutative manifold M (of
observables Env(X)) and not with respect to the spin system (of observables a). In contrast,
the strong adiabatic regime consists to a transport adiabatic with respect to both the spin and
the noncommutative manifold.

This definition of the weak adiabaticity is consistent with the one used in [14–16] where
the adiabatic transport of a system interacting with an environment is studied. Due to the inter-
action with the environment, the system is not sustain on an instantaneous eigenstate (as in
strong adiabatic transport). A transformation acting on the system eigenstate occurs due to the
effects of the environment. The weak adiabatic regime ensures that the degree of entanglement
between the system and the environment is sustained. In the present context, the system is the
spin, the environment is the noncommutative manifold and the transformation onto the system
is g. The instantaneous entanglement is completely defined by the one of |Λ〉〉.

We can justify the weak adiabatic transport formula by the following result:

Theorem 1 (Weak adiabatic theorem). Let {λn}n be the spectrum of �Dx: �Dx|Λn〉〉 =
λn|Λn〉〉, with λ0 = 0. The eigenvalues are supposed to be non-degenerate. Let T be the
duration of the transport described by the Schrödinger-like equation ı|ψ̇〉〉 = �Dx(t)|ψ〉〉, with
|ψ(0)〉〉 = |Λ0(0)〉〉. t �→ λn(t) and t �→ |Λn(t)〉〉 are supposed to be respectively C1 and C2.

Let g(t) = Te
→
−ı

∫ t
0Adt be the operator-valued geometric phase (AρΛ0 = −ı trH|Λ̇0〉〉〈〈Λ0|, with

ρΛ0 = trH|Λ0〉〉〈〈Λ0|) and λ̃0 = 〈〈Λ0|g−1 �Dxg|Λ0〉〉 be the effective ground eigenvalue.
If the following assumptions are satisfied:

(a) maxn �=0 supt∈[0,T]

∣∣∣ 〈〈Λ0|(∂t−ıA)|Λn〉〉
λn−λ̃0

∣∣∣ = O(1/T).

(b) maxn �=0 supt∈[0,T]

∣∣∣ 〈〈Λ0|g−1 �Dxg|Λn〉〉
λn−λ̃0

∣∣∣ = O(ε)

then
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|ψ(t)〉〉 = e−ı
∫ t

0 λ̃0(t)dt g(t)|Λ0(t)〉〉+O(max(ε, 1/T)). (A.1)

Proof. (|Λn〉〉)n forming a basis of C2 ⊗H and g being invertible, let cn ∈ C be such that

|ψ〉〉 =
∑

n

cn e−ıϕng|Λn〉〉 (A.2)

with ϕn =
∫ t

0λn(t)dt for n �= 0 and ϕ0 =
∫ t

0 λ̃0(t)dt. By injecting this expression in the
Schrödinger-like equation and by projecting onto 〈〈Λn|g−1 eıϕn we find

ıċn + λncn + ı
∑

p

cp eı(ϕn−ϕp)〈〈Λn|g−1ġ|Λp〉〉+ ı
∑

p

cp eı(ϕn−ϕp)〈〈Λn|Λ̇p〉〉

=
∑

p

cp eı(ϕn−ϕp)〈〈Λn|g−1 �Dxg|Λp〉〉. (A.3)

By integrating this expression, we have

cn(t) = cn(0)− ı
∑

p

∫ t

0
eı(ϕn−ϕp)〈〈Λn|(∂t − ıA)|Λp〉〉cp(t)dt

− ı
∑

p

∫ t

0
eı(ϕn−ϕp)(〈〈Λn|g−1 �Dxg|Λp〉〉 − λnδnp)cp(t)dt. (A.4)

• If |Λ0〉〉 = |0x〉 ⊗ |λ0〉 is separable:

A = −ı|0̇x〉〈0x| − ı〈λ0|λ̇0〉|0x〉〈0x| (A.5)

and then 〈〈Λ0|(∂t − ıA)|Λ0〉〉 = 0.
• If |Λ0〉〉 = |0〉 ⊗ |Λ0〉+ |1〉 ⊗ |Λ1〉 is entangled:

A = −ı (〈Λ0
∗|Λ̇0

0〉|0〉〈0|+ 〈Λ1
∗|Λ̇0

0〉|0〉〈1|+ 〈Λ0
∗|Λ̇1

0〉|1〉〈0|+ 〈Λ1
∗|Λ̇1

0〉|1〉〈1|
(A.6)

with 〈〈Λ∗| = 〈〈Λ0|ρ−1
Λ0; and then 〈〈Λ0|(∂t − ıA)|Λ0〉〉 = 0.

The summations in equation (A.4) for the case n = 0 are then restricted on p �= 0. By
integration by parts, we have for p �= 0∫ t

0
e−ı(ϕp−ϕ0)〈〈Λ0|(∂t − ıA)|Λp〉〉cp(t)dt = O

(
sup

t

〈〈Λ0|(∂t − ıA)|Λp〉〉
λp − λ̃0

)
(A.7)

∫ t

0
e−ı(ϕp−ϕ0)〈〈Λ0|g−1 �Dxg|Λp〉〉cp(t)dt = O

(
sup

t

〈〈Λ0|g−1 �Dxg|Λp〉〉
λp − λ̃0

)
. (A.8)

Finally we have c0(t) = 1 +O(max(ε, 1/T)). By conservation of the norm defined by the inner
product of an observer comoving with the test particle [for which g is unitary (see [33])], this
implies that cp(t) = O(max(ε, 1/T)) ∀ p �= 0. �

36



Class. Quantum Grav. 38 (2021) 245004 D Viennot

In comparison with the strong adiabatic assumption:

max
n �=0

sup
t∈[0,T]

∣∣∣∣〈〈Λ0|∂t|Λn〉〉
λn − λ̃0

∣∣∣∣ = O(1/T) (A.9)

the weak adiabatic assumption consists to replace in the definition of the non-adiabatic cou-
plings, the time derivative by the covariant derivative ∂t − ıA. The interpretation of this fact
is obvious with the structure of A equation (A.6), it represents transitions of spin states with-
out transition from the ground state of X represented by the couple (|Λ0

0〉, |Λ1
0〉) (a transition

of noncommutative space states being (|Λ0
0〉, |Λ1

0〉)→ (|Λ0
n〉, |Λ1

n〉) with n �= 0). The weak adia-
batic assumption states then that the small quantities are the non-adiabatic couplings minus the
part associated with only spin state transitions (without space state transition); and then only
space state transitions are forbidden by this assumption in accordance with the discussion of
the beginning of this appendix.

As for the strong adiabatic approximation, crossings of the ground eigenvalue with other
eigenvalue are forbidden, and so we must have a gap condition inft|λn − λ̃0| > γ > 0 (∀n �= 0).

Note that the effective ground eigenvalue λ̃0 is zero in the case where the quasi-coherent
state is separable. Indeed

〈〈Λ0|g−1 �Dxg|Λ0〉〉 = 〈0x|g−1σig|0x〉〈λ0|(Xi − xi)|λ0〉 = 0 (A.10)

since

〈〈Λ0|Xi|Λ0〉〉 = xi ⇒ 〈λ0|Xi|λ0〉 = xi. (A.11)

So the dynamical phase is reduced to be equal to 1.
Since πΛωΛ∗(LXi) = ıea

i ∂a, �Dx plays the role of ıσiea
i ∂a.

g = e−
ı
2

∫ t
0 Ãdt

Te
→

∫ t
0ωdt ⇒ g−1 �Dxg = Te

←
−
∫ t

0ωdt �DxTe
→

∫ t
0ωdt (A.12)

g−1 �Dxg plays the role of ıUωσ
iea

i ∂aU−1
ω = ıUωσ

iU−1
ω ea

i∇a (with∇a = ∂a + ωa). So the condi-

tion maxn �=0 supt∈[0,T]

∣∣∣ 〈〈Λ0|g−1 �Dxg|Λn〉〉
λn−λ̃0

∣∣∣ = O(ε) is the noncommutative version of negligible non-

adiabatic couplings defined by space covariant derivatives. The condition (b) is then the space
counterpart of the condition (a) (dealing with a time covariant derivative), ensuring an equal
treatment between time and space in the adiabatic assumptions and ensuring the covariance of
the adiabatic approximation in the present context.

The weak adiabatic transport formula includes specific geometric non-adiabatic transitions:

Property 1. Let {|Λn〉〉}n be the eigenvectors of �Dx. Let P = {1, . . . , 2 dim H}, and A, A ∈
L)(�2(P)) be such that Anp = −ı〈〈Λn|Λ̇p〉〉 and A np = 〈〈Λn|A|Λp〉〉. We have

Te
→
−ı

∫ t
0Adt =

∑
n,p

[
Te←

−ı
∫ t

0 Adt
Te
→
−ı

∫ t
0 (A−A)dt

]
np
|Λn〉〉〈〈Λp|. (A.13)

Then we have

Te
→
−ı

∫ t
0Adt|Λ0〉〉 =

∑
n

[
Te
←
−ı

∫ t
0 Adt

Te
→
−ı

∫ t
0(A−A)dt

]
n0
|Λn〉〉. (A.14)

37



Class. Quantum Grav. 38 (2021) 245004 D Viennot

Remark: if dim H <∞, �2(P) = C2 dimH, otherwise �2(P) = �2(N∗) (space of square
summable series).

Proof. Let X ∈ L(�2(P)) be such that Te
→
−ı

∫ t
0Adt =

∑
n,p

[
Te
←
−ı

∫ t
0 Xdt
]

np
|Λn〉〉〈〈Λp|. After the

derivation with respect to t of this equation and projection on the right onto |Λp〉〉 and on the
left onto 〈〈Λn|, we find

−ı
∑

k

[
Te
←
−ı

∫ t
0Xdt
]

nk
A kp = −ı

∑
k

Xnk

[
Te
←
−ı

∫ t
0Xdt
]

kp

+
∑

k

[
Te
←
−ı

∫ t
0 Xdt
]

kp
〈〈Λn|Λ̇k〉〉

+
∑

k

[
Te
←
−ı

∫ t
0 Xdt
]

nk
〈〈Λ̇k|Λp〉〉 (A.15)

〈〈Λk|Λp〉〉 = δkp ⇒ 〈〈Λ̇k|Λp〉〉 = −〈〈Λk|Λ̇p〉〉, it follows that

Te
←
−ı

∫ t
0 XdtA = XTe

←
−ı

∫ t
0 Xdt + ATe

←
−ı

∫ t
0 Xdt − Te

←
−ı

∫ t
0XdtA (A.16)

and then

X = A + Te
←
−ı

∫ t
0 Xdt(A − A)

(
Te
←
−ı

∫ t
0 Xdt
)−1

(A.17)

and then Te
←
−ı

∫ t
0 Xdt = Te

←
−ı

∫ t
0 Adt

Te
→
−ı

∫ t
0(A−A)dt. �

The transitions associated with the spin state changes (Thomas and de Sitter precessions)
are then essentially governed by the ‘matrix’ A , representation of A the operator of spin state
transitions without space state transition.

Appendix B. About the noncommutative geometry, diffeomorphism gauge
changes and torsion

B.1. Noncommutative gauge potential

Suppose that ∃ Λ0(x),Λ1(x) ∈ Env(X) and ∃ |Ω〉 ∈ H such that

|Λ(x)〉〉 = |0〉 ⊗ Λ0(x)|Ω〉+ |1〉 ⊗ Λ1(x)|Ω〉 (B.1)

(this is the case for examples treated section 4). |0〉 ⊗ Λ0 + |1〉 ⊗ Λ1 ∈ C2 ⊗ Env(X) appears
as a section of a noncommutative spinorial bundle over M which can be viewed as a Dirac
field onto M . The pull-back of the geometric phase generator:

ω∗Λπ
∗
ΛA = 〈Ω|Λ†α∂aΛ

α|Ω〉γabδ ji
∂x j

∂ub
dXi ∈ Ω1

DerX⊗ C∞(MΛ) (B.2)

can be viewed as a connection onto an associated noncommutative U(1)-bundle on M . In
accordance with the fact that M is a quantisation of a flat space, this U(1)-bundle is flat,
indeed by using the Koszul formula we have
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dω∗Λπ
∗
ΛA(LXi , LX j) = LXiω∗Λπ

∗
ΛA(LX j)− LX jω∗Λπ

∗
ΛA(LXi)

− ω∗Λπ
∗
ΛA([LXi , LX j]) (B.3)

= (ω∗Λπ
∗
ΛA)k

(
[Xi, [X j, Xk]] + [X j, [Xk, Xi]]

+ [Xk, [Xi, X j]]
)

(B.4)

= 0 (B.5)

by the Jacobi identity in the Lie algebra X, and so ω∗Λπ
∗
ΛA is d-closed. In the same manner we

have

ω∗Λπ
∗
Λ(γab dua dub) = γabγ

acγbdδikδ jl
∂xk

∂uc

∂xl

∂ud
dXi ⊗ dX j (B.6)

= δi j dXi ⊗ dX j (B.7)

in accordance with the fact that M is the quantisation of a flat space.

B.2. Diffeomorphism gauge changes

Let ϕ ∈ Diff(MΛ) be a diffeomorphism of the eigenmanifold (we consider here only dif-
feomorphisms leaving invariant the foliation). As expected, the dual triads transform under
diffeomorphism gauge changes as (ϕ∗ẽ)i

a = ẽi
b(ϕ(u)) ∂ϕ

b

∂ua whereas ẽi
0 is invariant. It is inter-

esting to consider the behaviour of the shift vector (generator of the Berry phase) under a
diffeomorphism gauge change. Basically, we have ϕ∗A = Aa(ϕ(u)) ∂ϕ

a

∂ub dub. But suppose that
their exists a displacement operator defined by:

∀ u, v ∈ MΛ, D(v, u) ∈ U(H), such that D(v, u)|Λ(u)〉〉 = |Λ(v)〉〉 (B.8)

(this is the case for examples treated section 4 when the quasi-coherent state is separable). The
possibility of the existence of a displacement operator for quasi-coherent states is stated by
analogy with the case of coherent states [7, 27]. In that case:

Aa(v)dva = Aa(u)dua − ı〈〈Λ(u)|(D−1d(2)D)|Λ(u)〉〉 (B.9)

(where d(2) is the exterior derivative of M2
Λ). It follows that ϕ∗A = A + η with

η(u) = −ı〈〈Λ(u)|(D(ϕ(u), u)†dD(ϕ(u), u))|Λ(u)〉〉. (B.10)

The gauge potential-transformation η is an element of the two-connection of a categorical
U(1)-bundle [28] built over the base categoryMΛ where the objects Obj(MΛ) = MΛ are the
points of the eigenmanifold and where the arrows are Morph(MΛ) = MΛ × Diff(MΛ); the
source, target and identity maps being defined by:

s(u,ϕ) = u, t(u,ϕ) = ϕ(u), idu = (u, idMΛ
) (B.11)

and the composition of arrows being defined by

(ϕ1(u),ϕ2) ◦ (u,ϕ1) = (u,ϕ2 ◦ ϕ1). (B.12)

Diff(MΛ) can be then viewed as the arrow field space over MΛ. Since �Dy = �Dx + σi(xi − yi),
we have

〈〈Λ(ϕ(u))|σi|Λ(u)〉〉(xi(ϕ(u))− xi(u)) = 0 (B.13)
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〈〈Λ(ϕ(u))|σi|Λ(u)〉〉∂i is then a vector normal to the arrow (u,ϕ) (generalising the fact that
〈〈Λ(u)|σi|Λ(u)〉〉∂i is a vector normal to MΛ at u). The categorical structure of MΛ is not
external to the noncommutativity of M , indeed

xi(ϕ(u))− xi = 〈〈Λ(u)|(D†XiD− Xi)|Λ(u)〉〉 (B.14)

= ωΛ(D†[Xi, D]) (B.15)

= ıωΛ(AD(LXi)) (B.16)

where AD = −ıD† dD ∈ Ω1
DerX is a Berry-like gauge potential of a noncommutative bundle

over M (D ∈ Env(X), d is anew the Koszul noncommutative derivative). This can be gener-
alised to a noncommutative spinor D ∈ C

2 ⊗ Env(X) with D = |0〉〈0| ⊗ D0 + |1〉〈1| ⊗ D1 and
Da(v, u)|Λa(u)〉 = |Λa(v)〉 (a ∈ {0, 1}) (this is the case for examples treated section 4 when the
quasi-coherent state is entangled), and AD = −ıD†a dDa.

B.3. Noncommutative torsion

By construction, we have

〈dua, πΛωΛ∗(LXi)〉M = ωΛ

(
〈π∗Λω∗Λ(dua), LXi〉X

)
(B.17)

⇐⇒ ea
i = ωΛ(Ea

i ) with Ea
i = δilΘ

l jδ jkγ
ab ∂uk

∂ub
(B.18)

with Θl j = Θ(Xl, X j) = −ı[Xl, X j]. {Ea
i }a,i can be viewed as the ‘noncommutative frame’ in

M associated with the frame {ea
i }a,i of the eigenmanifold MΛ. M is the quantisation of a

flat space, but it is not necessary torsion free. We introduce the following analogue of the
Weitzenböck connection [37] by:

Γ̊a
i j = −ıLX j(Ea

i ) (B.19)

which defines an analogue of the Weitzenböck torsion:

T̊a
i j = −ıLX j(Ea

i ) + ıLXi(Ea
j ) (B.20)

= −ı([X j,Θim]− [Xi,Θ jm])γab ∂xk

∂ub
(B.21)

= −ı[Xm,Θi j]δmkγ
ab ∂xk

∂ub
(B.22)

where we have used the Jacobi identity [X j, [Xi, Xm]] + [Xi, [Xm, X j]] = −[Xm, [X j, Xi]].
T̊a

i j∂a = πΛ (̊Tk
i j∂k) with T̊k

i j = −ı[Xk,Θi j] = −ı[Xk, [Xi, X j]] the torsion of M .

Note the difference with the torsion introduced section 3.2, ωΛ(̊Tk
i j) is the torsion of the

embedding space R
3 whereas Ta

bc is the torsion of the eigenmanifold MΛ. We can view T has
a torsion intrinsic to MΛ (link to θ̃ = F−1 and then to the Berry curvature) whereas T̊ is an
extrinsic torsion (linked to Θ and then to the noncommutative character of M ).

In [21] a torsion in an IKKT matrix model is introduced. A direct comparison of the two
models is difficult because of two reasons. First, the time is quantised in the IKKT model and
not in the BFSS model. The comparison must therefore be limited to the space part. The model
presented in [21] is based on an irreducible representation of so(4, 2) on a Hilbert space HN

(with N ∈ N) whereL(HN) is interpreted as a quantised version of C∞(CP1,2), CP1,2 being the
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total space of a fibre bundle on a classical spacetime with fibre S2 (the sphere). a⊗ Env(X)
plays in the present model the same role than the quantisation of C∞(CP1,2), but with a sin-
gle spin sector (corresponding to s = 1

2 ) whereas in the model of [21] the quantisation of
C∞(CP1,2) is a graded algebra with an infinite number of spin sectors. At the semi-classical
limit N →∞, the Weitzenbök torsion found in [21] is (in the notations and the conventions of
the present paper) T̂m

i j = {xm, Θ̂i j}where−ı[·, ·]→ {·, ·} is the Poisson bracket obtained at the
semi-classical limit. This expression is very similar to our Weitzenböck torsion of M , except
that Θ̂i j = −ı[Zi, Z j] where Zi is in the quantisation of C∞(CP1,2) (analogous of a⊗ Env(X))
and is not Xi ∈ X. More precisely, by choosing Za = τ̂ a + Âa, where τ̂ a is the coordinates of
the fibres S2 and Âa is viewed as a perturbation of the cosmic background, we have [21]

Θ̂ab = κθab + {τ̂ b, Âa} − {τ̂ a, Âb}+ {Âb, Âa}, (B.23)

where κ is a constant parameter of the model and θab = {xa, xb} is the semi-classical limit
of −ı[Xa, Xb]. The first part of the torsion κ{xm, θi j} is completely analogous to our Weitzen-
böck torsion of M T̊m

i j. This part can be viewed as the torsion of the cosmic background in the
interpretation of [21]. In our model, the embedding space R3 (or its quantisation M ) are well
a background in which the eigenmanifold lives. T̊ has then well a similar interpretation in our
framework. The second part of the torsion {xm, {τ̂b, Âa} − {τ̂ a, Âb}} has a structure similar
to our torsion of MΛ:

Tm
ab =

1
2

Im tr (σm([τb,Aa]− [τa,Ab])) . (B.24)

We can think that it plays the same role, but with Tm
ab limited to a single spin sector and

with commutators not directly affected by the semi-classical limit (τ a and Aa are matrices of
a = M2×2(C), their sizes do not change with the increase of N). We cannot see A as a per-
turbation. As the geometric phase generator it characterises the geometry of the adiabatic
bundle with connection in which the transport is defined. However we can note that perturba-
tion theory and adiabatic transport have strong similarities. For example, under a perturbation
εV an eigenvalue becomes λ0 + ε〈〈Λ0|V|Λ0〉〉+O(ε2) while in adiabatic transport the phase
is generated by λ0 +

ı
T 〈Λ0| d

dt |Λ0〉∗ (with Aau̇a = −ı〈Λ0| d
dt |Λ0〉∗). Moreover the non-adiabatic

couplings 〈〈Λ0|∂t|Λn〉〉
λn−λ0

(or those for the point (b) theorem 1) are similar to the coefficients of a

first order perturbative expansion of the eigenvector 〈〈Λn|V|Λ0〉〉
λ0−λn

. The nonlinear last part of the

torsion {xm, {Âb, Âa}} seems to have no analogue in our formalism. The reason is that it is a
term of the second order of perturbation. But the adiabatic approximation is of first order in
1/T. To try to find an analogue of {xm, {Âb, Âa}}, it would be necessary to compute the first
non-adiabatic corrections. The torsion in [21] seems be an analogue of the sum of our intrinsic
and extrinsic torsions (a sum which cannot be directly realised without projection in our model
since M and MΛ have not the same dimension).

Appendix C. Higher dimension and the Koopman approach

C.1. Fast dynamics of M

dim X = 3 but the eigenmanifold MΛ of the noncommutative manifold M (generated by the
Lie algebra X) is only two dimensional. We lost one dimension in the emergent geometry with
respect to the dimension of the quantised flat spacetime viewed by the ideal Galilean observer.
To solve this problem, we can start with an higher dimensional quantised flat spacetime as
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in [10]. But we have considered in this paper a dimension reduction as in [9]. It seems more
natural that a fifth quantum dimension (after quantisation) emerges from the analysis of M
in order to recover the original four dimensions of the classical pre-quantised spacetime in
the classical emergent spacetime. This fifth dimension (or more precisely a fourth coordinate
operator) emerges from the dynamics of M (still generated by a three dimensional Lie algebra
X). Indeed, until now we have considered only time independent observables (Xi), but these
operators obey to a noncommutative Klein–Gordon equation [1, 2]:

Ẍi − [X j, [Xi, X j]] = 0. (C.1)

But the time evolution of (Xi) is not necessarily slow, and the application of the adi-
abatic assumption onto equation (13) can fail. To solve this problem, we can use the
Schrödinger–Koopman approach [35]. This method consists to separate slow and fast vari-
ations and applying the adiabatic assumption onto eigenvectors of an extended operator
including the parameters with fast variations as new quantum variables.

More explicitly, let (Xi
0) be the generators of X, and suppose that Xi(t) = wi

j(t)X
j
0 (we

suppose that Xi ∈ X, but generalisations with Xi ∈ EnvX are possible, with for example
Xi(t) = wi

j(t)X
j
0 + wi

jk(t)X j
0Xk

0 + · · · ). Equation (C.1) becomes then

ẅi
k − δ jlC

i′ j,′

m′ Cl′m′
k wl

l′w
i
i′w

j
j,′ = 0 (C.2)

where Ci j
k are the structure constants of X ([Xi

0, X j
0] = Ci j

k Xk
0), or equivalently

ẇi
k = pi

k (C.3)

ṗi
k = δ jlC

i′ j ′

m′ Cl′m′
k wl

l′w
i
i′w

j
j ′ (C.4)

which is a classical nonlinear dynamical system in the phase space Γ = R18. We denote by
(ξα)α∈{1,...,18} ≡ (wi

k, pi
k)i,k∈{1,2,3} a point of Γ. We can also consider the simplified case with

wi
j(t) = w(t)δi

j, whereΓ = R2 (with ξ = (w, p)) with ẇ = p and ṗ = 1
3δ jlCi j

mClm
i w3. We denote

the differential equation of the nonlinear system as ξ̇α= Fα(ξ).
The Schrödinger–Koopman equation is [35]:

ı|Ψ̇〉〉〉 =
(
�Dx − ıFα ∂

∂ξα

)
|Ψ〉〉〉 (C.5)

where |Ψ〉〉〉 ∈ C2 ⊗H⊗ L2(Γ, dμ(ξ)) (where μ is a measure on Γ), L2(Γ, dμ(ξ)) is the space of
square integrable functions onΓ. The solutions |ψ〉〉 of equation (13) are deduced from the solu-
tions of equation (C.5) by |ψ(t)〉〉 = 〈ξ(t)|Ψ(t)〉〉〉 where t �→ ξ(t) is solution of equation (C.3)
[35], so |Ψ〉〉〉 is a new representation of the quantum state including the effects of the ‘noise’
associated with the fast variations. Let X4 ≡ −ıFα ∂

∂ξα be the generator of the Koopman oper-
ator. The time-dependence of equation (C.5) being slow (because they are restricted to the
time-dependence of x) we can apply the adiabatic assumption with ( �Dx + X4)|Λ̃〉〉〉 = 0. Let
x4 ∈ Sp(X4) be a Koopman value associated with the Koopman function f x4 ∈ L2(Γ, dμ(ξ)):

X4 f x4 (ξ) = x4 f x4 (ξ) (C.6)

|Λ〉〉〉 = f x4 |Λ̃〉〉〉 is also an eigenvector of ( �Dx + X4) with eigenvalue x4 (see [35]). It follows
that

�DK
x |Λ〉〉〉 = 0, with �DK

x = σI ⊗ (XI − xI) (C.7)
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with I ∈ {1, 2, 3, 4} and σ4 = σ0 = id2. By noting that x4 = 〈 f x4 |X4| f x4〉, the situation is
completely similar to the one described section 2 with an additional dimension. MΛ = {x ∈
R4, s.t. det( �DK

x ) = 0} can then be three dimensional. Note that:

[Xi, X4] = ıFα(ξ)
∂Xi

∂xα
(C.8)

= ıpj
k

∂wi
lX

l
0

∂w j
k

(C.9)

= ıpi
kXk

0 ∈ X. (C.10)

Since σ4 = σ0 (and is then a part of γ0 in the Weyl representation), or in other words since x4

is associated with the time of fast variations, the metric of the embedding space R4 is d(x1)2 +
d(x2)2 + d(x3)2 − d(x4)2 ≡ −ηIJ dxI dxJ , i.e. the five dimensional embedding flat spacetime
is anti-de Sitter. The continuation of the discussion is similar to the main sections of this
paper.

With the Koopman analysis, the fourth dimension of M generated by (XI)I∈{1,2,3,4} (the
fifth dimension of the quantum spacetime) is not added to the pre-quantised flat spacetime of
the classical Galilean observer (before the use of the BFSS quantisation rules xi � Xi and
∂i � LXi). It emerges ‘spontaneously’ from the fast evolutions of the quantum spacetime at
the microscopic scale. Note that, this does not forbid emerging dynamical spacetimes. Indeed,
we can have a time-dependent parametrisation as Xi(w(t), v(t)) with t �→ w(t) fast evolving
parameters and t �→ v(t) slow evolving parameters. The Koopman approach is then used with
w, but Xi rests explicitly time-dependent with respect to v. Since the variations of v are slow, we
can apply the adiabatic assumption, and have a time dependent emerging manifold MΛ(v(t)).
We do not treat in more detail this case in this present paper which focus on time-independent
eigenmanifold. In the present formalism, six compact extra dimensions can also emerge via
the Koopman analysis if we consider the vacuum fluctuations perturbing equation (C.1) as
viewed in [24]. The geometry of these six emergent compact dimensions is not the subject of
the present paper and has been studied in [24].

C.2. Massive test particle and chiral oscillations

At the starting point of this paper, we have considered a massless test particle to reveal the
geometry. If we consider a massive fermion, the mass (denoted here by ω

2 for convenience)
induces a coupling between the two fermionic chiralities:

ıγ0∂0|ψ〉〉 = −γi ⊗ (Xi − xi)|ψ〉〉+ ω

2
|ψ〉〉 (C.11)

⇐⇒ ı∂0|ψ〉〉 =
(

1 0
0 −1

)
⊗ σi ⊗ (Xi − xi)|ψ〉〉+ γ0 ω

2
|ψ〉〉 (C.12)

with |ψ〉〉 ∈ C
4 ⊗H. Let |ψ̃〉〉 = eıγ

0 ω
2 t|ψ〉〉 a gauge change of the fermionic state.

eıγ
0 ω

2 t =

(
cos(ωt/2) −ı sin(ωt/2)
−ı sin(ωt/2) − cos(ωt/2)

)
(C.13)

and we have

ı∂0|ψ̃〉〉 = m(ωt)⊗ �Dx|ψ̃〉〉 (C.14)
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with the mixing matrix

m(ωt) =

(
cos(ωt) −ı sin(ωt)
ı sin(ωt) − cos(ωt)

)
. (C.15)

We can solve this equation by using the Schrödinger–Floquet approach [36] which is a partic-
ular case of the Schrödinger–Koopman approach for periodic dynamical systems. Let θ = ωt
and |Ψ〉〉〉 ∈ C2 ⊗H⊗ C2 ⊗ L2(S1, dθ

2π ) be such that

ı|Ψ̇〉〉〉 =
(

m(θ)⊗ �Dx − ıω
∂

∂θ

)
|Ψ〉〉〉 (C.16)

C2 ⊗ L2(S1, dθ
2π ) is the space of square integrable functions on the circle S1 with a chirality

degree of freedom. The adding operator −ıω∂θ can be viewed as the quantum observable of
a compact extra-dimension (but since the spectrum of −ıω∂θ is discrete, this one does not
involve an emerging additional dimension on the eigenmanifold). The original state is recov-
ered by |ψ̃〉〉 = 〈θ = ωt|Ψ〉〉〉. We can apply the adiabatic assumption onto equation (C.16) with
a generalised quasi-coherent state |Λ0〉〉〉 such that

ıω
∂

∂θ
|Λ0〉〉〉 = m⊗ �Dx|Λ0〉〉〉. (C.17)

Since ıω∂θ e−ınθ = nω e−ıθ, it follows that |Λn〉〉〉 = eınθ|Λ0〉〉〉 is also an eigenvector of m⊗ �Dx −
ıω∂θ:

ıω
∂

∂θ
|Λn〉〉〉 = (m⊗ �Dx − nω)|Λn〉〉〉 n ∈ Z. (C.18)

It follows that

|Λn(θ)〉〉〉 = eınθTe
←
− ı

ω

∫ θ
0 m(θ)dθ⊗�Dx |Λn(0)〉〉〉 (C.19)

with to ensure the continuity with ω→ 0 (nω is not negligible since n can be large)

((
1 0
0 −1

)
⊗ �Dx − nω

)
|Λn(0)〉〉〉 = 0 (C.20)

⇐⇒ |Λn(0)〉〉〉 =
(
|Λn〉〉
|Λ−n〉〉

)
with �Dx|Λn〉〉 = nω|Λn〉〉. (C.21)

The emergent geometry is then associated with several eigenmanifolds MΛ,n = {x ∈
R3, s.t. det( �Dx − nω) = 0}. The ground state |Λ0〉〉 is associated with the eigenmanifold MΛ,0

revealed by massless fermionic test particles. With massive test particles, we have also excited
states associated with eigenmanifolds MΛ,n corresponding to the Fourier modes of the chiral
oscillations.

Note that by application of the Floquet theorem, we have Ux(θ) = Te
←
− ı

ω

∫ θ
0 m(θ)dθ⊗�Dx =

Zx(θ)eıMxθ where Zx is a 2π-periodic operator (with Zx(0) = id) and Mx is a θ-independent
operator. The monodromy operator eıMxθ governs the general dynamics induced by the chiral
oscillations (without the transient fluctuations described by Zx(θ)).
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The emergent geometry depends on the particle mass, because this one warps the spacetime
at the microscopic scale (in contrast with a test particle for the geometry at the macroscopic
scale where this effect is negligible). The Berry phase generator is

An = −ı〈〈〈Λn|d|Λn〉〉〉 (C.22)

= −ı〈〈Λn|d|Λn〉〉 − ı〈〈Λ−n|d|Λ−n〉〉

− ı〈〈〈Λn(0)|
(∫ 2π

0
Ux(θ)−1 dUx(θ)

dθ
2π

)
|Λn(0)〉〉〉 (C.23)

(where d is the exterior derivative of MΛ,n—no derivation with respect to θ). −ı〈〈Λ±n|d|Λ±n〉〉
represents the general geometry modified by the mass ω/2 added to the contents of the
spacetime.

An,loc = −ı〈〈〈Λn(0)|
(∫ 2π

0
Ux(θ)−1 dUx(θ)

dθ
2π

)
|Λn(0)〉〉〉. (C.24)

An,loc represents the local deformation of the spacetime around the localised test particle of mass
ω/2. For particle with small mass, this term is negligible (since ıω∂θ is then just a perturbation
operator). For large mass ω/2, the local correction is

An,loc =
1
ω

∫ 2π

0
〈〈〈Λn(0)|

∫ θ

0
m(θ)dθ ⊗ σi|Λn(0)〉〉〉 dθ

2π
∂xi

∂ua
dua +O(1/ω2)

(C.25)

=
ı

ω
(〈〈Λn|σi|Λ−n〉〉 − 〈〈Λ−n|σi|Λn〉〉)

∂xi

∂ua
dua +O(1/ω2). (C.26)

Appendix D. Computation of the quasi-coherent states

D.1. CCR algebra

D.1.1. Case z = 0. Let Lie(a, a+, id) be the CCR algebra. The non-commutative plane is
defined by X1 = a+a†

2 , X2 = a−a†
2ı and X3 = 0. By using the block matrix determinant formula∣∣∣∣A B

C D

∣∣∣∣ = det(A− BD−1C) det D [38] we have (with α = x1 + ıx2)

det �Dx =

∣∣∣∣ −x3 a† − ᾱ
a− α x3

∣∣∣∣ = det(−(x3)2 − (a† − ᾱ)(a− α)). (D.1)

It follows that det �Dx = 0 if and only if ∃|Ω〉 such that (a† − ᾱ)(a− α)|Ω〉 = −(x3)2|Ω〉. But
〈Ω|(a† − ᾱ)(a− α)|Ω〉 = ‖(a− α)Ω‖2 � 0 implies that x3 = 0.

(a† − ᾱ)(a− α)|Ω〉 = 0 ⇒ a|Ω〉 = α|Ω〉 or a+(a− α)|Ω〉 = ᾱ(a− α)|Ω〉. The second
alternative is impossible since Sp(a+) = ∅. We have then |Ω〉 = |α〉 (coherent state of the CCR
algebra [7, 27]).
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�Dx|Λ〉〉 = 0 ⇐⇒
(

0 a+ − ᾱ
a− α 0

)(
|Λ0〉
|Λ1〉

)
= 0 (D.2)

implying that a|Λ0〉 = α|Λ0〉 ⇒ |Λ0〉 = |α〉 and a+|Λ1〉 = ᾱ|Λ1〉 ⇒ |Λ1〉 = 0. Finally

|Λ〉〉 = |0〉 ⊗ |α〉 (α = x1 + ıx2). (D.3)

D.1.2. Case z �= 0. Let Lie(a, a+, id) be the CCR algebra. The non-commutative manifold is
defined by X1 = a+a†

2 , X2 = a−a†
2ı and X3 = ξ id (with ξ ∈ R∗).

det �Dx =

∣∣∣∣ξ − x3 a† − ᾱ
a− α ξ + x3

∣∣∣∣ = det(ξ2 − (x3)2 − (a† − ᾱ)(a− α)) (D.4)

det �Dx = 0 if and only if ∃|Ω〉 such that (a† − ᾱ)(a− α)|Ω〉 = (ξ2 − (x3)2)|Ω〉. It follows
that |ξ| � |x3|. Let bα = a− α and b+

α = a+ − ᾱ be the operators of another CCR algebra:
[bα, b+

α ] = [a, a+] = id. We have then b+
α bα|Ω〉 = (ξ2 − (x3)2)|Ω〉. |Ω〉 is then an eigenvector

of b+
α bα, and then ξ2 − (x3)2 = n with n ∈ N (b+

α bα|n〉α = n|n〉α).

bα|0〉α = 0 ⇐⇒ a|0〉α = α|0〉α ⇐⇒ |0〉α = |α〉 (D.5)

|n〉α =
(b+

α )n

√
n!
|0〉α =

(a+ − ᾱ)n

√
n!

|α〉. (D.6)

We fix the value n.

�Dx|Λn〉〉 = 0 ⇐⇒
(

0 b+
α

bα 0

)(
|Λ0

n〉
|Λ1

n〉

)
=

(
(ξ + x3)|Λ0

n〉
(ξ − x3)|Λ1

n〉

)
. (D.7)

We have |Λ1
n〉 = bα

ξ−x3 |Λ0
n〉, and then b+

α bα|Λ0
n〉 = (ξ2 − (x3)2)|Λ0

n〉 = n|Λ0
n〉. It follows that

|Λ0
n〉 = |n〉α. In a same way, |Λ0

n〉 = b+α
ξ+x3 |Λ1

n〉, and then bαb+
α |Λ1

n〉 = (b+
α bα + 1)|Λ1

n〉 =
n|Λ1

n〉 ⇒ |Λ1
n〉 = |n− 1〉α. Finally

|Λn〉〉 = |0〉 ⊗ |n〉α + |1〉 ⊗ |n− 1〉α (n ∈ N
∗) (D.8)

(with n = 0 we find the result of the previous case).

D.2. su(2) algebra

Let Lie(Ji) be the su(2) algebra and implicitly its irreducible representation of dimension
2 j + 1 (δi jJiJ j = j( j + 1)). The fuzzy sphere is defined by Xi = rJi with r ∈ R

+∗ a parameter.

D.2.1. Solutions at the poles. Firstly, we search solution of equation (14) with x1 = x2 = 0.

By using the block matrix determinant formula

∣∣∣∣A B
C D

∣∣∣∣ = det(A− BD−1C) det D [38] we have
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det( �Dx/r − λ) =

∣∣∣∣∣∣∣
J3 − x3

r
− λ J−

J+ −J3 +
x3

r
− λ

∣∣∣∣∣∣∣ (D.9)

= det

(
J3 − x3

r
− λ− J−

(
−J3 +

x3

r
− λ

)−1

J+
)

× det

(
−J3 +

x3

r
− λ

)
(D.10)

λ ∈ Sp( �Dx/r) if ∃|Ω〉 such that (J3 − x3

r − λ)|Ω〉 = J−(−J3 + x3

r − λ)−1J+|Ω〉. We write
|Ω〉 =

∑ j
m=− jcm| jm〉 and then

+ j∑
m=− j

cm

(
m− x3

r
− λ

)
| jm〉 =

+ j∑
m=− j

cm( j( j + 1)− m(m + 1))
x3

r − λ− m− 1
| jm〉. (D.11)

This implies that(
m− x3

r
− λ

)(
x3

r
− λ− m− 1

)
= j( j + 1)− m(m + 1) (D.12)

⇐⇒ λ2 + λ− j( j + 1) + (2m + 1)
x3

r
−
(

x3

r

)2

= 0. (D.13)

It follows that

λm± = −1
2
± 1

2

√
1 + 4 j( j + 1)− 4(2m + 1)

x3

r
+ 4

(
x3

r

)2

(D.14)

�Dx|λ0〉〉 = rλM±|λ0〉〉 if(
J3 − x3

r

)
|λ0

0〉+ J−|λ1
1〉 = λM±|λ0

0〉 (D.15)

J+|λ0
0〉 −

(
J3 − x3

r

)
|λ1

0〉 = λM±|λ1
0〉 (D.16)

by writing |λ0〉〉 = |0〉 ⊗ |λ0
0〉+ |1〉 ⊗ |λ1

0〉 (with (|0〉, |1〉) the canonical basis of C2). We set
|λ0

0〉 =
∑+ j

m=− jam| jm〉 and |λ1
0〉 =

∑+ j
m=− jbm| jm〉. We have then

+ j∑
m=− j

am

(
m− x3

r
− λM±

)
| jm〉 = −

+ j∑
m=− j+1

bm

√
j( j + 1)− m(m− 1)| jm− 1〉 (D.17)

j−1∑
m=− j

am

√
j( j + 1)− m(m + 1)| jm + 1〉 =

+ j∑
m=− j

bm

(
m− x3

r
− λM±

)
| jm〉 (D.18)
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and then

am

(
m− x3

r
− λm±

)
+ bm+1

√
j( j + 1)− m(m + 1) = 0 (D.19)

(m �= j)

a j

(
j− x3

r

)
= 0 (D.20)

am−1

√
j( j + 1)− m(m− 1)− bm

(
m− x3

r
+ λM±

)
= 0 (D.21)

(m �= − j)

b− j

(
− j− x3

r

)
= 0 (D.22)

aj = b− j = 0 and bm+1 = am

√
j( j+1)−m(m+1)

m+1− x3
r +λM±

, it follows that

am

((
m− x3

r
− λM±

)(
m + 1− x3

r
+ λM±

)
+ j( j + 1)− m(m + 1)

)
= 0.

(D.23)

Because of equation (D.12), we have am = 0 except if m = M; and then bm = 0 except if
m = M + 1.

aM

(
M +

x3

r
− λM±

)
+ bM+1

√
j( j + 1)−M(M + 1) = 0 (D.24)

aM

√
j( j + 1)−M(M + 1)− bM+1

(
M + 1− x3

r
+ λM±

)
= 0 (D.25)

and then aM = M + 1− x3

r + λM± and bM+1 =
√

j( j + 1)−M(M + 1).

D.2.2. Solutions in all directions. We have |λ0〉〉 = k0|0〉 ⊗ | jm〉+ k1|1〉 ⊗ | j, m + 1〉 with
k0 = κ(λm± + m + 1− |x|

r ) and k1 = κ
√

j( j + 1)− m(m + 1) (κ being just a normalisation
factor such that ‖k‖2 = 1). Let �n = (sin θ cos ϕ, sin θ sin ϕ, cos θ) be the direction vec-
tor in R3 and D j(�n) = eıθ�m·�J be the su(2) displacement operator (see [7, 27]) with �m =

(sin ϕ,− cos ϕ, 0) (D j(�n)J3D j(�n)† = �n ·�J). Let R be the following rotation matrix

R =

⎛
⎝cos θ cos ϕ cos θ sin ϕ − sin θ

− sin ϕ cos ϕ 0
sin θ cos ϕ sin θ sin ϕ cos θ

⎞
⎠ (D.26)

we have

D j(�n)JiD j(�n)† = Ri
kJk. (D.27)

We have then
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δikD1/2(�n)σiD1/2(�n)† ⊗ D j(�n)JkD j(�n)† = δikRi
lσ

l ⊗ Rk
mJm (D.28)

= (R�σ) (R�J) (D.29)

= (RTR�σ) �J (D.30)

= δikσ
i ⊗ Jk (D.31)

( stands for the scalar product of R3 along with the tensor product between operators). It
follows that

D1/2⊗ j(�n)σi ⊗
(

Ji − |x|
r
δi3

)
D1/2⊗ j(�n)†

= σi ⊗ Ji − |x|
r

D1/2(�n)σ3D1/2(�n)† (D.32)

= σi ⊗
(

Ji − |x|n
i

r

)
(D.33)

(with D1/2⊗ j ≡ D1/2 ⊗ D j). Finally we have

�DxD1/2⊗ j(�n)|λ0〉〉 = rλm±D1/2⊗ j|λ0〉〉 (D.34)

with �n = �x
‖�x‖ and λm± = − 1

2 ±
1
2

√
(2 j + 1)2 − 4 x

r (2m + 1) + 4 x2

r2 . We can have λm± = 0 in
only two cases

λ j+ = 0 ⇐⇒ |x| = r j (D.35)

λ− j−1,+ = 0 ⇐⇒ |x| = −r j (D.36)

we choose |x| = r j ⇐⇒ �x = r j(sin θ cos ϕ, sin θ sin ϕ, cos θ), the quasi-coherent state is
then

|Λ(x)〉〉 = D1/2⊗ j(�n)|0〉 ⊗ | j j〉 = |ζ〉1/2 ⊗ |ζ〉 j (D.37)

with ζ = eıϕ tan θ
2 and |ζ〉 j is the Perelomov su(2) coherent state:

|ζ〉 j =
1

(1 + |ζ|2) j

+ j∑
m=− j

√
(2 j)!

( j + m)!( j− m)!
ζ j−m| jm〉 (D.38)

|ζ〉1/2 = cos
θ

2
|0〉+ eıϕ sin

θ

2
|1〉. (D.39)
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