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We consider the competition betweendecoherence processes and an iterated quantumpurification protocol.We
show that this competition can be modelled by a nonlinear map onto the quaternion space. This nonlinear map
has complicated behaviours, inducing a fractal border between the area of the quantum states dominated by the
effects of the purification and the area of the quantum states dominated by the effects of the decoherence. The
states on the border are unstable. The embedding in a 3D space of this border is like a quaternionic Julia set or
a Mandelbulb with a fractal inner structure.
Qubits are the resource of the quantum information as bits for the classical information, and are themain subject
for future technologies as quantum computers. In contrastwith bits, qubits exhibit stateswhich are impossible at
a classical level as Schrödinger cat states (the qubit is in a superposition of 0 and 1). These purely quantum prop-
erties are the resource to drastically increase the performance of the computing. But the noises of the environ-
ment generate a physical process called decoherence which suppresses the purely quantum properties. There is
a protocol, called purification, which permits to restore the quantum behaviour. The result of the competition be-
tween a permanent decoherence process and a repeated purification protocol is not simple because this gener-
ates a chaotic process. We show that this one is a generalisation of the famous Julia map (which generates the
famous fractals known as the Julia and the Mandelbrot sets). More precisely, in place of a map of the complex
plane, the decoherence-purification competition map is a map of the quaternionic space (so-called Hamilton's
number set, which are numbers which do not commute, i.e. zw �¼ wz with z and w two quaternions). The
decoherence-purification map generates 3D fractal sets similar to a Mandelbulb (3D generalisation of a Mandel-
brot set) with a fractal inner structure.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Decoherence is a physical process consisting to the lost of the quan-
tum properties due to the environment effects. Under decoherence, the
purity decreases (this one measures the pure quantum behaviour of a
state, see [1]). Decoherence can result from entanglement between
the quantum system and its environment [2], from chaotic or stochastic
noises induced by the environment [3] or from thermal fields emitted
by the environment [2]. Some researches hope to use the quantum
laws for practical applications, as quantum teleportation [4], quantum
computing [4] and quantum control [5]. For these goals, the
decoherence processes are hampers ruining the attempts to reach the
desired targets. Rather than trying to narrow the decoherence processes
(as in usual strategies),we could try tofight thembyusing a purification
not).
protocol. Such a one, as for example in [6] for a qubit (quantum bit),
consists to manipulate the quantum system in order to increase the pu-
rity of its state. Formally, the purification is a nonlinear map of the state
space, which is physically realised by entanglement, quantummeasure-
ment and post-selection (see [6,7] for details). By repeating a purifica-
tion protocol, we want to fight against the decoherence. The question
is then: Is the purification or the decoherence which wins the competi-
tion? We can imagine that the answer depends on the initial mixed
state ρ. A second question is then: what is the behaviour of the states
at the border between the area dominated by the decoherence and
the area dominated by the purification? The nonlinearity of the purifica-
tion protocol induces some complicated behaviours. As shown in
[8–10], if we repeat the purification protocol onto pure states, some of
them are stable (the pure state orbit reaches cyclic points) but some
other states are unstable. The border between the two behaviours is a
fractal set.

A simple map of the complex plane inducing a complicated behav-
iour is for example fp(z) = z2 + p (with p ∈ ℂ) [11]. It is associated
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with a fractal curve which is the border between the Fatou set of the
values z0 ∈ ℂ having a bounded orbit (zn)n∈ℕ (with zn+1 = fp(zn))
from the Julia set of the values with unbounded orbits. Reciprocally,
another fractal, the Mandelbrot set, is the border between the values
p ∈ ℂ for which the orbit of z0 = 0 is bounded from the values p for
which it is unbounded. The maps studied in [6–10,12] and in this
paper to represent the competition between decoherence and
purification, belong to the family of the Julia map fp.

Since the mixed state space is larger than the pure state space, the
associated map describing the competition between decoherence and
purification on a qubit has a phase space and a parameter space larger
thanℂ.Wewill see that themap can be represented into the quaternion
space ℍ. We can then think that the borders between the different be-
haviours are not simple fractal curves but more dimensional objects as
Mandelbulbs (see [13,14]) or quaternionic Julia sets [15].

This paper is organised as follows. Firstly, we present the purification
protocol. Section 2 presents the quaternionic representation of the qubit
mixed states. Section 3 presents the quaternionic representation of the
competition between decoherence and purification. Section 5 shows
the results of this competition (with the fractal borders between the
area dominated by the purification and the area dominated by the
decoherence). Finally, we draw the quaternionic fractal sets resulting
from the competition.

2. The purification protocol

Let z ∈ ℂ be the complex parametrisation of a pure state of a qubit:

j ψ 〉 ¼ z j 0 〉þ j 1 〉ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zj j2

q ð1Þ

ψ〉〈ψ
�� �� ¼ 1

1þ zj j2
zj j2 z

z 1

 !
ð2Þ

z is the complex coordinates onto the Bloch sphere of the qubit states
(the complex plane is the stereographic projection of the Bloch sphere).

More precisely, ∣ψ〉〈ψ∣ ¼ p0 c

c p1

� �
where p0 ¼ zj j2

1þ zj j2 is the probability

of occupation of the state ∣0〉 when the qubit is in the state ∣ψ〉 (or in
other words, if the qubit is in the state ∣ψ〉 and if we measure the value
of the qubit, the probability to obtain the result 0 is p0). p1 ¼ 1

1þ zj j2 is

the probability of occupation of the state ∣1〉. ∣c∣ ¼ ∣z∣
1þ zj j2 is the

coherence of the quantum state. If ∣ψ〉 is a true Schrödinger cat ∣ψ〉 ¼
1ffiffi
2

p j0〉þ eiϕj1〉� �
then the coherence ∣c∣ ¼ 1

2 is maximal, indicating that

the qubit is in a state furthest from the classical case. In contrast, if
∣ψ〉 = ∣ 0〉, the coherence is zero, indicating that the qubit is in a state
similar to a classical one (without quantum superposition the qubit
has the behaviour of a classical bit). argc = arg z is the phase
difference between ∣0〉 and ∣1〉, it is responsible of interference
phenomena. For example, suppose that the qubit is initially in the
state ∣ψ〉 ¼ 1ffiffi

2
p j0〉þj1〉� �

but after a transformation it becomes

∣ψ0〉 ¼ 1ffiffi
2

p j0〉þ eiϕj1〉� �
. These are two true Schrödinger cats (same

probabilities of occupation and same coherence), but the survival
probability of the initial state (the probability to recover the quantum

behaviour of the initial state after the transformation) is jhψjψ0ij2

¼ 1þ cosðϕÞ
2 < 1 (if ϕ ≠ 0). This is due to the interferences between the

states ∣ψ〉 and ∣ψ′〉.
The purification protocol S studied in [6–10,12] consists to the fol-

lowing algorithm (for the sake of simplicity, the states are not normal-
ised in the presentation of the algorithm):
2

0. Initial state of the qubit: z ∣ 0〉 + ∣ 1〉.

1. The state of the qubit is reproduced onto a second qubit (used only for
the computation): (z|0〉+|1〉) ⊗ (z|0〉+|1〉) = z2 ∣ 00〉 + z ∣ 01〉 +
z ∣ 10〉+ ∣ 11〉.

2. A controlled not gate is applied onto the two qubits (entangling these
ones):

z2∣00〉þ z∣01〉þ z∣10〉þ ∣11〉 !CNOT z2∣00〉þ z∣01〉þ z∣11〉þ ∣10〉.

3. A measure of the value of the second qubit is performed. The proto-
col succeeds if themeasured value is 0, in this casewe select the first
qubit. Otherwise, the protocol fails, the first qubit is rejected and it is
necessary to restart: z2 ∣ 00〉 + z ∣ 01〉 + z ∣ 11〉+ ∣ 10〉 → z2 ∣ 00〉 +
∣ 10〉 = (z2|0〉+|1〉) ⊗ ∣ 0〉.

Formally, the protocol can be written as the following quantum
operation:

ðid⊗ j 0 〉 0jÞUCNOT jψ 〉 ⊗ jψ 〉
� �

∝ Sjψ� 	
⊗ j 0 〉 ð3Þ

(∝ stands for equal by definition up to a normalisation factor). S in-
duces the squaring of the pure state ∣ψ〉〈ψ∣:

S∣ψ〉 ¼ z2∣0〉þ ∣1〉ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zj j4

q ð4Þ

S is not a logical gate (it is not a linear unitary operator), S is a quan-
tum information protocol which is nonlinear because of the measure-
ment onto the entangled second qubit and the post-selection of the
first one depending on the result of the measurement. The nonlinearity
results then from the gain of information by themeasurement followed
by the post-selection.

Let U ¼ e � i�h � 1HΔt ¼ eiα cos x eiφ sin x

� e � iφ sin x e � iα cos x

 !
be the evolu-

tion operator of the qubit during a short time duration Δt.H ¼ ℏ
2 ðωσ z þ

ℜeðbÞσ x þ ℑmðbÞσyÞ is the qubit quantum Hamiltonian, with

tan x ¼ ∣b∣ sin rΔt=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bj j2 cos 2 rΔt=2ð Þþω2

p , tan α ¼ � ω
r tan rΔt=2ð Þ, φ ¼ argb � π

2

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ bj j2

q
. � �hω

2 are the energies of the two states ∣0〉 and ∣1〉
(with the gauge choice concerning the energy origin such that trH =
0). b is a constant external field coupling the two qubit states. For exam-
ple, if the qubit is physically realised by a 1/2-spin (a quantummagnetic
moment), ℏω is the energy split by Zeeman effect induced by a constant
magnetic field in the z-direction, and ℜeðbÞ e!x þ ℑmðbÞ e!z is a trans-
verse constant magnetic field acting on the spin. � �h

2 r are the
eigenenergies in presence of the external magnetic field. U defines the
evolution of the qubit under the external field applied during Δt. In
the context of a quantum computer, U can be viewed as a single qubit
logical gate, Δt being the time needed to apply this one.

The successionof thepurification protocol and of the evolution oper-
ator induces on a pure qubit state the following transformation:

US∣ψ〉 ¼ f α,p zð Þ∣0〉þ ∣1〉ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f α,p zð Þ�� ��2q ð5Þ

with the complex map:

f α,p zð Þ ¼ z2eiα þ p
e � iα � pz2

ð6Þ

p = eiφ tan x. fα, p is similar to a “renormalised” Julia map. The
iteration of protocols US with interval Δt, i.e.
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USð Þn∣ψ〉 ¼ USUS . . .US∣ψ〉 ≡
zn∣0〉þ ∣1〉ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ znj j2

q ð7Þ

is then represented by the dynamical system zn+1= fα, p(zn). It has been
studied in [8–10] (with α ∈ 2πℤ) and in [12] (with α ∉ 2πℤ).

3. Quaternionic representation

A pure state ∣ψ〉〈ψ∣ ¼ p0 c
c p1

� �
Eq. (1) is associated with an iso-

lated qubit. This state satisfies tr(|ψ〉〈ψ|2) = 1 (purity equal to 1) or
equivalently |c|2 = p0p1. But in the reality, the qubit is submitted to
environment noises. To simply the discussion here, we suppose that
the effects of these noises can be modelled by a random process onto
the qubit state (in a pure quantum model, where the environment is
modelled by a large quantum system, the effect of the noises are in
fact an entanglement between the qubit and the environment, but the
results are the same than with a random process, see [2]). We can
then write that

∣ψ ωf gð Þ〉 ¼ a0 ωf gð Þ∣0〉þ a1 ωf gð Þ∣1〉 ð8Þ

where a0 and a1 are complex numbers (such that |a0|2 + |a1|2 =
1) depending on random variables {ω} associated with the
environment noises. The qubit state accessible to the experimentalist
(who cannot control the random process) is then the density matrix

ρ ¼ E jψ ωf gð Þ〉〈ψ ωf gð Þj� � ð9Þ

where E stands for the average with respect to the random process as-
sociated with the environment noises (if the environment is modelled
by a large quantum system, E is replaced by the partial trace over the
environment quantum degrees of freedom). Anew ρ ¼ p0 c

c p1

� �
where p0 ¼ E a0j j2


 �
is the probability of occupation of the state ∣0〉 (av-

erage probability to find the qubit with the value 0 if we measure this

one, the average being onto the random process). p1 ¼ E a1j j2

 �

is the

probability of occupation of the state ∣1〉. ∣c∣ ¼ ∣E a0a1ð Þ∣ is the coherence,
but now tr(ρ2) < 1 (the purity is smaller than 1, since Eðjψ 〉 〈 ψj2Þ≠
ðEðjψ 〉 〈ψjÞÞ2) or equivalently ∣c∣ <

ffiffiffiffiffiffiffiffiffiffi
p0p1

p
(the effect of the environ-

ment noises are called decoherence since the coherence falls). For ex-

ample, consider the pure state ρ ¼ 1=2 1=2
1=2 1=2

� �
without noise, and

ρ0 ¼ 1=2 0
0 1=2

� �
a density matrix for which the coherence has fallen

to 0 under the effect of the noises. The probabilities of occupation are
1/2 in the two cases. For the first case, the coherence is maximal and
then the state is furthest from the classical case (it is a single true
Schrödinger cat state 1ffiffi

2
p j0〉þj1〉� �

). For the second case, the coherence

is zero, meaning that the density matrix corresponds to classical state
for which the probability to the state be ∣0〉 and the one to the state be
∣1〉 are 1/2 (the state is unknowndue to the randomprocess). Themixed
state ρ′ is then a statistical mixture of two classical states (the state can
be ∣0〉or ∣1〉)whereas the pure state ρ is a quantum superposition of two
states (the state is both ∣0〉 and ∣1〉).We can note the difference between
the purity and the coherence. A pure state (tr(ρ2) = 1) means a state
without statistical uncertainty (a state without unknown information
due to the noises). A state with maximal coherence means a state with
maximal quantum superposition, so a state with strong quantum be-
haviour. A state can be pure with coherence zero, as for example ∣0〉
〈0∣. In general, a mixed state with c �≠ 0 represents a state with both
quantum superposition and statistical mixture. As for the pure states,
we want to parametrise the mixed states with a complex variable z.
3

But we need to add a second parameter to describe the coherence since
j c j ≠ ffiffiffiffiffiffiffiffiffiffi

p1p2
p

that we call the mixing angle λ: cos λ ≡ ∣c∣ffiffiffiffiffiffiffiffi
p1p2

p . The mixed

state of the qubit after the parametrisation is then the following density
matrix:

ρ ¼ 1

1þ zj j2
zj j2 z cos λ

z cos λ 1

 !
ð10Þ

λ is the mixing angle, for λ= 0 ρ is pure state and for λ ¼ π
2 the co-

herence of the qubit is zero (maximal mixing). It needs to take into ac-
count this new parameter in the representation.

The purification protocol can be performed onto amixed state (with
the same algorithm) as for a pure state:

id⊗ j 0 〉 〈 0 j� �
UCNOT ρ⊗ ρð ÞUCNOTðid⊗ j 0 〉 0jÞ ∝ S ρð Þ⊗ j0h i 〈 0 j ð11Þ

We have then limn→+∞S
n(ρ) = ∣ 0〉〈0∣ if ∣z ∣ > 1 or ∣1〉〈1∣ if ∣z ∣ < 1

(where Sn stands for the application of S n times). Sn (with n large)
transforms then a mixed state ρ to a pure state ∣0〉〈0∣ or ∣1〉〈1∣. This is
the reason for which S is called purification protocol. When S acts
alone, it purifies mixed states to pure states without coherence
(without quantum superposition). The role of the logical gate (or of the
evolution induced by an external field) U is to permit to reach fixed
points or cycles of pure stateswith anon-zero coherence [16]. But the dy-
namics induced by (US)n becomes chaotic as shown in [6–10,12]. More-
over (US)n is an idealisation forwhich the environment noises are turned
off during the application of the protocol. In the realistic situations, at
each iteration noises induce decoherence onto the qubit. The goal of
this paper is to study the competition between the purification effect of
the protocol S and the decoherence effect of the noises.

Due to the added parameter λ needed to define a mixed state, we
cannot represent this one by a single complex number. But we can
think that this is possible with a single quaternionic number. In [17]
the authors introduce a quaternionic representation of qubit pair states
in order to study the entanglement phenomenon. The quaternion space
ℍ is the set of noncommutative numbers ζ= a+ ib+ jc+kd, with a, b,
c, d ∈ℝ, i2= j2= k2=− 1 and ij= k, ji =−k, jk= i, kj=−i, ki= j,
ik =−j. We denote:ℜe(ζ) = a, ℑm1(ζ) = b, ℑm2(ζ) = c, ℑm3(ζ) = d,

ℭo(ζ)= a+ ib, and ζj j2 ¼ ζζ ¼ a2 þ b2 þ c2 þ d2. Note that ζ � 1 ¼ ζ
ζj j2.

For a state of two qubits:

∣Ψ〉 ¼ z cos λ0∣00〉þ z sin λ0∣01〉þ cos λ1∣10〉þ sin λ1∣11〉ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zj j2

q ð12Þ

with z ∈ ℂ, λi ∈ [0,2π], the quaternionic representation is

ζ0, ζ1ð Þ ¼ zejλ0 , ejλ1


 �
∈ H2 ð13Þ

The mixed state of the first qubit (the mixing resulting from the en-
tanglement with the second one) is then

ρ ¼ tr2 Ψ〉〈Ψ
�� �� ð14Þ

¼ 1

1þ zj j2
zj j2 z cos λ0 � λ1ð Þ

z cos λ0 � λ1ð Þ 1

 !
ð15Þ

¼ 1

1þ zj j2
Co

zj j2 zej λ0 � λ1ð Þ

zej λ0 � λ1ð Þ 1

 !
ð16Þ



Fig. 1. The dynamical system ζn+1= du(ζn) with du defined by Eq. (26), with ζ0= 1, α=

0.1, β = γ = 0 and q = 1 + k. Up: population 〈0jρnj0〉 ¼ ζnj j2
1þ ζnj j2; middle: coherence

∣〈0|ρn|1〉 ∣ = ∣ ℭoζn∣, down: purity tr ρ2
n

� � ¼ ζnj j4þ2 Coζnj j2þ1

1þ ζnj j2ð Þ2 .
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where tr2 is the partial trace onto the state space of the second qubit.
The density matrix can be then represented by the quaternionic
number ζ= zejλ ∈ℍ (withλ= λ0− λ1 for the entanglement case)with

ρ ¼ 1

1þ ζj j2
Co

ζj j2 ζ

ζ 1

 !
ð17Þ

Note that ζ ¼ zejλ ¼ z cos λþ jz sin λ ¼ eiϕ C � 1
2 Cj

� �
where ϕ =

arg z is the phase, C = ∣ z ∣ cos (λ) is the coherence of the first qubit,
and C ¼ � 2∣z∣ sin λ0 � λ1ð Þ is the concurrence of the entanglement
between the two qubits [1].

We adopt the quaternionic representation of the density matrix
Eq. (17) also for mixed states resulting from a decoherence process
(note that any qubit mixed state can be represented by an entangled
state of the qubit with an ancilla qubit, by using the Schmidt purification

procedure [1]). For ζ ∈ ℍ, ζj j2
1þ ζj j2 is the population of the state ∣0〉 and ∣ℭo

(ζ)∣ is the coherence of themixed state. With these interpretations, sev-
eral ζ inℍ correspond to the samemixed state, it can be then interesting
to transform any ζ in the form zejλ:

p ζð Þ ¼ Co ζð Þ þ ζ � Co ζð Þj j
Co ζð Þj j Co ζð Þj ¼ zejλ if Co ζð Þ ≠ 0

ζ ¼ zej
π
2 if Co ζð Þ ¼ 0

8><
>: ð18Þ

with z = ℭo(ζ) and cos λ ¼ ∣Co ζð Þ∣
∣ζ ∣ for the case Co ζð Þ ≠ 0.

4. Dynamics in the quaternionic representation

Wewant to consider transformationsDUS(ρ)where S is thepurifica-
tion protocol, U is the evolution operator map of the qubit, and D is a
decoherence process (DU can come from the integration of a Lindblad
equation during Δt, see [2]). The purification protocol induces the
squaring of the density matrix:

S ρð Þ ¼ 1

1þ zj j4
zj j4 z2 cos 2λ

z2 cos 2λ 1

 !
ð19Þ

Let s : ℍ → ℍ be the map such that

1

1þ s ζð Þj j2
Co

s ζð Þj j2 s ζð Þ
s ζ

 �

1

0
@

1
A ¼ S ρð Þ ð20Þ

Unfortunately, s is more complicated than a square power:

s ζð Þ ¼ ℭoζð Þ2 þ jℑm2 ζ−ℭoζð Þℭoζð Þ þ k
ζj j2ℑm2ζ

j ℜeζ þ jℑm2ζ j ð21Þ

The evolution of the density matrix (evolution between two purifi-
cations due to an external field or to a logical gate without decoherence
processes) is defined with the evolution operator U as in Section 2 by

U ρð Þ ¼ UρUy ð22Þ

it corresponds to the map u : ℍ → ℍ

u ζð Þ ¼ eiαζ þ p

 �

e � iα � pζ

 � � 1

ð23Þ

with p = eiφ tan x ∈ ℂ.
For the decoherence processes,we can consider pure dephasing pro-

cesses [18]:
4

D ρð Þ ¼ 1

1þ zj j2
zj j2 1 � βð Þz cos λ

1 � βð Þz cos λ 1

 !
ð24Þ

with 0 < β < 1 the decoherence rate during Δt. If β ≪ 1, (1 − β) cos
λ = cos λ′ with λ0 ¼ λþ βcotanλþO β2


 �
. It follows that the

decoherence corresponds to the map d : ℍ → ℍ

d ζð Þ ¼ ζej
Coζj j

ζ � Coζj jβ if ζ � Coζj j ≠ 0
ζej

ffiffiffiffiffi
2β

p
else

8<
: ð25Þ

which is a dephasing (of the second kind) inℍ. Themap fα, β, p(ζ)=dus
(ζ) is a generalisation in ℍ of the Julia map, it induces a dynamical
system in ℍ, ζn+1 = fα, β, p(ζn), corresponding to a competition
between the pure dephasing process and the iterated purification
protocol.

Another example of decoherence process consists to consider the
natural generalisation of the map (23), du : ℍ → ℍ, with

du ζð Þ ¼ eiαejβekγζ þ q

 �

e � kγe � jγe � iα � qζ

 � � 1

ð26Þ



Fig. 2. Purity tr ρ2
N

� � ¼ ζNj j4þ2 CoζNj j2þ1

1þ ζNj j2ð Þ2 (N = 100) for the dynamical system ζn+1 = fα, β, p(ζn) (α = 0, β = 0.01, p = 1 + 0.1i) corresponding to a competition between the purification

protocol and a pure dephasing decoherence process. The planes represent the initial condition ζ0 = z0e
jλ0 (with |ζ0 − ℭoζ0|2 = Cst) coloured with respect to the purity at “the end” of

its orbit.
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with q ∈ ℍ. This map induces a dynamics with decoherence as we can
see it Fig. 1. Finally, the map fα, β, γ, q(z) = pdus(z) defines a
generalisation in ℍ of the map (6) representing a competition
between a decoherence process and the purification protocol.
5. Results of the competition

The instability of the purification protocol which induces fractal bor-
ders between bounded and unbounded orbits in the pure state space,
involves also complicated behaviours in the competition between the
purification protocol and the decoherence process. The border between
states forwhich the purificationwins (limn→+∞tr(ρn2) ≃ 1) and forwhich
the decoherence wins (limn→+∞tr(ρn2) ≃ 0.5) is irregular with a highly
fractal character in the neighbourhood of the pure states, see Fig. 2.
The states in the border between the area dominated by the
purification and the area dominated by the decoherence are instable
in sense that in contrast with the states inside the two areas, their
orbits do not reach cyclic points. We can see this Fig. 3. In the area
dominated by the decoherence, the orbits reach fixed points (1-period
cycles) with λ ¼ π

2. In the area dominated by the purification, we find
cyclic points as for the map without decoherence. These fractal curves
are equivalent to the Julia set, but we can also consider the equivalent
of the Mandelbrot set, i.e. the purity for a long time of the orbit of
z0 = 0 (Fig. 4) and the stability of the orbit of z0 = 0 (Fig. 5).

The observed behaviour is not dependent of the chosen particular
decoherence process (pure dephasing).We recover it, but with another
fractals, with the decoherence process defined by Eq. (26), as we see it
Figs. 6 & 7. For this decoherence process, the fixed point reached in
the area dominated by the decoherence is the microcanonical distribu-
tion ρ ¼ 1

2 id (ζ = j).
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6. Quaternionic fractal sets

In the previous section, we have drawn plane sections of the fractal
structures induced by the competition between decoherence and puri-
fication. We want nowmake a 3D representation based on the embed-
ding p(ℍ) → ℝ3 defined by the coordinates:

X ζð Þ ¼ ℜe ζð Þ ¼ ℜe zð Þ cosλ ð27Þ

Y ζð Þ ¼ =m1 ζð Þ ¼ =m zð Þ cos λ ð28Þ

Z ζð Þ ¼ � ζ � Co ζð Þj j ¼ � ∣z∣ sin λ ð29Þ

with ζ = zejλ (z ∈ ℂ) (the spherical coordinates being (|z| , argz,λ)).
Quaternionic fractal sets corresponding to the pure dephasing and to
the map Eq. (26) are represented Fig. 8. If usual Mandelbulbs present
fractal protuberances, these ones present fractal alveoli. Maybe these
structures should be called “Mandelcheeses”.

The fractality seems evolvewith ∣ζ−ℭo(ζ)∣ as shownFig. 9. In contrast
with the case of the decoherence process Eq. (26), for the case of the pure
dephasing process we see after an initial plateau that the fractality de-
creases with growing values of |ζ0 − ℭo(ζ0)|2 (the concurrence of the
initial equivalent entanglement). For a square concurrence larger than
0.8, the border seems to be a simple curve (as also shown Fig. 4).

7. Conclusion

The competition between decoherence processes and purification
protocols on a qubit can be represented by nonlinear maps onto the
quaternion spaceℍ. Thesemaps belong to the Juliamap family. The bor-
der between the area dominated by the purification and the area



Fig. 3. For the dynamical system ζn+1 = fα, β, p(ζn) (α=0, β= 0.01, p=1+ 0.1i) corresponding to a competition between the purification protocol and a pure dephasing decoherence
process, the number of iterations needed to reach a cycle (of period lower than 5). The planes represent the initial condition ζ0 = z0e

jλ0 (with |ζ0 − ℭoζ0|2 = Cst). The precision for the
criterion of return after one period is chosen to be 10−4.

Fig. 4. Purity tr ρ2
N

� � ¼ ζNj j4þ2 CoζNj j2þ1

1þ ζNj j2ð Þ2 (N=100) for the dynamical system ζn+1 = fα, β, p(ζn) (α= 0, ζ0 = 0) corresponding to a competition between the purification protocol and a pure

dephasing decoherence process. The planes represent the parameter p ∈ℂ colouredwith respect to the purity at “the end” of the corresponding orbit. Different values of β are considered.
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Fig. 5. For the dynamical system ζn+1 = fα, β, p(ζn) (α = 0, ζ0 = 0) corresponding to a competition between the purification protocol and a pure dephasing decoherence process, the
number of iterations needed to reach a cycle (of period lower than 5). The planes represent the parameter p ∈ ℂ, different values of β are considered. The precision for the criterion of
return after one period is chosen to be 10−4.

Fig. 6. Same as Fig. 2 (up) and Fig. 3 (down) for the dynamical system ζn+1 = fα, β, γ, q(ζn) with α = 0.1, β = 0, γ = 0, q = 1 + 0.1k.
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Fig. 7. Same as Fig. 4 (up) and Fig. 5 (down) for the dynamical system ζn+1 = fα, β, γ, q(ζn) with α = 0.1, β = 0, γ = 0, and ζ0 = 0.

D. Viennot Chaos, Solitons and Fractals 161 (2022) 112346
dominated by the decoherence are like Mandelbulbs. Due to this fractal
structure, it is difficult to know if an initial state will be at the end puri-
fied or mixed by the competition between the two processes. This is
particularly the case for states in the neighbourhood of the pure state
space which is a highly fractalised region. In this paper we have consid-
ered that the evolution operator U is still the same at each iteration. In
applications to quantum computation and quantum control, the Hamil-
tonian is time-dependent and the evolution operator changes at each it-
eration. Moreover, we can also modify at each iteration the purification
protocol to help the control (by varying the parameters α, β, γ and q, or
by changing the basis of purification (which is always (|0〉, |1〉) in this
paper)). The behaviour of the competition will be more complicated
Fig. 8.Quaternionic fractal borders between the area dominated by the purification and the area
for the pure dephasing process (left) and the decoherence process Eq. (26) (right).

8

but maybe this could be help to solve quantum control problems in
presence of decoherence processes.
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Fig. 9. Estimation of the upper-box-counting dimensions of the sections ∣ζ− ℭo(ζ) ∣= Cste

of the Mandelbulb like borders (blue plain line for the pure dephasing process and red
dashed line for the decoherence process Eq. (26)). A dimension equal to 1 corresponds
to a border being a simple curve whereas a non-integer value of the dimension corre-
sponds to a fractal border. Note that due to the difficulty to make a precise numerical es-
timation of a fractal dimension, the values appearing in these graphs are rough estimates
but the variations aremeaningful. (For interpretation of the references to colour in thisfig-
ure legend, the reader is referred to the web version of this article.)
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