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Abstract
We study the adiabatic approximation of the dynamics of a bipartite quantum
system with respect to one of its components, when the coupling between the
two components is perturbative. We show that the density matrix of the
considered component is described by adiabatic transport formulae exhibiting
operator-valued geometric and dynamical phases. The present results can be
used to study the quantum control of the dynamics of qubits and of open
quantum systems where the two components are the system and its environ-
ment. We treat two examples, the control of an atomic qubit interacting with
another one and the control of a spin in the middle of a Heisenberg spin chain.

Keywords: geometric phase, adiabatic approximation, bipartite quantum
system

(Some figures may appear in colour only in the online journal)

1. Introduction

A bipartite quantum system consists of two quantum subsystems denoted by  and  and
described by the Hilbert space   ⊗ . We are interested only in the behaviour of the
component  with a loss of the information concerning the component  . If   ψ ∈ ⊗
is the state of the bipartite system, the subsystem  is described by the density matrix (the
mixed state) ρ ψ ψ= 〉〉〈〈tr | | (〈〈 〉〉. |. denotes the inner product of   ⊗ ) where the partial
trace tr on  suppresses the information concerning  . ρ takes into account the entan-
glement of  with  . An interesting problem in the dynamics of a bipartite quantum system is
the control of the component  ‘hampered’ by  . Quantum control has potentially many
applications in nanoscience and in quantum computing. A problem of quantum control
consists in finding out how to act on  (by laser fields, magnetic fields, etc) in order for  to
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evolve from its initial state ρ0 to a predetermined target state ρtarget (the goal of the control).
The presence of  can considerably modify the control problem with regard to the control of a
pure state in  for  alone. Moreover the control can affect  directly or indirectly by the
coupling between  and  . The understanding of the dynamics of  in contact with  is
crucial.

Such a situation occurs in quantum information theory where  and  are two qubits of a
quantum computer or two ensembles of qubits. In this case the control consists in performing
a logical gate or a quantum algorithm on  in the presence of other qubits ( ) of the quantum
computer. In this example,  and  have similar sizes and the roles of  and  can be
exchanged. However, dynamics of bipartite quantum systems also occur in the control of
open quantum systems where  is a small subsystem and  is a large environment responsible
for decoherence effects on  . In this case the loss of information models the observerʼs lack
of knowledge concerning  due to its large size and its complexity.

An adiabatic approach [1] can be used to describe quantum control, since the variations
of the control parameters are often slow. Quantum control schemes based on the adiabatic
approximation have been proposed for different closed systems [2–5]. For open quantum
systems, adiabatic approaches based on non-hermitian Hamiltonians have been studied [6–8].
For example, the Lindblad equation (a Markovian approximation of the dynamics of  in the
environment [9]) is considered as a non-hermitian Schrödinger equation in the Hilbert–
Schmidt space (the so-called Liouville space describing the square trace class operators of
, i.e.  < ∞A Atr ( )† ). In these cases the adiabatic approximation is based on adiabatic
theorems for non-self-adjoint Hamiltonians [10–12]. However, these works do not focus on
the bipartite aspect of quantum dynamics, which has been studied by Sjöqvist et al with the
viewpoint of nonadiabatic geometric phases [13–15]. Recently operator-valued geometric
phases have been proposed as generalizations of the Sjöqvist geometric phases, in the context
of cyclic (nonadiabatic) evolutions [16] and of adiabatic evolutions [17, 18]. Nevertheless a
rigorous study of the adiabatic regime of a bipartite quantum system exhibiting operator-
valued geometric phases has never been realized.

The goal of this paper is to show that, under common assumptions concerning the
evolution of the bipartite system, the evolution of the density matrix satisfies adiabatic
transport formulae exhibiting operator-valued geometric (and dynamical) phases. Section 2
establishes adiabatic theorems with regard to a discussion concerning the different time scales
involved in the dynamics of a bipartite quantum system. In particular we consider two
adiabatic regimes. These results are based on the Nenciu adiabatic theorem [19], which
considers spectral components and not only one eigenvalue. Adiabatic transport formulae for
the density matrix are obtained in section 3. We show that these formulae (for the weak
adiabatic regime) exhibit operator-valued geometric phases similar to the ones introduced in
the previous works [13–18]. The generator of the operator-valued dynamical phase also
exhibited by these formulae can appear as an effective Hamiltonian of  dressed by  . The
adiabatic transport of the density matrix for the second order perturbative expansion satisfies a
kind of effective Lindblad equation. We discuss also in this section the specific case of the
open quantum systems where  is a thermal bath. Throughout this paper we consider the case
of a weak coupling between  and  . Indeed to enlighten the individual behaviour of the
component  inside the bipartite system through the viewpoint of the adiabatic approxima-
tion, it is necessary to explain the relation between the eigenvectors of the bipartite system
and the eigenvectors of its component  . This requires a perturbative analysis. Finally
section 4 presents two examples: a qubit realized as a two level atom in a laser field in the
rotating wave approximation with a perturbative interaction with another atom; and a spin
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controlled by a magnetic field in the middle of a ferromagnetic spin chain with Heisenberg
coupling between the nearest neighbours.

2. Strong and weak adiabatic theorems

2.1. Preliminary discussion

We consider a bipartite quantum system of Hilbert space   ⊗ governed by the time-
dependent Hamiltonian

    ϵ= ⊗ + ⊗ +H t H t H t V t( ) ( ) 1 1 ( ) ( ) (1)

where   ∈H ( ) is the self-adjoint Hamiltonian of the component  ,   ∈H ( ) is the
self-adjoint Hamiltonian of the component  ,    ∈ ⊗V ( ) is the coupling operator
between  and  , and ϵ ∈ (0) is a perturbative parameter ( (0) denotes the
neighbourhood of 0). Let μ{ }b b and νβ β{ } be the pure point spectra of H and H (for the
sake of simplicity we suppose that all these eigenvalues are not globally degenerate, e.g. these
eigenvalues are nondegenerate for all >t 0 except possibly for a finite number of isolated
moments t*) and ζ{ }b b and ξβ β{ } be the associated normalized eigenvectors. The eigenvalues

are supposed to be at least 0 and the eigenvectors at least 1 with respect to t.

  ζ μ ζ ζ μ= ∈ ∈H t t t t( ) ( ) ( ) ( ) , (2)b b b b b

  ξ ν ξ ξ ν= ∈ ∈β β β β βH t t t t( ) ( ) ( ) ( ) , . (3)

Let λ β β{ }b b, be the perturbed pure point spectrum of H and ϕ β β{ }b b, be the associated
eigenvectors.

   ϕ λ ϕ ϕ λ= ∈ ⊗ ∈β β β β βH t t t t( ) ( ) ( ) ( ) , (4)b b b b b

ϕ ζ ξ= ⊗
ϵ

β β
→

t t tlim ( ) ( ) ( ) (5)b b
0

λ μ ν= +
ϵ

β β
→

t t tlim ( ) ( ) ( ) (6)b b
0

(with the quantum state limit defined with the norm topology associated with 〈〈 〉〉. |. ). The first
order approximations (by using the Rayleigh–Schrödinger perturbation method) are

λ μ ν ϵ ϵ= + + +β β β β ( )V (7)b b b b,
2

∑ϕ ζ ξ ϵ
μ μ ν ν

ζ ξ ϵ= ⊗ +
− + −

⊗ +β β
γ β

γ β

β γ
γ

=
( )

V
(8)b b

c b

c b

b c
c

( ) ( )

, 2

where ζ ξ ζ ξ= 〈〈 ⊗ ⊗ 〉〉γ β γ βV V|c b c b, . We consider the dynamics of the bipartite system
starting from ϕ αa , i.e.

ψ ψ ψ ϕℏ = = α
t

t
H t tı

d ( )

d
( ) ( ) (0) (0). (9)a

From the viewpoint of the control of  , there are three time scales:

• T, the total duration of the evolution (the duration of the control);
• τ , the quantum proper time characterizing the transition of  from ζa to another
eigenvector, induced by the control (the Rabi period of the first transition involving ζa,

e.g. τ =
μ μ∈ =

ℏ
− )sup maxt T b a[0, ] | |b a

;
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• θϵ, the time characterizing the perturbation of  by  .
We remark that the non-self-adjoint models [10–12] also exhibit three time scales (the

duration of the evolution, the time characterizing the quantum transitions, and the time
characterizing the dissipation—the inverse of the resonance width). There are then three
adiabatic regimes:

• τ θ≪ ϵ and τ ≪ T (very strong adiabatic regime);
• τ θ∼ ϵ and θ ≪ϵ T (strong adiabatic regime);
• τ θ∼ ϵ and θ ∼ϵ T , the evolution of  being assumed to be very strongly adiabatic
(weak adiabatic regime).

More precisely, consider the nonadiabatic couplings (for β α=b a( ) ( )):

ϕ ϕ
λ λ

ϕ ϕ= ℏ
−

ℏ ′α β
β α

α β
−

( )T
H˙ (10)a b

b a
a b

1

where a dot denotes the derivative with respect to t and a prime denotes the derivative with
respect to the reduced time =s t T . If ∀ =b a, μ μ− =∈inf | | (1)t T b a[0, ] ( τ θ⟺ ≪ ϵ,
 (1) means a gap condition very large with respect to ϵ—a value of zero order in ϵ) then

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟



λ λ
μ μ

ν ν
μ μ

ϵ

μ μ
ν ν
μ μ

ϵ

ℏ
−

= ℏ

− +
−
−

−
ℏ −

− +
−
−

+

β α β α

β β α α

β α
( )

( )

( )

T
T

V V

T

( ) 1

( ) 1

. (11)

b a
b a

b a

b b a a

b a
b a

, ,

2

2
2

By assuming that Δ = + =β α
ν ν
μ μ∈ = =

−
−

β αinf min max 1 (1)t T b a[0, ]
b a

(no resonance

between a transition of  from ζa and a transition of  from ξα) we have

 
λ λ

τ
Δ

τ
θ Δ

ϵℏ
−

⩽ + +
β α

ϵ ( )( )T T T
(12)

b a

2

2
2

with τ =
μ μ∈ =

ℏ
−sup maxS t b a[0,1] | |b a

and θ =ϵ
β α ϵ∈ =

ℏ
−β β α α

inf mint T b a V V[0, ] ( ) ( ) | |b b a a, ,
. If T is

chosen like τ ≪ T , then β α∀ =b a( ) ( ), ϕ ϕ〈〈 〉〉 ≪α β| | ˙ | 1a b . All nonadiabatic couplings being
negligible, we can think that the system remains projected only onto ϕ α t( )a during the whole
dynamics. This is the very strong adiabatic regime which corresponds to an adiabatic evolution of
the whole bipartite system. Now if μ μ ϵ− =∈ =inf min | | ( )t T b a b a[0, ] τ θ⟺ ∼ ϵ( )

we have the following.

• If α β= and ν ν− =β α∈inf | | (1)t T[0, ] :



λ λ ν ν

ϵ μ μ

ν ν
ϵ

ℏ
−

= ℏ
−

−
ℏ − + −

−
+

β α β α

β β α α

β α
( )

( )
( )

T T

V V

T

( )

˜ ˜

( )
(13)

b a

b a b b a a, ,

2
2

where μ = μ
ϵ˜b
b ( μ μ− =∈ =inf min | ˜ ˜ | (1)t T b a b a[0, ] ).
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• If α β= or ∃ t* such that ν ν=β αt t( *) ( *): since λ ϵ μ ν= + +β β β βV( ˜ )b b b b, we have

λ λ ϵ μ μ
ℏ
−

= ℏ
− + −β α β β α α( ) ( )T T V V˜ ˜

(14)
b a b a b b a a, ,

for all t if α β= or only at =t t*.

We have the following.

• If α β= and ν ν− =β α∈inf | | (1)t T[0, ] :

 
λ λ

τ τ
θ

ϵℏ
−

⩽ + +
β α

ϵ ( )( )T T T
. (15)

b a

2
2

• If α β= or ∃ t* such that ν ν=β αt t( *) ( *):


λ λ

τℏ
−

⩽
β α

ϵ

( )T T
(16)

b a

for all t if α β= or only at =t t*.

Here τ = β α ν ν∈ =
ℏ
−β α

sup maxt T[0, ] | |
, θ =ϵ

β α ϵ μ μ∈ =
ℏ

− + −β β α α
inf mint T b a V V[0, ] ( ) ( ) ( ˜ ˜ )b a b b a a, ,

and τ =ϵ
β ν ν ϵ μ μ∈ =

ℏ
− + −β α β β α α

sup max
* *t T s t t t V V[0, ] . . ( ) ( ) ( ˜ ˜ )b a b b a a, ,

( τ ϵ is the time characterizing the

transition of  from ζa to another eigenvector induced by the action of  on  ). If T and ϵ are
chosen such that θ τ∼ ≪ϵ ϵ T , then β α∀ =b a( ) ( ), ϕ ϕ〈〈 〉〉 ≪α β| | ˙ | 1a b . In this strong adiabatic
regime, as in the very strong adiabatic regime, the system remains projected only onto ϕ α t( )a

during the whole dynamics. In contrast, if T and ϵ are chosen such that θ τ∼ ∼ϵ ϵ T , then
β α∀ = , ϕ ϕ〈〈 〉〉 ≪α β| | ˙ | 1a b if we assume that τ ≪ T , but ϕ ϕ〈〈 〉〉 ≪α α| | ˙ | 1a b . In this weak

adiabatic regime, the system remains projected onto the space spanned by the eigenvectors
related to ξα, but transitions between the eigenstate related to ζa and an eigenstate related to
another ζb are possible due to nonadiabatic transitions induced by  on  (and not directly by
the control).

In the strong and the very strong adiabatic regimes  and  evolve adiabatically with
regard to the control (and  evolves adiabatically with regard to  in the very strong adiabatic
regime). In the weak adiabatic regime, only  evolves adiabatically with regard to the control,
then the evolution of  can be richer and it is in this case that the adiabatic transport of the
density matrix can potentially exhibit operator-valued phases. We note that this weak adia-
batic regime is more interesting from the viewpoint of the quantum control. Indeed, in
general, quantum control problems are characterized by the condition =H T H( ) (0) since we
start and end with the control system off. This induces ϕ ϕ=α αT( ) (0)a a and in the strong and
the very strong adiabatic regimes we have ρ ρ=T( ) (0). In contrast due to the possible
transitions in the weak adiabatic regime, which are characterized by an operator-valued phase

 ∈U ( ), we can have ρ ρ=T U U( ) (0) † ( ( ) denotes the set of unitary operators of
). The answer to the control problem consists then in finding the time dependent mod-
ulation of the control system such that U transforms ρ (0) to ρtarget (or at least such that

ρ ρ∥ − ∥U U(0) †
target is minimal). The assumption stating that the evolution of  must be

adiabatic is natural in this context, since it corresponds to requiring that transitions in  do not
hamper the adiabatic control by generating kinematic decoherence (see section 3.7 and [20]).

The discussion presented here is heuristic; the following section presents rigorous results.
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2.2. Adiabatic theorems

Theorem 1 (Strong adiabatic theorem for bipartite quantum systems). Let

    ϵ∋ ↦ = ⊗ + ⊗ +s H s H s H s V s[0, 1] ( ) ( ) 1 1 ( ) ( ) be a family of self-adjoint Hamil-
tonians of a bipartite quantum system such that ∀ >T 0, ψ ψℏ ′ =s TH s sı ( ) ( ) ( ) has
continuous solutions in the norm topology, and such that V is   ⊗ + ⊗H H( 1 1 )S

bounded. Let μ{ }b b and νβ β{ } be the pure point spectra of H and H and ζ{ }b b and ξβ β{ }
be the associated normalized eigenvectors. Let ϕ β β{ }b b be the normalized eigenvectors of H
continuously linked to ζ ξ⊗ β β{ }b b when ϵ → 0 (in the norm topology). We consider the case
where ψ ϕ= α(0) (0)a . For the sake of simplicity we suppose that each eigenvalue is
nondegenerate and that H and H do not have continuous spectra. We assume the following
conditions.

(i) β∀b, , μ↦s s( )b and ν↦ βs s( ) are 1; ζ↦s s( )b and ξ↦ βs s( ) are 2 in the norm
topology.

(ii) No resonance between transitions of  and  involving ζ ξ⊗ αa occurs, i.e. ∀ ∈s [0, 1],
β α∀ =b a( ) ( ), μ ν ϵ μ ν ϵ+ + = + +β β α αs s V s s s V s( ) ( ) ( ) ( ) ( ) ( )b b a a .

(iii) The perturbed energies of  satisfy a gap condition of order ϵ with μa:

μ ϵ μ ϵ ϵ+ − − =
β α

β β α α
∈ =

s V s s V sinf min ( ) ( ) ( ) ( ) ( ). (17)
s b a

b b b a a a
[0,1]( ) ( )

, ,

Then we have

⎜ ⎟⎛
⎝

⎞
⎠ψ ψ

ϵ
∀ ∈ = +αs P s s s

T
[0, 1], ( ) ( ) ( )

1
(18)a

with ϕ ϕ= 〉〉〈〈α α αP s s s( ) | ( ) ( )|a a a the orthogonal projection onto ϕ αa .

We remark that we can also write ψ ψ= +α
θϵ( )P s s s( ) ( ) ( )a T

.

Proof. ∀ ∈s [0, 1], ϕ δ δs( ( ))d d, being a complete basis of the domain of H(s), we can write

∑ ∫ψ ϕ=
δ

δ
λ σ σ

δ
− ℏ δ

−
s c s s( ) ( )e ( ) (19)

d

d
T

d
ı ( )d

s

d
1

0

for some ∈δc s( )d . By injecting this expression into the Schrödinger equation ψ ψℏ ′ = THı
and projecting the result onto ϕ β s( )b , we find

∑ ∫ ϕ ϕ′ = − ′β
δ

δ
λ σ λ σ σ

β δ
ℏ −β δ

− ( )c s c s s s( ) ( )e ( ) ( ) . (20)b
d

d
T

b d
ı ( ) ( ) d

s

b d
1

0

By an integration of this expression with respect to s, we find

∫∑ ∫σ ϕ σ ϕ σ σ

=

− ′

β β

δ
δ

λ ς λ ς ς
β δ

ℏ −
σ

β δ
− ( )

c s c

c

( ) (0)

( )e ( ) ( ) d . (21)

b b

d

s

d
T

b d
0

ı ( ) ( ) db d
1

0
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With an integration by parts we have

⎛

⎝

⎜⎜⎜

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟⎟

∫

∫

∑ ∫

∫

σ ϕ σ ϕ σ σ

σ ϕ σ ϕ σ

λ σ λ σ

σ ϕ σ ϕ σ

λ σ λ σ
σ

= − ′

−
′

ℏ −

+
ℏ

′

−

′

β β β β β

δ β

δ β δ

β δ

λ ς λ ς ς

λ ς λ ς ς δ β δ

β δ

=
−

ℏ −

ℏ −

−

σ
β δ

σ
β δ

−

−

( )

( )

( )

( )

c s c c

c

T

T

c

( ) (0) ( ) ( ) ( ) d

( ) ( ) ( )

ı ( ) ( )
e

e

ı

( ) ( ) ( )

( ) ( )
d . (22)

b b

s

b b b

d b

d b d

b d

T

s

s T d b d

b d

0

( ) ( )
1

ı ( ) ( ) d

0

0

ı ( ) ( ) d

1

b d

b d

1

0

1

0

By a first order perturbation we have δ α∀ =d a( ) ( )

λ λ μ μ ν ν ϵ ϵ− = − + − + − +α δ α δ α α δ δ ( )( )V V . (23)a d a d a a d d, ,
2

Because of the gap and the no resonance conditions, at least λ λ ϵ− =α δ| | ( )a d even if α δ=
or ∃ s* such that ν ν=δ αs s( *) ( *). All the other quantities appearing in equation (22) are
bounded. Indeed, the eigenvectors being 2, ϕ′δd and ϕ′δd are defined and bounded on [0, 1]

( ϕ∥ ′ ∥ < + ∞δ∈sups d[0,1] and ϕ∥ ′ ∥ < + ∞δ∈sups d[0,1] ); the eigenvalues being 1, λ′ δd is

defined and is bounded on [0, 1] ( λ′ < + ∞δ∈sup | |s d[0,1] ); moreover <δc 1d and is 1

(because ϕ ψ= 〈〈 〉〉∫
δ

λ σ
δ

ℏ δ
−

c e |d
T

d
ı d

s1
0 d with ψ which is 1 as a solution of the Schrödinger

equation). It follows that

⎜ ⎟⎛
⎝

⎞
⎠

ϕ ϕ ϕ′

ℏ
⩽

∥ ′ ∥

ℏ
=

δ β δ δ
−

∈
−

c

T T Tı

sup 1
(24)

d b d s d

1

[0,1]

1

implying that the third term of equation (22) is 
ϵ

( )
T

1 .

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ϕ ϕ

λ λ

ϕ ϕ

λ λ

ϕ ϕ

λ λ

ϕ ϕ

λ λ

λ λ ϕ ϕ

λ λ

′

ℏ −

′
=

′ ′

ℏ −

+
′ ′

ℏ −

+
″

ℏ −

−
′ − ′ ′

ℏ −

δ β δ

β δ

δ β δ

β δ

δ β δ

β δ

δ β δ

β δ

β δ δ β δ

β δ

− −

−

−

−

( ) ( )

( )

( )
( )

( )

c

T

c

T

c

T

c

T

c

T

ı ı

ı

ı

ı
(25)

d b d

b d

d b d

b d

d b d

b d

d b d

b d

b d d b d

b d

1 1

1

1

1 2

then

⎜ ⎟⎛
⎝

⎞
⎠

ϕ ϕ ϕ′ ′

ℏ
⩽

′ ∥ ′ ∥

ℏ
=

δ β δ δ δ
−

∈ ∈
−

c

T

c

T Tı

sup sup 1
(26)

d b d s d s d

1

[0,1] [0,1]

1
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⎜ ⎟⎛
⎝

⎞
⎠

ϕ ϕ ϕ ϕ′ ′

ℏ
⩽

∥ ′ ∥ ∥ ′ ∥

ℏ
=

δ β δ β δ
−

∈ ∈
−

c

T T Tı

sup sup 1
(27)

d b d s b s d

1

[0,1] [0,1]

1

⎜ ⎟⎛
⎝

⎞
⎠

ϕ ϕ ϕ″

ℏ
⩽

∥ ″ ∥

ℏ
=

δ β δ δ
−

∈
−

c

T T Tı

sup 1
(28)

d b d s d

1

[0,1]

1

⎜ ⎟⎛
⎝

⎞
⎠

λ λ ϕ ϕ λ λ ϕ′ − ′ ′

ℏ
⩽

′ − ′ ∥ ′ ∥

ℏ

=

β δ δ β δ β δ δ
−

∈ ∈
−

( )c

T T

T

ı

sup sup

1
. (29)

b d d b d s b d s d

1

[0,1] [0,1]

1

This implies that the fourth term of equation (22) is 
ϵ

( )
T

1 . Finally for β α=b a( ) ( ) we have

⎜ ⎟⎛
⎝

⎞
⎠∫ σ ϕ σ ϕ σ σ

ϵ
= − ′ +α α α αc s c

T
( ) 1 ( ) ( ) ( ) d

1
(30)a

s

a a a
0

and for β α∀ =b a( ) ( ) we have

⎜ ⎟⎛
⎝

⎞
⎠∫∑ ∫σ ϕ σ ϕ σ σ

ϵ
= − ′ +β

δ α
δ

λ ς λ ς ς
β δ

=

ℏ −
σ

β δ
− ( )c s c

T
( ) ( )e ( ) ( ) d

1
(31)b

d a

s

d
T

b d
( ) ( )

0

ı ( ) ( ) db d
1

0

(note that =αc (0) 1a and =βc (0) 0b ). This last expression being the integral equation of the

Dyson series for the null initial condition, we have =β ϵ( )c s( )b T

1 . Finally we conclude that

⎜ ⎟⎛
⎝

⎞
⎠∫ψ ϕ

ϵ
= +α

λ σ σ
α

− ℏ α
−

s c s s
T

( ) ( )e ( )
1

(32)a
T

a
ı ( )d

s

a
1

0

with = ∫
α

ϕ σ ϕ σ σ− 〈〈 ′ 〉〉α αc s( ) ea
( ) | ( ) d

s
a a0 because equation (30) is the integral equation of an

exponential map with the initial condition equal to 1. □

As the very strong adiabatic regime is obtained with a usual adiabatic theorem applied on
the bipartite quantum system, it can be considered as a particular case of the previous theorem
where the gap condition is stronger and where the remainder of the adiabatic approximation is

smaller ( ( )T

1 in place of 
ϵ )( )T

1 .

We can remark that assumption (iii) is equivalent to τ θ∼ ϵ as expressed in section 2.1.

The condition θ≫ ϵT is equivalent to requiring that the remainder 
ϵ( )T

1 must be small.
Theorem 1 can be viewed as a corollary of the usual adiabatic theorem since their

assumptions are very similar. Nevertheless, theorem 1 corresponds to an adiabatic theorem with
a gap condition which is asymptotically small (i.e.  ϵ( )). The remainder of the adiabatic

approximation 
ϵ( )( )T

1 is then larger than that of the usual adiabatic approximation ( )( )T

1 .
As stated above, the very strong adiabatic regime is a particular case of theorem 1 where
the gap is not chosen asymptotically small and corresponds exactly to the usual adiabatic
theorem.

Theorem 2 (Weak adiabatic theorem for bipartite quantum systems). Let

    ϵ∋ ↦ = ⊗ + ⊗ +s H s H s H s V s[0, 1] ( ) ( ) 1 1 ( ) ( ) be a family of self-adjoint
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Hamiltonians of a bipartite quantum system such that ∀ >T 0, ψ ψℏ ′ =s TH s sı ( ) ( ) ( ) has
continuous solutions in the norm topology, and such that V is   ⊗ + ⊗H H( 1 1 )S

bounded. Let μ{ }b b and νβ β{ } be the pure point spectra of H and H and ζ{ }b b and ξβ β{ }
be the associated normalized eigenvectors. Let ϕ β β{ }b b be the normalized eigenvectors of H
continuously linked to ζ ξ⊗ β β{ }b b when ϵ → 0 (in the norm topology). We consider the case
where ψ ϕ= α(0) (0)a . For the sake of simplicity we suppose that each eigenvalue is
nondegenerate and that H and H do not have continuous spectra. We assume the following
conditions.

(i) β∀b, , μ↦s s( )b and ν↦ βs s( ) are 1; ζ↦s s( )b and ξ↦ βs s( ) are 2 in the norm
topology.

(ii) No quasi-resonance between transitions of  and  involving ξα occurs, i.e.
∀ ∈s [0, 1], ∀c, β α∀ =b c( ) ( ), μ ν μ ν+ − − =β αs s s s| ( ) ( ) ( ) ( )| (1)b c .

(iii) The energies of  satisfy a gap condition of order 0 with να:

ν ν− =
β α

β α
∈ =

s sinf min ( ) ( ) (1). (33)
s [0,1]

(iv) × ∋ ↦ = − −s z R s z H s z[0, 1] ( , ) ( , ) ( ( ) ) 1 is strongly 1 with respect to s and for
every δ > 0, ∃ ∈δ

+K , such that ∥ ′∥ ⩽
λ

δ

β β
R s z( , )

K

z sdist( , { ( )} )b b
∀z satisfying

λ δ>β βz sdist( , { ( )} )b b .

Then we have

⎜ ⎟⎛
⎝

⎞
⎠ψ ψ∀ ∈ = +αs P s s s

T
[0, 1], ( ) ( ) ( )

1
(34)•

with ϕ ϕ= ∑ 〉〉〈〈α α αP s s s( ) | ( ) ( )|b b b• .

Proof. Let σ λ=α αs s( ) { ( )}c c and σ λ= β β α⊥ =s s( ) { ( )}b b, be a decomposition of the
spectrum of H(s) into the part linked to να and its complement. By a first order perturbation we
have

λ λ μ μ ν ν ϵ ϵ− = − + − + − +α β α β α α β β ( )( )V V . (35)c b c b c c b b, ,
2

With the gap and the no quasi-resonance conditions we have then

σ σ λ λ= − =α
β α

α β
∈

⊥
∈ =

( )s sinf dist ( ), ( ) inf min min (1). (36)
s s c b

c b
[0,1] [0,1] ,

We are in the conditions of the Nenciu adiabatic theorem [19] (condition (iv) is a requirement
of this theorem) which ensures that during the whole evolution, the system remains projected
onto the spectral subspace associated with the isolated part of the spectrum σ λ=α α{ }c c. The
application of the Nenciu theorem proves the present one which is just a special version. □

We note that the no quasi-resonance condition (ii) can be relaxed as a no resonance
condition μ ν μ ν+ = +β αs s s s( ) ( ) ( ) ( )b c (permitting μ ν μ ν ϵ+ − − =β αs s s s| ( ) ( ) ( ) ( )| ( )b c )
and moreover it could be suppressed if =α α β βV s V s( *) ( *)c c b b, , for s* such that
μ ν μ ν+ = +β αs s s s( *) ( *) ( *) ( *)b c . But with these weaker conditions, the remainder of the

adiabatic approximation is larger: 
ϵ( )T

1 . Nevertheless the main interest of this theorem is the
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weak adiabatic regime ∈
ϵ

(0)
T

1 (where we cannot apply the strong adiabatic theorem), where
the following optional condition is satisfied.

(v) The energies of  satisfy a gap condition of order ϵ with μa:

μ μ ϵ− =
∈ =

s sinf min ( ) ( ) ( ). (37)
s b a

b a
[0,1]

Condition (v) is compatible with theorem 2 but it is not necessary. Nevertheless it corresponds
to the interesting physical situations.

Assumption (iii) implies that  evolves adiabatically with regard to the control. This is a
natural assumption because it corresponds to requiring that transitions in  do not hamper the
control of  , as explained at the end of section 2.1. But if in practice it is necessary to relax
this assumption for a single instant (or for a small number of instants) it is possible to
generalize the application of theorem 2; we discuss this point in section 3.7.

We can remark that assumption (iii) is equivalent to τ≫T as expressed in section 2.1,
whereas condition (v) is equivalent to τ θ∼ ϵ.

3. Adiabatic transport of the density matrix

We are now able to find adiabatic transport formulae for the density matrix of  :
ρ ψ ψ= 〉〉〈〈s s s( ) tr | ( ) ( )|.

3.1. Strong adiabatic regime

Proposition 1. In the conditions of the strong adiabatic theorem (theorem 1) we have

⎜ ⎟⎛
⎝

⎞
⎠ρ ρ

ϵ
∀ ∈ = +αs s s

T
[0, 1] ( ) ( )

1
(38)a

where ρ ϕ ϕ= 〉〉〈〈α α αs s s( ) tr | ( ) ( )|a a a is the ‘density eigenmatrix’.

Proof. By applying theorem 1 we have

⎜ ⎟⎛
⎝

⎞
⎠∫ ∫ψ ϕ

ϵ
= +′λ σ σ ϕ σ ϕ σ σ

α
− ℏ −α α α

−
s s

T
( ) e ( )

1
(39)T

a
ı ( )d ( ) ( ) d

s

a

s

a a
1

0 0

Since ϕ ϕ ϕ ϕ〈〈 〉〉 = ⇒ 〈〈 ′ 〉〉 ∈α α α αs s s s( )| ( ) 1 ( )| ( ) ıa a a a , we have ψ ψ〉〉〈〈 =s s| ( ) ( )|
ϕ ϕ〉〉〈〈α αs s| ( ) ( )|a a . □

We can approach ρ αa by a perturbative method (using the Wigner–Brillouin approach):

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

∑

∑

ρ ζ ζ ϵ
μ μ ϵ

ζ ζ

ϵ
μ μ ϵ

ζ ζ

ϵ
ϵ

= +
− +

+
− +

+

α α

α α

α α

α α

=

=

s s s
V s

s s V
s s

V s

s s V
s s

T

( ) ( ) ( )
( )

( ) ( )
( ) ( )

( )

( ) ( )
( ) ( )

max
1

, . (40)

a a

b a

b a

a b a a
b a

b a

a b

b a a a
a b

,

,

,

,

2

3.2. Zero order weak adiabatic regime

We denote by 
←
e and 

→
e the time ordered and the time anti-ordered exponentials, i.e. for

↦s A s( ) a bounded anti-self-adjoint operator,  ∫ σ σ
←

−e A ( )d
s

0 is the unitary operator solution of
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⎛
⎝⎜

⎞
⎠⎟  ∫ ∫ ∫′

= − =σ σ σ σ σ σ

←

−

←

−

←

−A se ( ) e e 1 (41)A A A( )d ( )d ( )d
s s

0 0 0

0

and  ∫ σ σ
→

−e A ( )d
s

0 is the unitary operator solution of

⎛
⎝⎜

⎞
⎠⎟  ∫ ∫ ∫′

= − =σ σ σ σ σ σ

→

−

→

−

→

−A se e ( ) e 1. (42)A A A( )d ( )d ( )d
s s

0 0 0

0

Moreover we denote by Ad the adjoint action of a transformation U on a density matrix ρ:

Ad ρ ρ=U U U[ ] . (43)†

Proposition 2. In the conditions of the weak adiabatic theorem (theorem 2) we have
∀ ∈s [0, 1]

Ad

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

 ∫ ∫ρ ρ

ϵ

=

+

σ σ σ σ
α←

− ℏ

→

−α
−

s s

T

( ) e e ( )

max
1

, (44)

T E A
a

ı ( )d ( )d
s s

1

0

(0)

0

(0)

with the zero order dynamical phase generator defined as being

 ∑λ ζ ζ= ∈α α ( )E s s s s( ) ( ) ( ) ( ) (45)
b

b b b
(0)

and the zero order geometric phase generator defined as being

 ∑ ζ ζ ζ ζ= ′ ∈ ( )A s s s s s( ) ( ) ( ) ( ) ( ) . (46)
b c

b c b c
(0)

,

Proof. By applying theorem 2 and an adiabatic transport formula for several eigenvalues
[21, 22] we have

⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠∑ ∫ ∫ψ ϕ= +Λ σ σ

α
←

− ℏ −α α
−

s
T

( ) e
1

(47)
b

T K

ba
b

ı d d
s s

1

0 0

with M Λ ∈α α ×K, ( )n n being the square matrices of order n (n is the dimension of )
such that Λ λ δ=α α[ ]ab a ab and ϕ ϕ= 〈〈 ′ 〉〉α α αK[ ] |ab a b ([.]ab denotes the matrix element at the ath
line and the bth column). Since ζ ζ ϕ ϕ δ ϵ〉〈 = +α α| | ( )b c a b ca we have

⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟∑ ∫ ∫ψ ζ ζ ϕ ϵ= +Λ σ σ

α
←

− ℏ −α α
−

s
T

( ) e max
1

, . (48)
b c

T K

bc
b c a

,

ı d d
s s

1

0 0

By applying corollary 1 (appendix) we have

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥



 

∑

∑ ∑

∫ ∫

∫ ∫

ζ ζ

ζ ζ ζ ζ=

Λ σ σ

σ σ

←

− ℏ −

←

−

←

−

α α

α

−
e

e e (49)

b c

T K

bc
b c

bd

X

bd
b d

f c

K

fc
f c

,

ı d d

d

,

d

s s

s s

1

0 0

0 0

with  Λ= ℏ + − ∫ ∫
α α

σ
α

σ−
←

−
←

−
−( )X T K Kı e eX X1 d d

1s s

0 0 .
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• Let M ∈ ×Y ( )n n be such that
⎡
⎣⎢

⎤
⎦⎥  ζ ζ= ∑ 〉〈∫ ∫σ σ

←
− ℏ

←
−α

−
e e | |T E

b d
Y

bd
b d

ı d
,

d
s s1

0
(0)

0 .

⎛
⎝⎜

⎞
⎠⎟ ∫ ∫′

= − ℏσ
α

σ

←

− ℏ −
←

− ℏα α
− −

TEe ı e (50)T E T Eı d 1 (0) ı d
s s

1

0

(0) 1

0

(0)

implies that

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥









∑

∑

∑

∑

∫

∫

∫

∫

ζ ζ

ζ ζ

ζ ζ

ζ ζ

− ℏ

= −

+ ′

+ ′

α
σ

σ

σ

σ

−
←

−

←

−

←

−

←

−

TE

Y

ı e

e

e

e (51)

b d

Y

bd
b d

b d

Y

bd
b d

b d

Y

bd
b d

b d

Y

bd
b d

1 (0)

,

d

,

d

,

d

,

d

s

s

s

s

0

0

0

0

but

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥





∑

∑

∫

∫

ζ ζ

λ ζ ζ

− ℏ

= − ℏ

α
σ

α
σ

−
←

−

−
←

−

TE

T

ı e

ı e (52)

b d

Y

bd
b d

b d

b
bd

b d

1 (0)

,

d

1

,

Yd

s

s

0

0

⎡
⎣⎢

⎤
⎦⎥∑ ∫Λ ζ ζ= − ℏ α

σ−
←

−Tı e (53)
b d

Y

bd
b d

,

1 d
s

0

and

∑ζ ζ ζ ζ ζ ζ′ = ′ (54)b d

f

f b f d

∑ζ ζ ζ ζ ζ ζ′ = ′ . (55)b d
f

d f b f

Equation (51) becomes

  



∫ ∫ ∫

∫

Λ− ℏ = − +

−

α
σ σ σ

σ

−
←

−

←

−

←

−

←

−

T Y K

K

ı e e ˚ e

e ˚ (56)

Y Y Y

Y

1 d d d

d

s s s

s

0 0 0

0

because ζ ζ δ ζ ζ ζ ζ〈 〉 = ⇒ 〈 ′ 〉 = −〈 ′ 〉| | |d f df d f d f with M ∈ ×K̊ ( )n n defined as

ζ ζ= 〈 ′ 〉K[ ˚ ] |df d f . But

ϕ ϕ= ′α α α[ ]K (57)
bc b c

ζ ζ ξ ξ ϵ= ′ + ′ +α α ( ) (58)b c
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ξ ξ ϵ⇒ = + ′ +α α αK K̊ ( ) (59)

and then  Λ ϵ= ℏ + − +∫ ∫
α

σ σ−
←

−
←

−
−( )X T K Kı ˚ e ˚ e ( )X X1 d d

1s s

0 0 ( ξ ξ〈 ′〉 ∈α α| ı ). A

comparison with equation (56) shows that  ϵ= +Y X ( ) and then

⎡
⎣⎢

⎤
⎦⎥  ∑ ∫ ∫ζ ζ ϵ= +σ σ

←

−

←

− ℏ α
−

e e ( ). (60)
bd

X

bd
b d

T Ed ı d
s s

0

1

0

(0)

• Let M ∈ ×Z ( )n n be such that
⎡
⎣⎢

⎤
⎦⎥  ζ ζ= ∑ 〉〈∫ ∫σ σ

→
−

←
−e e | |A

f c
Z

f c
f c

d
,

d

,

s s

0
(0)

0 .

⎛
⎝⎜

⎞
⎠⎟ ∫ ∫′

= −σ σ

→

−

→

− Ae e (61)A Ad d (0)
s s

0

(0)

0

(0)

implies that

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥









∑

∑

∑

∑

∫

∫

∫

∫

ζ ζ

ζ ζ

ζ ζ

ζ ζ

−

= −

+ ′

+ ′

σ

σ

σ

σ

←

−

←

−

←

−

←

−

A

Z

e

e

e

e (62)

f c

Z

fc
f c

f c

Z

fc
f c

f c

Z

fc
f c

f c

Z

fc
f c

,

d (0)

,

d

,

d

,

d

s

s

s

s

0

0

0

0

which becomes (since ζ ζ= ∑ 〉〈A K[ ˚ ] | |cg cg c g
(0) )

   ∫ ∫ ∫ ∫− = − + −σ σ σ σ

←

−

←

−

←

−

←

−K Z K Ke ˚ e ˚ e e ˚ (63)Z Z Z Zd d d d
s s s s

0 0 0 0

ξ ξ ϵ= = − 〈 ′〉 +α α αZ K K˚ | ( ) and then

⎡
⎣⎢

⎤
⎦⎥  ∑ ∫ ∫ ∫ζ ζ ϵ= +′σ ξ ξ σ σ

←

− −

→

−α α αe e e ( ). (64)
f c

K

fc
f c

A

,

d d d
s s s

0 0 0

(0)

Finally we have

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

 ∫ ∫ ∫ψ ϕ

ϵ

=

+

′ξ ξ σ σ σ
α

−

←

− ℏ

→

−α α α
−

s s

T

( ) e e e ( )

max
1

, (65)

T E A
a

d ı d d
s s s

0

1

0

(0)

0

(0)

and

ρ ψ ψ=s s s( ) tr ( ) ( ) (66)

Ad ⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟ ∫ ∫ ρ ϵ= +σ σ

α←

− ℏ

→

−α
−

T
e e max

1
, (67)T E A

a
ı d d

s s
1

0

(0)

0

(0)

since ∈∫ ξ ξ σ− 〈 ′〉α α Ue (1)| d
s

0 (U (1) is the set of unit modulus complex numbers) and

   ∈∫ ∫σ σ
←

− ℏ
→

−α
−

e , e ( )T E Aı d d
s s1

0
(0)

0
(0)

.
□
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In this zero order approximation, the only memory of  is the elements λ αT b in the
expression of the operator-valued dynamical phase. We note that we cannot approach λ αb at
the zero order perturbative approximation in the dynamical phase because ϵT is not negligible
in the weak adiabatic regime. In the next section we consider higher accuracy approximations.

3.3. First order weak adiabatic regime

Proposition 3. In the conditions of the weak adiabatic theorem (theorem 2) we have
∀ ∈s [0, 1]

Ad

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

 ∫ ∫ρ ρ

ϵ

=

+

σ σ σ σ
α←

− ℏ

→

−α α
−

s s

T

( ) e e ( )

max
1

, (68)

T E A
a

ı ( )d ( )d

2

s s
1

0

(1)

0

(1)

with the first order dynamical phase generator defined as being

⎜ ⎟⎛
⎝

⎞
⎠  ∑ λ δ η ζ ζ= − ℏ ∈α α α α α ( )E s s

T
s s s( ) ( )

ı
( ) ( ) ( ) (69)

b c

b bc bc b c
(1)

,

(1) (1) (1)

and the first order geometric phase generator defined as being

 ∑ ζ ζ ζ ζ= ∈α α α α α
′ ( )A s s s s s( ) ( ) ( ) ( ) ( ) (70)

b c
b c b c

(1)

,

(1) (1) (1) (1)

with

∑ζ ζ ϵ
μ μ ϵ

ζ= +
− +α

α α

α α=

s s
V s

s s V s
s( ) ( )

( )

( ) ( ) ( )
( ) (71)b b

d b

d b

b d b b
d

(1) ,

,

∑

∑

η ξ ξ δ

ϵ
ξ ξ δ

μ μ ν ν ϵ

ϵ
ξ ξ δ

μ μ ν ν ϵ

= ′

+
′ −

− + − +

+
′ −

− + − +

α α α

γ α

γ α α γ

α γ α α

γ α

α γ γ α

α γ α α

=

=

( )

( )

s s s

V s s s

s s s s V s

V s s s

s s s s V s

( ) ( ) ( )

( ) ( ) ( ) 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 1

( ) ( ) ( ) ( ) ( )
. (72)

bc bc

b c bc

c b c c

b c bc

b c b b

(1)

,

,

,

,

Proof. As for the zero order formula we start with

⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠∑ ∫ ∫ψ ϕ= +Λ σ σ

α
←

− ℏ −α α
−

s
T

( ) e
1

(73)
b

T K

ba
b

ı d d
s s

1

0 0

⎜ ⎟⎛
⎝

⎞
⎠∑ ϕ ϕ ϕ= +α α α αU

T

1
. (74)

b c

bc b c a
,

Let ζ ζ ϵ ζ= + ∑α α α=b b d b d b d
(1)

,  =γ α μ μ ν ν ϵ− + − +
γ α

α γ α α( )with d b
V

V,
d b

b d b b

,

,
. By using a first order

perturbative expansion based on the Wigner–Brillouin method we have
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 ∑ϕ ζ ξ ϵ ζ ξ ϵ= ⊗ + ⊗ +α α
γ α

γ α γ
=

( ) (75)b b

d b

d b d

( , ) ( , )

,
2

 ∑ ∑ζ ξ ϵ ζ ξ ϵ= ⊗ + ⊗ +α α
γ α

γ α γ
= =

( ). (76)b
d b

d b d
(1)

,
2

We have then



 

∑ ∑

∑ ∑

ϕ ϕ ζ ζ ξ ξ

ϵ ζ ζ ξ ξ

ϵ ζ ζ ξ ξ ϵ

= ⊗

+ ⊗

+ ⊗ +

α α α α α α

γ α
γ α γ α

γ α
γ α α γ

= =

= =
( ) (77)

b c b c

d b

d b d c

d c

d c b d

(1) (1)

,

,
2



 

∑

∑ ∑

ϕ ϕ ϕ ζ ζ ϕ

ϵ ζ ξ δ

ϵ ζ ξ δ ϵ

=

− ⊗ −

+ ⊗ +

α α α α α α

γ α
γ α γ

γ α
γ α γ

=

= =
( )

( )1

(78)

b c a b c a

c a b ac

d b

d b d ac

(1) (1)

,

,
2



 

∑ ∑

∑ ∑

ζ ζ ϕ

ϵ ζ ζ ϕ

ϵ ζ ζ ϕ ϵ

=

−

+ +

α α α

γ α
γ α γ

γ α
γ α γ

= =

= =
( ). (79)

b c a

d c

c d b d a

d b

d b d c a

(1) (1)

,

,
2

By using this expression with equation (73) we find that

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟



 

∑

∑ ∑ ∑

∑ ∑ ∑

ψ ζ ζ ϕ

ϵ ζ ζ ϕ

ϵ ζ ζ ϕ ϵ

=

−

+ +

α α α α

γ α
α γ α γ

γ α
α γ α γ

= =

= =

s U

U

U
T

( )

max
1

, (80)

bc

bc b b a

b c d c

bc c d b d a

b c d b

bc d b d c a

(1) (1)

,

,

,

,
2

⎜ ⎟⎡⎣ ⎤⎦
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟   ∑ϕ ϵ ϕ ϵ= + +α α

γ α
γα α γ

= T
, max

1
, (81)a a

2

with the operators of  :  ζ ζ= ∑ 〉〈α α α αU | |b c bc b c,
(1) (1) and

  ζ ζ= ∑ ∑ 〉〈γα γ α γ α= | |.d b d d b d b,
(1) (1) We have then
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⎜ ⎟

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

 
  

  



∑

∑

ψ ψ ϕ ϕ

ϵ ζ ζ ξ ξ

ϵ ζ ζ ξ ξ

ϵ

=

+ ⊗

+ ⊗

+

α α α α

γ α
γα α γ α α

γ α
α α γ α γα

=

=

T

,

,

max
1

, (82)

a a

a a

a a

†

†

† †

2

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟  ρ ψ ψ ρ ϵ⇒ = = +α α αs

T
( ) tr max

1
, (83)a

† 2

⎡
⎣⎢

⎤
⎦⎥ ∑ ∫ ∫ ζ ζ=α

Λ σ σ
α α

←

− ℏ −α α
−

e . (84)
b c

T K

bc
b c

,

ı d d (1) (1)
s s

1

0 0

But

ϕ ϕ= ′α α α[ ]K (85)
bc b c



 

∑

∑

ζ ζ ξ ξ

ϵ ξ ξ δ

ϵ ξ ξ δ ϵ

= + ′

+ ′ −

+ ′ − +

α α α α

γ α
γ α α γ

γ α
γ α γ α

′

=

=
( )

( )

( )

1

1 (86)

b c

b c bc

c b bc

(1) (1)

,

,
2

⎡⎣ ⎤⎦ η ϵ= + +α α ( )K̊ (87)
bc bc

(1) 2

with ζ ζ= 〈 〉α α α
′K[ ˚ ] |bc b c

(1) (1) ( M ∈α ×K̊ ( )n n ). By using corollary 1 (appendix) we find

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥


 ∑ ∑∫ ∫ζ ζ ζ ζ ϵ= +

α

σ
α α

σ
α α

←

−

←

− α ( )e e (88)
b d

X

bd
b d

f c

K

fc
f c

,

d (1) (1)

,

˚ d (1) (1) 2
s s

0 0

with  Λ η= ℏ + + − ∫ ∫
α α α

σ
α

σ−
←

−
←

−
−( )X T K Kı ˚ e ˚ eX X1 (1) d d

1s s

0 0 .

• Let M ∈ ×Y ( )n n be such that
⎡
⎣⎢

⎤
⎦⎥  ζ ζ= ∑ 〉〈∫ ∫σ σ

α α
←

− ℏ
←

−α
−

e e | |T E
b d

Y

bd
b d

ı d
,

d (1) (1)
s s1

0
(1)

0

⎛
⎝⎜

⎞
⎠⎟ ∫ ∫′

= − ℏσ
α

σ

←

− ℏ −
←

− ℏα α
− −

TEe ı e (89)T E T Eı d 1 (1) ı d
s s

1

0

(1) 1

0

(1)

implies that
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⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥









∑

∑

∑

∑

∫

∫

∫

∫

Λ η ζ ζ

ζ ζ

ζ ζ ζ ζ

ζ ζ ζ ζ

− ℏ −

= −

+

+

α α
σ

α α

σ
α α

σ
α α α α

σ
α α α α

−
←

−

←

−

←

− ′

←

− ′

( )T

Y

ı e

e

e

e (90)

b d

Y

bd
b d

b d

Y

bd
b d

b d f

Y

bd
f b f d

b d f

Y

bd
d f b f

,

1 (1) d (1) (1)

,

d (1) (1)

, ,

d (1) (1) (1) (1)

, ,

d (1) (1) (1) (1)

s

s

s

s

0

0

0

0



  

∫

∫ ∫ ∫

Λ η⇒ − ℏ −

= − + −

α α
σ

σ
α

σ σ
α

−
←

−

←

−

←

−

←

−

( )T

Y K K

ı e

e ˚ e e ˚ . (91)

Y

Y Y Y

1 (1) d

d d d

s

s s s

0

0 0 0

We have then  Λ η= ℏ + + − ∫ ∫
α α α

σ
α

σ−
←

−
←

−
−( )Y T K Kı ˚ e ˚ eY Y1 (1) d d

1s s

0 0 and by compar-

ison with the definition of X we have Y = X and then

⎡
⎣⎢

⎤
⎦⎥ ∑ ∫ ∫ζ ζ =σ

α α
σ

←

−

←

− ℏ α
−

e e . (92)
b d

X

bd
b d

T E

,

d (1) (1) ı d
s s

0

1

0

(1)

• Let M ∈ ×Z ( )n n be such that
⎡
⎣⎢

⎤
⎦⎥  ζ ζ= ∑ 〉〈∫ ∫σ σ

α α
→

−
←

−αe e | |A
f c

Z

fc
f c

d
,

d (1) (1)
s s

0
(1)

0 .

⎛
⎝⎜

⎞
⎠⎟ ∫ ∫′

= −σ σ
α

→

−

→

−α α Ae e (93)A Ad d (1)
s s

0

(1)

0

(1)

implies that

 

 

∫ ∫

∫ ∫

− = −

+ −

σ
α

σ

α
σ σ

α

←

−

←

−

←

−

←

−

K Z

K K

e ˚ e

˚ e e ˚ (94)

Z Z

Z Z

d d

d d

s s

s s

0 0

0 0

= αZ K̊ and then

⎡
⎣⎢

⎤
⎦⎥ ∑ ∫ ∫ζ ζ =σ

α α
σ

←

−

→

−α αe e . (95)
f c

K

fc
f c

A

,

˚ d (1) (1) d
s s

0 0

(1)

Finally we have

  ∫ ∫ ϵ= +α
σ σ

←

− ℏ

→

−α α
− ( )e e . (96)T E Aı d d 2

s s
1

0

(1)

0

(1)

This concludes the proof by injecting this expression into equation (83). □

We note that we have used the Wigner–Brillouin method for the perturbation theory
(ζ ζ ϵ ζ= + ∑α μ μ ϵ= − +

α α

α α
s s s( ) ( ) ( )b b d b

V s

s s V s d
(1) ( )

( ) ( ) ( )

d b

b d b b

,

,
) because the weak adiabatic regime does

not need τ ≪ T , and permits crossings of eigenvalues of  . The Wigner–Brillouin method
permits us to avoid some divergences in the perturbation expansion induced by these possible
crossings.
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We can remark that the off-diagonal part of αE (1) includes in fact a geometric phase
generator associated with  (ηα

(1) ). This is not surprising since αE (1) takes the role of an
effective Hamiltonian of  dressed by  (see below). Such a dynamical phase generator is
similar to the one generated by quasi-energies in adiabatic Floquet theory (see for example
[25]) where the role of  is played by an atom or a molecule interacting with a strong laser
field described by θ

π
L S( , )d2 1

2
(the space of square integrable functions on the circle S1, θ being

the laser phase) which plays the role of  .

3.4. Second order weak adiabatic regime

The case of the second order perturbative approximation is more difficult. Indeed the second
order approximation of the eigenvectors



∑

∑

ϕ ζ ξ

ϵ
μ μ ν ν

ζ ξ

ϵ ζ ξ

ϵ

= ⊗

+
− + −

⊗

+ ⊗

+

β β

γ β

γ β

β γ
γ

δ β
γ β

μ μ ν ν μ μ ν ν δ

=

=
=

−

− + − − + −
δ γ γ β γ β β β

β δ β γ

( )

( )( )

V

(97)

b b

c b

c b

b c
c

d b
c b

V V V V
d

( ) ( )

,

2

( ) ( )
( ) ( )

3

d c c b c b b b

b d b c

, , , ,

is not normalized (at the order ϵ3). This induces some difficulties in defining an adiabatic
transport formula, especially for the definition of the generator of the geometric phase. A
normalization factor could be very complicated and difficult to use. We prefer to use a
biorthonormal basis ϕ β β{ }b b

* defined such that

ϕ ϕ δ δ ϵ= +γ β γβ ( ). (98)c b cb
* 3

Such an approach is able to define a correct geometric phase generator [23, 24]. In the present
context, the biorthonormal eigenvectors are

∑ϕ ϕ ϵ ζ ξ= − ⊗β β
γ

β γ γX (99)b b
c

b c c
* 2

( )

,

with

∑

∑

∑

μ μ ν ν μ μ ν ν
δ δ

μ μ ν ν μ μ ν ν
δ δ

μ μ ν ν μ μ ν ν
δ δ

=
−

− + − − + −
−

+
−

− + − − + −
−

+
− + − − + −

−

β γ

δ γ

β δ δ γ δ γ γ γ

γ β γ δ
βγ

δ β

δ γ β δ β δ β β

β γ β δ
βγ

δ β

δ γ β δ

γ δ β δ
δγ

=

=

=

( )( ) ( )

( ) ( )

( ) ( )

( )

( )

X

V V V V

V V V V

V V

1

1

1 . (100)

b c

d c

b d d c d c c c

c b c d

bc

d b

d c b d b d b b

b c b d

bc

d b

d c b d

c d b d

dc

,

( ) ( )

, , , ,

( ) ( )

, , , ,

( ) ( )

, ,

Proposition 4. In the conditions of the weak adiabatic theorem (theorem 2) we have
∀ ∈s [0, 1]
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Ad

Ad

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟


 



∑
ρ ρ

ϵ ζ ζ

ϵ

=

+

+

α α

δ α
δα α

=

[ ]
[ ]

s s s

s s s s

T

( ) ( ) ( )

( ) ( ) ( ) ( )

max
1

, (101)

a

a a

(2)

2

3

  ∫ ∫=α
σ σ σ σ

←

− ℏ

→

−α α
−

s( ) e e (102)T E Aı ( )d ( )d
s s

1

0

(2)

0

(2)

 ∑ ∑
Δ

ζ ζ=δα
δ α

α δ=

s
V s

s
s s( )

( )

( )
( ) ( ) (103)

d c d

d c

c d
d c

,

,

with Δ μ μ ν ν ϵ= − + − +α δ α δ α αVc d c d c c, , . The first order dynamical phase generator is
defined as being

⎜ ⎟⎛
⎝

⎞
⎠  ∑ λ δ η ζ ζ= − ℏ ∈α α α α α ( )E s s

T
s s s( ) ( )

ı
( ) ( ) ( ) (104)

b c

b bc bc b c
(2)

,

(2) (2) *(2)

and the first order geometric phase generator is defined as being

⎟
⎞
⎠

 

∑

∑

ζ ζ

ϵ ζ ζ

ζ ζ

=

+ ′

× ∈

α α α

δ α

Δ Δ

α α

′

=
=
=

δ α α δ

α δ α δ

(

( )

A s s s

s s

s s

( ) ( ) ( )

( ) ( )

( ) ( ) (105)

b c
b c

d c
f b

V s V s

s s f d

b c

(2)

,

*(2) (2)

2 ( ) ( )

( ) ( )

(2) *(2)

d c b f

c d b f

, ,

, ,

with

∑

∑

ζ ζ ϵ
Δ

ζ

ϵ ζ

= +

+

α
α α

α α

Δ Δ

=

=
=

−α α α α α α α α

α α α α

V

(106)

b b

d b

d b

b d
d

d b
b

V V V V
d

(2) ,

,

2

e

d b b b b

b d b

,e e , e , ,

, ,e

∑

∑

∑

ζ ζ

ϵ
Δ

ζ

ϵ ζ

ϵ ζ

=

+

+

−

α

α α

α α

Δ Δ

δ

Δ Δ

=

=
=

−

=

− −

α α α α α α α α

α α α α

α α α α α α α α

α α α α

( )( )

V

c c

f c

c f

c f
f

d c
c

V V V V
d

k

V V V V

*(2)

,

,

2

e

2

e
e

1
e

d c c c c

c d c

c k k k ce

c k

e , ,e ,e ,

, ,e

, ,e ,e e ,e

e , e ,
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∑

∑

ϵ ζ

ϵ ζ

−

−

δ

Δ Δ

γ α

δ
Δ Δ

=

− −

=
=

−

α α α α α α α α

α α α α

γ α α γ

α γ α γ

( )( )

( ) (107)

k c

V V V V

k c

V V

2

e

1
e

2

e

1
e

k c k c k c c ce

c c k

k c k ke

k c k

,e , , ,

,e ,

,e ,

e , ,

∑

∑

∑

∑

∑

∑

∑

∑

∑

η ξ ξ δ

ϵ
ξ ξ δ

Δ

ϵ
ξ ξ δ

Δ

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

= ′

+
′ −

+
′ −

+

+

+

+

−

−

−

α α α

δ α

δ α α δ

α δ

γ α

α γ γ α

α γ

δ α
γ

δ ξ ξ

Δ Δ

δ α

ϕ

δ ξ ξ

Δ Δ

γ α

δ ξ ξ

Δ Δ

δ α

ϕ α

δ ξ ξ

Δ Δ

ϕ α

γ ϕ α

δ ξ ξ

Δ Δ

ϕ α

γ α

δ ξ ξ

Δ Δ

ϕ α

γ α

δ ξ ξ

Δ Δ

=

=

=
=

− ′

=
=
=

− − ′

=
=

− ′

=
=
=

− − ′

=
=

=

− − ′

=
=
=

− − ′

=
=
=

− ′

δ α α γ γ δ

α δ α γ

δ ϕ ϕ α ϕ α α α α δ

α δ α ϕ

α γ α α γ α

α γ α α

ϕ δ α ϕ α ϕ α α δ α

α δ α ϕ

α γ γ ϕ γ ϕ ϕ ϕ α ϕ ϕ α

ϕ α ϕ γ

γ ϕ α γ α γ α α α ϕ ϕ α

α ϕ α γ

γ ϕ α γ γ ϕ ϕ α

ϕ γ α γ

( )

( )

( )

( )

( )( )

( )( )

( )

( )

( )

( )

( )

V

V

1

1

(108)

bc bc

b c bc

c b

b c bc

b c

d c

V V

c
a

V V V V

d c

V V

b

V V V V

k c

V V V V

k b

V V V V

k b

V V
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,

,

,

,

2
1

2

e

1

2
1

2

e

1

2

,

1

2
1

2
1

d c b d db

c d b d

b c c c c bc

c b c

b d d c db

b d d c

c b b b b bc

b c b

b k k c k c c c b c

c b c k

k c b k b k b b b c

b c b k

k c b k k c

c k b k

, ,

, ,

,e e , e , ,
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, ,

, ,

e , ,e ,e ,
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ρ αa
(2) is the corrected density matrix defined as

∑

∑

∑

ρ ρ

ϵ ζ ζ

ϵ ζ ζ

ϵ ζ ζ

=

+

+

−

α α

γ α

δ
Δ Δ

γ α

δ
Δ Δ

δ α

δ δ

Δ Δ

=
=

−

=
=

−

=

− −

α γ γ α

α γ α γ

γ α α γ

α γ α γ

α δ δ α

α δ α δ

( )

( )

( )

( )
. (109)

a a

c
d c

V V
c a

f
d c

V V
a f

c f

V V
c f

(2)

2 1

2 1

2

,

1 1

c d d a ad

c d a d

d f a d ad

f d a d

a f c a ac af

a f a c

, ,

, ,

, ,

, ,

, ,

, ,

The proof is very long but its development is very similar to the first order case except
that we need to take into account the biorthonormality and that some second order extra terms
involve indices δ α= of  , which are not killed by the partial trace. The significance of these
extra terms and of the higher complexity of the adiabatic transport formula is discussed in the
following section.

3.5. Discussion of the operator-valued phases

Operator-valued geometric phases were introduced in [16–18] for density matrices. We recall
rapidly the motivation of such geometric phases. The quantum control problems are char-
acterized by the condition =H H(1) (0) (we start and we end with the control system off).
This induces ϕ ϕ=α α(1) (0)a a and then ρ ρ=α α(1) (0)a a . But to solve a quantum control
problem, we need ρ ρ∥ − ∥(1) target to be minimal (with ρtarget the control goal and ρ s( ) the
density matrix of the dynamics such that ρ ρ= α(0) (0)a ). But if ρ ρ= α(1) (1)a (strong adia-
batic regime) it is impossible to solve a quantum control problem by an adiabatic scheme
(unless the initial condition is already the control target). In adiabatic quantum control, it is
necessary that ρ ρ= αU U(1) (1)a

† with U an operator of  associated with the adiabatic
transport of the mixed state ρ αa , and transforming ρ α (1)a such that ρ (1) is close to ρtarget. In

comparison with the adiabatic transport of pure states of closed systems (ψ ϕ= φ(1) e (1)a
ı ,

where ϕa is an instantaneous eigenvector and φeı is the product of a dynamical and a geo-
metric phase); U plays the role of the product of a dynamical phase and a geometric phase.
But these phases are operator valued since U is an operator. This is what we find with the
adiabatic transport formula of ρ αa in the weak adiabatic regime.

In [17] by an analysis based on a generalization of the geometric structure describing the
usual adiabatic geometric phases (using a noncommutative Hilbert space—a C*-module—and
a categorical principal bundle) the generator of an operator-valued geometric phase has been
defined by (we use the present notations)

 ϕ ϕ ρ= ′α α α α α
−( )A Ptr (110)a a a•

1

where ρ α
−
a

1 is the pseudo-inverse of ρ αa (ρ ρ = −α α ρ
−

α
P1a a

1
ker a

where ρ α
Pker a

is the orthogonal
projection onto the kernel of ρ αa ). By considering the perturbative expansions we find that
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ξ ξ ϵ= + ′ +α α αA A ( ) (111)(0)

ξ ξ ϵ= + ′ +α α α ( )A . (112)(1) 2

Up to aU (1)-gauge change leaving invariant the density matrix ρ s( ) ( ∈∫ ξ ξ σ− 〈 ′〉α α Ue (1)| d
s

0 ),
the operator-valued geometric phases found in the present paper coincide with the definition
introduced in [17], which is a generalization of the geometric phases introduced in [13–16].

The role of the operator-valued dynamical phase is interesting. Suppose temporarily that
ζ αb

(1) is constant (independent of s) but not λ α s( )b . In this assumption we have

Ad
⎡
⎣⎢

⎤
⎦⎥ ∫ρ ρ≃ σ σ

α←

− ℏ α
−

s( ) e (113)T E
a

ı ( )d
s

1

0

(1)

This induces

⎡⎣ ⎤⎦ρ ρℏ ≃ αEı ˙ , . (114)(1)

This expression is very similar to the Liouville–von Neumann equation of an isolated system
([9]): if  is isolated and governed by the self-adjoint Hamiltonian   ∈H ( ), we have

ρ ρℏ = [ ]Hı ˙ , . (115)

αE (1) plays then the role of an effective Hamiltonian of  taking into account effects induced
by  . We can consider αE (1) as the effective Hamiltonian of  dressed by , as the Floquet
Hamiltonian of an atom interacting with a strong laser field is the effective Hamiltonian of the
atom dressed by the photons [25, 26].

In reality ζ αb
(1) depends on the reduced time s, and αE (1) is described by using a moving

basis. The operator-valued geometric phase (as for all geometric phases) is just a correction to
take into account the movement of the basis (as for the simpler example, the inertial forces are
corrections in Newtonian mechanics to take into account a description in a noninertial frame).

Concerning the second order adiabatic transport formula, we suppose temporarily again
that ζ αb

(2) and δα are constant. By using the expression (101),
Ad Ad  ρ ρ ϵ ρ≃ + ∑α α δ α δα α α=[ ] [ ]s( ) a a

(2) 2 (2) satisfies

 ∑ρ ρ ρ ϵ ρ ρℏ ≃ − + −α α
δ α

δα α α δα
=

( )E E E Eı ˙ (116)(2) (2)† 2 (2) (2)† †

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ∑

ρ ρ

ϵ ρ ρ

≃ +

+ +

α α

δ α
δα α α δα

+ −

=
+ −( )

{ }
{ }

E E

E E

, ı ,

, ı , (117)

(2) (2)

2 (2) (2) †

where = +α α α+E E E( )(2) 1

2
(2) (2)† and = −α α α−E E E( )(2) 1

2 ı
(2) (2)† ; the braces denote the antic-

ommutator ( = +A B AB BA{ , } ). The dynamical phase generator has the form

 ϵ= − ∑α α δ α α δα δα=E E E(2)
0

(2) 2
0

(2) † , and then  = − ∑α α
ϵ

δ α α δα δα+ =E E E{ , }(2)
0

(2)
2 0

(2) †2

and

 = − ∑α
ϵ

δ α α δα δα− =E E[ , ](2)
2 ı 0

(2) †2

. This implies that

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

 

 

∑

∑

ρ ρ ϵ ρ

ϵ ρ

ℏ ≃ −

+

α
δ α

α δα δα

δ α
δα α δα

+
=

=

{ }E E

E

ı ˙ ,
2

, ,

, (118)

(2)
2

0
(2) †

2
0

(2) †
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Let  Γ = +αδ δα δα αEı0 0
(2) , Γ =αδ δα1 and Γ =αδ δα αE2 0

(2) ; we have then

⎡⎣ ⎤⎦ ∑ ∑

∑ ∑

ρ ρ ϵ γ Γ Γ ρ

ϵ γ Γ ρΓ

ℏ ≃ −

+

α
δ α

αδ αδ

δ α
αδ αδ

+
=

=

{ }Eı ˙ ,
ı

2
,

ı (119)

k

k
k k

k

k
k k

(2)
2

†

2 †

with γ = 10 and γ γ= = −11 2 . This last equation is similar to the Lindblad equation of an
open quantum system in the Markovian approximation [9] (except that in the strict Lindblad
theory γ > 0k for all k). αE (2) and αδ then generate an effective Lindblad equation for  in
contact with  . The extra terms involving indices of  different from α in equation (101) are
then associated with the ‘quantum jumps’ (see [9]). The geometric phase is again a correction
to take into account that the biorthonormal basis ζ ζα α{ , * }b b b

(2) (2) is moving.

3.6. The thermal bath case

When  is a large subsystem, it can be interesting to consider it at s = 0 as being a thermal
bath, i.e.  is described by the density matrix


∑ρ ξ ξ= =

β

α

βν
α α

− − α

Z Z

e e
(0) (0) (120)B

H (0) (0)

where β =
k T

1

B
(T being the temperature of the bath and kB being the Boltzmann constant;

the underline is just a notation to avoid confusion with state indices or with the duration of the
evolution). The partition function is  = β−Z tr e H (0). Let     ρ ∈ ⊗( ) be the density
matrix of the complete bipartite system solution of the Liouville–von Neumann equation:

⎡⎣ ⎤⎦     ρ ϵ ρℏ ′ = ⊗ + ⊗ +
T

s H s H s V s s
ı

( ) ( ) 1 1 ( ) ( ), ( ) (121)

 ∑ρ ϕ ϕ=
α

βν

α α

− α

Z
(0)

e
(0) (0) . (122)a a

(0)

We have  ρ ρ ϵ= +tr (0) ( )B
2 , implying that  is a good thermal bath (moreover ρ is a

steady state of H (0)). The solution of the Liouville–von Neumann equation is

 ∑ρ ψ ψ=
α

βν

α α

− α

s
Z

s s( )
e

( ) ( ) (123)a a

(0)

( ) ( )

where ψ αa( ) is the solution of the Schrödinger equation ψ ψ′ =α α
ℏ H

T a a
ı

( ) ( ) with the initial
condition ψ ϕ=α α(0) (0)a a( ) . At the weak adiabatic limit we have then

 ρ ρ=s s( ) tr ( ) (124)

Ad

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

 ∑ ∫ ∫ ρ

ϵ

=

+

α

βν
σ σ σ σ

α

−

←

− ℏ

→

−α
α α

−

Z
s

T

e
e e ( )

max
1

, . (125)

T E A
a

(0)
ı ( )d ( )d

2

s s
1

0

(1)

0

(1)
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3.7. Eigenvalue crossings of  in the weak adiabatic regime

The weak adiabatic theorem (theorem 2) requires that the eigenvalue of , να s( ), does not
cross another eigenvalue. Although this requirement is natural for the control problem, it may
not be realized in practice. Suppose that ∃ ∈s* [0, 1] such that ν ν=α βs s( *) ( *) (no other
crossings implying να and νβ occur). We suppose that the conditions of the weak adiabatic
theorem are satisfied except in the neighbourhood of s*. Due to the nonadiabatic transitions
induced in the neighbourhood of s* by this crossing, the density matrix becomes (for ≫s s*)

Ad

Ad

Ad

Ad

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

 

 

 

 

∫ ∫

∫ ∫

∫ ∫

∫ ∫

ρ ρ

ρ

τ

τ

ϵ

= −

+

+ −

+ −

+

σ σ
α

σ σ
β

φ
α β

σ σ
αβ

φ
β α

σ σ
βα

←

− ℏ

→

−

←

− ℏ

→

−

↔ ←

− ℏ

→

−

−
↔ ←

− ℏ

→

−

α α

β β

−

−

−

−

s p s

p s

p p s

p p s

T

( ) (1 ) e e ( )

e e ( )

(1 ) e e e ( )

(1 ) e e e ( )

max
1

, (126)

T E A
a

T E A
a

T E A
a

T E A
a

ı d d

ı d d

ı ı d d

ı ı d d

2

s s

s s

s s

s s

1

0

(1)

0

(1)

1

0

(1)

0

(1)

1

0
•
(1)

0
•
(1)

1

0
•
(1)

0
•
(1)

where Ad τ τ=
α β

α β
↔

U U U[ ]•
† and

τ ϕ ϕ=αβ α βtr (127)a a a



∑

∑

ϵ
μ μ ν ν ϵ

ζ ζ

ϵ
μ μ ν ν ϵ

ζ ζ ϵ

=
− + − +

+
− + − +

+

β α

α β α α

β α

β α β β

=

=
( )

V

V

V

V
. (128)

d a

d a

a d a a
d a

d a

a d

a d a a
a d

,

,

,

,

2

p is the probability of the nonadiabatic transition from ξα to ξβ induced by the passage through
the crossing, and φ is a phase difference accumulated during the nonadiabatic transition. It is
clear that the crossing of eigenenergies of  generates a decoherence effect in the density
matrix of  that we call kinematic decoherence since it is induced by the variation of the
control system with respect to time. In practice it can be difficult to compute p explicitly, but
if we suppose that ∀ ∈s s( *), ν ν− = ℵ −β αs s s s( ) ( ) ( *) (ℵ being a constant) and that

α βVa a, is independent of s, then p can be estimated by the Landau–Zener formula [27, 28], i.e.

= π−
ϵ α β

ℏ ℵp e 2
T Va a

2
,

2

| | .

4. Examples

In this section we present two examples of bipartite quantum systems and we study their
adiabatic dynamics. We want to compare their real dynamics (numerically computed using a
split operator method without another approximation) to the prediction of the usual adiabatic
transport formula for  alone (by neglecting the influence of  , an approximation currently
considered in adiabatic control methods), and to the prediction of the adiabatic transport
formulae with operator-valued phases, which considers  dressed by states of  (the operator-
valued phases are numerically computed by the same split operator method with the same
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time discretization; nevertheless, the dimension of the matrices— dim —is reduced in
comparison with the ‘exact’ computation—   ×dim dim ).

4.1. Control of atomic qubits

4.1.1. The model. We consider a two level atom  interacting with a laser field which is
governed in the rotating wave approximation with one photon by the Hamiltonian

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Ω
Ω Δ

= ℏ φ

φ−
H s

s

s s
( )

2

0 ( )e

( )e 2 ( )
(129)

s

s

ı ( )

ı ( )

Ω φ σ Ω φ σ Δ σ= ℏ + + −( )( )s s s s s
2

( ) cos ( ) ( ) sin ( ) ( ) id (130)x y z

where Ω s( ) is the product between the electric field strength and the dipolar moment of the
atom, φ is the dephasing of the laser field, and Δ is the detuning (the energy gap between the
two atomic states minus the energy of one photon of the laser field). This system can be
viewed like a model of one qubit where the laser field is the control system performing a one
input/output logic gate on it. σ σ σ( , , )x y z are the Pauli matrices.

A second atom (qubit)  is in contact with the first one and is governed by the following
Hamiltonian:

⎛
⎝⎜

⎞
⎠⎟ ω

ω
σ= ℏ =

ℏ
−( )H

0 0
0 2

id . (131)z
e

e

The interaction between the two atoms is chosen as being

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
ϵ ϵ=V

V V V

V V V

V V V

V V V

0
0

0 2
0 2

(132)

0 1 3

1 0 3

3 0 2

3 2 0

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

ϵ σ σ

σ σ σ σ σ σ

= ⊗ + + ⊗ −

+ ⊗ + + ⊗ − + ⊗

( ) ( )

( ) ( )

V
V

V V
V

2
id id id id

2
id

2
id (133)

z z

x z x z x x

0
0

1 2
3

in a matrix representation where the two first inputs are associated with both states of  and
the ground state of , and the two last inputs are associated with both states of  and the
excited state of  . ϵ ≪ 1 is the perturbative parameter.

Let Ω Δ= +r s s s( ) ( ) ( )2 2 and θ = Ω
Δ

s( ) arctan s

s

( )

( )
be variable changes of the control

parameters. The eigenvalues and the eigenvectors of both components of the bipartite system
are

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
μ θ ζ

θ

θ
= ℏ − =

−

φ−
s r s s s

s

s
( )

2
( )(cos ( ) 1) ( )

cos
( )

2

e sin
( )

2

(134)
s

0 0
ı ( )
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⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
μ θ ζ

θ

θ
= ℏ + =

φ

s r s s s

s

s
( )

2
( )(cos ( ) 1) ( )

e sin
( )

2

cos
( )

2

(135)

s

1 1

ı ( )

ν ξ= = ( )0 1
0

(136)0 0

ν ω ξ= ℏ = ( )0
1

. (137)1 e 1

The control is fixed by the following variation of the control parameters:

= + − − −r s r r r( ) ( )e (138)s
max min max

25( 0.5)2

θ θ π=s s( ) sin ( ) (139)max

φ π=s s( ) 2 (140)

corresponding to laser pulses and a laser frequency modulation represented in figure 1 and
with a drifting phase.

4.1.2. Adiabatic transport. We start with both qubits in the ground state, ϕ (0)00 with
Ω =(0) 0 (the control laser is off). The adiabatic transport of the density matrix for  alone is

ρ ζ ζ=− s s s( ) ( ) ( ) . (141)alone ad 0 0

If the dynamics of both qubits is strongly adiabatic the adiabatic transport of the density
matrix is

ρ ρ=− s s( ) ( ) (142)strong ad 00

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

ζ ζ
ϵ

ϵ φ θ

θ θ ζ ζ

θ θ ζ ζ

=

+
−ℏ + −

× −

+ −

φ

φ−

( )

s s

V

r s V V s s

s s
s s

s s
s s

( ) ( )

( ) cos ( ) sin ( )

e sin
( )

2
cos

( )

2
( ) ( )

e sin
( )

2
cos

( )

2
( ) ( ) (143)

s

s

0 0

1

0 1

2ı ( ) 2 2
0 1

2ı ( ) 2 2
1 0

and if the dynamics is weakly adiabatic the adiabatic transport of the density matrix is

Ad
⎡
⎣⎢

⎤
⎦⎥ ∫ ∫ρ ρ= σ σ σ σ

− ←

− ℏ

→

−−
s s( ) e e ( ) (144)T E A

weak ad
ı ( )d ( )d

00

s s
1

0
0
(1)

0
0
(1)

with

λ ζ ζ λ ζ ζ= +E (145)0
(1)

00 00
(1)

00
(1)

10 10
(1)

10
(1)
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(η = 0(1) because ξβ( ) are independent of s), and

∑ ζ ζ ζ ζ=
=

′A (146)
b c

b c b c0
(1)

, 0

1

0
(1)

0
(1)

0
(1)

0
(1)

where

λ θ ϵ φ θ ϵ= ℏ − + − + ( )( )r V V
2

(cos 1) cos sin (147)00 0 1
2

λ θ ϵ φ θ ϵ= ℏ + + + + ( )( )r V V
2

(cos 1) cos sin (148)10 0 1
2

λ θ ω ϵ φ θ ϵ= ℏ − + ℏ + − + ( )( )r V V
2

(cos 1) 2 cos sin (149)01 e 0 2
2

λ θ ω ϵ φ θ ϵ= ℏ + + ℏ + + + ( )( )r V V
2

(cos 1) 2 cos sin (150)11 e 0 2
2

and

ζ ζ
ϵ

ϵ φ θ
ζ= +

−

−ℏ + −

φ θ θ−( )
( )

V

r V V

e sin cos

cos sin
(151)00

(1)
0

1
2ı 2

2
2

2

0 1
1

ζ ζ
ϵ

ϵ φ θ
ζ= +

−

ℏ + +

φ θ θ( )
( )

V

r V V

e sin cos

cos sin
(152)10

(1)
1

1
2ı 2

2
2

2

0 1
0

ζ ζ
ϵ

ϵ φ θ
ζ= +

−

−ℏ + −

φ θ θ−( )
( )

V

r V V

e sin cos

2 cos sin
(153)01

(1)
0

2
2ı 2

2
2

2

0 1
1

ζ ζ
ϵ

ϵ φ θ
ζ= +

−

ℏ + +

φ θ θ( )
( )

V

r V V

e sin cos

2 cos sin
. (154)11

(1)
1

2
2ı 2

2
2

2

0 1
0

The energies of both qubits are represented in figure 2.

4.1.3. Strong adiabatic regime. We study a strong adiabatic regime where T = 20000 au,
τ = =

μ μ∈
ℏ
−inf 2s s s[0,1] | ( ) ( )|1 0

au and θ = =ϵ
ϵ

ℏ
∥ ∥ 21

V
au (au: atomic unit). We have

θ τ≫ ∼ϵT and do not have resonance between transitions of  and  involving ϕ00 as
shown in figure 2. The assumptions of theorem 1 are then satisfied. The population of qubit
state 0 ζ ρ ζ〈 〉s(0)| ( )| (0)0 0 and the coherence of the controlled atom ζ ρ ζ〈 〉s| (0)| ( )| (0) |0 1 (note
that ζ ζ( (0), (0))0 1 is the eigenstate of the bare atom  since the laser is off at s = 0) are
represented in figure 3. The errors between the different adiabatic transport formulae and the
exact dynamics are plotted in figure 4. The errors concerning the population reach 10−2 with
the prediction of the adiabatic transport formula for  alone (in accordance with the fact that
the order of the coupling between  and  is ϵ = × −1.6 10 2), while the errors concerning the
coherence reach × −2.5 10 2. The strong adiabatic transport formula permits us to gain more
than one order of magnitude on the errors in accordance with the theoretical error =θ −ϵ

10
T

3.

4.1.4. Weak adiabatic regime. We study a weak adiabatic regime where T = 200 au,
τ = =

μ μ∈
ℏ
−inf 50s s s[0,1] | ( ) ( )|1 0

au, θ = =ϵ
ϵ

ℏ
∥ ∥ 667

V
au and τ = =

ω
21

e
au (au: atomic unit).
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We have θ τ∼ ∼ϵ T and τ≫T and there is no quasi-resonance between transitions of 
and  . The assumptions of theorem 2 are then satisfied. The population of qubit state 0
ζ ρ ζ〈 〉s(0)| ( )| (0)0 0 and the coherence of the controlled atom ζ ρ ζ〈 〉s| (0)| ( )| (0) |0 1 are
represented in figure 5. The errors between the different adiabatic transport formulae and
the exact dynamics are plotted in figure 6. The errors of the prediction of the adiabatic
transport formula with  alone are now very large in accordance with the very small gap
between the two eigenvalues of H s( ) during the dynamics. The weak adiabatic transport
formula provides a very good approximation with an error smaller than  =τ −10

T
3 in

accordance with the theoretical error  ϵτ( )max ,
T

2 .

4.2. Control of a spin in the middle of a chain

4.2.1. The model. We consider a Heisenberg line chain of +N2 1 spins with nearest
neighbour interaction. A constant and uniform magnetic field ⃗ = − ⃗ω

B ezZeeman 2
e is applied on

all the spins of the chain in order to split the energy levels of the spins by a Zeeman effect. A
time dependent magnetic field ⃗B s( )control is applied only on the middle spin denoted by  to

Figure 1. Intensity of the laser pulses applied on the atom with respect to the reduced
time (top) and difference of the modulated laser frequency with the frequency of the
atomic transition with respect to the reduced time (bottom).
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control it.  is governed by the Hamiltonian

 = ⃗ ⃗H s B s S( ) ( ) · (155)

σ σ σ= ℏ + +( )B s B s B s
2

( ) ( ) ( ) . (156)x x y y z z

σ σ σ⃗ = ℏS ( , , )x y z2
is the spin operator ( σ{ }i i are the Pauli matrices) and

⃗ = ⃗ + ⃗B s B s B( ) ( )control Zeeman. The rest of the chain is denoted by  and is described by the
Hilbert space     = ⊗l r where  = ⊗( )l r

N2 are the Hilbert spaces of the half
chains on the left and on the right of the controlled spin.  is governed by the Hamiltonian

  = ⊗ + ⊗⊗ ⊗H H Hid id (157)N N

 ∑

∑

= ⊗ ⃗ ⃗ ⊗

− ⊗ ⃗ ⊙ ⃗ ⊗

=

⊗ − ⊗ −

=

−
⊗ − ⊗ − −

H B S

J S S

id · id

id id (158)

n

N
n N n

n

N
n N n

1

( 1)
Zeeman

( )

1

1
( 1) ( 1)

where id denotes the identity operator for one spin, ⃗ ⊙ ⃗ = ∑ ⊗=S S S Si x y z i i, , , and J is the
coupling constant. The interaction between  and  is described by

  = − ⃗ ⊙ ⊗ ⃗ ⊗ + ⊗ ⃗ ⊗−
⊗ − ⊗ ⊗ ⊗ −( )V JS S Sid id id id (159)N N N N( 1) ( 1)

with     ∈ ⊗−V . The coupling constant ≪J 1 is the perturbative parameter.

Let = ∥ ⃗ ∥B s B s( ) ( ) , θ =s( ) arccos
B s

B s

( )

( )
z and φ =s( ) arctan

B s

B s

( )

( )

y

x
. The eigenvalues and the

eigenvectors of  are

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
μ ζ

θ

θ
= − ℏ =

−

φ
s B s s

s

s
( )

2
( ) ( )

sin
( )

2

e cos
( )

2

(160)
s

0 0
ı ( )

Figure 2. Instantaneous energies of both atoms during the control with respect to the
reduced time (with ωℏ = 0.5e au, =r 1max au, =r 0.02min au, =V 30 au, V1=1.5 au,

V2=0.5 au, V3=2.5 au, θ = π
max 2

and ϵ = × −5 10 4 (au: atomic unit)).
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⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
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θ

θ
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φ−

s B s s

s

s
( )

2
( ) ( )

e cos
( )

2

sin
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2
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s

1 1

ı ( )

The eigenvalues of  l or  r for N = 3 are

ν
ω

= −
ℏ

− ℏ + ( )J J3
4 2

(162)(000)
e

2
2

ν
ω

= −
ℏ

+− ( )J
4

(163)(100) (001)
e 2

ν
ω

= −
ℏ

− ℏ ++ + ( )J J
4 2

(164)(001) (010) (100)
e

2
2

ν
ω

= −
ℏ

+ ℏ +− + ( )J J
4

(165)(001) 2(010) (100)
e 2 2

Figure 3. Population of qubit state 0 ρ ζ ρ ζ= 〈 〉s(0)| ( ) | (0)•,00 0 • 0 (top) and coherence

ρ ζ ρ ζ= 〈 〉s| (0)| ( ) | (0) |•,01 0 • 1 (bottom) for the exact dynamics ( = ∅• ), the adiabatic

transport formula with  alone ( = −• alone ad), the strong adiabatic transport formula
( = −• strong ad) and the weak adiabatic transport formula ( = −• weak ad), in
conditions corresponding to a strong adiabatic regime (with ωℏ = 1.5e au, =r 1max au,

=r 0.5min au, =V 30 au, V1 = 1.5 au, V2 = 0.5 au, V3 = 2.5 au, θ = π
max 2

and

ϵ = × −1.6 10 2 (au: atomic unit)).
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ν
ω

=
ℏ

+− ( )J
4

(166)(110) (011)
e 2

ν
ω

=
ℏ

− ℏ ++ + ( )J J
4 2

(167)(011) (101) (110)
e

2
2

ν
ω

=
ℏ

+ ℏ +− + ( )J J
4

(168)(011) 2(101) (110)
e 2 2

ν
ω

=
ℏ

− ℏ + ( )J J3
4 2

(169)(111)
e

2
2

which are associated with the eigenvectors

ξ = ⊗ ⊗i j k (170)ijk( )

ξ ξ ξ ξ=
+ +

+ ++ + ( )
a b c

a b c
1

(171)a ijk b lmn c opq ijk lmn opq( ) ( ) ( )
2 2 2

〉 = )i(| )i 0,1 being the eigenstates of an isolated spin.
The control is fixed by the following variation of the control parameters:

= − +Δ− −( )B s B B( ) 1 e (172)s s
0

( 0.5)
min

2 2

Figure 4. Errors in logarithmic scale between the approximations of the adiabatic
transport formulae and the exact dynamics for the population of qubit state 0 (top) and
the coherence (bottom) in conditions corresponding to a strong adiabatic regime (with

ωℏ = 1.5e au, =r 1max au, =r 0.5min au, =V 30 au, V1 = 1.5 au, V2 = 0.5 au,

V3 = 2.5 au, θ = π
max 2

and ϵ = × −1.6 10 2 (au: atomic unit)).
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θ π π= −s s( ) (1 sin ( )) (173)

φ π=s s( ) 2 . (174)

4.2.2. Adiabatic transport. We start with the chain in a state ϕ α α0 l d
where

α α ∈ − … − +, {(000), (100) (001), , (011) 2(101) (110), (111)}l g corresponding to the
states of left and right half chains. The adiabatic transport of the density matrix for  alone is

ρ ζ ζ=− s s s( ) ( ) ( ) . (175)alone ad 0 0

If the dynamics of the chain is strongly adiabatic, the adiabatic transport of the density matrix
is

ρ ρ= α α− s s( ) ( ) (176)strong ad 0 l r

Figure 5. Population of qubit state 0 ρ ζ ρ ζ= 〈 〉s(0)| ( ) | (0)•,00 0 • 0 (top) and coherence

ρ ζ ρ ζ= 〈 〉s| (0)| ( ) | (0) |•,01 0 • 1 (bottom) for the exact dynamics ( = ∅• ), the adiabatic

transport formula with  alone ( = −• alone ad), the strong adiabatic transport formula
( = −• strong ad) and the weak adiabatic transport formula ( = −• weak ad), in
conditions corresponding to a weak adiabatic regime (with ωℏ = 0.5e au, =r 1max au,

=r 0.02min au, =V 30 au, V1 = 1.5 au, V2 = 0.5 au, V3 = 2.5 au, θ = π
max 2

and

ϵ = × −5 10 4 (au: atomic unit)). Remark: the alone and the strongly adiabatic cases are
graphically merged; the weak adiabatic and the exact cases are graphically merged.
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ζ ζ
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θ

ζ ζ ζ ζ
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α α

α α
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s s

J
n

s

B s
J

n s

s s s s

( ) ( )

4

sin ( )

( )
4

cos ( )

( ) ( ) ( ) ( ) (177)

0 0

1 0 0 1

l d

l r

where = +α α α αn n ng d g d is a number defined by table 1.
If the dynamics is weakly adiabatic, the adiabatic transport of the density matrix is

Ad
⎡
⎣⎢

⎤
⎦⎥ ∫ ∫

ρ

ρ= σ σ σ σ
α α

−

←

−ℏ

→

−α α α α
−

s

s

( )

e e ( ) (178)T E A

weak ad

( )d ( )d
0

s

l r

s

l r
l r

1

0

(1)

0

(1)

with

λ ζ ζ λ ζ ζ= +α α α α α α α α α α α α α αE (179)(1)
0 0

(1)
0
(1)

1 1
(1)

1
(1)

l r l r l r l r l r l r l r

Figure 6. Errors in logarithmic scale between the approximations of the adiabatic
transport formulae and the exact dynamics for the population of qubit state 0 (top) and
the coherence (bottom) in conditions corresponding to a weak adiabatic regime (with

ωℏ = 0.5e au, =r 1max au, =r 0.02min au, =V 30 au, V1 = 1.5 au, V2 = 0.5 au,

V3 = 2.5 au, θ = π
max 2

and ϵ = × −5 10 4 (au: atomic unit)). Remark: the alone and the

strongly adiabatic cases are graphically merged.
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(η = 0(1) because ξβ( ) are independent of s), and

∑ ζ ζ ζ ζ=α α α α α α α α α α
=

′A (180)
b c

b c b c
(1)

, 0

1
(1) (1) (1) (1)

l r l r l r l r l r

Table 1. Values of the number αn characterizing the coupling in a half chain in the state
ξα .

α αn

(111) −1
− +(110) 2(101) (011) − 2

3

+ +(110) (101) (011) − 1
3

−(110) (011) 0
−(100) (001) 0
+ +(100) (010) (001) 1

3

− +(100) 2(010) (001) 2
3

(000) 1

Figure 7. Population of spin state 0 ρ ζ ρ ζ= 〈 〉s(0)| ( ) | (0)•,00 0 • 0 (top) and coherence

ρ ζ ρ ζ= 〈 〉s| (0)| ( ) | (0) |•,01 0 • 1 (bottom) for the exact dynamics ( = ∅• ), the adiabatic

transport formula with  alone ( = −• alone ad), the strong adiabatic transport formula
( = −• strong ad) and the weak adiabatic transport formula ( = −• weak ad), in
conditions corresponding to a strong adiabatic regime (with ωℏ = 2e au, =B 10 au,

=B 0.67min au and = × −J 2 10 2 au (au: atomic unit)).
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where

λ ν ν θ= − ℏ + + + ℏ +α α α α α α ( )B
J

n J
2 4

cos (181)0

2
2

l r l r l r

λ ν ν θ= ℏ + + − ℏ +α α α α α α ( )B
J

n J
2 4

cos (182)1
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l r l r l r
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α α α α
α α

ℏ
J

n
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. (184)

J1
(1)

1

4

0l r l r

l r

4.2.3. Strong adiabatic regime. We study a strong adiabatic regime where = ×T 5 103 au,
τ = =

μ μ∈
ℏ
−inf 1.5s s s[0,1] | ( ) ( )|1 0

au and
 

θ = = ×ℏ
∥ ∥−

2 10J
V

2 au (au: atomic unit). We have

θ τ≫ ≫T J assuring that the assumptions of theorem 1 are satisfied. The population of
spin state 0 ζ ρ ζ〈 〉s(0)| ( )| (0)0 0 and the coherence of the controlled spin ζ ρ ζ〈 〉s| (0)| ( )| (0) |0 1

(note that ζ ζ( (0), (0))0 1 is the eigenstate of the ‘free’ spin  since the magnetic field of control
is off at s = 0) are represented in figure 7. The errors between the different adiabatic transport
formulae and the exact dynamics are plotted in figure 8. A numerical study shows that a
purely strong adiabatic regime seems not to be present for this system, which presents rather

Figure 8. Errors in logarithmic scale between the approximations of the adiabatic
transport formulae and the exact dynamics for the population of qubit state 0 (top) and
the coherence (bottom) in conditions corresponding to a strong adiabatic regime (with

ωℏ = 2e au, =B 10 au, =B 0.67min au and = × −J 2 10 2 au (au: atomic unit)).
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regimes where the adiabatic approximation without environment, the strong adiabatic
approximation and the weak adiabatic approximation are not clearly distinguishable.
Nevertheless we see in figure 8 that the strong adiabatic transport formula induces globally
fewer errors.

4.2.4. Weak adiabatic regime. We study a weak adiabatic regime where T = 50 au,
τ = =

μ μ∈
ℏ
−inf 10s s s[0,1] | ( ) ( )|

2

1 0
au,

 
θ = =ℏ

∥ ∥−
10J

V
3 au and τ = =

ω
0.51

e
au (au: atomic

unit). We have τ≫T and θ τ∼ ≪ TJ
S assuring that the assumptions of theorem 2 are

satisfied. The population of spin state 0 ζ ρ ζ〈 〉s(0)| ( )| (0)0 0 and the coherence of the controlled
spin ζ ρ ζ〈 〉s| (0)| ( )| (0) |0 1 are represented in figure 9. The errors between the different
adiabatic transport formulae and the exact dynamics are plotted in figure 10. The errors of the
prediction of the adiabatic transport formula with  alone are now very large in accordance
with the very small gap between the two eigenvalues of H s( ) during the dynamics. The
weak adiabatic transport formula provides a very good approximation with an error smaller
than  =τ −10

T
2 in accordance with theoretical error  ϵτ( )max ,

T
2 .

Figure 9. Population of spin state 0 ρ ζ ρ ζ= 〈 〉s(0)| ( ) | (0)•,00 0 • 0 (top) and coherence

ρ ζ ρ ζ= 〈 〉s| (0)| ( ) | (0) |•,01 0 • 1 (bottom) for the exact dynamics ( = ∅• ), the adiabatic

transport formula with  alone ( = −• alone ad), the strong adiabatic transport formula
( = −• strong ad) and the weak adiabatic transport formula ( = −• weak ad), in
conditions corresponding to a weak adiabatic regime (with ωℏ = 2e au, =B 10 au,

= −B 10min
2 au and = × −J 2 10 3 (au: atomic unit)). Remark: the alone and the

strongly adiabatic cases are graphically merged; the weak adiabatic and the exact cases
are graphically merged.

J. Phys. A: Math. Theor. 48 (2015) 025301 D Viennot and L Aubourg

36



5. Conclusion

We have shown that operator-valued geometric phases as defined by [13–18] are
exhibited by bipartite quantum systems in an adiabatic approximation with a perturba-
tive coupling between the two parts of the system. This result remains valid if the
bipartite system is constituted by a small subsystem and a large environment. Never-
theless, for a very large environment (a reservoir) the adiabatic theorem assumptions of
no resonance or no quasi-resonance between transitions of  and  may not be satisfied
since the spectrum of a reservoir is assimilated to a continuum [9]. These adiabatic
operator-valued geometric phases arise when the evolution of the environment is
strongly adiabatic (the favorable case for a quantum control of the subsystem) but with
a subsystem evolution not necessarily adiabatic with respect to the control and to the
environment effects. The operator-valued dynamical phase generator arising with the
geometric phase generator, is a kind of effective Hamiltonian representing the system
dressed by environment states. The second order adiabatic transport satisfies a kind of
effective Lindblad equation.

The perturbative assumption restricts the field of applications of the present result to
special situations. It would be interesting to prove that the adiabatic transport of density
matrices also exhibits an operator-valued geometric phase with a strong interaction between
the two parts of a bipartite system.

Figure 10. Errors in logarithmic scale between the approximations of the adiabatic
transport formulae and the exact dynamics for the population of spin state 0 (top) and
the coherence (bottom) in conditions corresponding to a weak adiabatic regime (with

ωℏ = 2e au, =B 10 au, = −B 10min
2 au and = × −J 2 10 3 (au: atomic unit)). Remark:

the alone and the strongly adiabatic cases are graphically merged.
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Appendix. A corollary concerning the splitting of the time-ordered exponential

Corollary 1. Let  ↦ ∈s A s( ) ( ) be a family of bounded anti-self-adjoint operators of a
Hilbert space  . Let  ↦ ∈s U s( ) ( )A be the unitary operator strongly continuous with
respect to s and solution of the equation

′ = − =U AU U (0) 1 . (A.1)A A A

Let  ↦ ∈s B s( ) ( ) be another family of bounded anti-self-adjoint operators; with the
same notations we have

=+U U U (A.2)A B X A

with

= + − −X A B U AU . (A.3)X X
1

Proof. Let  ∈X s( ) ( ) be such that = +
−U U UX A B A

1.

= ⇒ ′ + ′ = ′+ +U U U U U U U U (A.4)X A A B X A X A A B

⇒ − − = − +XU U U AU A B U U( ) (A.5)X A X A X A

⇒ = + − −X A B U AU . (A.6)X X
1

□
We note that X is only implicitly defined.
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