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Abstract
The definition of instantaneous eigenstate populations for a dynamical non-
self-adjoint system is not obvious. The naı̈ve direct extension of the definition
used for the self-adjoint case leads to inconsistencies; the resulting artifacts
can induce a false inversion of population or a false adiabaticity. We show that
the inconsistency can be avoided by introducing geometric phases in another
possible definition of populations. An example is given which demonstrates
both the anomalous effects and their removal by our approach.

PACS numbers: 03.65.Vf, 31.50.Gh

1. Introduction

The adiabatic approximation is currently a commonly used tool to study quantum dynamical
systems [1]. Let s = t/T be the reduced time (T being the total duration which is assumed
to be very large). Let |a, x(s)〉 be an instantaneous eigenvector of a self-adjoint Hamiltonian
H(x(s)) associated with a non-degenerate eigenvalue Ea, i.e.

H(x(s))|a, x(s)〉 = Ea|a, x(s)〉. (1)

Here H depends on the reduced time s from some classical parameters x. Starting from the initial
state ψ (0) = |a, x(0)〉, the state vector propagation obeys the time-dependent Schrödinger
equation

i
T

∂ψ (sT )

∂s
= H(x(s))ψ (sT ). (2)

The adiabatic theorem [1, 2] states that the system continuously follows the same eigenstate
|a, x(s)〉 if the Hamiltonian is gradually modified; that is,

ψ (sT ) = ca(s)|a, x(s)〉 +
∑

b"=a

cb(s)|b, x(s)〉 (3)
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with

∀b "= a,

∣∣∣∣
cb

ca

∣∣∣∣ $ 1, (4)

|ca(s)|2 being called the population of the state a, if the following adiabatic criterion is fulfilled:

∀b "= a, |〈b, x(s)| 1
T

d
ds

|a, x(s)〉| =
∣∣∣∣∣
〈b, x(s)| 1

T
dH
ds |a, x(s)〉

Ea(x(s)) − Eb(x(s))

∣∣∣∣∣
$ min

s∈[0,1]
|Ea(x(s)) − Eb(x(s))|, (5)

which requires the satisfaction of the gap condition: ∃g > 0,∀s |Ea(x(s)) − Eb(x(s))| > g,
and also slow time variations within the Hamiltonian H(x(s)). This leads to the wavefunction

ψ (sT ) = exp
(

−i!−1T
∫ s

0
Ea(x(s′))ds′

)
exp

(
−

∫ s

0
A(x(s′))ds′

)
|a, x(s)〉 + O

(
1
T

)
, (6)

where

−i!−1T
∫ s

0
Ea(x(s)) ds

is the dynamic phase and

−
∫ s

0
A(x(s)) ds

is the geometric phase. The geometric phase generator is defined as

A(x) = 〈a, x|d|a, x〉 ⇒ A(x(s)) ds = 〈a, x(s)| d
ds

|a, x(s)〉ds. (7)

Studies on adiabaticity and geometric phases can now be usefully extended to dissipative
systems which use non-self-adjoint Hamiltonians to describe resonance phenomena [3–7].
When resonances are defined by some scattering boundary conditions, the resonance states
are unbounded. This means that numerical and theoretical treatment of the resonances is
a difficult task. Spectral deformation methods are commonly used to solve this problem.
The first one, the complex scaling method [8], effectively transforms the resonance states
into bound states. The Hamiltonian becomes non-self-adjoint, and the resonance calculations
produce non-real eigenvalues and the associated eigenvectors. The real part of a resonance
eigenvalue corresponds to the resonance energy and its imaginary part corresponds to
the resonance width (the inverse of the resonance lifetime). The second approach is the
optical potential method [9], which has similar properties. These two methods of resonance
modeling involve non-self-adjoint Hamiltonians and are successfully used to treat molecular
photodissociation problems [10–12]. This paper deals with non-Hermitian matrices. Such
matrices can be viewed as effective Hamiltonians associated with the Hamiltonians of
resonance problems. Effective Hamiltonian techniques use small Hamiltonians to describe
complex systems without loss of information. The principal effective Hamiltonian techniques
are the partitioning technique [13], the quantum KAM method [14], the adiabatic elimination
method [14] and the Bloch wave operator method [13]. Small non-self-adjoint matrices
have also been used as Hamiltonians to describe some photoionization phenomena modeled
by bound states coupled with a structureless continuum (these states are then viewed as
resonances) [15–17]. Finally, we should note that the formalism used in this paper could be
used to treat open quantum systems [18–20] which are described by a Lindblad equation

i!∂ρ

∂t
= L(ρ),
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where ρ is a density matrix (a traceless positive self-adjoint matrix) and the Lindbladian
L is a ‘superoperator’ (here we deliberately show the i factor). For a finite-dimensional
Hilbert space, dimH = n, the space of the density matrices can be identified with an
n2-dimensional Hilbert space L (usually called the Liouville space). In the Liouville space,
the Lindblad equation takes the form of the usual Schrödinger equation. If the Lindbladian
is reduced to be a commutator with a self-adjoint Hamiltonian, i.e. L(ρ) = [H, ρ], then
L is a self-adjoint operator in the Liouville space L. Usually, the Lindbladian, however, is
L(ρ) = [H, ρ] − i

2

∑
k({$

†
k $k, ρ} + 2$kρ$†

k ), where the operators $k model the different
decohering processes ({., .} is the anticommutator). In this case, L is a non-self-adjoint operator
in L. The non-real eigenvalues of L (its resonances) are associated with the decoherence. This
work can be applied to such a system, but for the sake of simplicity we will use only the name
‘Hamiltonian’, even though it could represent a Lindbladian in the Liouville space. For further
explanations about the meaning of adiabatic approximation and geometric phases in an open
quantum system, we refer the reader to [18, 19].

For non-self-adjoint Hamiltonians, the adiabatic theorem [21, 22] involves a criterion
on the dissipation rate of the quantum system studied (i.e. on the imaginary part of the
instantaneous eigenvalue considered). We should stress that in this paper we do not criticize
these adiabatic theorems and we do not search for another adiabatic theorem. The problem
we address is rather that of the interpretation of the adiabatic occupancy coefficients, from a
pragmatic point of view, in order to obtain a better understanding of numerical results obtained
with non-Hermitian Hamiltonians. Naively, we could imagine that the adiabatic approximation
for dissipative quantum systems should take the form ψ (sT ) =

∑
b cb(s)|b, x(s)〉 with ∀b "= a,∣∣∣ cb

ca

∣∣∣ $ 1. The following section shows that this approximation is inconsistent, since the

populations |cb|2 are not well defined. Consequently, a better definition of the instantaneous
populations is proposed in section 2. This definition is equivalent to the c-product condition
(described in [3]) for the case of symmetric non-Hermitian Hamiltonians and remains valid
even for the non-symmetric case. The illustrative example of a two-state dissipative system
is then described in section 3, with an application to an adiabatic state flip [23, 24] which is
generated by following a loop around an exceptional point in the parameter plane.

2. Populations of the instantaneous eigenvectors

For the sake of simplicity, we consider a non-self-adjoint Hamiltonian H(x) of rank 2 (the
discussion can easily be generalized to higher dimensions). We deal with a biorthogonal basis
set and use the standard scalar product. Let {E1(x), E2(x)} be the two instantaneous eigenvalues
of H(x) (assumed to be diagonalizable) and {|1, x〉, |2, x〉} be the two associated eigenvectors,
and let {|1∗, x〉, |2∗, x〉} be the biorthogonal basis, that is,

H(x)|a, x〉 = Ea(x)|a, x〉, (8)

H(x)†|a∗, x〉 = Ea(x)|a∗, x〉, (9)

〈a∗, x|b, x〉 = δab. (10)

(The bar denotes the complex conjugate.) We note that in certain highly symmetric cases
(i.e. when Ht = H) {|a, x〉} and {|a∗, x〉} are related by a simple complex conjugation rule
(formalized by the c-product [25, 3]).

Let

A(x) =
(

〈1∗, x|d|1, x〉 〈1∗, x|d|2, x〉
〈2∗, x|d|1, x〉 〈2∗, x|d|2, x〉

)
(11)
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be the matrix of the geometric phase generators and of the non-adiabatic coupling. Let

ψ (t) = U (t, 0)|1, x(s = 0)〉 (12)

be the wavefunction for an evolution s ,→ x(s) (U (t, 0) being the evolution operator). As in
conservative systems, we could write

ψ (sT ) = c1(s)|1, x(s)〉 + c2(s)|2, x(s)〉, (13)

with |c1(s)|2 being the ‘population’ of the state 1 and |c2(s)|2 the ‘population’ of the state
2; the adiabatic approximation corresponds to the case where |c2|2 is negligible. However
this definition presents a significant problem. In contrast to the conservative case, where we
choose an orthonormal eigenbasis to represent the dynamics, the normalization convention
is arbitrary for a biorthogonal basis. Indeed, if ({|1, x〉, |2, x〉}, {|1∗, x〉, |2∗, x〉}) constitutes a
biorthogonal eigenvectors system, this is also the case for

(
{|̃1, x〉, |̃2, x〉}, {|̃1∗, x〉, |̃2∗, x〉}

)

with

|̃a, x〉 = λa(x)|a, x〉 (14)

|̃a∗, x〉 = (λa(x))−1|a∗, x〉 (15)

for all arbitrary functions λa(x) ∈ C∗. We must then set

ψ (sT ) = c̃1(s) ˜|1, x(s)〉 + c̃2(s) ˜|2, x(s)〉 (16)

with

c̃a(s) = ca(s)
λa(x(s))

. (17)

The population |c̃a|2 = |ca|2
|λa|2 then depends on the arbitrary normalization convention. The

calculation of the instantaneous populations then makes no sense, since the adiabatic multiplier
c1 can artificially grow if the normalization of |a, x(s)〉 decreases.

To solve this problem, we introduce a definition of the instantaneous populations using
geometric phases. We set

ψ (sT )=d1(s) exp
(

−
∫ s

0
A11(x(s′))ds′

)
|1, x(s)〉+d2(s) exp

(
−

∫ s

0
A22(x(s′))ds′

)
|2, x(s)〉

(18)

with 〈a, x(s = 0)|a, x(s = 0)〉 = 1. The instantaneous populations are now defined by |da(s)|2.
Immediately, we note that for the conservative case this definition coincides with the standard
definition of the instantaneous populations since |e−

∫ s
0 Aaa(x(s′))ds′ |2 = 1 in a self-adjoint system.

(Aaa is purely imaginary; the standard definition of the instantaneous populations is invariant
under arbitrary changes to the phase convention of the eigenvectors.) By making an arbitrary
change in the normalization convention, we have

Ãaa(x) = 〈̃a∗, x|d|̃a, x〉 (19)

= dλa(x)

λa(x)
+ 〈a∗, x|d|a, x〉 (20)

= d ln λa(x) + Aaa(x). (21)

We then have

e−
∫ s

0 Ãaa(x(s′ ))ds′ = λa(x(0))

λa(x(s))
e−

∫ s
0 Aaa(x(s′ ))ds′

. (22)

4



J. Phys. A: Math. Theor. 45 (2012) 415201 A Leclerc et al

In order to preserve the initial condition, we set λa(x(0)) = 1. This leads to

ψ (sT ) = d1(s) e−
∫ s

0 Ã11(x(s′ ))ds′ ˜|1, x(s)〉 + d2(s) e−
∫ s

0 Ã22(x(s′ ))ds′ ˜|2, x(s)〉. (23)

The definition of the instantaneous populations, |da|2, is now invariant even in the event
of arbitrary changes in the normalization convention. Here we insist on the fact that the
coefficients da are more intrinsic than the coefficients ca.

Owing to dissipation the total population strays away from 1 (except for s = 0).
We have 1 − (|d1|2 + |d2|2) ! 0, but this is not a properly defined dissipation rate (i.e.
|d1|2 + |d2|2 "= ‖ψ‖2). The dissipation rate is given by (1 − ‖ψ (sT )‖2) with

‖ψ (sT )‖2 =
∑

a,b

db(s)da(s) exp
(

−
∫ s

0
(Aaa(x(s′)) + Abb(x(s′)))ds′

)
× 〈b, x(s)|a, x(s)〉

(24)

=
∑

a,b

db(s)ηba(s)da(s) (25)

= D(s)†η(s)D(s) (26)

with

D(s) =
(

d1(s)
d2(s)

)

and

ηab(s) = e−
∫ s

0 (Aaa(x(s′ ))+Abb(x(s′ )))ds′ 〈b, x(s)|a, x(s)〉.
η constitutes an s-dependent scalar product for D(s), the representation of the wave functions
in the instantaneous (non-orthonormal) eigenbasis. We note that η is well defined since it is
independent of the normalization convention, η̃ = η. The scalar product matrix satisfies the
following differential equation:

dη

ds
= Â†η + ηÂ (27)

with

Âab(s) = 〈a∗, x(s)|e
∫ s

0 Aaa(x(s′ ))ds′ d
ds

(
e−

∫ s
0 Abb(x(s′))ds′ |b, x(s)〉

)
. (28)

We can then write

η(s) =
(
Te

∫ s
0 Â(s′)ds′)†

η(0)Te
∫ s

0 Â(s′)ds′
, (29)

where Te is the s-ordered exponential (the Dyson series).
Finally, if we want the instantaneous total population to be consistent with the dissipation

rate, then the instantaneous population must be defined as α(s)|da(s)|2 with α = D†ηD
D†D .

Using this analysis, we propose that the consistent adiabatic approximation is∣∣∣∣
d2

d1

∣∣∣∣ $ 1 (30)

and not
∣∣∣ c2

c1

∣∣∣ $ 1. In a similar manner, the adiabatic criterion must be independent of the
arbitrary normalization convention:

e
∫ s

0 0e(Abb(x(s′ ))−Aaa(x(s′ )))ds′
∣∣∣∣〈b∗, x(s)| 1

T
d
ds

|a, x(s)〉
∣∣∣∣

= e
∫ s

0 0e(Abb(x(s′ ))−Aaa(x(s′ )))ds′

∣∣∣∣∣
〈b∗, x(s)| 1

T
dH
ds |a, x(s)〉

Ea(x(s)) − Eb(x(s))

∣∣∣∣∣
$ min

s∈[0,1]
|Ea(x(s)) − Eb(x(s))|. (31)
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The ratio |d2/d1| indicates the magnitude of the deviation from an ideal adiabatic behavior
following the state |1, x(s)〉. The limit case when T tends to infinity corresponds to the adiabatic
theorems [21, 22].

From the adiabatic approximation, one can wish to project the adiabatic states onto the
initial diabatic basis |a, x(s = 0)〉. Evidently, assuming for example that one adiabatic state
|a, x(s)〉 is effectively followed by the wavefunction, it is important not to project it directly
onto the diabatic basis to obtain the dynamics in terms of diabatic populations but rather
to take into account the geometric and dynamic factors: for example, if the diabatic basis
is orthonormal and we assume a dynamics which follows the adiabatic state no 1, then the
population of the first diabatic state is |〈1, x(0)|1, x(s)〉|2 exp

{
−2

∫ s
0 0e

[
A11(x(s′))

]
ds′} or

equivalently |〈1, x(0) ˜|1, x(s)〉|2 exp
{
−2

∫ s
0 0e

[
Ã11(x(s′))

]
ds′

}
[see (18) and (23)].

We should point out that the use of the parallel transport condition, i.e. the definition of
the populations with eigenvectors { ̂|a, x(s)〉}a and { ̂|a∗, x(s)〉}a, such that

̂〈a∗, x(s)
∣∣ d
ds

̂∣∣a, x(s)〉 = 0 (32)

implicitly takes into account the instantaneous population definition which includes the
geometric phases. Indeed, it is easy to show that { ̂|a, x(s)〉}a are related to an arbitrary set
of eigenvectors {|a, x〉}a by

̂|a, x(s)〉 = e−
∫ s

0 Aaa(x(s′ ))ds′ |a, x(s)〉. (33)

In the particular case of a symmetric matrix, the left eigenvectors are the complex conjugates of
the right eigenvectors, so that the parallel transport condition is also equivalent to the c-product
normalization condition for the eigenvectors |a, x(s)c.p.〉, fixed by [3]

〈a, x(s)c.p.|a, x(s)c.p.〉 = 1. (34)

The result of this paper could be expressed without explicit reference to the geometric phases
by saying that the treatment of the population tracking for non-Hermitian systems necessary
needs to impose the parallel transport condition (whereas this is not necessary for Hermitian
systems). Nevertheless, we prefer here to make the geometric phases appear explicitly. Indeed,
the { ̂|a, x(s)〉}a are defined only along the path in the parameter space defined by s ,→ x(s); for
a different path s ,→ x′(s) the eigenvectors { ̂|a, x(s)〉′}a are different. It is then more general
to consider {|a, x〉}a (without a parallel transport condition) which are defined globally on the
whole of the parameter space.

Moreover, we note that we cannot use the parallel transport condition to define the
eigenvectors if the path is closed x(s = 0) = x(s = 1) because of the double definition of the
eigenvectors at x(0) = x(1):

̂|a, x(1)〉 = e−
∫ 1

0 Aaa(x(s))ds|a, x(1)〉 "= |a, x(0)〉 = ̂|a, x(0)〉. (35)

The impossibility of giving a single definition of the eigenvectors in the parallel transport
condition e−

∫ 1
0 Aaa(x(s))ds is called the holonomy of the parallel transport.

The following section illustrates that numerical artifacts due to bad definitions of the
populations can induce a false adiabaticity or a false inversion of population in numerical
simulations.

3. Illustrative example

Definition (18) is relevant for non-Hermitian symmetric or non-symmetric matrices. While
the formalism used here should work for larger, more realistic Hamiltonians and for

6
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Floquet-type Hamiltonians, we study here a low-dimensional illustrative example for which
the data can be shown conveniently. Let the parameter-dependent Hamiltonian be

H(w, z) =
(

0 w

w̄ 2z

)
=

(
0 )eiφ

)e−iφ 2+ − i$
2

)
(36)

(w, z) ∈ C2. This Hamiltonian is associated with a quantum bound state coupled to a quantum
resonance (with resonance width $) by a laser field with amplitude ) and phase φ. The laser
field is quasi-resonant with the transition from the bound state to the resonance with a detuning
value equal to +. We assume that we can modulate the complex numbers (w, z) to generate a
dynamics.

3.1. False adiabaticity

The spectrum of H is

E1(w, z) = z −
√

|w|2 + z2 = z − v (37)

E2(w, z) = z +
√

|w|2 + z2 = z + v, (38)

where v =
√

|w|2 + z2 = z
√

1 + |w|2
z2 . (We choose the Riemann sheet such that

√
z2 = z.) We

restrict our attention to the parameters (w, z) such that 2m(E2 − E1) = 22m(v) < 0 (E1 is
the less dissipative).

We can easily verify that the eigenvectors of H(w, z) are

|1, w, z〉 = γ1

(
z + v

−w̄

)
(39)

|2, w, z〉 = γ2

(
z − v

−w̄

)
, (40)

where γa are the appropriate factors to fix the initial norm of the basis vectors to 1, i.e.

γ1 = 1
√

(|z(0) + v(0)|2 + |w(0)|2)
(41)

γ2 = 1
√

(|z(0) − v(0)|2 + |w(0)|2)
. (42)

The biorthogonal basis set is

|1∗, w, z〉 = 1
2v̄(v̄ + z̄)γ 2

1

|1, w, z̄〉 (43)

|2∗, w, z〉 = 1
2v̄(v̄ − z̄)γ 2

2

|2, w, z̄〉. (44)

The associated geometric phase generators are

A11 = w̄ẇ + w ˙̄w
4v2

+ w ˙̄w
2v(v + z)

+ (z + v)ż
2v2

(45)

A22 = w̄ẇ + w ˙̄w
4v2

+ w ˙̄w
2v(v − z)

− (v − z)ż
2v2

. (46)

7
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We can verify that another possible eigenstate 1 reads

˜|1, w, z〉 = γ1

β

(
w

z − v

)
(47)

with

|1, w, z〉 = β
v + z

w
˜|1, w, z〉 (48)

and

β = w(0)

v(0) + z(0)
. (49)

The factor β ensures that |1, w(0), z(0)〉 = ˜|1, w(0), z(0)〉 in order to preserve the initial
condition. We assume that β "= 0. The associated biorthogonal eigenvector is

˜|1∗, w, z〉 = |β|2

2v̄(v̄ − z̄)γ 2
1

˜|1, w, z̄〉. (50)

The normalization factor between the two conventions approaches zero at the limit |w| → 0,

lim
|w|→0

β
w

v + z
= 0. (51)

With this normalization, the first geometric phase generator becomes

Ã11 = w̄ẇ + w ˙̄w
4v2

+ w̄ẇ

2v(v − z)
− (v − z)ż

2v2
. (52)

These properties induce the following analysis. Let

ψ (sT ) = d1(s) e−
∫ s

0 Ã11(s′)ds′ ˜|1, w(s), z(s)〉 + d2(s) e−
∫ s

0 A22(s′ )ds′ |2, w(s), z(s)〉 (53)

be the solution to the Schrödinger equation for the evolution s ,→ (w(s), z(s)) with the
initial state ψ (0) = |1, w(0), z(0)〉. We suppose that the adiabatic approximation is valid, i.e.∣∣∣ d2

d1

∣∣∣ $ 1. If we consider the naive definition of the population by setting

ψ (sT ) = c1(s)|1, w(s), z(s)〉 + c2(s)|2, w(s), z(s)〉,
then the quotient

∣∣∣∣
c1

c2

∣∣∣∣ = 1
β

|w|
|z + v|

∣∣∣∣
c̃1

c2

∣∣∣∣ (54)

= 1
β

|w|
|z + v|

∣∣∣∣
d1

d2

∣∣∣∣ e
∫ s

0 0e(A22(s′)−Ã11(s′))ds′
(55)

with ψ (sT ) = c̃1(s) ˜|1, w(s), z(s)〉 + c2(s)|2, w(s), z(s)〉. We note that if 2m(w) = 0, then
0e(A22 − Ã11) = 0 and

∣∣∣ c1
c2

∣∣∣ = |w|
|β||z+v|

∣∣∣ d1
d2

∣∣∣. The limit (51) can induce

|w| $ 1 ⇒
∣∣∣∣
d2

d1

∣∣∣∣ $ 1 and
∣∣∣∣
c1

c2

∣∣∣∣ $ 1. (56)

Thus we observe a false non-adiabaticity due to the badly defined populations. In this case, we
also have a false population inversion (in the sense that population 1 is negligible with respect
to population 2 using the badly defined populations, while the well-defined populations give
the inverse result).

Conversely, let ψ (sT ) (cf (53)) be the solution to the Schrödinger equation for an evolution
starting with an initial state ψ (0) = |2, w(0), z(0)〉 such that the adiabatic approximation is

8



J. Phys. A: Math. Theor. 45 (2012) 415201 A Leclerc et al

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
ou

pl
in

g 
an

d 
de

tu
ni

ng
 v

ar
ia

tio
ns

 (
ar

b.
un

its
.)

Reduced time s

Figure 1. Time variations of the Rabi frequency w (line) and of the detuning 0e(z) (dashes).

not satisfied, i.e. for s sufficiently large, |d1| ∼| d2|. By the same arguments, if |w| $ 1, then
we have

∣∣∣∣
d1

d2

∣∣∣∣ ∼ 1 and
∣∣∣∣
c1

c2

∣∣∣∣ $ 1. (57)

In this case, we obtain a false adiabaticity due to the badly defined populations.
Figure 1 shows a simple example of a Gaussian variation for w(s) (coupling) and a

decreasing cosine function for 0e(z) (detuning), so that |w(t)| 4 0 near the end of the
considered time interval [0, 100]. The chosen functions are

w(s) = w0 e− s2

2σ2 (58)

+(s) = 0e(z(s)) = +0 cos(0.4πs) (59)

with w0 = 1, +0 = 0.5, $ = 0.1 or 0.2 and σ = 0.16. This elementary example perfectly
illustrates our assertions. Figure 2 corresponds to the case of a false inversion of population,
beginning with the state |1, w(0), z(0)〉. | c2

c1
| becomes very large when s > 0.8, although | d2

d1
|

remains very small for the duration of the interaction (using the definition which takes the
geometric phases into account to compensate for the unstable norm of the basis vectors). This
is consistent with our analysis because this false inversion of populations occurs when w(s)
becomes very small due to the Gaussian function. Moreover, we note the uncontrolled increase
in c1 and c2, both reaching values larger than 1.

Figure 3 shows the principal cause of this problem (the uncontrollable variations in the
norms of |1, w, z〉 and |2, w, z〉) and also the exact compensation obtained with the exponential
of the geometric phases, leading to two stable unitary norms (since we have taken the precaution
of setting the initial norms to 1).

In contrast, figure 4 illustrates the inverse phenomenon of false adiabaticity. The initial
state is |2, w(0), z(0)〉. Thus, the ratio | c1

c2
| stays under the value of 0.01 as if it were an

adiabatic evolution, while | d1
d2

| increases, with two components of the same order of magnitude
(d1 4 d2) at the end of the interval.
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Figure 2. Top: |c1(s)| (line), |c2(s)| (long dashes), |d1(s)| (short dashes), |d2(s)| (dots); bottom:
ratios |c2(s)/c1(s)| (line) and |d2(s)/d1(s)| (dashes). The initial state is |1, w(0), z(0)〉. $ = 0.1.
A logarithmic scale is used for the y-axis.
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Figure 3. Top: 〈1, w, z|1, w, z〉 (line), 〈1, w, z|1, w, z〉 × |e
∫ s

0 A11(s′ )ds′ |2 (dashed line). Bottom:
〈2, w, z|2, w, z〉 (line), 〈2, w, z|2, w, z〉× |e

∫ s
0 A22(s′ )ds′ |2 (dashed line). This corresponds to the case

of a false inversion of population with $ = 0.1.

3.2. Closed loop around an exceptional point in the parameter space

If $ and φ are fixed, then the matrix of (36) has two exceptional points in the parameter
plane (),+). They are located at (),+) = (±$/4, 0). At these points, the two eigenvalues
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Figure 4. Top: |c1(s)| (line), |c2(s)| (long dashes), |d1(s)| (short dashes), |d2(s)| (dots); bottom:
ratios |c1(s)/c2(s)| (line) and |d1(s)/d2(s)| (dashes). The initial state was |2, w(0), z(0)〉. $ = 0.2.
A logarithmic scale is used for the y-axis.

and the two eigenvectors coalesce. If a closed loop that encircles a single exceptional point
is followed in the parameter space, then the adiabatic basis is transported so as to have the
following property [4]:

|1(s = 1)〉 = ν1|2(s = 0)〉
|2(s = 1)〉 = ν2|1(s = 0)〉, (60)

where ν1 and ν2 are two complex numbers. If the dynamics is adiabatic, starting with one
of the eigenstates, |1(s = 0)〉 leads to a final state |1(s = 1)〉 which is proportional to
|2(s = 0)〉. This interchange is called an adiabatic flip. This interesting form of degeneracy
in non-Hermitian quantum problems is the subject of several recent papers, involving both
theoretical [23, 24, 26–28] and experimental [29, 30] studies. References [23, 26] deal with a
symmetric matrix and show that beginning the loop with one state is favorable to an adiabatic
behavior which leads to an adiabatic flip (interchange), while beginning with the other one
(the more dissipative one) induces strong non-adiabatic couplings and state exchange during
the process, whatever the time duration. The occupancy coefficients of the two states and the
states themselves are exchanged during the loop, leading finally to the absence of flip. This
is consistent with the conditions associated with the applicability of the adiabatic theorem
[21, 22]. We can now confirm these results by our calculations and also extend them to the
non-symmetric case by using definition (18).

3.2.1. Symmetric case. We choose the parameters

T = 100,

z(s) = + − i$/4

with $ = 0.5 and +(s) = 0.24 $ sin(2πs),

w(s) = )(s) = $

4
+ 0.24 $ cos(2πs). (61)
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Figure 5. Top: |d1(s)| (line), |d2(s)| (dashes); middle: |e1(s)| (line), |e2(s)| (dashes); bottom:
|c1(s)| (line), |c2(s)| (dashes). The initial state is |1, w(0), z(0)〉. A logarithmic scale is used for
the y-axis.

We calculate the different adiabatic multipliers c1(s), c2(s) and d1(s), d2(s) following the
adiabatic eigenstates by using the two conventions defined above. We also calculate results
using a third convention which corresponds to the c-product normalization (34) and which
gives the coefficients

e1 = 〈1, w(s), z(s)c.p.|ψ (sT )〉, (62)

e2 = 〈1, w(s), z(s)c.p.|ψ (sT )〉 (63)

such that

|ψ (sT )〉 = e1(s)|1, w(s), z(s)c.p.〉 + e2(s)|2, w(s), z(s)c.p.〉. (64)

This c-product normalization is adjusted so as to begin with the same initial condition
(e1, e2) = (1, 0) (or (e1, e2) = (0, 1)) as the two others. Figures 5 and 6 correspond to
the dynamics issuing from the initial states |1, w(0), z(0)〉 and |2, w(0), z(0)〉, respectively.
The |c1| and |c2| curves seem to indicate a non-adiabatic behavior, but are not numerically
significant. The evolution of e1 and e2 is exactly the same as the evolution of d1 and d2.
We see an adiabatic evolution in figure 5 for the dynamics issuing from |1, w(0), z(0)〉. The
final state |1, w(1), z(1)〉 is predominantly occupied at the end of the loop, but owing to the
flip of the eigenstates we do have an adiabatic flip. When the initial state is |2, w(0), z(0)〉
(figure 6), the non-adiabatic exchange of populations during the first part of the loop induces
a final state near to state |1, w(1), z(1)〉 ∝ |2, w(0), z(0)〉 and there is no flip.

3.2.2. Non-symmetric case. The adiabatic loop is the same, but the only difference from the
previous case is that the off-diagonal elements are now complex conjugates, so that the left
eigenvectors are not the complex conjugate of the right eigenvectors. We set

w(s) = )(s) eiφ =
(

$

4
+ 0.24 $ cos(2πs)

)
ei π

4 (65)
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Figure 6. Same as figure 5 with the initial state |2, w(0), z(0)〉.
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Figure 7. Top: |d1(s)| (line), |d2(s)| (dashes); middle: |e1(s)| (line), |e2(s)| (dashes); bottom:
|c1(s)| (line), |c2(s)| (dashes). The initial state is |1, w(0), z(0)〉. A logarithmic scale is used for
the y-axis.

Figures 7 and 8 show the evolution of the occupancy coefficients with the different definitions,
beginning respectively with the initial state |1, w(0), z(0)〉 and |2, w(0), z(0)〉. We clearly see
that it is no longer possible to use a c-product-type normalization: (63) should not be used
in this case. The coefficients c1 and c2 continue not to be numerically significant. Only the
coefficients d1 and d2 can be used in the present case and they show the same behavior as for
the symmetric case.
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Figure 8. Same as figure 7 with the initial state |2, w(0), z(0)〉.

4. Conclusion

This paper should be regarded as a simple clarification about the difficult interpretation of
calculations on dissipative quantum systems described by non-Hermitian Hamiltonians and
about the use of state populations as important observables, especially for studies on adiabatic
phenomena. When one works with dissipative quantum systems, the erratic time evolution of
the norm of the adiabatic eigenvectors can create difficulties in answering the question: what
is the relevant definition of a population? When the eigenvectors are calculated numerically
(for large matrices), there is no reason for them to be continuously transformed from one point
to another in time; thus, the norm variations can appear to be quite disordered (worse than in
our semi-analytic example).

Seemingly, the easiest intuitive solution is to artificially normalize the ‘right’ eigenvectors
as if we were working with an orthogonal basis set, but this is not a coherent way to work. We
have shown that it is much preferable to compensate for the erratic variations in the norm of
the adiabatic basis set by including the exponentials of the geometric phases in the basis vector
decomposition, leading to an invariant definition of the populations under arbitrary changes
of the normalization choice.
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