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Abstract
We study the defects in adiabatic control of a quantum system caused by the
entanglement of the system with its environment. Such defects can be related
to decoherence processes due to perturbative couplings between the system
and the environment. We propose, for analysing these effects, a geometric
approach, based on a field theory on the control manifold issuing from the
higher gauge theory associated with the C*-geometric phases. We study a
visualization method for analysing the defects of the adiabatic control, based
on plotting the field strengths of the gauge theory. To illustrate the present
methodology, we consider the example of atomic STIRAP (stimulated Raman
adiabatic passage), where the controlled atom is entangled with another atom.
We study the robustness of the STIRAP effect when the controlled atom is
entangled with another one.

Keywords: quantum control, entanglement, decoherence, geometric phase,
adiabatic approximation

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum control is one of the main research subjects in modern physics. One quantum
control problem is that of finding how the external parameters (for example, the parameters of
strong laser fields) vary in the course of a quantum system (a spin, an atom or a molecule)
evolving to a predetermined target state satisfying the control goal. Such problems can offer
very important applications in different fields: nanosciences (in driving molecular machines),
quantum information (in yielding quantum logic gates), and physical chemistry (in per-
forming vibrational cooling, or controlling chemical reactions). If the target state is an
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eigenstate of the quantum system, an adiabatic approach [1] is a good strategy for solving
quantum control problems, since external parameters are usually slowly varied with respect to
the response of the quantum system and since the adiabatic approximation predicts that the
wavefunction remains projected onto an eigenstate during the dynamics. Adiabatic schemes
of quantum control have been proposed for quantum computation by holonomic approaches
[2, 3] or by quantum annealing [4], and for atomic control by strong laser fields [5].

Real quantum systems are never isolated. The coupling between the quantum system and
its environment, even if it is perturbative, can induce defects of the control result with respect
to the idealized isolated quantum system. The system and the environment are entangled and
the dynamics can be characterized by decoherence processes. The goal of the present paper is
the characterization of these defects. Some adiabatic quantum control methods are based on
geometric approaches (the geometry of fibre bundles [3] or the topology of eigensurfaces [5]).
We want a geometric characterization of the defects induced by the entanglement. Recently,
we have proposed a generalization of the geometric phase concept for open and composite
quantum systems [6, 7]. This geometric phase takes its values in the C*-algebra of the
operators of the quantum system. In contrast with the usual geometric phase which is asso-
ciated with a simple gauge theory [8], the C*-geometric phase is associated with a higher
gauge theory (a generalization of gauge theory to a category theory context; see for example
[9]). This higher gauge theory involves some fields on the manifold spanned by the control
external parameters, which are introduced in [6]. In this paper, we do not wish to recall the
mathematical structure associated with this higher gauge theory (it can be found in [6]), but
we do wish to interpret physically the fields involved from the viewpoint of quantum control
hampered by entanglement.

This paper is organized as follows. Section 2 is devoted to a brief review of the adiabatic
quantum control for an idealized isolated quantum system. The goal of this section is the
introduction of some notation and concepts. Section 3 studies the theoretical properties of the
fields associated with the higher gauge theory for control hampered by entanglement. We
study the physical meaning of these fields with respect to the quantum control problem.
Section 4 is devoted to a simple but instructive example. The stimulated Raman adiabatic
passage (STIRAP) is a solution of a quantum control problem involving changing the state of
a three-level atom from the bound state to an excited state via passage through a ‘dark’ state,
by using two laser Gaussian pulses. We study the robustness of this solution for when the
atom is entangled with another one which ‘feels’ the laser fields. We interpret the results by
plotting the field strengths of the higher gauge theory, to confirm the physical meanings of
these fields. Section 5 gives a discussion concerning the application of the methodology
presented in this paper to a system entangled with a larger environment (by using small
effective Hamiltonians to represent this environment or by working only at the stage of the
density matrices). In this paper we use the word ‘environment’ in a broad sense. It can signify
the large environment of an open quantum system, as for the discussion in section 5, or it can
signify the (small) second part of a bipartite quantum system, as for the example treated in
section 4. We focus on the effect of the entanglement on the control. We have chosen an
example with a small environment (a bipartite quantum system) in order to avoid the possible
effects of the dissipation induced by large environments and shed light on the effects asso-
ciated only with the entanglement.
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2. Adiabatic quantum control

In this section, we consider an idealized isolated quantum system controlled by external
parameters denoted by x. The set of all configurations of x is assumed to form a ∞ -manifold
M called the control manifold. We denote by  the Hilbert space of the states of the system
(for the sake of simplicity, throughout this paper we suppose that  is finite dimensional).
The dynamics of the controlled quantum system is governed by the self-adjoint Hamiltonian

∈  H x( ) ( ) ( ( ) denotes the C*-algebra of the operators of). A control solution is
a path ↦ ∈ t x t M: ( ) such that the wavefunction ψ ∈ t( ) , a solution of the Schrödinger
equation

ψ ψ ψ ψ= = ∈ 
t

H x t ti
d

d
( ( )) ( ) (0) , (1)0

becomes, at t = T (the end of the control), ψ ψ=T( ) target. ψ ∈ target is the predetermined
target state satisfying the goal of the control. We will suppose that the path  is closed (this is
a generic situation; we start and we stop with a control system off).

2.1. The adiabatic approximation

Let λ x{ ( )}a a be the instantaneous eigenvalues of H(x) that we suppose to be non-degenerate
for all ∈x M , except eventually for some isolated points in M at first. Let ϕ x{ ( )}a a be the
associated normalized eigenvectors;

ϕ λ ϕ=H x x x x( ) ( ) ( ) ( ). (2)a a a

If ψ ϕ= x(0) ( (0))a and if

ϕ ϕ

λ λ
∀ ≠

∂ ˙

−
≪

μ
μ

∈
b a

x
, sup 1, (3)

t T

a b

b a[0, ]

then the wavefunction satisfies the adiabatic approximation (see for example [1])

ψ ϕ≃ ∫ ∮λ− −−
T x T( ) e e ( ( )) (4)x t t A x

a
i ( ( ) )d ( )

T
a a1

0

where the geometric phase ∮− e A x( )a discovered by Berry [10] is generated by

ϕ ϕ Ω= ∈A x x x M( ) ( ) d ( ) . (5)a a a
1

d is the exterior differential of M and Ω Mn denotes the set of differential n-forms of M. The
adiabatic condition (3) implies that the control parameter variations ( ˙μx ; the dot denotes the
time derivative) are slow, the non-adiabatic couplings ( ϕ ϕ〈 |∂ 〉μa b ) are small, and a gap
condition between the eigenvalue λa and the other eigenvalues is satisfied.

If  passes through a point * ∈x M where λa and λb cross, * *λ λ=x x( ) ( )a b , with a rapid
passage in the neighbourhood of x*, and with the adiabatic condition (3) satisfied elsewhere,
then we have

ψ

ψ

≃

×

∫ ∫

∫ ∫

λ

λ

− −

− −

− *
→ *

−
* *→









T

x T

( ) e e

e e ( ( )). (6)

x t t A x

x t t A x
b

i ( ( ) )d ( )

i ( ( ) )d ( )

t
a x x

a

t

T
b

x x T
b

1
0 : (0)

1
: ( )

The rapid adiabatic passage method of quantum control [5] is based on this equation. To reach
ψ ϕ= x T( ( ))target b , it needs to find a path  passing through a crossing point of λa and λb (we
can also pass by several crossing points with some intermediate eigenstates).
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2.2. The geometric approach

As shown by Simon [8], the geometric phase of the adiabatic approximation is associated
with a gauge theory described by a connection on a principalU (1)-bundle (U (1) is the set of
unit-modulus complex numbers). Ω∈A Ma

1 plays the role of a gauge potential which
defines a gauge field

ϕ ϕ Ω= = ∧ ∈F A Md d d . (7)a a a a
2

∧ denotes the exterior product of differential forms. Fa is called the adiabatic curvature.

Property 1. The adiabatic curvature Fa(x) is a measure at the point x of the non-
adiabaticity involving the state ϕa.

Proof. ϕ{ }b b constitutes an orthonormal basis of . By using the closure relation we have

ϕ ϕ= ∧F d d (8)a a a

∑ ϕ ϕ ϕ ϕ= ∧d d (9)
b

a b b a

∑ ϕ ϕ ϕ ϕ= − ∧d d . (10)
b

a b b a

ϕ ϕ ϕ ϕ〈 | 〉 ∧ 〈 | 〉 =d d 0a a a a and, moreover, we have for ≠b a

ϕ λ ϕ ϕ ϕ λ ϕ ϕ λ ϕ ϕ= ⇒ + =H Hd d d . (11)a a a b a b b a a b a

We have then

∑
ϕ ϕ ϕ ϕ

λ λ
=

∧

−≠ ( )
F

H Hd d
. (12)a

b a

a b b a

a b
2

The adiabatic condition (3) is then equivalent to | | ≪ i Fi 1v a
2 where i is the interior product

and = ˙μ ∂
∂ μv x
x

is the speed tangent vector of .
Fa diverges at the crossing points of λa (which are the singularities of the Simon principal

bundle) if the non-adiabatic couplings are different from zero. In the case where =Mdim 2,
in place of plotting the eigenvalue surfaces like in [5] we can plot the field strength densities

μνFa to locate the crossing points. The benefits of studying the adiabatic curvature in place of
the eigenvalue surfaces are: Fa is zero at a crossing point where the adiabatic couplings are
zero (such a crossing does not induce rapid transitions); Fa shows the distribution of the non-
adiabatic couplings around the crossings [11]; and Fa can be generalized to some non-
Hermitian cases where the eigenvalue surfaces are complex surfaces [12].

If now the eigenvalue is degenerate with the associated eigenvectors ϕ ∈{ }a a I (I is a set of
indices), or if we consider a weaker adiabatic approximation consisting in assuming that the
wavefunction remains projected onto a group of several eigenvectors ϕ ∈{ }a a I , then the gauge
potential becomes

uΩ ϕ ϕ∈ = ∀ ∈A M n A a b I( , ( )) d , , (13)I I ab a b
1

,

where u n( ) is the set of anti-self-adjoint matrices of order n (the number of elements in I) and
AI ab, denotes the matricial element of AI in row a and column b. The adiabatic approximation
becomes (for a single degenerate eigenvalue)
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∑ψ ϕ≃ ∫ ∮λ−

∈

←
−− ⎡

⎣⎢
⎤
⎦⎥

T x T( ) e e ( ( )) (14)x t t

b I

A x

ba

b
i ( ( ) )d

( )T
a

I1
0

where  ←e denotes the path-ordered exponential, i.e. the Dyson series along a path:

 
∫ ∫

= − ˙←
−

←
−

μ
μ→ → 

t
A x t x t

d

d
e ( ( )) ( ) e . (15)

A x A x( ) ( )

I
x x t

I
x x t

I
: (0) ( ) : (0) ( )

The ‘non-Abelian’ geometric phase is the Wilson loop  ∈∮
←
−  U ne ( )

A x( )I (U(n) is the group
of unitary matrices of order n) which is associated with a connection on a principal U(n)-
bundle. In holonomic quantum computation [2, 3], the Wilson loops are used to provide
quantum logic gates. The non-Abelian adiabatic curvature is

uΩ= + ∧ ∈F A A A M nd ( , ( )). (16)I I I I
2

Property 2. The non-Abelian adiabatic curvature FI(x) is a measure at the point x of the
non-adiabaticity between the space spanned by ϕ ∈{ }a a I and its orthogonal supplement, but it
is not sensitive to the non-adiabaticity inside the space spanned by ϕ ∈{ }a a I .

Proof. After some algebra similar to that for the non-degenerate case, we find

∑ϕ ϕ ϕ ϕ ϕ ϕ= ∂ ∂ + ∂ ∂ ∧μ ν μ ν
μ ν

∈

⎛
⎝⎜

⎞
⎠⎟F x xd d (17)I ab a b

c I
a c c b,

∑
ϕ ϕ ϕ ϕ

λ λ λ λ
=

∧

− −∉ ( )( )
H Hd d

. (18)
d I

a d d b

a d b d

Remark: if the set of vectors is complete, i.e. = … I {1, , dim }, then FI = 0.

3. Adiabatic quantum control hampered by entanglement

We consider now that the quantum system is in ‘contact’ with another quantum ‘object’ that
we call the ‘environment’. We call the composite system constituted by the quantum system
and the environment the ‘universe’. We denote by  the Hilbert space of the environment
and by ⊗   the Hilbert space of the universe. The dynamics of the universe is governed
by the self-adjoint Hamiltonian

= ⊗ + ⊗ +     H x H x H x V x( ) ( ) 1 1 ( ) ( ) (19)

where ∈   H ( ) and ∈   H ( ) are the Hamiltonians of the system and of the
environment when they are separated, and ∈ ⊗   V x( ) ( ) is the coupling operator. Let
ψ ∈ ⊗  t( ) be the solution of the Schrödinger equation of the universe. We are
interested by the state ‘reduced’ to the system which is represented by the density matrix

ρ ψ ψ=ψ t t t( ) tr ( ) ( ) (20)

where 〈〈 | 〉〉. . denotes the scalar product of ⊗   and tr denotes the partial trace on
. If ρψ has a rank equal to 1, there exists φ ∈  such that ρ φ φ= | 〉〈 |ψ (ρψ is said to be a
pure state), and φ is the single state which can be attributed to the system. If the rank of ρψ is
larger that 1, we cannot attribute a single state to the system (ρψ is said to be a mixed state);
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the system and the environment are entangled. If ≠V 0, the dynamics transforms pure states
into mixed states.

The role of the partial trace on  is to lose information concerning the environment.
Indeed, the ‘experimentalist’ controls only the system, and not directly the environment (even
if this environment ‘feels’ the control). The adiabatic regime is assumed for the system, not
for the universe. We consider then a weaker adiabatic assumption consisting in assuming an
adiabatic evolution for the system but not necessarily for the environment. The C*-geometric
phases have been introduced in [6] as a framework for describing this situation.

3.1. C*-geometric phases

Let λ x{ ( )}a a be the instantaneous eigenvalues of the universe (we suppose that they are not
degenerate for all ∈x M except for some isolated points) and ϕ{ }a be the associated
eigenvectors;

ϕ λ ϕ=H x x x x( ) ( ) ( ) ( ). (21)a a a

Following [6] we can define a geometric phase with values in the C*-algebra s =  ( ) as
being

s
∮

∈→
− e (22)

x( )a

where  →e is the path anti-ordered exponential, i.e.,

 
∫ ∫

= − ˙→
−

→
−

μ
μ→ →   

t
x t x t

d

d
e e ( ( )) ( ). (23)

x x( ) ( )

a
x x t

a
x x t

a
: (0) ( ) : (0) ( )

Let ρ ϕ ϕ= | 〉〉〈〈 |x x x( ) tr ( ) ( )a a a be the density eigenmatrix. The generator of the C*-geometric
phase is defined by

sϕ ϕ ρ Ω= ∈−  ( ) Mtr d ( , ) (24)a
1

a a a
1

where ρ−a
1 is the pseudo-inverse of ρa, i.e. ρ ρ = −−

ρ P1a
1

a ker a ( ρPker a is the orthogonal
projector onto the kernel of ρa).

3.2. Adiabatic fields

In [6] we have shown that the C*-geometric phases are associated with an higher gauge theory
(a connective structure on a 2-bundle [9]) which is characterized by two fields:

• the adiabatic curving:

sΩ= − ∧ ∈  B Md ( , ). (25)a a a a
2

• the adiabatic fake curvature:

sΩ= − ∧ − ∈F A A A B Md ( , ), (26)a a a a a
2

where the reduced potential is defined by

ϕ ϕ ρ= − ( )A Ptr d (27)a
1

a a a a

where Pa is the projection onto the eigensubspace associated with λa which is considered as a
‘non-commutative eigenvalue’ (see [6]); usually we can expect that Pa is simply ϕ ϕ| 〉〉〈〈 |a a (Aa

is then Pa multiplied by the usual geometric phase generator of the universe). Since these
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fields are s-valued, they have statistical interpretations with respect to mixed states associated
with the entanglement. More precisely, the physical meaning is not directly supported by
these fields, but by their statistical averages:

ρ Ω∈( )B Mtr , (28)a a
2

ρ Ω∈( )F Mtr . (29)a a
2

Since the entanglement of the quantum system with the environment is responsible for a loss
of information in the partial trace tr , it is interesting to consider also the von Neumann
entropy of the density eigenmatrix:

ρ ρ Ω− ∈( ) Mtr ln , (30)a a
0

which can be viewed as a measure of the information lack for the system where its mixed state
is described by the density eigenmatrix ρa.

By construction, the average adiabatic fake curvature seems to have the same inter-
pretation as the usual adiabatic curvature of isolated systems. It measures the local non-
adiabaticity. It is also the fake curvature which must be considered and not − ∧A A Ad a a a

(the correction by Ba is necessary). This is induced by the mathematical structure of a higher
gauge theory (see [9]) but, with a more pragmatic approach, we will justify this via the
examples which follow in the rest of this paper.

The role of the adiabatic curving is revealed by the following property.

Property 3. The average adiabatic curving ρ x B xtr ( ( ) ( ))a a is a measure of the entropy
variation associated with ϕa and which is induced by variations of the control parameters in
the neighbourhood of x.

Proof. Let x be an infinitesimal closed loop inM, starting and ending at ∈x M . Let x be a
surface in M having x as boundary. We denote by Δ the area of x which is in the
neighbourhood of zero. Let ρ ρ≃∫∫ ∮  x xe ( ) e ( )B

a ax a x a be the density matrix obtained by the
‘parallel transport’ of ρ x( )a along x (since the loop x is infinitesimal, the path-ordered
exponential is approximately equal to the matrix exponential, and the Wilson loop ∮ e x a is
approximately equal to ∫ ∫e B

x a by a Stokes theorem). By using the Baker–Campbell–Haus-
dorff formula [13], we have

∫∫ ∫∫

∫∫ ∫∫

∫∫

ρ ρ ρ

ρ

ρ ρ

= + +

+

−

+⋯

∫∫ ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥
⎤
⎦⎥

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥
⎤
⎦⎥

 

 



( ) B B

B B

B

ln e ln
1

2
, ln

1

12
, , ln

1

12
ln , , ln

. (31)

B
a a a a a

a a a

a a a

x a

x x

x x

x

We have then

∫∫ρ ρ ρ

ρ ρ Δ

=

+ +

∫∫


  



  



( )( )( )
( ) ( )

Btr ln e tr

tr ln (32)

a
B

a a a

a a
2

x a

x

and because of the cyclicity of the trace we have
ρ ρ ρ ρ ρ ρ ρρ ρ ρ= − = − =B B B B Btr ( [ , ]) tr ( ln ) tr ( ln ) tr (ln ) tr ( ln ) 0 (ρ ρ ρρ=ln ln )).
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We have similar calculations for higher orders. Finally we have

∫∫ρ

ρ ρ ρ Δ= − − +∫∫ 
 





 ( )
( )

( )( ) ( )

Btr

tr ln ln e (33)

a a

a a
B

a
2

x

x a

ρ ρ Δ= +∫∫⎛
⎝⎜

⎞
⎠⎟  ( )S e (34)a

B
a

2
x

a

where ρ τ ρ ρ τ∥ = − −S ( ) tr ( (ln ln )) is the relative entropy (see [14]). ∫ ∫ρ  ( )Btr a a
x

is
then the relative entropy of ρ x( )a with respect to its parallel transport along an infinitesimal
loop passing through x. On writing ∫ ∫ Δ Δ= +  B B ( )a a;12

2

x
(the indices 12 being

associated with local coordinates along x), we see that ρ x B xtr ( ( ) ( ))a a is a measure of the
entropy variation induced by the transport of ρa in the neighbourhood of x. □

The increase of the entropy is associated with an increase of the entanglement between
the system and the environment (and dynamically it is associated with decoherence pro-
cesses). In quantum control, we can define the decoherence as a dynamical process associated
with an increase of the entropy and of the entanglement. We have two kinds of decoherence: a
‘local decoherence’ associated with ρ ρ−  x xtr ( ( ) ln ( ))a a (decoherence induced by the point
x) and a ‘kinematic decoherence’ associated with ρ x B xtr ( ( ) ( ))a a (decoherence induced by
loops passing through x).

3.3. Two reference cases

In order to illustrate the roles of the curving and of the fake curvature, and to shed light on
their interpretations, we consider two simple cases where these fields can be expressed by
using the curvatures of the system and of the environment.

3.3.1. A factorizable eigenstate. We suppose that an eigenvector of the universe is
ϕ ζ ξ= ⊗ αx x x( ) ( ) ( )a i where ζ x( )i is an eigenvector of H x( ) (associated with a non-
degenerate eigenvalue) and ξα x( ) is an eigenvector of H x( ) (associated with a non-
degenerate eigenvalue). We do not need to suppose that the other eigenvectors of the universe
have the same decomposition. In that case, the density eigenmatrix is the projection (pure
state) ρ ζ ζ= | 〉〈 | = ζPa i i i and = ⊗ζ ξαP P Pa i ( ξ ξ= | 〉〈 |ξ α ααP ). Since the density matrix is a pure
state, its von Neumann entropy is zero and no local decoherence associated with an adiabatic
approximation involving only ϕa occurs. The gauge potential and the reduced potential are

= ˜ + α ζ  A P (35)a i , i

= + α ζ ( )A A A P (36)a i, , i

where sζ ζ Ω˜ = | 〉〈 | ∈ Md ( , )i i i
1 is the C*-geometric phase generator for the system without

environment, ζ ζ Ω= 〈 | 〉 ∈A Mdi i i,
1 is the (usual) geometric phase generator for the isolated

system, and ξ ξ Ω= 〈 | 〉 ∈α α αA Md,
1 is the (usual) geometric phase generator for the isolated

environment.
The curving and the fake curvature are

= ˜ + − ∧ ˜ + ˜ †α ζ α ζ    ( )B B F P A P (37)ia a i, ,i i

J. Phys. A: Math. Theor 47 (2014) 295301 D Viennot

8



= + − + ∧ + −†
α ζ α      ( )( ) ( )F F F P A A B (38)aa i i a a, , , ,i

where Ω= ∈ F A Mdi i, ,
2 is the adiabatic curvature of the isolated system,

Ω= ∈α α F A Md, ,
2 is the adiabatic curvature of the isolated environment, and

sζ ζ Ω˜ = ˜ − ˜ ∧ ˜ = − | 〉 ∧ 〈 | + ∧ ∈   B A Md d d ( , )a i i i i i i a,
2 is the curving associated

with the C*-geometric phase generator of the system without environment. These expressions
seem to contain complicated terms, but in fact the averages are very simple:

ρ = ( )F Ftr (39)a a i,

ρ = α ( )B Ftr . (40)a a ,

The average fake curvature is the curvature of the isolated system, in accordance with their
common interpretation. Because the system and the environment are not entangled, if the
universe is in the state ϕa, the non-adiabatic processes are the same one for the system in
contact with the environment and for the isolated system.

The average curving is the curvature of the environment. It is this curvature which
measures the kinematic decoherence processes. The explanation of this fact is the following.
We assume an adiabatic approximation for the system in contact with the environment, but
we do not assume that the dynamics of the environment is adiabatic. Indeed if we assume a
total adiabaticity (system and environment), the evolution of the universe is ‘strongly’
adiabatic and is characterized by the universe geometric phase generator ϕ ϕ〈〈 | 〉〉da a . This is not
in accordance with the problem of quantum control of a system in contact with an
environment. We directly control only the system (and we can only assume the adiabaticity
for the system). The environment feels the control, but the ‘experimentalist’ does not know
the environment and its dynamics. This is the sense of the partial trace tr ; the information
concerning the environment is lost. The dynamics of the universe under the control is then
‘weakly’ adiabatic and is characterized by the C*-geometric phase generator ϕ ϕ ρ| 〉〉〈〈 | −d a

1
a a . If

the universe is in the state ζ ξ⊗ αi , and if the control path  passes through a region ofM with
a strong curvature of the environment, then non-adiabatic transitions occur from ξα to another
state ξβ. But ζ ξ⊗ βi is not necessarily an eigenvector of the universe (we have not supposed
that all eigenstates of the universe are factorizable). ζ ξ⊗ βi can be a superposition of
eigenstates of the universe, and the dynamics will induce Rabi oscillations between these
states. These oscillations will destroy the factorization, and the system and the environment
will become entangled.

3.3.2. An eigenstate as a Schmidt decomposition. We suppose that an eigenvector of the
universe has a Schmidt decomposition:

∑ ∑ϕ ζ ξ= ⊗ =
∈ ∈

x p x x p( ) ( ) ( ) 1 (41)a
i I

i i i

i I
i

where I is a subset of … {1, , dim } and < <p0 1i are occupation probabilities
independent of x. ζ{ }i i and ξ{ }i i are eigenvectors of the system and of the environment
(associated with non-degenerate eigenvalues). The density eigenmatrix is ρ ζ ζ= ∑ | 〉〈 |∈ pa i I i i i

and = ∑ ⊗ζ ξ∈P P Pa i I i i . The von Neumann entropy is the same on the whole of
M: ρ ρ− = −∑ ∈ p ptr ( ln ) lna a i I i i.
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The gauge potential and the reduced potential are

∑ ∑ ζ ζ= ˜ + ˆ
∈ ∈

 A A (42)a

i I

i

i j I

I ij i j

,

, ,

∑= + ζ
∈

 ( )A A A P (43)a

i I

I ii I ii, , , , i

where sζ ζ Ω˜ = | 〉〈 | ∈ Md ( , )i i i
1 is the C*-geometric phase generator for the system without

environment, uΩ∈A M n( , ( ))I,
1 ( ζ ζ= 〈 | 〉A dI ij i j, , and =n Icard ) is the non-Abelian

geometric phase generator for the isolated system, uΩ∈A M n( , ( ))I,
1 ( ξ ξ= 〈 | 〉A dI ij i j, , ) is

the non-Abelian geometric phase generator for the isolated environment, and
ϖ ϖˆ = − A AI I,

1
, with ϖ δ= pij i ij.

The average fake curvature and the average curving are

ρ ϖ= + ˆ⎜ ⎟
⎛
⎝

⎡⎣ ⎤⎦
⎞
⎠   ( )( )F F A Atr tr , (44)I

t
,a a I I

2
, ,n

ρ ϖ= − ∧    ( )( ) ( )B F A Atr tr (45)a a I I I
2

, , ,n

where uΩ= + ∧ ∈   F A A A M nd ( , ( ))I I I I, , , ,
2 is the non-Abelian curvature of the isolated

system and uΩ= + ∧ ∈   F A A A M nd ( , ( ))I I I I, , , ,
2 is the non-Abelian curvature of the

isolated environment (At denotes the transposition of the matrix A).
The average fake curvature is then essentially the statistical average of the non-Abelian

curvature of the isolated system. In the same way, the average curving is essentially the
statistical average of the non-Abelian curvature of the isolated environment. The
interpretations are then the same as for the previous example, but with an average associated
with the superposition of factorized states of the Schmidt decomposition. The additional term
in the average curving ϖ ∧ = ∑ ∧∈   A A p A Atr ( )I I i j I i I ij I ji

2
, , , , , , , characterizes the non-

adiabatic transitions of the system inside the space spanned by ζ ∈{ }i i I . These transitions can
modify the superposition coefficients and induce Rabi oscillations between ϕa and other
eigenvectors of the universe (and induce modifications of the entanglement). The additional
term in the average fake curvature ϖ ˆA Atr ( [ , ])I

t
,I

2
, characterizes non-adiabatic transitions

for the system induced by its entanglement with the environment.
Remark: if the probabilities pi depend on x, we have a new gauge potential

ϖϖ˘ = + ∑ = + ∑ζ ζ
−  p P Pd ln (d )a a i i a i ii

1
i i ; ϖ plays the role of a usual gauge change

and the results for the average fake curvature and for the average curving are similar to those
for the case where the probabilities are independent of x.

4. An example: STIRAP

In this section, we illustrate the role of the fields associated with the higher gauge theory with
a concrete example. We want also show that a geometric representation of the field strengths
can be used to interpret the hampering of the quantum control induced by the entanglement of
the system with its environment. Then it can be used to analyse the robustness of a control
solution found by considering solely the system. We have chosen a very simple quantum
control problem in order to avoid unnecessary complications which could hide the funda-
mental behaviours of the universe.

We consider a three-level atom controlled by two laser Gaussian pulses. The first one,
called the ‘pump’ pulse, is quasi-resonant with the transition | 〉 → | 〉1 2 ; and the second one,
called the ‘Stokes’ pulse, is quasi-resonant with the transition | 〉 → | 〉2 3 ( | 〉 =i( )i 1,2,3 being the
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atomic bare states). A second three-level atom interacts with the first one and feels the laser
pulses but with attenuated intensities (we set the attenuation as being a division by a factor 2).
This second atom constitutes the environment for the controlled atom. In the rotating wave
approximation (see [5]), the Hamiltonian of the universe is

= ⊗ + ⊗ +     H x H x H x V x( ) ( ) 1 1 ( ) ( ) (46)

with, in the basis | 〉 =i( )i 1,2,3 for the first atom,

Ω
Ω Δ Ω

Ω Δ Δ
=

−

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟



( )
H x( )

2

0 0
2

0 2
(47)

P

P P S

S P S

and, in the basis | 〉 =i( )i 1,2,3 for the second atom,

Ω

Ω Δ Ω

Ω Δ Δ

=

−

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟




( )

H x( )
2

0
1

2
0

1

2
2

1

2

0
1

2
2

. (48)

P

P P S

S P S

Ω μ= |〈 | ⃗ · ⃗ | 〉 |1 2P P where μ ⃗ is the electric dipole moment of an atom and ⃗P is the electric
field of the pump pulse, Ω μ= |〈 | ⃗ · ⃗ | 〉 |2 3S S where ⃗S is the electric field of the Stokes pulse,
Δ ϵ ϵ ω= − − ( )P P2 1 and Δ ϵ ϵ ω= − − ( )S S3 2 where ϵ =( )i i 1,2,3 are the atomic bare
energies and ωP and ωS are the laser frequencies. The laser frequencies (and thus the detuning
ΔP S/ ) are fixed; and the Ω Ω=x ( , )P S constitute the control parameters. The control manifold
is  = ×+ +M .

For the sake of simplicity, we choose a simple operator V to model the coupling between
the two atoms. We consider two cases:

• a static coupling:

= +V g ( 2, 3 3, 2 3, 2 2, 3 ) (49)

where | 〉〉 = | 〉 ⊗ | 〉 ∈ ⊗  i j i j, ;
• a dynamical coupling:

ζ ξ ζ ξ

ζ ξ ζ ξ

= ⊗ ⊗

+ ⊗ ⊗

(
)

V x g x x x x

x x x x

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) (50)

2 3 3 2

3 2 2 3

where ζ =x{ ( )}i i 1,2,3 are the eigenvectors of H x( ) (continuous with respect to x) such that
ζ| 〉 = | 〉i(0)i ; and ξ =x{ ( )}i i 1,2,3 are the eigenvectors of H x( ) (continuous with respect to x)
such that ξ| 〉 = | 〉i(0)i (x = 0 is the point corresponding to off lasers, Ω Ω= = 0S P ).

⩾g 0 is the coupling strength. We consider only perturbative couplings between the
system and the environment ( ≪g 1).

Let ϕ = …x{ ( )}a a 1, ,9 be the eigenvectors of H x( ), continuous with respect to x and such
that

ϕ ζ ξ ϕ ζ ξ ϕ ζ ξ= ⊗ = ⊗ = ⊗
→ → →

lim lim lim (51)
g g g0

1 1 1
0

2 2 1
0

3 3 1
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ϕ ζ ξ ϕ ζ ξ ϕ ζ ξ= ⊗ = ⊗ = ⊗
→ → →

lim lim lim (52)
g g g0

4 1 2
0

5 2 2
0

6 3 2

ϕ ζ ξ ϕ ζ ξ ϕ ζ ξ= ⊗ = ⊗ = ⊗
→ → →

lim lim lim . (53)
g g g0

7 1 3
0

8 2 3
0

9 3 3

The quantum control problem is that of reaching the pure target state ρ = | 〉〈 |3 3target with
the system initially in the pure state ρ = | 〉〈 |1 10 . First, we recall the classical solution of the
problem (the STIRAP solution) when the controlled atom is alone. Secondly, we study the
robustness of this solution where the controlled atom is in contact with the second one,
without coupling, with the static coupling and with the dynamical coupling.

The results of the control are computed by numerical integrations of the Schrödinger
equation of the universe based on a second-order differential scheme (see for example [15]).
The different field strengths ( F , ρ Ftr ( )a a , ρ Btr ( )a a ) are numerically computed by using
methods coming from lattice gauge theory [16, 17] after a triangulation of the control
manifold M with a sufficiently thin triangular lattice.

4.1. A single isolated atom

The STIRAP solution [5] consists in the path  on M defined by

Ω Ω↦ = τ τ
−

−
−

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟t x t( ) e , e (54)

t t t t

0

( )

0

( )P

P

S

S

2

2

2

2

with Ω = 3.5 au0 , =t 70 auP , =t 20 auS , τ τ= = 30 auP S (with = −t 60 au0 and
=T 140 au; =au atomic units). This solution is counter-intuitive since it consists in starting

the Stokes pulse (which is quasi-resonant with the transition | 〉 → | 〉2 3 ) before the pump pulse
(which is quasi-resonant with the transition | 〉 → | 〉1 2 ). To shed light on this control solution,
we numerically integrate the Schrödinger equation for the system alone, and we consider the
density matrix ρ ψ ψ= | 〉〈 |ψ t t t( ) ( ) ( ) with ψ t( ) the solution of the Schrödinger equation. The
occupation probabilities of the bare states ρ ρ= 〈 | | 〉ψ ψt i t i( ) ( )ii, and the occupation probabilities
of the instantaneous eigenstates ρψ t P x ttr ( ( ) ( ( )))i with ζ ζ= | 〉〈 |P x x x( ) ( ) ( )i i i are shown in
figure 1. We can interpret the solution by using the adiabatic curvatures = F Adi i, , with

ζ ζ= 〈 | 〉A di i i, . Figure 2 shows the densities of the field strengths = 〈 | ∧ | 〉ζ ζ∂
∂

∂
∂F i x x, ,12

i i

1 2 .
Starting from P1, the dynamics passes to P2 at • which corresponds to the singularity common
to F ,1 and F ,2 (the crossing of the two associated eigenvalues). The dynamics passes from P2

to P3 at ▪, the singularity common to F ,2 and F ,3. This is in accordance with the adiabatic
quantum control method based on rapid adiabatic passages (see also [5]).

In the following, we do not change the path  (the STIRAP solution of the control
problem), but we study the robustness of this solution with the entanglement of the controlled
atom with the atom constituting the environment.

4.2. Two atoms without coupling

We begin by studying the case without coupling between the two atoms (g = 0). The
eigenvectors ϕa are then factorizable, and the rank of the density eigenmatrices
ρ ϕ ϕ= | 〉〉〈〈 |tra a a is equal to 1. The von Neumann entropy ρ ρ− tr ( ln )a a is then 0 for
all states.

We integrate the Schrödinger equation of the universe with two initial conditions: the first
one is without state superposition ψ ϕ=t( ) (0)0 1 and the second one, with initial environment
state superposition ψ ϕ ϕ= +t( ) ( (0) (0))0

1

2 1 7 . In the two cases we have
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ρ ψ ψ= | 〉〉〈〈 | = | 〉〈 |ψ t( ) tr (0) (0) 1 10 . The occupation probabilities of the bare states ρψ ii, , the
occupation probabilities of the instantaneous eigenvectors of the system ρψ Ptr ( )i

( ζ ζ= | 〉〈 |Pi i i ) and the occupation probabilities of the eigenvectors of the universe ϕ ψ|〈〈 | 〉〉|a
2

are shown in figure 3. In the two cases, we see that the adiabaticity is satisfied for the system,
whereas this is not completely the case for the universe. But since all states of the universe are
factorizable, no decoherence significantly occurs on the controlled dynamics (for the first case
the entropy remains equal to 0 and it increases to a very small value in the second case, as
shown in figure 4). We can interpret the results by plotting the densities in M of the average
adiabatic fake curvatures ρ Ftr ( )a a (figure 5) and of the average adiabatic curving ρ Btr ( )a a

(figure 6). As shown in section 3.3.1, the average fake curvature is equal to the curvature of
the system and the average curving is equal to the curvature of the environment. To sum-
marize we have:

• the path  passes through a singularity of ρ Ftr ( )1 1 and ρ Ftr ( )2 2 which induces a
transition →P P1 2 for the system (and a transition ϕ ϕ→1 2 for the universe);

▴  passes through a singularity of ρ Btr ( )2 2 and ρ Btr ( )5 5 which induces a transition
ϕ ϕ→2 5 (without a non-adiabatic effect for the system);

⋆  passes through a singularity of ρ Btr ( )5 5 and ρ Btr ( )S 8 8 which induces a transition
ϕ ϕ→5 8 (without a non-adiabatic effect for the system);

Figure 1. Left: occupation probabilities of the bare states ρψ ii, with respect to t. Right:
occupation probabilities of the instantaneous eigenstates ρψ Ptr ( )i with respect to t.
The event • is the transition ζ ζ→1 2 and the event ▪ is the transition ζ ζ→2 3.
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Figure 2. Densities of the adiabatic curvatures F i, inM, with the path  and the events •
(transition ζ ζ→1 2) and ▪ (transition ζ ζ→2 3).
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▪  passes through a singularity of ρ Ftr ( )8 8 and ρ Ftr ( )9 9 which induces a transition
→P P2 3 for the system (and a transition ϕ ϕ→8 9 for the universe).

The passages by the singularities of the curving have no significant consequences for the
control in this case (except the very small increase of the entropy associated with the non-
adiabatic transitions in the environment for the case with a superposition of eigenstates).

4.3. Two atoms with a static coupling

We repeat the previous study with a static coupling ( =g 0.1 au). In this case, all the density
eigenmatrices ρa are invertible (their rank is equal to 3) for non-zero laser intensities. We

Figure 3. Upper: occupation probabilities of the bare states ρψ ii, with respect to t.
Middle: occupation probabilities of the instantaneous eigenstates of the system

ρψ Ptr ( )i with respect to t. Lower: occupation probabilities of the instantaneous
eigenstates of the universe ϕ ψ|〈〈 | 〉〉|a

2 with respect to t. Left: for the initial condition
ψ ϕ=t( ) (0)0 1 . Right: for the initial condition ψ ϕ ϕ= +t( ) ( (0) (0))0

1

2 1 7 . The event •
is the transition ζ ζ→1 2 (ϕ ϕ→1 2) and the event ▪ is the transition ζ ζ→2 3 (ϕ ϕ→5 9).
The event ▴ is the transition ϕ ϕ→2 5 and the event ⋆ is the transition ϕ ϕ→5 8.

J. Phys. A: Math. Theor 47 (2014) 295301 D Viennot

14



consider three initial conditions: ψ ϕ=t( ) (0)0 1 , ψ ϕ=t( ) (0)0 4 and ψ ϕ=t( ) (0)0 7 . The
occupation probabilities are plotted in figures 7 and 8, and the entropies of the density matrix
are plotted in figure 9.

In the first case the control is imperfectly realized, in the second case the control quality
is very low, and in the last case the control completely fails. We want to interpret

Figure 4. von Neumann entropy of the density matrix ρ ρ− ψ ψtr ( ln ) with respect to t
for the initial condition ψ ϕ ϕ= +(0) ( (0) (0))1

2 1 7 .
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Figure 5. Densities of the average fake curvature ρ Ftr ( )a a in M, with the path  and
the events • (transition ζ ζ→1 2), ▴ (transition ϕ ϕ→2 5), ⋆ (transition ϕ ϕ→5 8) and ▪
(transition ζ ζ→2 3).
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Figure 6. Densities of the average curving ρ Btr ( )a a in M, with the path  and the
events • (transition ζ ζ→1 2), ▴ (transition ϕ ϕ→2 5), ⋆ (transition ϕ ϕ→5 8) and ▪
(transition ζ ζ→2 3).
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geometrically the different dynamical effects appearing in the previous figures. We first note
that the average curving is zero for all states. Figure 10 shows the average fake curvatures and
figure 11 shows the eigenentropies. We see in these figures that the regions with strong
eigenentropies are correlated with some regions with strong fake curvature (which do not
have the morphology of a point singularity). Because of their morphology, we call such a
region an entropic string. We summarize the different events:

• the path  passes through a singularity of ρ Ftr ( )a a and ρ + +Ftr ( )S a a1 1 (with a = 1 for the
first case, a = 4 for the second one, and a = 7 for the last case) which induces a transition
→P P1 2 for the system;

▴ (not for the last case)  passes through a singularity of ρ Ftr ( )2 2 and ρ Ftr ( )S 5 5 which
induces a transition ϕ ϕ↔2 5 (without non-adiabatic effects for the system);

♦ (not for the second case)  passes through an entropic string (of ρ Ftr ( )5 5 for the first
case, and of ρ Ftr ( )3 3 and ρ Ftr ( )S 8 8 for the last case) which induces an increase of the
entropy of the system (and non-adiabatic exchanges between ϕ3 and ϕ8 for the last case);

♣  passes through an entropic string (of ρ Ftr ( )5 5 for the first case, of ρ Ftr ( )2 2 and
ρ Ftr ( )7 7 for the second case, and of ρ Ftr ( )3 3 and ρ Ftr ( )5 5 for the last case) which

induces oscillations of the entropy of the system (with non-adiabatic exchanges);
⋆ (not for the second case)  passes through a singularity of ρ Ftr ( )5 5 and ρ Ftr ( )8 8

which induces a transition ϕ ϕ↔5 8;
▪  passes through a singularity of ρ Ftr ( )8 8 and ρ Ftr ( )9 9 (first case), or of ρ Ftr ( )2 2 and

ρ Ftr ( )3 3 (second case), or of ρ Ftr ( )5 5 and ρ Ftr ( )6 6 (last case), which induces a
transition →P P2 3 for the system; for the last case only  enters in a strong entropic string
of ρ Ftr ( )6 6 and ρ Ftr ( )8 8 which induces strong non-adiabatic exchanges;

Figure 7. Occupation probabilities of the bare states ρψ ii, with respect to t, for the initial
condition ψ ϕ=t( ) (0)0 1 , the initial condition ψ ϕ=t( ) (0)0 4 and the initial condi-
tion ψ ϕ=t( ) (0)0 7 .
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♠ (only for the last case)  passes through a singularity of ρ Ftr ( )6 6 and ρ Ftr ( )8 8 which
induces a transition ϕ ϕ→6 8.

The passages by the entropic strings (♦, ♣ and ▪ in the last case) are responsible of the
failures of the adiabatic quantum control. We see two kinds of singularities of the fake
curvature: the first one (• and ▪) induces adiabatic passages for the system, and the second one
(▴, ⋆ and ♠) induces adiabatic passages for the environment without effects on the system.
The inactive and active singularities (from the viewpoint of the controlled system) seem not to
be easily distinguishable without comparison with the singularities of the isolated system. The

Figure 8. Left: occupation probabilities of the instantaneous eigenstates of the system
ρψ Ptr ( )i with respect to t. Right: occupation probabilities of the instantaneous

eigenstates of the universe ϕ ψ|〈〈 | 〉〉|a
2 with respect to t. Upper: for the initial condition

ψ ϕ=t( ) (0)0 1 . Middle: for the initial condition ψ ϕ=t( ) (0)0 4 . Lower: for the initial
condition ψ ϕ=t( ) (0)0 7 . The event • is the transition ζ ζ→1 2 and the event ▪ is the
transition ζ ζ→2 3. The event ▴ is the transition ϕ ϕ↔2 5, the event ⋆ is the transition
ϕ ϕ↔5 8, and the event ♠ is the transition ϕ ϕ→6 8. The events ♦ and ♣ are the
beginnings of non-adiabatic exchanges in the universe.
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average curving being equal to zero in this case, it does not eliminate the inactive singularities
as in the previous case. This is clearly a drawback of an analysis based on adiabatic fields.

It is possible to give a heuristic explanation of these results. Write
ρ ζ ζ= ∑ | 〉〈 |x p x x x( ) ( ) ( ) ( )a i j ij i j, . The exact calculations of pij(x) and of the different fields can
be complicated. But we can heuristically suppose, in analogy with section 3.3.2, that

ρ Ftr ( )a a and ρ Btr ( )a a have behaviours similar to those of  ϖ + ˆ F A Atr ( ( [ , ]))
t2

3 and

 ϖ − ∧  F A Atr ( ( ))2
3 with ϖ = p( )ij ij

2 . uΩ∈A M( , (3))1 is the non-Abelian generator
of the geometric phase for all states of the system, and we have then
= + ∧ =   F A A Ad 0. In the same manner, we have =F 0. The adiabatic transitions

inside  do not induce decoherence processes; we can then expect that  ϖ ∧ A Atr ( )2
3

and, thus, ρ Btr ( )a a are zero. Moreover  ϖ ˆA Atr ( [ , ])
t2

3 feels essentially the non-adiabatic
couplings for the system ( A ) and for the environment ( A ). Since the coupling is pertur-
bative, we can expect that ρ Ftr ( )a a presents essentially the singularities associated with the
state ϕ→limg a0 which characterizes non-adiabatic couplings for the system (active singula-
rities) and for the environment (passive singularities). This argument is not a proof; it is just a
heuristic argument showing the consistency of the numerical results with the interpretations of
the adiabatic fields.

4.4. Two atoms with a dynamical coupling

We consider now a dynamical coupling ( =g 0.1 au):
ζ ξ ζ ξ ζ ξ ζ ξ= | ⊗ 〉〉〈〈 ⊗ | + | ⊗ 〉〉〈〈 ⊗ |V x g x x x x x x x x( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) )2 3 3 2 3 2 2 3 , i.e. the

potential couples the dressed states in place of the bare states. In this case the density
eigenmatrices have a rank equal to 1, except ρ6 and ρ8 which have a rank equal to 2 (for non-
zero laser intensities). We consider two initial conditions: ψ ϕ=t( ) (0)0 1 and ψ ϕ=t( ) (0)0 7 .

Figure 9. von Neumann entropy of the density matrix ρ ρ− ψ ψtr ( ln ) with respect to t
for the initial conditions ψ ϕ=t( ) (0)0 1 , ψ ϕ=t( ) (0)0 4 and ψ ϕ=t( ) (0)0 7 .
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The occupation probabilities are plotted in figure 12 and the entropies of the density matrix
are plotted in figure 13. In these two cases, the control dramatically fails. The average fake
curvatures are shown in figure 14, the average curvings are shown in figure 15 and the
eigenentropies are shown in figure 16. We summarize the different events:

• the path  passes through a singularity of ρ Ftr ( )1 1 and ρ Ftr ( )S 2 2 (or of ρ Ftr ( )7 7 and
ρ Ftr ( )S 8 8 for the second case) which induces a transition →P P1 2 for the system;

▴ (only for the first case)  passes through a singularity of ρ Btr ( )2 2 and ρ Btr ( )S 5 5 which
induces a transition ϕ ϕ↔2 5 (without non-adiabatic effects for the system);

♦ (only for the second case)  approaches the region with large eigenentropies
ρ ρ−tr ( ln )6 6 and ρ ρ−tr ( ln )8 8 , which induces strong non-adiabatic oscillations between

ϕ6 and ϕ8;
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Figure 10. Densities of the average fake curvature ρ Ftr ( )a a in M, with the path 
(plain line for case 1, dashed line for case 2, dotted line for case 3; thick line for the
states with a large occupation and thin line for the states with a small occupation). We
show the events • (transition ζ ζ→1 2), ▴ (transition ϕ ϕ↔2 5), ♦ and ♣ (beginnings of
non-adiabatic exchanges), ⋆ (transition ϕ ϕ↔5 8), ▪ (transition ζ ζ→2 3), and ♠
(transition ϕ ϕ→6 8).
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♣ (only for the second case)  passes close to the region with large eigenentropies
ρ ρ−tr ( ln )6 6 and ρ ρ−tr ( ln )8 8 , and the non-adiabatic oscillations present a max-

imal amplitude;
⋆  passes through a singularity of ρ Btr ( )5 5 and ρ Ftr ( )8 8 which induces a transition

ϕ ϕ↔5 8; with the increase of the entropy of the system (with non-adiabatic exchanges)
for the first case and with a modification of the entropy oscillations in the second case;

♡ (only for the first case)  passes through a singularity of ρ Ftr ( )6 6 and ρ Ftr ( )8 8 which
induces a transition ϕ ϕ→8 6;

▪  passes through a singularity of ρ Ftr ( )5 5 , ρ Ftr ( )6 6 , ρ Ftr ( )8 8 and ρ Ftr ( )9 9 (first
case), or of ρ Ftr ( )7 7 and ρ Ftr ( )8 8 (second case), which induces a transition →P P2 3 for
the system; for the second case  passes through the region with large eigenentropies
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Figure 11. Eigenentropies ρ ρ− tr ( ln )a a in M, with the path  (plain line for case 1,
dashed line for case 2, dotted line for case 3; thick line for the states with a large
occupation and thin line for the states with a small occupation). We show the events •
(transition ζ ζ→1 2), ▴ (transition ϕ ϕ↔2 5), ♦ and ♣ (beginnings of the increase of the
entropy of the system), ⋆ (transition ϕ ϕ↔5 8), ▪ (transition ζ ζ→2 3), and ♠
(transition ϕ ϕ→6 8).
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ρ ρ−tr ( ln )6 6 and ρ ρ−tr ( ln )8 8 which induces a strong increase of the entropy of the
system with strong non-adiabatic exchanges;

♠ (only for the second case)  passes through a singularity of ρ Ftr ( )6 6 and ρ Ftr ( )8 8

which induces a transition ϕ ϕ→6 8.

Figure 12. Upper: occupation probabilities of the bare states ρψ ii, with respect to t.
Middle: occupation probabilities of the instantaneous eigenstates of the system

ρψ Ptr ( )i with respect to t. Lower: occupation probabilities of the instantaneous
eigenstates of the universe ϕ ψ|〈〈 | 〉〉|a

2 with respect to t. Left: for the initial condition
ψ ϕ=t( ) (0)0 1 . Right: for the initial condition ψ ϕ=t( ) (0)0 7 . The event • is the
transition ζ ζ→1 2 and the event ▪ is the transition ζ ζ→2 3. The event ▴ is the transition
ϕ ϕ↔2 5, the event ⋆ is the transition ϕ ϕ↔5 8, and the events ♠ and ♡ are the
transitions ϕ ϕ↔6 8. The events ♦ and ♣ are the beginnings of non-adiabatic exchanges
in the universe.
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5. Discussion and conclusion

5.1. Larger environments

The results presented in section 3 are independent of the dimensions of the Hilbert spaces of
the system and of the environment. But the example treated in section 3 concerns a small
system (a three-level atom) with a very small environment (another three-level atom). The
restriction to a few levels for the system is not drastic. In principle, the adiabatic quantum
control consists in controlling the probabilities of occupation of a few levels. For an N-level
system (with N possibly very large), we can consider only a few parameter dependent
eigenlevels linked by crossings or avoid crossings to the initial one. The adiabatic elimination
of the other states is valid while the control path does not approach the crossings between a
selected eigenlevel and an eliminated eigenlevel. By property 2, we know that the (fake)
curvature presents a singularity at such a point for the selected eigenlevel involved, and which
is not correlated with a singularity of another selected eigenlevel (since the crossing involved
an eliminated eigenlevel). It is then easy to locate on the ‘density charts’ these forbidden
regions (associated with cases of the adiabatic assumption failing).

For a complicated environment (with a lot of quantum levels), the analysis described in
the present paper could be difficult to realize without other assumptions, because the number
of ‘density charts’ of adiabatic field strengths to study becomes very large. Moreover, in a lot
of situations, a complete and exact description of the environment (its Hamiltonian and the
coupling operator) is unknown. To solve the first problem, we can consider the possibility of
using effective small environments reproducing the effects of a large environment on the
quantum system. For the second one, we can work only at the stage of the density matrices.
We briefly discuss these two possibilities in this section.

5.1.1. Effective Hamiltonians for large environments. If dim is very large, the number of
‘density charts’ to plot becomes too large for this to be realized. To solve this problem, we
can proceed, in a first approximation, by adiabatic eliminations. Let ξα α∈ … x{ ( )} {1, ,dim } be
the parameter dependent eigenvectors of H x( ). We assume that for physical reasons, only a
few of these states ξα α∈x{ ( )} I are strongly involved at the starting point of the control ∈x M0

(each control path considered starting and ending at x0). We can then reduce the number of
the environment states by projections onto the space spanned by ξα α∈x{ ( )} I . In other words,
we consider (for the eigenvector problem) the effective Hamiltonian

= ⊗ + ⊗ + ⊗ ⊗         H x H x P x H x P x P x V x P x( ) ( ) 1 1 ( ) ( ) ( ) 1 ( ) ( )1 ( )eff , 0
I I I I

Figure 13. von Neumann entropy of the density matrix ρ ρ− ψ ψtr ( ln ) with respect to t
for the initial conditions ψ ϕ=t( ) (0)0 1 (left) and ψ ϕ=t( ) (0)0 7 (right).
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where PI(x) is the orthogonal projection onto the space spanned by ξα α∈x{ ( )} I (for the
dynamics, it is associated with the effective Hamiltonian

= − ⊗ ˙−  H H P Pi 1eff dyn eff, 0 , 0
I I—the effective theories involve two effective

Hamiltonians: one for the computation of the effective eigenvectors and the other for the
computation of the effective dynamics). If the control is adiabatic with respect to the
environment dynamics, this approximation is valid while the control path does not approach a
crossing between a selected environment level and an eliminated one. The regions of M
forbidden by this requirement are characterized by singularities of the curving (by the relation
between the curving and the environment curvature and property 2). We can then locate these
forbidden regions on the ‘density charts’.

For example if we suppose that x0 corresponds to the situation where the system and the
environment are free (the control apparatus does not act on the quantum objects), then we can
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Figure 14. Densities of the average fake curvature ρ Ftr ( )a a in M, with the path 
(plain line for case 1 and dotted line for case 2; thick line for the states with a large
occupation and thin line for the states with a small occupation). We show the events •
(transition ζ ζ→1 2), ▴ (transition ϕ ϕ↔2 5), ♦ and ♣ (beginnings of non-adiabatic
exchanges), ⋆ (transition ϕ ϕ↔5 8), ▪ (transition ζ ζ→2 3), and ♠ and ♡ (transi-
tion ϕ ϕ↔6 8).
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suppose that a very large environment is in a thermal equilibrium state: ρ =
β−




Z

e H x( 0)
(where

β =
k T

1

B
, T being the temperature and kB the Boltzmann constant), with = β−

Z tr e H x( )0 . The
different initial conditions are then

∑ρ ϕ ϕ=
α

βν

α α
=

− α




Z
x x(0)

e
( ) ( ) (55)i

x

a i a i,
1

dim ( )

( , ) 0 ( , ) 0

0

where να is the eigenvalue associated with ξα, and ϕ αa i( , ) is the eigenstate of H such that

ϕ ζ ξ= ⊗α α
→

lim (56)
g

a i i
0

( , )

with ζ x{ ( )}i the eigenstates of H , and g is the weak system–environment coupling
amplitude. ρ ρ= +    gtr (0) ( )i, . The density matrix of the system with respect to the
time is then
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Figure 15. Densities of the average curving ρ Btr ( )a a in M,with the path  (plain line
for case 1 and dotted line for case 2; thick line for the states with a large occupation and
thin line for the states with a small occupation). We show the events • (transition
ζ ζ→1 2), ▴ (transition ϕ ϕ↔2 5), ♦ and ♣ (beginnings of non-adiabatic exchanges), ⋆
(transition ϕ ϕ↔5 8), ▪ (transition ζ ζ→2 3), ♠ and ♡ (transition ϕ ϕ↔6 8).
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∑

ρ

ϕ ϕ=
α

βν

α α
=

−
†

α







 ( )
t

Z
U t x x U t

( )

e
tr ( , 0) ( ) ( ) ( , 0) (57)

i

x

a i a i

,

1

dim ( )

( , ) 0 ( , ) 0

0

where U t( , 0) is the evolution operator of the universe, i.e. the solution of
=  H x t U ti ( ( )) ( , 0)U t

t

d ( , 0)

d
with = ⊗  U (0, 0) 1 . We can consider only the states ξα{ }

associated with the smallest energies (the Boltzmann factors βν− αe x( )0 of the others being
negligible) and, with the assumption that the control path does not approach crossings
between the selected and the eliminated states, we have

∑ρ ≃
α

βν

∈

− α

 t
Z

( )
e

(58)i
I

x

,

( )0

ϕ ϕ× α α
† ( )U t x x U ttr ( , 0) ( ) ( ) ( , 0) (59)eff

a i a i
eff,0

( , ) 0 ( , ) 0
,0

with =  H x t U ti ( ( )) ( , 0)eff , 0U t

t
effd ( , 0)

d
,0eff ,0

. The control of ρ t( )i, can then be deduced from
the control of the states ϕ α α∈ … ∈U t x{ ( , 0) ( )}a i i I( , ) 0 {1, ,dim }, at the adiabatic limit with a
reasonable number of density charts to consider.

Nevertheless, the replacement of the universe Hamiltonian by H eff , 0 is certainly too
drastic for a lot of situations. We can indeed think that the requirement for the control to be
strictly adiabatic with respect to the environment dynamics is difficult to achieve, since the
‘experimentalist’ controlling the system ‘loses’ the information concerning the environment
(a loss of information which is mathematically modelled by the partial trace on ).
Recently, we have proposed a framework in which to treat almost adiabatic dynamics [18]. It
consists in considering (for the eigenvector problem) the effective Hamiltonian

Ω= ⊗  H P H1eff , 1
I where Ω (called the wave operator) is a solution of the Bloch

equation Ω Ω =H[ , ] 0 with Ω Ω⊗ = P1 I (a complete exposition of the wave operator
theory can be found in [19, 20], the effective Hamiltonian for the dynamics being

Ω= − ⊗ ˙−  H H Pi 1eff dyn eff, 1 , 1
S I ). The interest of H eff , 1 with respect to H eff , 0 lies in H eff , 1

Figure 16. Eigenentropies ρ ρ ρ ρ− = −  tr ( ln ) tr ( ln )6 6 8 8 in M (the other eigenen-
tropies are zero), with the path  (plain line for case 1 and dotted line for case 2) and
the events • (transition ζ ζ→1 2), ▴ (transition ϕ ϕ↔2 5), ♦ and ♣ (beginnings of the
increase of the entropy of the system), ⋆ (transition ϕ ϕ↔5 8) and ▪ (transition ζ ζ→2 3).
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taking into account non-adiabatic dynamical effects induced by the outside of the space
spanned by ξα α∈x{ ( )} I . It takes into account corrections of the strict adiabatic approximation.
It is important to note that H eff , 1 is not self-adjoint and generates then a non-unitary
evolution. This is not an artefact, and it is one of the corrections of the strict adiabaticity. A
decrease of the norm is associated with transitions from ⊗ PRan I to ⊗ Pker I and an
increase is associated with converse transitions. This effective Hamiltonian cannot include
precise information about the eliminated states, but it includes information concerning
‘quantum flows’ entering and exiting from the ⊗ PRan I . We can compute the fake
curvature and the curving by using the eigenstates of H eff , 1 to plot a small number of ‘density
charts’, which permit us to analyse the control problem (because of the non-self-adjointness
of H eff , 1, it is necessary to redefine the generator of the C*-geometric phase as

ϕ ϕ ρ= | 〉〉〈〈 |* − tr ( d )a a
1

a a with ρ ϕ ϕ= | 〉〉〈〈 |*tr aa a where ϕ*{ }a a are the eigenvectors of
†

H eff , 1 to take into account the biorthogonality of the eigenbasis).
We note that the introduction of an effective Hamiltonian to reduce the size of the Hilbert

space of the universe (needed to have a small number of density charts to consider) introduces
a few approximations in the description of the system. But the consideration of the density
charts of the curving and the fake curvature is used to obtain not quantitative results but just
qualitative results. As in the example of section 4, we can use it a posteriori to analyse and to
interpret the hampering of the control by the entanglement with the environment, and to
understand the different processes occurring. And we can use it a priori to find the rough
shape of a control solution path, taking into account the hampering by the environment (such
a solution could be next optimized by specific numerical methods [21]).

5.1.2. Working directly at the stage of the density matrices. The density matrix of the system
is a solution of the equation

ρ ρ˙ =   ( )t ti ( ) ( ) (60)x t( )

where in the context used in this paper ρ ψ ψ= | 〉〉〈〈 |   t H x t t t( ( )) tr [ ( ( )), ( ) ( ) ]x t( ) . But in
a lot of situations, a complete description of H is unknown or it is not practical to use. Under
some assumptions (in particular with a Markovian approximation), the map  x takes the
Lindblad form [22]

∑

∑

ρ ρ γ Γ ρΓ

γ Γ Γ ρ

= ˜ +

−

†

†

⎡⎣ ⎤⎦
⎧⎨⎩

⎫⎬⎭

 H x x x x

x x x

( ) ( ), i ( ) ( ) ( )

i

2
( ) ( ) ( ), , (61)

x

k
k k k

k
k k k

γ ∈k , Γ ∈  ( )k , ˜H being a system Hamiltonian possibly different from the free
Hamiltonian H ({.,.} being the anticommutator). It is interesting to note that the density
eigenmatrix ρa, when it is induced by an eigenvector of H , satisfies

ρ = ( )x( ) 0. (62)x a

ρa is a steady state of the system. We postulate that even if H is unknown or forgotten, the
density eigenmatrices are still parameter dependent steady states of the system governed by
 x. Starting with a steady state ρ x( (0))a , the dynamics, if it is sufficiently adiabatic, follows
ρ x t( ( ))a except in the regions of rapid adiabatic passages (corresponding to the crossings of
eigenlevels of H ) and in the regions inducing local or kinematic decoherence. Since we
cannot use H which is unknown or forgotten, it is necessary to compute the curving and the
fake curvature directly from ρa. Singularities and entropic strings of these fields indicate these
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regions of M. The generator of the C*-geometric phase is a solution of the equation [6]

ρ ρ ρ= + † d . (63)aa a a a

After solving this equation, we have = − ∧  B da a a a. For eigenvectors ϕa of H
associated with non-degenerate eigenvalues (as in the example of section 4), we have by
construction ϕ ϕ= 〈〈 | 〉〉 A d 1a a a . But ϕ ϕ ρ〈〈 | 〉〉 = d tr ( )a a a a (see [7]); we can then compute
directly the reduced potential as

ρ=   ( )A tr 1 (64)a a a

and then ρ= −  F Bd tr ( )1a a a a.
Upon solving equations (62, 63 and 64, we can finally plot ‘density charts’ of the fields

of the higher gauge structure by working only at the stage of the density matrix formalism.
Other approaches of adiabatic quantum control of open systems [23–25] are based on the

consideration of a density matrix as being a Hilbert–Schmidt operator and  x as being a non-
self-adjoint operator on the Hilbert–Schmidt space (the Hilbert–Schmidt space is a so-called
Liouville space and the operators on the Hilbert–Schmidt space are so-called ‘super-
operators’). We are interested in a comparison of these adiabatic approaches with the present
one because they are also completely generic: like our approach, they do not require a
particular form of the control Hamiltonian and they can be used with several independent
control parameters (adiabatic approaches with a single control parameter have a trivial
differential geometry and cannot be analysed by using a geometric framework since the
problem is ‘under-parametrized’; in other words, the Hamiltonian matrix of the problem is not
‘versal’ in the sense of the Arnoldʼs theory [26]). It seems then pertinent to compare the
present approach with the adiabatic quantum control methods based on the Hilbert–Schmidt
representation because they have the same possibilities of geometric analyses. The density
eigenmatrices considered in the works [23–25] are eigenvectors of  x in the Hilbert–Schmidt
sense. This approach induces a (usual) gauge theory with a single true curvature. We have
seen in this paper that our approach with a higher gauge theory induces two fields (the fake
curvature and the curving) which are complementary for describing non-adiabatic transition
regions and kinematic decoherence. Our approach can be used to interpret the dynamical
phenomenon occurring during the control, and to distinguish purely non-adiabatic effects
(similar to non-adiabatic effects of closed quantum systems, which are essentially associated
with the fake curvature) from kinematic decoherence effects (hampering of the adiabatic
control by the entanglement, which is essentially associated with the curving). A single gauge
field such as the one defined by the Hilbert–Schmidt analysis characterizes a mixing of these
different dynamical processes, and does not provide clear interpretations.

5.2. Conclusion

The higher gauge structure ([9]) associated with the C*-geometric phases [6] involves two
fields. The average fake curvature is a measure of the non-adiabaticity of the system entangled
with the environment (like the usual curvature for an isolated system). Nevertheless, for
invertible eigenmatrices (corresponding to a strong information loss associated with the
partial trace tr ), inactive singularities associated with the non-adiabaticity of the environ-
ment occur. This is a drawback of the interpretation of this field. The average curving is a
measure of the ‘kinematic decoherence’ associated with variations of the entropy and of the
entanglement between the system and the environment. It is essentially induced by the non-
adiabaticity of the environment. In the example treated in this paper (the STIRAP system), it
is zero for some invertible eigenmatrices. This seems to be the signature of the non-
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adiabaticities of the environment not inducing increases of the entanglement and of the
entropy in these cases. But in these cases, the curving does not play its second role, which
consists in ‘killing’ the inactive singularities in the fake curvature. Finally, the von Neumann
entropy of the eigenmatrices measures the ‘local decoherence’ induced by the ‘non-dyna-
mical’ entanglement of the system with the environment appearing directly at the level of the
eigenstates of the universe.

The method consisting in plotting the densities of the different field strengths can be used
to interpret the hampering by entanglement of the adiabatic quantum control. It is also able to
distinguish, in the geometric representation of the universe dynamics, the non-adiabatic
effects concerning the system from the decoherence effects associated with the environment.
The study of the adiabatic fields can then be a tool for establishing adiabatic control strategies
for a system in contact with an environment. But as we can see for the example treated in the
present paper (the STIRAP system entangled with another STIRAP system), it can be very
difficult to completely avoid the decoherence regions (especially if an ‘entropic string’ splits
the control manifold into two parts, as is the case for the example with a static coupling).
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