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Abstract
We show that the adiabatic approximation for non-self-adjoint Hamiltonians
seems to induce two non-equal expressions for the geometric phase. The first
one is related to the spectral projector involved in the adiabatic theorem, and
the other one is the adiabatic limit of the non-adiabatic geometric phase. This
apparent inconsistency is resolved by observing that the difference between the
two expressions is compensated by a small deviation in the dynamical phases.

PACS number: 03.65.Vf

1. Introduction

The adiabatic approximation is currently a commonly used tool to study dynamical systems
[1]. Recently Marzlin and Sanders have pointed out a possible inconsistency in the application
of the adiabatic theorem [2]. Their work has produced some debate and controversy [3–6]
about the application of the adiabatic approximation to systems governed by self-adjoint
Hamiltonians. Generalizations of the adiabatic theorem have also been proposed for non-self-
adjoint Hamiltonians by Nenciu and Rasche [7], Abou Salem and Fröhlich [8, 9], Joye [10] and
Avron et al [11, 12]. In this work, we show that another kind of apparent inconsistency arises
for non-self-adjoint Hamiltonians; like the Marzlin–Sanders inconsistency, it is intimately
associated with the geometric phase concept. The geometric phase commonly used in the
adiabatic approximation (the so-called Berry phase) does not coincide with the adiabatic limit
of the geometric phase commonly used in the non-adiabatic cyclic quantum dynamics (the
so-called Aharonov–Anandan phase) [13, 14]. Section 2 presents general considerations about
the two possible expressions for the geometric phase. Section 3 is an analysis of the origin of
the apparent inconsistency. We show how to treat correctly the adiabatic approximation of the
non-adiabatic geometric phase to resolve this inconsistency.
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2. General considerations

Let H(s) be a C1-time-dependent non-self-adjoint Hamiltonian with 1
2ı (H(s) − H(s)†) ! 0

(H(s) generates a contraction). s = t
T is the reduced time and T is the total duration. Let

λa(s) ∈ C be an isolated non-degenerate eigenvalue of H, φa(s) be the associated (right)
C1-eigenvector and φ∗

a (s) be the associated biorthogonal (left) C1-eigenvector given by

Hφa = λaφa, (1)

H†φ∗
a = λaφ

∗
a , (2)

(here the ordinary complex conjugate is denoted by an overline rather than by a star) with

〈φ∗
a |φb〉 = δab. (3)

The adiabatic approximation states that the wavefunction ψ(s), which is the solution of the
Schrödinger equation ı!

T ψ̇ = Hψ with ψ(0) = φa(0), remains approximately projected onto
Lin(φa) (Lin denotes the linear envelope). s = t

T is the reduced time and T is the total duration.
The dot denotes the derivative with respect to s. We should first point out that there are two
‘natural’ projections onto Lin(φa), the orthogonal projection

Po = |φa〉〈φa|
〈φa|φa〉

, (4)

and the spectral (Riesz) projection

Ps = 1
2π ı

∮

&λa

(H − z)−1 dz = |φa〉〈φ∗
a |, (5)

where &λa is a closed path in the complex plane surrounding only λa. We note that the two
projectors satisfy P2

o = Po, P2
s = Ps, PsPo = Po and PoPs = Ps, but P†

o = Po whereas P†
s &= Ps.

The adiabatic theorems of Nenciu–Rasche [7], Abou Salem–Fröhlich [8] and Joye [10] deal
with the spectral projector

UT (s, 0)Ps(0) = Ps(s)UT (s, 0) + O
(

1
T

)
, (6)

where UT (s, 0) is the evolution operator ( ı!
T U̇T (s, 0) = H(s)UT (s, 0) with U (0, 0) = 1).

Equation (6) constitutes the fundamental assumption of this work. By construction, we then
have

ψ(s) = UT (s, 0)φa(0) (7)

= Ps(s)UT (s, 0)φa(0) + O
(

1
T

)
(8)

= 〈φ∗
a (s)|UT (s, 0)|φa(0)︸ ︷︷ ︸

c(s)

〉φa(s) + O
(

1
T

)
, (9)

where c(s) ∈ C is a time-dependent complex coefficient (in contrast with the self-adjoint case,
c is not just a phase, since the evolution is not unitary). By inserting the expression ψ ' cφa

in the Schrödinger equation, we find that

ċφa ' −(ı!−1Tλaφa + φ̇a)c. (10)

By projection of equation (10) with
〈
φ∗

a

∣∣, we find that

ψ(s) ' e−ı!−1T
∫ s

0 λads−
∫ s

0 〈φ∗
a |φ̇a〉d−∗sφa(s) (11)

≡ ψs(s).
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Figure 1. 〈φ∗
1 |φ̇1〉 − 〈φ1|φ̇1〉

〈φ1|φ1〉 for the Hamiltonian H(s) =
(

0 '(s)
'(s) −ı &

2

)
with '(s) = '0e− (s−s0 )2

2σ ,

with different values of w0 = '0
& . The Gaussian parameters are s = 0.5 and σ = 0.16.

min |E1 − E2| is the minimal distance during the evolution between the two eigenvalues (this
distance is proportional to the inverse of non-adiabatic couplings). This model is associated with a
quantum bound state coupled to a quantum resonance (with resonance width &) by a laser Gaussian
pulse.

This is the expression that we can find in the literature concerning the adiabatic geometric
phases of non-self-adjoint Hamiltonians [15–19]. Since the norms are not fixed to 1, the gauge
structure associated with the geometric phases in the non-self-adjoint case deals with changes
of both the phase and norm (‘geometric factor’ in place of ‘geometric phase’ would be a more
appropriate expression). In other words, the principal bundle describing the geometric phases
has not U (1) as a structure group but C∗ (the group of non-zero complex numbers). Expression
(11) seems to be quite natural, since the adiabatic theorems deal with the spectral projection.
Nevertheless, nothing forbids the projection of equation (10) with 〈φa|

〈φa|φa〉 , and in this case, we
find that

ψ(s) ' e−ı!−1T
∫ s

0 λads−
∫ s

0
〈φa |φ̇a〉
〈φa |φa〉 dsφa(s) (12)

≡ ψo(s).

The apparent inconsistency arises from the adiabatic geometric phases given below:

〈
φ∗

a

∣∣φ̇a
〉
− 〈φa|φ̇a〉

〈φa|φa〉
=

〈
φ∗

a

∣∣Ṗo|φa
〉

(13)

= −〈φa|Ṗs|φa〉
〈φa|φa〉

(14)

&= 0. (15)

This problem does not arise for self-adjoint Hamiltonians where φa = φ∗
a . This deviation

is moreover proportional to the amplitude of the instantaneous non-adiabatic couplings (see
figure 1). It is thus small where the non-adiabatic couplings are small, i.e. far from the
eigenvalue crossings. The question is then: what is the correct adiabatic geometric phase to
be used for non-self-adjoint Hamiltonians? An evident argument in favour of the ‘spectral
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adiabatic geometric phase’ is that it is the only one which is compatible with a late application
of the adiabatic approximation. Indeed, let ψ(s) =

∑
b cb(s)φb(s) (we suppose for the sake

of simplicity that H(s) is diagonalizable). Putting this expression in the Schrödinger equation
and projecting with 〈φ∗

a |, we find

ċa = −ı!−1Tλaca −
∑

b

〈
φ∗

a

∣∣φ̇b
〉
cb. (16)

Then by applying the following adiabatic approximation (for b &= a):

〈
φ∗

a |φ̇b
〉
=

〈
φ∗

a |Ḣ
∣∣φb

〉

λb − λa
(17)

' 0, (18)

we find again that ψ(s) ' ψs(s). In contrast, by projecting with 〈φa|
〈φa|φa〉 , since the eigenvectors

are not orthogonal, we find

ċa = −ı!−1T
∑

b

λbcb
〈φa|φb〉
〈φa|φa〉

−
∑

b

cb
〈φa|φ̇b〉
〈φa|φa〉

−
∑

b&=a

ċb
〈φa|φb〉
〈φa|φa〉

. (19)

An adiabatic approximation seems to be inappropriate to treat this expression and cannot be
used to claim that ψ(s) ' ψo(s). Is this argument sufficient to claim that the ‘orthogonal
adiabatic geometric phase’ is irrelevant? It seems that the answer is ‘no’. First, the rigorously
proved adiabatic theorems concern the approximation of equation (6) and not that of
equation (18) (moreover the use of the approximation equation (18) is not efficient even for
some self-adjoint cases, see [6], and we can remark that the conditions of validity of equation
(18) are the same as requiring the deviation between geometric phases to be small). More
importantly, the orthogonal adiabatic geometric phase is the adiabatic limit of the non-adiabatic
geometric phase. Indeed, consider a quantum dynamics ı!

T ψ̇ = H(s)ψ(s) such that ψ(1) =
µψ(0) with µ ∈ C∗ (the dynamics is said to be cyclic). Let ψ

T
(s) ∈ Lin(ψ(s)) be such that

ψ
T
(1) = ψ

T
(0) = ψ(0) (ψ

T
is an arbitrary choice in Lin(ψ(s)), called a local section in

the geometric language of the fibre bundle theory). By construction, there exists f (s) ∈ C∗

such that ψ
T
(s) = f (s)ψ(s). By inserting ψ(s) = f (s)−1ψ

T
(s) in the Schrödinger equation,

we find

f −1 ḟψ
T

= ı!−1T Hψ
T

+ ψ̇
T
. (20)

By projecting this equation onto ψ
T

, we find

f −1 ḟ = ı!−1T
〈ψ

T
|H|ψ

T
〉

〈ψ
T
|ψ

T
〉

+
〈ψ

T
|ψ̇

T
〉

〈ψ
T
|ψ

T
〉
. (21)

Finally,

ψ(s) = e
−ı!−1T

∫ s
0

〈ψT |H|ψT 〉
〈ψT |ψT 〉 ds−

∫ s
0

〈ψT |ψ̇T 〉
〈ψT |ψT 〉 ds

ψ
T
(s). (22)

We note that no approximation occurs in this last expression.
〈ψ

T
|ψ̇

T
〉

〈ψ
T
|ψ

T
〉 generates the non-

adiabatic geometric phase. The non-adiabatic geometric phase has an important property
concerning the non-unitary evolution. Since

〈ψ
T
|ψ̇

T
〉

〈ψ
T
|ψ

T
〉

= −
〈ψ

T
|ψ̇

T
〉

〈ψ
T
|ψ

T
〉

+ d
ds

ln 〈ψ
T
|ψ

T
〉, (23)

we find that
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|e−
∫ s

0
〈ψT |ψ̇T 〉
〈ψT |ψT 〉 ds|2 = e−

∫ s
0

d
ds ln〈ψ

T
|ψ

T
〉 (24)

= 〈ψ(0)|ψ(0)〉
〈ψ

T
(s)|ψ

T
(s)〉

(25)

and then

‖ψ(s)‖2 = ‖ψ(0)‖2 e
2!−1T

∫ s
0 Im

〈ψT |H|ψT 〉
〈ψT |ψT 〉 ds

. (26)

The evolution of the norm (and thus the dissipation evolution) depends only on the dynamical
phase. At the end of the evolution, the non-adiabatic geometric phase does not take part in
the dissipation process. In this sense, it is a good generalization of a ‘phase’ for the non-self-
adjoint dynamics. During the evolution it belongs to C∗ and not U (1) (it is not a pure phase),
but it corresponds to a right ‘anholonomy’ for the cyclicity of the dynamics independent of
the dissipation.

At the adiabatic limit T → +∞, it is clear that we can choose the local section such that
limT→+∞ ψ

T
(s) = φa(s). We then have

lim
T→+∞

〈ψ
T
|ψ̇

T
〉

〈ψ
T
|ψ

T
〉

= 〈φa|φ̇a〉
〈φa|φa〉

. (27)

The orthogonal adiabatic geometric phase has the same property as the non-adiabatic geometric
phase: it does not take part in the dissipation process and is thus a good generalization of a
‘phase’ for the non-self-adjoint adiabatic dynamics, in contrast with the spectral geometric
phase, for which we have

‖ψ(s)‖2 ' ‖φa(0)‖2 e2!−1T
∫ s

0 Imλads|e−
∫ s

0 〈φ∗
a |φ̇a〉 ds|2, (28)

where

|e−
∫ s

0 〈φ∗
a |φ̇a〉ds|2 = |e−

∫ s
0 〈φ∗

a |Ṗo|φa〉ds|2 &= 1. (29)

The spectral adiabatic geometric phase includes a geometric contribution to the dissipation,
which is precisely its deviation from the orthogonal adiabatic geometric phase.

3. Consistency between the two adiabatic geometric phases

To solve the apparent inconsistency, we remark first that equation (20) can be projected onto
all χ(s) such that 〈χ |ψ

T
〉 &= 0:

f −1 ḟ = ı!−1T
〈χ |H|ψ

T
〉

〈χ |ψ
T
〉

+
〈χ |ψ̇

T
〉

〈χ |ψ
T
〉
. (30)

This induces no inconsistency, since by construction for any χ non-orthogonal to the dynamics
we have

ı!−1T
〈χ |H|ψ

T
〉

〈χ |ψ
T
〉

+
〈χ |ψ̇

T
〉

〈χ |ψ
T
〉

= ı!−1T
〈ψ

T
|H|ψ

T
〉

〈ψ
T
|ψ

T
〉

+
〈ψ

T
|ψ̇

T
〉

〈ψ
T
|ψ

T
〉
. (31)

The modification of the geometric phase is compensated by a modification of the dynamical
phase (so that the sum of the geometric and dynamical phases is invariant). We note that
〈χ |ψ̇

T
〉

〈χ |ψ
T
〉 lacks the good property of non-participation in the dissipation and has no clear physical

sense. Nevertheless, we can choose χ(s) = φ∗
a (s) (for T sufficiently large, by the adiabatic

assumption, φ∗
a is not orthogonal to the dynamics), and have a geometric phase tending to the

spectral adiabatic geometric phase. The inconsistency arises from the fact that all generators
of dynamical phases tend to λa(s).
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To solve this problem, it is important to note that the adiabatic theorems for non-
self-adjoint Hamiltonians need (like the Joye theorem or the Nenciu–Rasche theorem) a
‘superadiabatic renormalization’ [10, 7]. In other words, these theorems do not deal with φa

but with φ(1)
aT , which is an eigenvector of the superadiabatic renormalized Hamiltonian

H (1)
T (s) = H(s) − ı!

T



ṖsPs +
∑

b&=a

Q̇sbQsb



 , (32)

where {Qsb} are the spectral projectors onto the other eigenspaces. We note that the demon-
strations of the adiabatic theorems for non-self-adjoint Hamiltonians need iterations of the
superadiabatic renormalization

(
H (n)

T = H (n−1)
T − ı!

T

(
Ṗ(n−1)

sT P(n−1)
sT +

∑
b&=a Q̇(n−1)

sbT Q(n−1)
sbT

))
.

For the present analysis, the first step is sufficient. The adiabatic approximation is then

ψ
T
(s) ∼ φ(1)

aT , (33)

where ‘∼’ denotes the equivalence for T in the neighbourhood of +∞. By perturbative
analysis, we can write for T in the neighbourhood of +∞

φ(1)
aT = φa − ı!

T

∑

b&=a

〈
φ∗

b

∣∣Ṗs
∣∣φa

〉

λa − λb
φb + O

(
1

T 2

)
, (34)

φ∗(1)
aT = φ∗

a − ı!
T

∑

b&=a

〈
φb

∣∣Ṗ†
s

∣∣φ∗
a

〉

λa − λb
φ∗

b + O
(

1
T 2

)
. (35)

We then have
〈
φ∗(1)

aT

∣∣φ̇(1)
aT

〉
= 〈φ∗

a

∣∣φ̇a
〉
+ O

(
1
T

)
(36)

〈
φ(1)

a |φ̇(1)
a

〉

〈φ(1)
a |φ(1)

a 〉
= 〈φa|φ̇a〉

〈φa|φa〉
+ O

(
1
T

)
(37)

〈
φ∗(1)

aT |H|φ(1)
aT

〉
= λa + O

(
1

T 2

)
(38)

〈
φ(1)

aT

∣∣H
∣∣φ(1)

aT

〉

〈φ(1)
aT |φ(1)

aT 〉
= λa + ı!

T

∑

b&=a

〈
φa|φb〉

〈
φ∗

b |Ṗs|φa〉
〈φa|φa〉

+ O
(

1
T 2

)
(39)

= λa + ı!
T

〈
φa

∣∣(1 − Ps)Ṗs
∣∣φa

〉

〈φa|φa〉
+ O

(
1

T 2

)
, (40)

and since P2
s = Ps ⇒ ṖsPs + PsṖs = Ṗs ⇒ PsṖsPs = 0, we have

〈
φ(1)

aT |H|φ(1)
aT

〉
〈
φ(1)

aT |φ(1)
aT

〉 = λa + ı!
T

〈φa|Ṗs|φa〉
〈φa|φa〉

+ O
(

1
T 2

)
. (41)

We see then that for the generator of the dynamical phase we have limT→+∞
〈ψ

T
|H|ψ

T
〉

〈ψ
T
|ψ

T
〉 = λa,

whereas

ı!−1T
〈ψ

T
|H|ψ

T
〉

〈ψ
T
|ψ

T
〉

∼ ı!−1Tλa − 〈φa|Ṗs|φa〉
〈φa|φa〉

(42)

∼ ı!−1Tλeff
aT (43)
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with λeff
aT = λa + ı!

T
〈φa|Ṗs|φa〉
〈φa|φa〉 . The deviation between the usual dynamical phase and the

effective dynamical phase is precisely equal to the deviation between the adiabatic spectral
and orthogonal geometric phases (equation (12)). We then have

ı!−1Tλa +
〈
φ∗

a |φ̇a
〉
= ı!−1Tλeff

aT + 〈φa|φ̇a〉
〈φa|φa〉

. (44)

This solves the problem of inconsistency. The adiabatic geometric phases are not equal, but
their deviation is compensated by a deviation between the dynamical phases if λeff

aT generates
the dynamical phase associated with the orthogonal geometric phase. λeff

aT is indeed the correct
equivalent of the dynamical phase associated with the non-adiabatic geometric phase. It is
interesting to note that the geometric contribution to the dissipation |e−

∫ s
0 〈φ∗

a |Ṗo|φa〉ds|2 can be
then interpreted as a contribution of the dynamical phase.

4. Conclusion

Even if the adiabatic spectral geometric phase seems to be more natural with respect to
the adiabatic theorem, it is important to note that it is not the adiabatic limit of the non-
adiabatic geometric phase; consequently, it contributes to the dissipation process. In contrast,
the adiabatic orthogonal geometric phase does not contribute to the dissipation process and is
thus a good equivalent to a phase for the non-self-adjoint dynamics. This can be very important
for experimental measurements of the geometric phase in dissipative quantum dynamics. It
is not evident that we can have access to a measurement of the adiabatic spectral geometric
phase because of its involvement in the quantum flow loss. The adiabatic orthogonal geometric
phase could be more pertinent for an experimental measurement.

Finally, we can remark that we can also introduce ‘non-natural’ geometric phases. Let
χ(s) be a state such that 〈χ |φa〉 &= 0. Pχ = |φa〉〈χ |

〈χ |φa〉 constitutes a projector onto Lin(φa).

A geometric phase generated by 〈χ |φ̇a〉
〈χ |φa〉 is associated with this projection, and we have

〈φ∗
a |φ̇a〉 − 〈χ |φ̇a〉

〈χ |φa〉 = 〈φ∗
a |Ṗχ |φa〉 =− 〈χ |Ṗs|φa〉

〈χ |φa〉 which is small at the adiabatic limit. If the
orthogonal geometric phase has a physical interpretation (it preserves the norm evolution),
then an interpretation of the non-natural geometric phases is not directly evident. (Note
that the non-natural geometric phase are forbidden in the self-adjoint case, because of the
requirement of the norm preservation.) Nevertheless, we can say that the geometric phase can
be transformed by an arbitrary new kind of gauge change of the form 〈φ∗

a |Ṗχ |φa〉 (the usual
gauge change being of the form g−1ġ, where g is a non-zero complex number). This remark is
particularly interesting since a previous work [19] has shown that for some geometric phases
associated with a resonance, the geometric structure describing the geometric phase is not a
principal bundle (where the only gauge changes are g−1ġ) but a gerbe (which includes also
another kind of gauge change). In [19], the other kind of gauge change is 〈φ∗

a |'−1'̇|φa〉,
where ' is a wave operator. We remark that in this case we have ' = Ps(PχPsPχ )−1 = Pχ

and '−1 = PχPs = Ps (where (PχPsPχ )−1 is the inverse in the space spanned by Pχ and '−1

is the weak left inverse of ', i.e. '−1' = Pχ ). We then have 〈φ∗
a |'−1'̇|φa〉 =〈 φ∗

a |Ṗχ |φa〉.
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