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1. Introduction

Quantum information [ 1] and open quantum systems [2] are subjects of particular interest in the modern physics, dealing
with decoherence processes, quantum computation and communication, entanglement processes, distillation protocols,
Schmidt decomposition, Markovian and non-Markovian effects, etc. A particular interesting subject in quantum information
is the process of purification [3] which consists for a mixed state p of the Hilbert space #s to find a pure state ¥ € Hs @ H 4
in an enlarged Hilbert space such that p = try , |¥)){¥|. The auxiliary Hilbert space # 4 can be viewed as describing
an effective environment. In this paper, we want to study the purification process with respect to the dynamics of mixed
states. When the dynamics is conservative, i.e. when it is described by a Liouville-von Neumann equation thp = [Hs, p] (no
relaxation effect occurs), the dynamics of the purification and the related mathematical structures have been extensively
studied, see for example Ref. [4,5]. We study in this paper the case where the environment of the quantum system induces
relaxation effects, with a dynamics obeying to a Lindblad equation [2]. We will show that the purified state obeys in the
enlarged Hilbert space to a nonlinear Schrodinger equation. The emergence of a nonlinearity is not a new phenomenon
in the relation between dynamics of mixed and pure states. In Ref. [6] it is shown that the pure dynamics closest to the
Lindblad dynamics (in the sense that this pure dynamics is viewed as the dynamics of some tangent vectors on the density
matrix manifold) is nonlinear; and in Ref. [7], a purification protocol needing a nonlinear operation has been proposed (a
purification protocol is a set of operations and measurements transforming a mixed state p to a pure state ¥ of the same
Hilbert space without the trace operation - in fact the state ¥y depends only on the protocol and is independent from the
initial mixed state p -, it is a question different from the purification process discussed in the present paper). Moreover the
Liouville equation for a piecewise deterministic process is associated for its deterministic part with a nonlinear Schrédinger
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equation but which does not take into account the jump part (see Ref. [2] chapter 6.1) in contrast with our equation for the
purified dynamics.

Geometrization of physical theories is a great active area in theoretical physics. In nonrelativistic quantum dynamics, it
is in particular related to the theory of geometric phases (so-called Berry phases) [8]. As shown by Simon [9], the dynamics
of pure states and the Berry phases take place in a geometric structure which is a principal fibre bundle endowed with a
connection. Some generalizations of geometric phases have been proposed for mixed states: Uhlmann [ 10-12] has proposed
a concept of geometric phases based on the theory of transition probabilities for pair of mixed states, the involved geometric
structures have been analysed in Ref. [5,13-15]; Sjéqvist et al [16,17] have proposed a concept of geometric phase based
on an interferometric theory, the involved geometric structures have been analysed in Ref. [4,18]; and we have proposed a
concept of geometric phase in the adiabatic limit based on the generalization of the geometric structure studied by Simon
from vector bundles to C*-modules [19,20]. By using the equation of the purified dynamics, we will build a general theory of
geometric phases for open quantum systems which unifies these previous approaches. The dynamics of the density matrices
present different geometric phases appearing at different levels. This is due to a more complicated gauge structure called
higher gauge theory in the literature [21-25]. We will show that this structure is a generalization in the category theory of
the principal bundle structure, complicated by the stratified structure of the density matrix manifold [3].

The approach followed in the present paper could be useful for some problems of quantum control and quantum
information concerning open systems. In Ref. [26] we have shown how use the fields associated with the geometry of
categorical bundles to analyse the control of a quantum system hampered by entanglement with another one. By the
purification of the Lindblad equation, the decoherence and the relaxation effects on the mixed state of the open quantum
system, appears in purified picture as entanglement between the quantum state and the ancilla (described by the auxiliary
Hilbert space). The fields associated with the categorical bundles presented in this paper, can then be used to analyse the
control of an open quantum system (in the purified picture) with a similar method as the one followed in Ref. [26]. Moreover
some approaches of quantum computation based on the geometrization of the quantum dynamics and on the geometric
phases have been proposed [27-30], usually called holonomic quantum computation (HQC). These approaches are based
on the geometric properties of fibre bundles modelizing the dynamics of closed quantum systems. The present work, with
the construction of the categorical bundles describing open quantum systems in the purified picture, is a first step to a
generalization of the HQC taking into account the decoherence and the relaxation effects occurring for the open systems.

This paper is organized as follows. Section 2 is devoted to the geometry associated with the purification process by
recalling the stratified structure of the density matrix manifold and by introducing some representations of the purified
states with the associated inner products. This section introduces some mathematical tools needed to the understanding
of the following. Section 3 shows that the purified state satisfies a nonlinear Schrédinger equation if the associated mixed
state satisfies a Lindblad equation. Section 4 presents a general theory of geometric phases for open quantum systems; there
relations with the different propositions of geometric phases are analysed. Section 5 studies the geometric structure involved
by the general geometric phase theory and the purification process, firstly from the point of view of the ordinary differential
geometry, secondly from the point of view of the category theory. It concludes by the introduction of the connective structure
and the physical interpretations of the different fields involved by the connection.

A note about the notations used here:

We adopt the Einstein’s convention: a bottom-top repetition of an index induces a summation.

B(H) denotes the set of the bounded linear operators of the Hilbert space H. For an operator A € B(#), RanA, ker A and Sp(A)
denote its range, kernel and spectrum. VA, B € B(#), we denote the commutator and the anticommutator by [A, B] = AB — BA
and {A, B} = AB + BA. Autg, with g a vector space or an algebra, denotes the set of the automorphisms of g.

The symbol “~" between two spaces (resp. manifolds) denotes that they are isomorphic (resp. homeomorphic). The symbol “~”
between two manifolds denotes that they are locally homeomorphic. The symbol “A — B” denotes an inclusion of AintoB.G x H
denotes a semi-direct product between two groups G and H; g » b denotes a semi-direct sum between two algebras g and .

Pri: Vi xVp x - xVy, = V;, with V; some sets, denotes the canonical projection Pri(x1, X2, . . ., X,) = X;. Let M be a manifold,
T,M denotes its tangent space at x (TM denotes its tangent bundle) and 2" (M, g) denotes its space of g-valued differential n-forms.
Let f : M — N be a diffeomorphism between two manifolds, f, : TM — TN denotes its tangent map (its push-forward) and
f*: 2*N — £2*M denotes its cotangent map (its pull-back). Let E Z, M be a fibre bundle (E and M are manifolds and 7 is a
surjective map); I"(M, E) denotes the set of its local sections.

For a category ¢, Obj¢ denotes its collection of objects and Morph% denotes its collection of arrows (morphisms). Yo € Obj%,
id, denotes the trivial arrow from and to o (the identity map of o). Va € Morph#, s(a) denotes the source of a, and t(a) denotes
the target of a. Funct(%, ") denotes the set of functors from ¢ to ¢’ (EndFunct(¢) = Funct(%, ¥)).

t At
VA(t) € B(H), E7ﬁ0 A Ua(t, to) denotes the time-ordered exponential (the Dyson series) i.e. the solution of the
t N\t
equation: ALY = —AOU(t, to) (ith Up(to, to) = idy). Te o™
.

i.e. the solution of the equation: % = —Vy(to, t)A(t) (with V4(to, to) = idy).

= Vy(to, t) denotes the time-anti-ordered exponential,

2. Purification process
2.1. The purification bundle and the stratification

Let Hs be the Hilbert space of the studied system S (we consider that Hs is finite dimensional, Hs =~ C", since the
applications of the present work concern essentially quantum information theory where the qubit state spaces are finite
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dimensional). Mixed states of S are represented by density operators; the space of density operators being

Do(Hs) = {p € B(Hs), p' = p.p = 0,trp = 1} (1)

where B(Hs) 2~ DM,«n(C) denotes the space of linear operators of Hs. The mixed state w, : B(#s) — C associated with
p € Do(Hs) is defined by

VA € B(Hs), w,(A) = tr(pA) (2)

B(#s) being a C*-algebra and w,, being a state of this C*-algebra (see Ref. [31]). In some cases, we can also consider non-
normalized density operators:

D(Hs) = {p € B(Hs), p' = p, p > 0} (3)
VA € B(is), wp(A) = A (4)
trop

A purification of a density operator p € D(Hs)is a state ¥, € Hs ® H 4 such that

p =t |9, (| (5)

where # 4 is an arbitrary auxiliary Hilbert space called the ancilla and (.|.)) denotes the inner product of Hs ® H.
induced by the tensor product (try, , denotes the partial trace over 7 4). Because of the Schmidt theorem [3] one needs
dimH 4 > dimHs. In order to avoid any unnecessary complication, we choose dim H 4 = dim H s throughout this paper.

An interesting choice of ancilla consists to the algebraic dual of Hs, H 4 = Hs™ = {{¥|, ¥ € Hs} (the space of continuous
linear functionals of Hs). In that case Hs ® Ha = Hs @ Hs™ = B(Hs). This choice is called standard purification. B(Hs) is
endowed with the Hilbert-Schmidt inner product:

YW.Z € B(Hs), (ZIW)ks = trys(ZIW) = Ziy W™ (6)
where W = W |£;) (Lo, (&i)iz1

ys : B(Hs) — D(Hs) (7)
w - wwt

» being an orthonormal basis of #s. We have then

,,,,,

The restriction of wys on SysB(Hs) = {W € B(Hs), ||W||,21,5 = try s (WTW) = 1} has its values in Do(H.s). 7ys is a surjective
map.

VYW € SysB(Hs), YU € U(Hs), W = WU = mps(W) = WUUTWT = m5(W) (8)

U(Hs) =~ U(n) denotes the group of unitary operators of #s. The action of U(Hs) on SysB(Hs) is not transitive except for
the restriction on the faithful operators (det W # 0).
U(Hs) acts also on the left of SysB(Hs ). This action induces the adjoint action of the group on Dy(H.s):

VYW € SysB(Hs), YU € UHs), W = UW = mys(W) = Unrys(W)U ™! (9)

Vp € Dyo(Hs), the orbit of the density operator U(Hs)p = {UpU~!, U € U(Hs)} is constituted by all operators which are
isospectral to p. X(Hs) = Do(Hs)/U(Hs) ~ X(n) where

n
() ={(p1. ... pa) € [0, 11", pi < piy1, »_pi=1} (10)
i=1
is the (n — 1)-simplex of the possible eigenvalues (dimg X’ (n) = n — 1). X(#s) is the set of diagonal density operators
with sorted eigenvalues. Let 7p : Do(Hs) — X(Hs) be the canonical projection associated with the quotient space
Do(Hs)/U(Hs).

Yo € X(Hs), 7tD_1(O’) ={UoU ", U € UHs)} = U(Hs)/U(Hs)o (11)

where U(Hs)y = (U € U(Hs), UsU™! = o} is the isotropy subgroup (the stabilizer) of o'. The bundle Dy(#s) LY X (Hs)
is not locally trivial, it is a stratified space [3,32]. A stratum X(Hs) of ¥(Hs) is characterized by the degeneracy profile
of the eigenvalues. If o € X/(#s) has k; eigenvalues with degeneracy equal to qy, k, eigenvalues with degeneracy equal
to gy, etc., then its stabilizer is U(Hs)s =~ U(q:)*1 x --- x U(q)* (the products are the group direct products) and then
nD’l(a) ~ U(n)/(U(q)" x --- x U(g)M) (3" ;kigi = n). The stratum X°(#.s) with no eigenvalue degeneracy is associated
with the normalizer U(#Hs), >~ T" (the n-torus) and Yo € X°(Hs), n[j](a) ~ U(n)/T" = Fl(n, C) (the flag manifold); in
the other cases, the fibres of the strata in Do(#s) are homeomorphic to partial flag manifolds as Grassmanian manifolds
Grp(C") = U(n)/(U(n — p) x U(p)), projective manifolds CP™ ! = U(n)/(U(n — 1) x U(1)), etc. We distinguish between the
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Fig. 1. The simplex X (n) for n = 2 (left), n = 3 (middle) and n = 4 (right). The strata are the open sub-simplices of each simplex (including X°(n) the
interior of X(n) - the stratum with no degenerated eigenvalues -). For each stratum X' the model manifold of 7151(0) is indicated. Singular strata are
written in grey whereas regular strata are written in black (e denotes the stratum of the microcanonical state, and o denotes the stratum of the pure states).
The description of the simplexes can be found Table 1. The details about the stratification can found in Ref. [3] where X'(n) is called Weyl chamber by
analogy with the group representation theory.

regular strata such thatdet p # 0(no zero eigenvalue) and the singular strata such that det o = 0. We remark the presence of

two particular strata associated with vertices of X'(n), the singular stratum of the pure states X%(Hs)(p1 =+ =pa_1 =0
and p, = 1, nD’l(o) ~ U(n)/(U(n — 1) x U(1)) = CP" 1), and the regular stratum of the microcanonical state X*°(Hs)
(p1r=--=pn= % n[j](a) ~ U(n)/U(n) = {1}). Fig. 1 illustrates the stratification for the smallest dimensional cases.

AAAAAAAAAA

Hs ® H 4 be the (non canonical) isomorphism defined by

YW € B(Hs), ®(W)=W9®E&, (12)

with W = W¥|¢;)(¢,|. The restriction of ¥ on SysB(#s) has its values in S(Hs ® Hu) = {¥ € Hs ® Hu, IV lnsora =
1} ~ $2~1 (the (2n? — 1)-dimensional sphere). Note that (¥(Z)|&(W)) = (Z|W)ps.
The following commutative diagram summarizes the bundle of purification:

ShsB(Hs) —— S(Hs @ Ha) —— ™!

| | |

Do(Hs) =———= Do(Hs) —— Do(C") =—— ||, Di(C") <—— U(n)/U(n),
S(Hs) =——— Z(Hs) —> Z(n) —— ||, Zn) «—— o}

where < denotes inclusion maps and >~ denotes homeomorphisms, the vertical arrows are projections.
The ancilla plays the role of an effective environment with which the system is entangled. The right action of U(Hs) on
SusB(Hs) is associated with unitary transformations of H 4.

VU € U(Hs), VW € SusB(Hs), T(WU) = 135 @ UB(W) = 7y (B(WU)) = pw (13)

where U™ = (§5|U§“)|§a><§ﬂ| € U(#H_4) (T denotes the transposition) and py = wA(¥(W)) = mys(W) = WWT. Such
a transformation has no consequence for the observator which has only information concerning the system (information
concerning the environment is lost by the partial trace try , ). It is then associated with an inobservable reconfiguration
of the ancilla (the effective environment). In contrast, the left action of U(Hs) on SysB(#Hs) is associated with unitary
transformations of s modifying the mixed state:

YU € U(Hs), YW € SysB(Hs), ®(UW)=U ® 13, ¥ (W) = 7y (¥(UW)) = Upy U™! (14)

In quantum information, it can be interesting to consider also SLOCC transformations (Stochastic Local Operations and
Classical Communication). By virtue of the principle of the quantum open systems, information concerning the ancilla
(the environment) is lost by taking the partial trace (information stored in the environment is not directly accessible), the
physicist cannot performs SLOCC transformations on H 4. The group of SLOCC transformations on #s is SL(#s) >~ SL(n, C)
(the group of invertible operators of #s with determinant equal to 1). Since U(Hs) D SU(Hs) C SL(Hs) (SU(Hs) is
the group of unitary operators of Hs with determinant equal to 1), the group of unitary and SLOCC transformations are
SL(Hs) x U(1) = GL(Hs) (U(1) is the group of phase changes and GL(#.s) is the group of invertible operators of Hs).

YU € GL(Hs), YW € B(Hs), ®(UW)=U ® 13, (W) = 1y (¥(UW)) = Upy U’ (15)
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Table 1

Descriptions of the stratification of the simplex X (n).
Strata X'i(n) Sub-simplices Fibre nD’l(a)
0<p1 <p2 Edge FI(2,C)
p1=p2=1/2 Vertex {1}
pi=0<py=1 Vertex cp!

3 0<p; <p2 <ps3 Facet FI(3,C)
0<pi=p2<p3 Edges Cp?
0<p1<p2=p3
p1=0<py, <p3 Edge FI(3,C)
p1=0<p,=p3=1/2 Vertices cp?
pr=p2=0<p3=1
pir=p2=p3=1/3 Vertex {1}

4 0<p; <p2 <p3 <ps4 Cell Fi(4,C)
0<p1=p2<p3<Da Facets U(4)/(U(2) x T?)

0<pr <p2=p3<pa
0<p1<p2<p3=ps

0=p; <p; <P3 <Pa Facet Fi(4, C)
O<pr=p2<p3=Dps Edge Gry(Ch)
0<pi=p2=p3 <ps Edges cp?

0 <p1<p2=p3=ps

p1=0<p, <ps=py Edges U(4)/(U(2) x T?)
p1=0<py=p3 <ps

p1=p2=0<p3 <psg

p1=p2=p3=0<ps=1 Vertices Ccp3
p1=0<py=p3=ps=1/3

p1=p2=0<p3s=ps=1/2 Vertex Gry(C4)
pr=p2=p3s=ps=1/4 Vertex (1}

by noting that SysB(#H.s) and Dy(H. s ) are not stable by the right action of SL(H s ) (we must then consider B(Hs) and D(Hs)).
We extend 7p on the whole of D(Hs) by YU € SL(Hs), Vo € Do(Hs), tp(UpUt) = mp(p).

2.2. The C*-module structure

The purification space Hs®% 4 can also be viewed as a left Hilbert B(# s )-C*-module [33], the left action of the C*-algebra
B(#H.s) being defined by

VA€ B(Hs), VW € Hs @ Ha, AV =AQ® 13, ¥ = V*(AL)® &, (16)
The inner product of the C*-module is defined by

VU, P €Hs @Ha, (P|¥)=try, |¥){(P| € B(Hs) (17)

It satisfies the usual properties:

VA,B € B(Hs), V¥, D, 5 € Hs ® Ha, (PIAY +BE), =A(®|¥), +B(P|E), (18)
YO, P eHs @Ha, (P = (W), (19)
YW e Hs @Hy, (W), >0and (W|¥), =0 <= ¥ =0 (20)

The density operator associated with a state of Hs ® H 4 is its square norm with respect to the C*-module structure:
VU e Hs ®Ha, VI = (WI¥)s = py € D(Hs) 21
B(Hs) as the standard purification space is related to the C*-module structure by

VA € B(Hs), VW € B(Hs), W(AW)=A¥(W) (22)

YW, Z € B(Hs), (T(W)|®(2)), =zw! (23)

The right action of B(#s) on itself induces a particular class of operators of the C*-module acting only on #H 4:

VA € B(Hs), VW € B(Hs), ®(WA)= 13, Q ATE(W) (24)
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2.3. C*-adjointness

In this part we want to define the adjoint, with respect to the inner product of the C*-module, of the right action of B(#Hs)
onHs @ Ha.

Definition 1. Let I" € B(Hs). We define I't : Hs ® H 4 — B(Hs) by

Y e Hs @ Ha, THW) = (W )pil6.) (EP (25)
= (Wy T'Wy )5 164) (5] (26)
= (Wy T'Wy )i &) (€| (27)

where Wy € B(#s) is such that (W) = ¥, I'; = (Z/|I'g), ¥ = W = (fI|Wy ) = (¢ ® £%|W)), and where
Wy € B(Hs) is the pseudo-inverse of Wy :

W,;,Wlp =1- PkerW.;, and Wq/W.;, = PRanW.;, (28)
where Pyerw,, and Pranw,, are respectively the projections on the kernel and on the range of Wy in Hs.
Property 1. Let I'H(¥) = I'*(¥)' (the adjoint 1 is in the sense of the inner product of H_). We have

VO € Hs ® Ha, (@135 ® THWW), = (135 ® THW)D W), (29)

& (D |Pranwy, I ® 13, W), = (1s @ THW)D W), (30)

For this reason, we call I'* the C*-adjoint of I".

Corollary 1.
YO eHs@Ha, lyg @THY)W = Pranwy, I' @ 13, ¥ (31)
Proof.
lys @ THWW = W), 075 &, (32)
= I Wy )a? P ® &, (33)
= I (W W5l © & (34)
= (Pranwy o 4976 ® o (35)
= Pranwy I ® 135 ¥ (36)
(@135 @ THW W), = trag | T ® THE W) (P (37)
= THW ) WPy | 0) (] (38)
(lags THW)D (W) = tryy W) (135 @ THW)D| (39)
= U THW ), B |Gi) (] (40)
= U W) s Bt (] O (41)

It can be interesting to relate RanWy (which appears in the definition of the C*-adjoint) with the density operator.

Property 2. Let ¥ € Hs ® H.a, Wy € B(Hs) be such that ¥(Wy) = W, and py = |¥ |2 = ma(¥) = Wy W), € D(Hs). We
have RanWy = Ranpy and cokerWy = ker py.

Proof. cokerW,, = {¢ € Hs, ¥ ¢; = 0}. ¢ € cokerWy = ¢ ¥ W), = 0 = ¢;(pu)j = Osince py = VW, |3) (/| We
have then (¢|py = 0 = py|¢p) = 0 = ¢ € ker py. We have then cokerWy C ker py.

(pw)ilgi) = W Wj|5i) = Vo € Hs, (pu)j@![8i) = ¥ jod![Si). We have then Vo € Hs, pudp = Wy (WSo) = pu¢ €
RanWy . We have then Ranpy C RanWy,.

Suppose that (¢;); the basis of #s is the eigenbasis of py. (py)j = W*Wj, = p's}. We can write (¥|¥');,, = p's]
with ' = ¥, € # 4 We have then p' = @], . It follows that p' = 0 = ¥' = 0 = ¥ = 0,V
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RanWy = {W®¢,|si), ¢« € C} and then RanWy C coRanpy (coRanpy = (ker pg )*). But coRanpy = Ranpj, = Ranpy
(p}, = py ). We have then RanWy C Ranpy.
The two last paragraphs show that RanWy = Ranpy. The first one shows that cokerWy C ker py but dim cokerW, =

i
dim Hs — dim RanWy (by definition #s = RanWy @ cokerWy ). We have then dim cokerWy = dimHs — dimRanpy =
dim ker py (by virtue of the rank-nullity theorem). This induces that cokerWy = ker py. O

3. Purification of Lindblad dynamics
3.1. From the Lindblad equation to the nonlinear Schrédinger equation

Theorem 1. Let t — p(t) € Do(Hs) be a solution of the Lindblad equation
. 1
thp = [Hs, p] = -y (I Tk, p} + 1y Lo T (42)

with Hs € B(#s) the system Hamiltonian, I, € B(Hs) the quantum jump operators and y* € [0, 1] the relaxation rates.
Let t — W,(t) € Hs ® H.4 be a purification state of p(t). ¥, is solution of the following projected non-hermitian nonlinear
Schrédinger equation:

(17-L,s ® PRanp )lhli/p

1 1
= (Iaes ® Prany) (Hs ® Toea ¥y = 3V I 1@ o, ¥, +

~V e rk*(wp)app) (43)

Proof. Let W,(t) € B(Hs) be a standard purification of p, p = W,,WJ, such that ¥(W,) = ¥,,.

thp = L(p) (44)
= W, W} + W, W} = [Hs, p] — %y"{r,jrk, p}+2 x %y"Fk,oFkT (45)
= thW,W! — (hW,W/)! = Hsp — %y"FkTFk,o + %y"rkpr,j

_<H$p — %y"FkTka + %ykl“k,ol“,:r)Jr (46)
= thW,W! = Hsp — %ykr,frkp + %ykfkpf,j +K (47)

where K = KT is an arbitrary self-adjoint operator. We can set K = 0 without loss of generality.

1

2
. 1

= 1MW, Pcoranw, = HsW),Peoranw, — EV’(FJ TcW,, Peoranw,,

. 1
hW, W) = HsW,W! — —y*rinow,w! + 5y"FkW,,W;r,j (48)
l *
+o v W, WL (W) (49)
By application of ¥ on this last equation we find
. 1 1
]’Hs ® PRanpm'I/p = HS ® PRanplpp - EV’{Fljrk ® PRanplpp + Eykrk ® (W;]"J(W;)*)Tlpp (50)
But (WiT (W) = (WL W,)TT = LHW,). O
On the regular strata, no projection occurs and the purification state is solution of the nonlinear Schrédinger equation:
. 1 1
i, = (HS - 5y"r,jrk) ® luu ¥, + 37 1 ® LW, (51)

A comparison of this equation with other Schédinger equations associated with open quantum systems can be found in
the Appendix.

3.2. From the nonlinear Schrédinger equation to the Lindblad equation

Theorem 2. Let ¥ € Hs ® H 4 be a solution of the nonlinear Schrédinger equation:

. 1 1
i = (Hs = Sy*[I0) © L, ¥ + Sy i@ Riw)w (52)
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Then py = wA(¥) = |12 € D(Hs) is solution of the following master equation:

. 1 1
thpy = [Hs, pu] — iy"{r,f T, pu} + 5y"{rkpwrk*, Pranpy } (53)
Proof. Let Hy(e) = (Hs — %y"l“,f ) ® 1y, + %ykl“k ® I",f(o) be the nonlinear operator of the purified dynamics and
Py = [ )(¥|.
1hPy = |th¥ ) (W] — &) (| (54)

= Hy ()W) (¥] — |9) (He(@) | (55)
= [Hs ® Ta, Pol = SV (I T ® T, Po) + 57 T @ TP
5V P ® () (56)
By applying the partial trace try, , on this last equation, we find
hpy = [Hs, pol = 57 (1 T pu) + 574 WIN @ W), + 5y (N T 19). (57)
Since I} ® I/ (W) = (13,5 ® T (W))(Ik ® 14, ) we have
hpy = [Hs, pul = Sy"(I T pu) + 57 (e ® THOWIN® T 9,
F2 P N® 1 ¥l s @ TLWI). (58)
= (Hs, po] = 571 T P} + 57 Pranpy T ® 101 ¥ 114 @ Tt W),

1
+5y"<rk ® 194 ¥ |Pranpy Tk @ 130, W) (59)

1 1 1
= [Hs, pu] — Eyk{r,f T, pu} + Ey"rkpw I Pranpy + 5y"PRaW Lpe I O (60)

On the regular strata, Pranp, = 1% and the master equation reduces to the Lindblad equation:

. 1
thpy = [Hs, py] — E)/"{F,:rl"k, Pyl + 1)/k17u0w1—',j (61)

4. Geometric phases of open quantum systems
4.1. The different notions of operator valued phases

For the open quantum systems, the notion of phase cannot be the same that for the closed systems. In accordance with the
C*-module structure of the purification space #s ® H 4, a phase for an open quantum system is certainly an operator in the
C*-algebra B(Hs) (we recall that a C*-module mimics the structure of vector space by replacing the ring C by a C*-algebra).

Definition 2. We define two different notions of phase in the C*-module for a state ¥ € Hs @ H.4:
e We call phase by invariance, an operator g € GL(H ) leaving invariant the C*-norm:
lgw 13 = 1w (62)
e We call phase by (unitary) equivariance, an operator g € GL(#s ) leaving equivariant the C*-norm:
lgw Il =gllwie™ (63)
For an abelian C*-algebra (as C) the two notions are equivalent. We can note that Vg € GL(Hs), V¥ € Hs ® H_4 we have
lgw 1% = gllwliie’ (64)

and then each (SLOCC or isospectral) transformation of S appears as a phase by non-unitary equivariance (a concept similar
with the case of the non-hermitian quantum systems: due to the non-conservation of the norm during the dynamics, we
consider “non-unitary phases” g € C* corresponding to a change of norm:||gv |2 = |g|?||v ||> with ¢ € Hs).

Let p € D(Hs). The group of phases by invariance of n;l( p) is the stabilizer (the isotropy subgroup) of p for the left-right
action: GL(Hs), = {g € GL(#s), gpg' = p}. The group of phases by equivariance is U(Hs ) X GL(#.s),. But since we will use
only phases by invariance for isospectral transformations (inner to 7, Yo )with o = mp(p)), the group is reduced to U(H.s).
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Because 3g, € GL(Hs) such that p = gpog; (witho = mp(p), & = s,u, withu, € U(Hs) an unitary transformation and
s, € GL(Hs)/U(Hs) a SLOCC transformation), we have GL(Hs), = GL(HS)gpgg; = ngL(HS)Uggl. The isotropy subgroups
are then all isomorphic to the same model group for all p chosen in a single stratum (but it is different between two strata).

To simplify the notations, we denote by K = U(Hs) =~ U(n) (or U(H 4) if it acts on the right) the group of the phases by
equivariance (or the group of ancilla transformations), and by G = GL(Hs) >~ GL(n, C) the group of the non-unitary phases.
For a stratum Y(#s) we denote by H' = GL(Hs)» =~ GL(q1)¥1 x - - - x GL(q,)* the stabilizer of the diagonal density operators
with sorted eigenvalues (k; is the number of eigenvalues with degeneracy equal to g;). The group of all phases by invariance
of the stratum X(#s) is the normal closure of H: H = UgeceH'g ™! (H' is the smallest normal subgroup of G including H').

We can also say that K is the group of the inobservable reconfigurations of the ancilla, G is the group of the unitary and
SLOCC transformations of the system performed by the physicist, and H' is the subgroup of inefficient transformations of the
system (a transformation is inefficient with respect to a particular density operator).

The non-unitary operator valued phases have been defined only with respect to the norm of the C*-module (the projection
of the purified states onto the density operators). But the non-commutativity of the C*-algebra B(#s) and the nonlinearity
of the Hamiltonian of the purified dynamics (Hy,(e) = (Hs — %ykl’,j T)®1y , + %ykl"k ® Fki(o)) induce a difficulty, because
the phases do not commute with the generator of the dynamics.

Definition 3. We call phase with respect to the generator of the dynamics, an operator g € G such that
Hy(g¥)g¥ = gHy(¥)¥ (65)

For closed quantum systems where the Hamiltonian is linear and the phases are scalars, this condition is trivial.

Proposition 1. The group of the phases with respect to the generator of the dynamics is G = Guer N [,Gr, (HF =
Hs — %y"]“,f T.), where the isotropy subgroups are defined for the adjoint action (Gyer = {g € G, g 'H¥ g = H¥'}).,

Proof. Let Wy € B(#s) be such that ¥(Wy ) = V.

1

Hu(g¥)g¥ = HT @ 1,8% + Jy'Ii® [ (g¥)g¥ (66)
1

= HTg® 1, W + v* ig ® ((eWo ) TigWs )" v (67)
1

= HTg @ 1, W + 5ykrkg ® (Wpg 'higWy)"'w (68)

HY g = gH¥ ifg € Gep, I'g = glkifg € G andg~'Iig = Ikifg € Gry,. Hy(gW)g¥ = gHyu (W)W ifg € Guer N Gr,» O

We remark that Vk € K, Hy (1o @ K"W) 14 QK™ = 15, ®k"Hy (W)W (because F,jt(lHS ®KW) = (k~'Wy Wy k)™ =
KO (w)(kT)1).

We remark moreover that if the system Hamiltonian Hs and/or the jump operators [’ are time-dependent, G is time-
dependent. In that case, a possibility to avoid difficulties is to consider Gz = (7),G.(t) but this group can be reduced to the
unitary centre of B(Hs) (U(1) in finite dimension) except if Vt, Hs(t) and I',(t) belong to a same (small) subalgebra of B(#s).

4.2. Operator valued geometric phases

For closed quantum systems, the geometric phase concept is related to the cyclicity of the projected dynamics. Let
[0,T] o t — p(t) € Do(Hs) be a density operator solution of the Lindblad equation thp = £(p). We say that the projected
dynamics is cyclic if 7p(p(T)) = 7p(p(0)) (the spectrum of the statistical probabilities is the same at the start and at the end
of the dynamics). We search a density operator [0, T] > t — p(t) € D(Hs) such that

p(T) = p(0) (69)
vt,3g(t) € G, p(t) = g(t)p(t)g(e) (70)

p is the cyclic density operator associated with the density operator of cyclic projection. We note that g(t) € G and not K
because there is no reason for which the transformation of p into a cyclic density operator implies no SLOCC operations.

Theorem 3. A density operator p(t)with cyclic projection and its cyclic density operator p(t) are related by p(t) = g(t)p(t)g(t)f
with the non-unitary operator valued phase g(t) defined by
g(t) = Te -~ fy E(g(f/)i)(t’)g(t’)T)dt’jr67 fé(iwﬁ(t/)ern(t/))d[/ (71)
<~

—

where the dynamical phase generator is defined by

1 1
Vp € D(Hs), E(p)=Hs — Eykr,f I+ iykrkpr,f p* € B(Hs) (72)
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and the geometric phase generator of the first kind is defined by

A = dWW* € QY(B(Hs), B(Hs)) (73)

in is the inner product with W;, viewed as a tangent vector, W;(t) being a standard purification of p(t): iwﬁm = W;,(t)W;)(t)*.
The geometric phase generator of the second kind is defined as

n(t) = Wi(Ok(OK(E) ™ W5(t)" + h(e) € b (74)
with k(t) € K and h(t) € B(ker p(t)) (E is the Lie algebra of Hi with i the index of the stratum of p).
We can note that
ANE(W)|2 = (B(W)|dE(W)), = try, , [dB(W)) (E(W)] (75)

This definition is similar to the definition of the non-unitary geometric phase generator of non-hermitian closed quantum
systems (with the C*-module in place of the Hilbert space of the system). It is moreover the non-adiabatic generalization of
the C*-geometric phase introduced in Ref. [19,20,26,34]. We can also show that

dp = Ap + pA’ (76)

The definition of the dynamical phase W(T_e*'ﬁ Jo EePg" )t jndyces that the definition of total phase g(t)is implicit (the expression
of g depends on itself). This is a consequence of the nonlinearity of the Schrédinger equation of the purified dynamics (we
can say that the dynamical phase is a “nonlinear dynamical phase”).

We can remark that h(t) = 0 if the cyclic dynamics (t — p(t)) takes place in regular strata.

Proof. Since p = gpgt, Ik € K such that W, = gWjk. The nonlinear Schrédinger equation (for a standard purification
state) is

. 1
hW, = HIw, + EykrkwpF,}(\Il(wp))T (77)
1
= HTw, + 5ykrkwp(w;rkwp)T (78)
l *
= HTw, + 5y’<r,<w,,w,jr,j(wp)f (79)

with H¥ = Hg — %y"FJ T It follows that

. . . _ ! “1p
EWsk + gWsk + gWak = —th ™! (H"’ff gWsk+ 5y TgW,W]g I (g1 (w; )Tk) (80)
and then
. . 1
gIEW; + Wikk™' = —W; —in ! (g*Hfffgwﬁ + Ey’g”I'}gW;)W;gTI",f(gT)*](Wg)T) (81)

By multiplying on the right this expression by Wij we find
g g+ Wikk 'W2 = —W, W3 —ih g 'E(gpg)g — h (82)

with h € B(ker p). We set j = w,;kk-lwg + h. Let gy be such that g = 11(3"“_1 Jo Elepg e g,

. — ~ —1h~ t D o
§ = —ih"'E(gpgg + Te ™™ o Haps gy (83)
g7'g = - g E(gpgt)g + gy 'én (84)
It follows that
gy '8 = —W;W; — 1 = go = Te oWyt (85)
2 »Wp
One needs now only to show thatn € E
» .t 1t dki] t
np +pn' = Wikk W; + Wik i w; (86)
= Wkk™'W] — wikk~'w] (87)

=0 (88)
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since p = W; W; drrl = —k'kk~' and hp = 0. Because of g—lH"g;; = GL(Hs); = {g € GL(Hs).gpg! = p}
(p = gpmn(p)g ) the L1e algebra of GL(#s ), is gi(Hs); = (X € B(Hs), Xp + 5X' = 0}. We have then 5  gi(Hs); C . O
From the point of view of the purified dynamics, we have
W,(t) = Te”hﬂfé E(gpgt )ty ~ Jo iy le+,,)df
? —

—

® K'(t)W;(t) (89)

with ¥, = ®(W,), and iy, A[|¥; 12 = (W3 |¥5)..
The right geometric phase k(t) € K is arbitrary in the sense that an(ng) = gpgt = an(gW), but it induces the
——

. P
geometric phase generator of the second kind n, = W;,kk*lwg in the left geometric phase. Let AR € 2(B(Hs), B(Hs)) be
the generator of the right geometric phase:

R f iy ¢y ARG
k(t) = ?I(E p (90)
A possible choice consists to use the definition of the Uhlmann geometric phase [11,12]:
dw = YMaw + waR (91)
where Y91 is solution of the following equation:
dp = Uty 4 pUnlg( Uhlgyt _ Uhlgy (92)

This choice is setin order to W = Wk satisfies W W” wi W) = W W =w, W”T, which is the Uhlmann’s definition

of the parallel transport for the den51ty matrices [11 12]. W1th this choice of rlght geometnc phase, we have:

iy, 2+ Wokk™'w3 = i, (2A + WARW*) (93)
= iy, (aww* + WARW*) (94)
= iy, (Mar) (95)

The left generator appearing in the definition of the Uhlmann (right) geometric phase, generates then the total left geometric
phase:
T T,
Te~ Jo G o2 mende Te 3 M

— —

pe—fc ¥ (97)

—

(96)

where C is the closed curve parametrized by [0, T] 3 t = Wj(t) in B(Hs) = Myxn(C) viewed as a manifold (Pe denoting

the path-anti-ordered exponential).

Since the total left geometric phase is automatically adapted to the choice of the right geometric phase (by the presence
of the left geometric phase generator of the second kind n, = W; kk='w?), no natural choice of right geometric phase is
imposed by the nonlinear Schrédinger equation and its associated Lmdblad equation. Other definitions of the right geometric
phase corresponding to other Uhlmann like connections can be chosen. This is the reason for which Dittmann, Uhlmann and
Rudolph [5,13] have find a large class of connections defining right geometric phases and compatible with the density matrix
theory.

4.3. Special cases of left geometric phases

Geometric phase with respect to the generator of the dynamics. We suppose that the dynamics takes place in regular strata.
Let g, be the Lie algebra of G and let V¥ € Hs ® H4, S-(¥) = g.¥ be the Hilbert subspace which is the orbit of ¥ by
gr. Let {X;}; be a set of generators of the Lie algebra g, such that tr(X”X ) = (S’ By construction {¥(X;W)}; constitutes a
basis of S (¥(W)) (with W € B(HS)) In spite of the orthonormalization of the generators of g, the basis {¥(X;W)}; is not
orthonormal. Let {¥(X;(WT)~1)}; be the associated biorthonormal basis:

(XMW HIeW)) = XWH T XW) ks (98)
tr (W'XTXW) (99)

= tr (WW'X"X)) (100)

= tr(X'"X;) (101)

= 5] (102)
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(where we have used the cyclicity of the trace). Let ¥(P-(W)) be the (non-orthogonal) projectiononto S (¥(W))in Hs @ H 4
defined by

PL(W) = [XiW) s X' (W) = X;Wtr (WX "Te) (103)

Let Al € 2'(B(Hs), g, ) be defined as
A EW)II? = (®(W)|®(PL(W))[dB(W)]). (104)
Atwwt = p,(W)[dw W' (105)
ATWWT = tr (W IXTdw) X;ww' (106)
A = tr (XTdww ) X; (107)
AF = tr (X)X (108)

Al is the part of 21 which induces a phase with respect to the generator of the dynamics.

Proposition 2. iWﬁQl = inAL (the geometric phase is a phase with respect to the generator of the dynamics) if and only if

E(p) € gc:
[E(p).HT] =0 (109)
[E(p), Ik] =0 (110)
[E(p), F,f] =0 (111)

Proof. iy, A = W;W; and W5 = —g~'gW; + g~ 'W, k™! — W;kk~'. We have then iy, A = —g7lg — i~ 1g7E(p)g — M.
1W52( €0, lfg € G and E(,O) egr. O

Note thatg € G, = E(gpg') = gE(p)g~!. It follows that

s L /
g(t) = Te JE 8RNy e gy~ S0 A (112)

_
—ih 1 YR e — [Liy, (Al4ng)dt!
e lo fo Wiy k

—

(113)

In that case, the nonlinearity of the dynamical phase does not then occur but the dynamical and the geometric phases are
not separated.

Geometric phase by invariance. We suppose that the dynamics is inner to a regular stratum Ti(Hs). Let‘Hi ~ GL(qq) X -+ - X
GL(qi) be the stabilizer of the stratum X'(# ) (we do not necessarily consider that g; # qi forj # k).Leth' >~ u(q1)®- - -®u(qr)
be its Lie algebra. Vo € X'(Hs), let P? : B(Hs) — b' be defined by

P7(X) = PXP! (114)

where Pj" is the orthogonal projection onto the gj-dimensional eigenspace of o associated with the eigenvalue p; (which
has a degeneracy equal to g;). Let p € D(Hs) be such that 7p(p) = o. We know that 3g, € G such that p = gpcrg; and
GL(Ms), = g,H'g, . Let P’ : B(Hs) — gl(*s), be defined by P*(X) = P”XP/ with P = g,P7g,".

Let ABL € 21(B(#s), b') be defined as

AP = P (20) = P aww T P! (115)
ABL is the part of 2 which induces a phase by invariance.
Proposition 3. iWﬁQl = iWﬁABL (the geometric phase is a phase by invariance) if and only if Eg (o) € bt with Eg(0) =
g, 'E(g,08, )8, (8, € U(Hs), p(t) = g,(t)o(t)g,(t)™" € Do(Hs)).
Propf. iWﬁQl = —g ¢ —1h~ g 1E(p)g — ny and then iWZ)Ql € gl(Hs), ifg € GL(Hs), and E(p) € gl(Hs), <= g, 'E(p)g,
ep. O

The geometric phase and the dynamical phase are phases by invariance, i.e. o(T) = p(0) (the density operator is cyclic),
if

B 1 _ 1 _ _ o i
g, 'Hsg, — EV"gp 'rirg, + 5y"gp 'ngpog, ' Lig,o7'g, " e b (116)
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The elements of gl(#s), acting on the left can be converted as elements acting on the right:

X egl(Hs), = Xp+pX =0 (117)
= XWW' + wwixt =0 (118)
= Xw +wwixtiwh=1=0 (119)
= XW = —w(wIxw)f (120)
The left action of X € gl(#s), is then equivalent to the right action of —(W~1XW). We have then
AW = (A — ABW + WABR (121)
with
AR = —(w1ABlw)f (122)
- —WT(PfWW*)T(W—l)TdWT(PJ.WW*)T(W—UT (123)

ijwT = gww1Pf gyt ad W = gyayi /o, we have then W“PjWWTW = \/Efle"f = P{ since P/ \/o = /o P (P isan
eigenprojection of o). We have then

AR = —pP7aw (W) 'pe (124)

Let W € SysB(Hs). AWI(WT) ! = dJ/o /o ' + Jodg, ) gwwi~/a . Since do = dy/o /o + /od/o = d/o /o ' =
doo~!' — Jod/oo~! we have

AW W)™ = doo ™" — Vodvoo ! = Jogdgwwivo (W € SusB(Hs)) (125)
But WidWo ! = \/Ej:,fv_v‘lmdiWM/571 + ody/oo~!, and then

dwWiwh™ ! =doo ! —WldWo ™' (W e SysB(Hs)) (126)
Finally, the restriction of AR onto SysB(Hs) is

AR Bs) = PPWIdWPI o~ — PP doo Py (127)

This is the expression of the generator of the Sjoqvist-Andersson geometric phase [ 16-18] (note that in the works of Sjoqvist
and Andersson, 6o~ ! = 0 since they consider only isospectral dynamics). A*™ = —P*dW (W)~ 'P{ is then the non-unitary
generalization of the generator of the Sjoqvist-Andersson geometric phase. We can note that Eq. (121) can rewritten as

dw = (2 — ABhw + wABR (128)

which is an equation defining an Uhlmann like connection. In other words, we can choose the right geometric phase as being
the Sjéquist geometric phase in place of the Uhlmann geometric phase (kk~! = —A®R). In that case, the total left geometric
phase is such that

Te o gy 2Oy

—

€ G/G, (129)

We will say that this Sjoqvist geometric phase is two-sided in the sense that it can be considered on the left (A®) as
a inefficient transformation of the system, or it can be considered on the right (AR) as a reconfiguration of the ancilla. Its
invariance nature implies that it can be revealed only by interferometry in accordance with its discovery by Sjoqvist et
al.[16,17].

Adiabatic geometric phase. Suppose thatt — Hg(t)and t — I}(t) are continuous and cyclic operators with respect to the
time: Hs(T) = Hs(0) and I} (T) = I'(0). Moreover suppose that || = maxy|y*| <« 1. The nonlinear Schrédinger equation
for the purified dynamics can be written as
. 1
iy =HY @ 1, ¥ + 5y’<rk ® (WOTRIwO™Ty + o(ly %) (130)
with ¥(© = w(W®) be such that:

1y :HS®]HAW(O) (131)
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At the first order of perturbation, the nonlinearity is replaced by the pre-integration of the zero-order solution. Suppose that
Ot =0) = y(t =0)® &, then ¥ O(t) = yO(t) ® &, with 1hy(® = Hgy® and

WO = [y (g, and WO = Jg,)(y ) (132)

WO WO = (O Ly @) &,) (&, | (133)

Let Aio)(t) be the instantaneous eigenvalues of Hs(t) (supposed non-degenerate) and 2570)(t) be the associated normalized
eigenvectors:

HsZ) =0y (134)
At the first order of the perturbation, the eigenvalues and the eigenvectors of H (t) are
1
o = py — 5y"<§§,°)|F,Jn<|g§,°)> +0(ly ) (135)
Z (€O g ) 0
= -3 Y
25 — = 5 EeVIn nieY) - 1 g
+o(|yI? ) (136)
The eigenvalues and the eigenvectors of Hy, are then
1
hop =ty + > 8upy P IRIEI W OLT 1 ®) + Oy ) (137)
gbﬁ = gb ® Eﬂ
. 5 N I O ) 0 g
af )/ o
S = ta+ (EORIED) — OIRIEO) WO R @) >
+0o(ly %) (138)

where (£3) is an arbitrary (time independent) basis of # 4. The eigenvectors of HZL are

Pip = ¢, ® &
(i, |§(0)>(1/f(0)|17<|1ﬁ(0))

- fsaﬂ v (P ®&
; — g — %y’((j”lﬂ*lgﬁf’ ) — (OGO (O 1y @) =
+o(ly*) (139)
with ¢* the eigenvectors of H't which are biorthonormal to the eigenvectors of H ((¢*|¢,) = &c)-
We suppose that ¥ (t = 0) = @,,(t = 0), A4, being non-degenerate. If the evolution is slow and under some technical
assumptions, we can prove the followmg adiabatic transport formula (see Ref. [34]) :
1
p(t) = g(t)pa(t)g(t)" + O (max (?’ |V|2)> (140)
o(t) = ’J(F_e"h_l I E&”(r)drTe—ngfj)(r)dr (141)
with
= 304 | L N ( P | = 1E) V1 + Oy ) (142)
Paa HalZgo ! \ay ant Eaa 14
ED = apalg V)il (143)
b
AP =3 (! l>*|dt D)2y (g (144)

bc

(0) (0) O 1,0
N Z ) (COITEO) (O [y ) o 145
2427y — pa+ SYIEOIRIZD) — (01RO O Iy @)
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(0)) 1 #(0) (0) (0)
o g ZV (5‘3 |r,;|gg><vf |0rk|wT >0 o (146)
e 2 — g — (O 129) — €O 1EO) WO Ry )

d;éb

. . . . . . T (1) . . .
The adiabatic geometric phase issued from the adiabatic theorem [34] Te* Jo A"t i related to the non-adiabatic

geometric phase as follows. The role of p(t) in Theorem 3 is played by pg(t ) We have W,,, = |£E}L’)($a| and W) =
|‘§a><£512*|. It follows that

i * 1) (1)«
iy, 2 = Wy, Wi = |dt5w><;aa | (147)
and
A<”—zwﬂam+z|dt ¢y + oy ) (148)
c#a

where we have use the fact that (¢ (! (1), ¢ ”*)b constitutes (at the order |y|*) a biorthonormalized basis of Hs (3, | g““) e ;g*l =
1). Moreover

Ddt N Do + Pa Z|dt Oy | = ogy?) (149)
c#a c#a

It follows that n = ZC#a'dtC(l)H;(L)*' € gl(Hs)pq, and then

AD =iy Aty (150)

The adiabatic geometric phase generator AE}) found in Ref. [34] is the sum of the two geometric phase generators found
Theorem 3 with the “density eigenmatrix” pq, playing the role of p(t).

Let Poy = Y ;1@ ) (P}, | be the eigenprojection in Hs ® H 4 associated with the eigenvectors of Hy, related to &, by
perturbation. We consider the following reduced generator of geometric phases:

d

try 4 <|P.aagm»<@:;a|> P = Y (& |dt 121Dy + odly ) (151)

b
|dtgg;><;$;*| +o(y?) (152)
T (Poa )W W5 = AV + Oy ) (153)
= i, A+ 1+ Oy *) (154)

Moreover

E) ® |€) (€l = PeaHy(P g )Poc (155)
= E(paa)®|§a>($a|+o(|y|2) (156)

The geometric and dynamical phase generators appearing in the adiabatic theorem Ref. [34] are clearly the adiabatic limit
of the generators introduced in Theorem 3.

Let G@bﬁ}bﬂ(t) C U(Hs) be the group of operators of H s acting on the eigenvectors of H;, as phase changes. By definition
we have

V8 € Gioyyy  Hul8P, )80y = a8 Pyo + Olly ") (157)

= gHu(D )Py + O(l¥1%) (158)

Clearly E(gpwg ') = E(pa) and G{gbﬁ}bﬂ C G.. The adiabatic geometric phase is a phase with respect to the generator of
the dynamics and AV = W AL, Finally the adiabatic assumption can be rewritten as By, 2 inaaAL in accordance

with the discussion found in Ref. [19]. The geometric structure involved by the adiabatic geometric phases has been
extensively studied in Ref. [ 19] and the interpretation of the adiabatic operator valued geometric phase has been studied in
Ref. [26].
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Table 2
The different geometric phases of the open quantum systems.
Geometric phase Generator Values Side Type Interpretation
C*-geometric phase A G Left By equivariance Transformations to cyclic density operators
Uhlmann geometric phase AR K Right By invariance Transition probability parallelism
Sjoqvist geometric phase ABL / ABR H Two-sided By invariance Interferometric phase
Reduced C*-geometric phase At Ge Left w.r.t. the dynamics Closest to the adiabatic phase

This approach for the adiabatic geometric phases, which is useful for bipartite quantum systems, is strongly limited for
the open quantum systems described by a Lindblad equation. Indeed both the perturbative assumption and the adiabatic
assumption are too drastic because they involve that the dynamics remains in the neighbourhood of the singular stratum
of the pure states (pq is a pure state at the first order of perturbation). This excludes the more interesting cases where
the relaxation rates are sufficiently large to deviate the dynamics or where the interaction duration is sufficiently large to
the dynamics goes to the steady state (with the open quantum systems there is a competition between the adiabatic and
the relaxation processes). In second order of perturbation the adiabatic approximation deals with mixed state [34] but the
nonlinearity could induces strong difficulties to apply this approach. A more general approach of the adiabatic geometric
phases could consists to use the notion of noncommutative eigenvalues as introduced in Ref. [19] for bipartite quantum
systems, but the nonlinearity could also induces strong difficulties.

Table 2 summarizes the different geometric phases of the open quantum systems.

5. Geometry of mixed states
5.1. The geometry as a stratified principal composite bibundle

5.1.1. Regular strata

Let Zi(#s) be a regular stratum, Di(#s) = m, '(Z¥(#s)) be the stratum of the density operators over Zi(#s), and
Bi(Hs) = w5 (Hs) be the stratum of the standard purified states over D(#.s).

Let Lys : G — AutB'(#s) be the left action of G on B'(#s) defined by

Vg € G,VW € B(Hs)  Lys(g)W = gW (159)
and Rys : K — AutBi(#s) be the right action of K on Bi(#s) defined by

Vk € K,YW € B(Hs)  Rus(k)W = Wk (160)

These actions of G and K are free. The right action of K can be locally transformed as a left action of Hi, indeed

Rus(k)W = Lys(WkW "YW (161)
Because wus(Rys(k)W) = mus(Lus(WkW-"DW) = mus(W) (WkW DWW (WEkW-1)T = WWT), we have WkwW~! ¢

GL(Hs)wwt C H'. '
B(Hs) cannot be viewed as a left-bundle on D'(H.s) since ys(gW ) = gmus(W)g T, but since 7p o wys(gW) = 7p o rus(W)

we can see B/(74s) as a left principal G-bundle P! over X(74s). Let ¢}, be the trivialization of P*:
qﬁ; (G x T(Hs) — B(Hs)
(g.0) = gJo
P! is a trivial bundle because of the presence of the global section o — /G

~ Since mys(Wk) = mus(W), we can see Bi(#s) as a right principal K-bundle Q over Di(#s). Let (j)f) be the trivialization of
Q'

(162)

(l)g DiHs)x K —  B(Hs)
(0.k) + ok
Q'isa trivial bundle because of the presence of the global section p > /p. '
Let m{ : G — G/H' be the canonical projection (r/(g) = gH'). Let ¢y, be the trivialization of D'(#s) viewed as a bundle
of manifolds:
¢p:G/H x Z'(Hs) — Di(Hs)
(gH', 0) + gog'

(163)

(164)

Let ), : Hi — G/H' be the projection defined by 7h (h) = 7 (h) (H' C G) which is such that ni(gH'g™") = gH'.
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The complete geometric structure is then defined by the following commutative diagram:

H x Zi(Hs) —— Gx Xi(Hs) —— Bi(Hs) «—— Di(Hs)x K
o oh
n”;xidl néxidl ﬂHsl Prll
G/H! x Ti(Hs) === G/H' x Z'(Hs) —— Di(Hs) === Di(Hs)
¢l

Pr'zl nDl
T(Hs) ———— X'(Hs)

Due to the presence of three floors (B'(#s), D'(#s) and X(#s)) the bundle of purification is a composite bundle [35-37].
Due to the both left and right structures, the bundle of purification is a bibundle [38]. We can then say that Bi(Hs) is a
principal composite bibundle.

The bundle can be rewritten with an arbitrary purification space H#s ® H_4 with the left and right actions defined by

Vg €G VY € Hs @Ha, Ly(@)W =g® 13 ,W (165)
Vk e K,YW € Hs @ Ha, Ry(¥ = 13 Q K'Ww (166)

with Lys(g)®(W) = ¥(Ly(g)W) and Rys(k)®(W) = @ (Ry (k)Z(W)).

5.1.2. Singular strata

Let X'(#s)be a singular stratum characterized by p; = 0 with a degeneracy equal to n—m. A density operator p € Di(Hs)
can be defined by two kinds of data: Pran, the projection onto its support space and an order m invertible density matrix
0 € Muxm(C) representing p in this space. Let (xj)j=1,...m be an orthonormal basis of Ranp. We have:

o =W XKl Pranp = 1) (x| (167)

with o/, = (x’|px). Reciprocally we can introduce g : DI(C™) x Vyu(Hs) — Di(Hs) defined by

Yo € D(C™), Y(xj)j=1,..m € Vim(Hs),  ©(0, (X)) = ' lxi) (x¥| (168)

where D/(C™) is the regular strata for the model Hilbert space C™ such that 2/(C™) = mp(D(C™)) is similar to Z(Hs)
deprived of the zeros. Vip(Hs) = {(Xj)i=1,.m € (Hs)", dlxe) = 5{<} >~ Vpu(C") = U(n)/U(n — m) (Vyu(C") is a Stiefel
manifold).

Let I C {1,...,n} be a set of indices such that distgs(P?, Prany) < 75 where P* = Zje,auj)(m and distg(P, Q) =
arccos |det(Z}l‘ZQ)|2 is the Fubini-Study distance on G,(Hs) = {P € B(#s), P' = P, Pt = P, dimRanP = m} =~ G,(C") (Zp
is the matrix representing an arbitrary orthonormal basis of RanP in the basis (;);). There exists a basis (x;); of Ranp such
that [39]

AAAAA

e C, x=¢+ ZCjké“k (169)
kgl
a.gma m(n—m)
U? = {P € Gn(Hs), distgs(P, P?) < 7} is an open chart of Gi(#.s) with the coordinates mapE ‘ UP : chjk)' 10 gt Vin(Hs)
€lq kgld
is a non-trivial principal U(m)-bundle over G, (#s) with local trivializations '
d:Ux U(m Vin(Hs)ua
bs xU(m) — m( §)\U (170)

(P,u) = (Zhu)lg)(x*|

with Z8 € My ym(C) be such that (Z8), = (¢ xk) ((xj)jere is an orthonormal basis of RanP).

Let H? and H'! be such that H' = H® x H'' with H® ~ GL(m,C), (¢ € X'(C™)) and H" =~ GL(n — m,C).
G/H™! ~ Viy(C") = GL(n, C)/GL(n—m, C) = Viu(C") x y(m)GL(m, C) = {[(xu~', ug), u € Um)], x € Va(C"), g € GL(m, C)}is
a non-compact Stiefel manifold. Let 43;0 be the local trivialization of G/H'! induced by

P : U x GL(m, C)

- Vn(Ch
(P,g) = [(

Zou™' ug), u € U(m)].
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The complete geometric structure is defined by the following commutative diagram:

Hi x Yi(Hs) N Gx Xi(Hs)

il
G xldl

G/H' x H x Ti(Hg) —— G/H' x Ti(Hs) Bi(Hs) «— DIC™) X Vip(Hs) ——— D(C™) x Gu(Hs) x U(m)
{$i9)axid o o* idx(¢%)q
Pry x Pr3l rr’GOxidl 7'!HSJV idxnsl Pry x Przl
G/H' x Zi(ns) G/H x Zi(Hg) —— Di(Hs) «— DI(C™) x Gn(Hs) DIC™) x G(H.s)
o o
I’rzl ﬂul nDoPnl

Si(#s) Si(Hs) zicm

where 7! : G — G/H" and 7l : G/H"" — G/(H" x H™) are the canonical projections; p.(0, P) = g(o. (x;)) for an

arbitrary orthonormal basis ( x;); of RanP and
9" D(Hs) X Vn(Hs) —  B(Hs)
(0. x) = Vel x|

B(Hs) can be viewed as a (non-trivial) right principal U(m)-bundle Q' over D'(#s) with local trivializations p* o ¢¢ o ;!
Note that U(m) acts on B'(Hs) by the right action:

(171)

Yu € U(m), YW = p*(ow, ¢°(gw, uw)) € B(Hs), Ric(u)W = p*(ow, ¢2(gw, uwu)) (172)

By construction Yu € U(m), 3k, w € K such that Rjc(u) = Rys(kyw). We denote by K"'N the subgroup of K such that
Ripc(U(m))w = Rys(Kj, ). On the left, B'(7s) is a trivial bundle P' over X'(#s) with typical fibre G/H" (which is not a group
since H'! is not normal).

5.2. The geometry as categorical principal bundles

We want to endow the geometric structure with a connective structure describing the geometric phases. On the regular
strata, the geometric structure is a principal composite bibundle. A connective structure on a principal bibundle [38] and
a connective structure on a principal composite bundle [37] present a higher degree of complication than for an usual
principal bundle, the compatibility between the two approaches can be also a difficulty. In order to avoid this, and to unify
the geometric description between the left and the right, we propose to use a categorical geometric generalization of the
principal bundle [21-25,40].

5.2.1. Left principal categorical bundle

We consider a stratum X(Hs). Let . be the (trivial) category with the set of objects Obj.#" = X(#s) and the set of
morphisms Morph.#! = {id,, 0 € Xi(#s)}. Let 2 be the category with Obj#' = Bi(Hs) and Morph2! = {(W, k), W €
Bi(Hs), k € K‘ﬁv} (K‘iv = K on the regular strata) with the source, the target and the identity maps defined by

Y(W, k) € Morph#!, s(W,k) = W (173)
t(W, k) = Ruys(k)W = Wk (174)
idy = (W, 155) (175)

the arrow composition being
YW € B'(Hs), Vk € K}y, VK € Kiy, (WK, K)o (W, k) = (W, kK') (176)
By construction, arrows of different strata are not composable. Let wp € Funct(#', .#') be the full functor defined by
YW € 0bj&', wp(W) = mp o mys(W) (177)
Y(W, k) € Morph#',  @p(W, k) = iduporysw) (178)

Note that wp(t(W, k)) = wp(Wk) = ap(Wkk~'WT) = mp(WWT) = t(wp(W, k).

We can remark that the arrows could also be defined by an action on the left: Morph#! = {(h, W), W € Bi(Hs), h €
WK&,W* C Hi} with t(h, W) = Lys(h)W, since 3k € K such that h = WkW™ and Lys(WkW*)W = WkWW* =
Wk(1 — Pierw) = Wk (kPierw = 0, Vk € K;,)).



60 D. Viennot / Journal of Geometry and Physics 133 (2018) 42-70

Let ¢ be the groupoid defined by Obj%' = G and Morph%' = G % Hi with the source, the target and the identity maps
defined by

V(g h) € Morph%', s(g,h) =g (179)
t(g, h) = gh (180)
idg = (g, 1ns) (181)
the usual arrow composition (called the vertical composition of arrows) being
Vg € G, Vh,I' e H, (gh,')o (g, h)= (g, hh) (182)
and the law of the semi-direct product of groups (called the horizontal composition of arrows) being
V(g.h).(g' . h) e Gx H, (g h)g. h)=(g's.g 'Wgh) (183)
Let .# : Morph%' — EndFunct(#') be the left action of ¢’ onto %' defined by
Y(g, h) € Morph%', YW € Obj#', % y(W) = Lus(gh)W (184)
Y(W, k) € Morph#', % 4(W, k) = (ghW, k) (185)
or similarly by
w ghw
zg,h
(W,k)l =, l(ghw,k) (186)
Wk ghWk
The composition of left actions is covariant with the horizontal composition of the groupoid arrows:
Ly 0 Lyh = Lyggtwgh = Lg' g (187)

The compatibility between the projection functor @wp and the left action endofunctor .# is shown by the following
commutative diagram (where oy = 7p o wys(W)):

ghw
%éﬂ\\ l(ghW,K&
ghWk
w ow
(w,k)l lidaw (188)
Wk ow

N TS

' is naturally equivalent to %' x .#' by the trivialization functors ¢',, € Funct(%' x ., #')and ¢',, € Funct(#', ¥' x .#")
defined by

(g 0) g./o
_ )
(g,h‘a,ldg)l S l(g\/;,k)
(gh, o) g/ok
(189)
(W /ow™, ow) . w
w /UW*,h,rrW,idi )J' & J,(W’k)
Wk./ow Wk

with h = /oky/o" and oy = 7p o us(W). We can note that ¢, (g, o) = ¢i(g, o).

Viewed as a left principal categorical bundle, the presence of the both left and right actions takes a natural meaning. The
right action of K (inobservable reconfiguration of the ancilla) defines the arrows of the purification category whereas the left
action of G (unitary and SLOCC transformations of the system) defines endofunctors of the purification category playing the
role of gauge changes.
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5.2.2. Right principal categorical bundle

It is possible to reverse the description, by considering that the right action of K defines endofunctors of gauge changes
(in accordance with their inobservable character) and that the left action of G defines the arrows.

Let .#' be the category defined by Obj.#' = D!(Hs) and Morph.#' = G x Di(#s), with the source, the target, and the
identity maps defined by

Y(g. p) € Morph.#', s(g.p) = p (190)
t(g, p) = gpg' (191)
id, = (1ys, ) (192)

the arrow composition being defined by

Vo € D'(Hs), V8.8 €G, (g.8pg")o(g.p)=(g'g. p) (193)

Let 2' be the category defined by Obj.2! = Bi(#s) and Morph2! = G x Bi(#s), with the source, the target and the identity
maps defined by

¥(g, W) € Morph2', s(g, W)= W (194)
t(g, W) = gW (195)

the arrow composition being defined by
YW € B(Hs),Vg,8' €G, (g ,gW)o(g, W)= (g'g, W) (197)
Let wys € Funct(2, .#") be the full functor defined by
YW € 0bj2', wus(W) = mps(W) = W' (198)
V(g, W) € Morph2',  wys(g, W) = (g, WWT) (199)

Let %" be the groupoid with Obj.#" = K’ and Morph.#' = K' x K’ (where K}, ~ K', YW € B(#s); K' = K on the regular
strata), with the source, the target and the identity maps defined by

¥(q, k) € Morpht*, s(q, k) = k (200)
t(q, k) = qk (201)
idy = (135, k) (202)

the usual arrow composition (called the vertical composition of arrows) being

vk e K',Vq,q €K', (q,qk)o(q, k) =(qq,k) (203)
and the law of the semi-direct product of groups (called the horizontal composition of arrows) being

Y(q, k), (@, K) e K'x K', (¢, K)q, k)= (qKqk)™", Kk) (204)

Let % : Morph.#' — EndFunct(2') be the right action of .#* onto 2' defined by

w Wqk

-%q,k

(g,W)l _— l(g,qu) (205)
w gWak

where to simplify the notations, for the singular strata, we write Wk in place of Rj,.(k)W. The composition of right actions is
contravariant with the horizontal composition of the groupoid arrows:

gk © By kW = Bqiquey-1kk = g K)a.k) (206)
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The different entities in the category formalism.

Entities symb. Left role Right role Interpretation
Left transformations g Object gauge changes Arrows of the categories Unitary/SLOCC transformations of S
Right transformations k Arrows of the total category Object gauge changes Inobservable reconfigurations of A
Stabilizers h Arrow gauge changes Inner arrows Inefficient transformations of S
Diagonal matrices o Objects of the base category Statistical probabilities
Density operators o Objects of the base category Quantum mixed states
Bounded operators w Objects of the total category Objects of the total category quantum purified states

Table 4

The different category structures.
Category symb. Objects Arrows Interpretation
Left base category Pt SiHs) idyicy S) Space of the statistical probabilities
Right base category VA Di(Hs) G x D'(Hs) Quantum mixed state space with system transformations
Left total category P! Bi(Hs) B (HS)X Bi(H s Quantum purified state space with ancilla transformations
Right total category 2 Bi(Hs) G x Bi(Hs) Quantum purified state space with system transformations
Left groupoid @t _ G G x Hi '_ Unitary and SLOCC transformations of the system
Right groupoid A K' K' x K' Inobservable reconfigurations of the ancilla

The compatibility between the projection functor wys and the right action endofunctor # is shown by the following

commutative diagram (where pyy = WWT):
Waqk
& & J(g,qu S
gWak
w pw
(g,W)l l(g,pw) (207)
gw gowg!
K Pw
% /
J(gqﬂw)
gowg'

2'is naturally equivalent to .#' x ¢ by the trivialization functors ¢', € Funct(.#' x #', 2")and ¢', € Funct(2', .#' x )
defined by

(p, k) ok
(8.0.9, k)J' % l(\/gpgTqﬁ',\/ﬁk)
(gpg', qk) Vepgtak
(208)
Wwi, VWWiw) w
Py

@ wwh Jewwigt g«/Wwf.«/Ww’r'W)l —=— l(g w)

(eWwigh, JgWWigt gw) gw

We can note that ¢, (p, k) = ¢j(p. k). The arrows of the groupoid are K’ x K’ because (/g pgf*gf , k) models the transition
from K:f,< to Kgfk over the arrow (g, p) € Morph.#'. . ‘ ‘
We remark that we can unify the categories: 2 = | |;#' and 2 = | |;Q', on which act the groupoids ¥ = | |¢' and

x = ]x i (except that the arrows of different strata cannot be composed neither horizontally nor vertically). 2 and 2 can
be viewed as kinds of categorical principal bundles, but not strictly as principal 2-bundles [21-25,40] (the direct categorical
generalization of the principal bundles) since in contrast with ' and .#’, ¢ and .# have not the structure of Lie crossed
modules [21-25,40].

Table 3 summarizes the roles of the different entities in the category formalism, and Table 4 summarizes the category
structures.
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5.3. Connections

5.3.1. The connective structure of the left principal categorical bundle

A connection on a principal 2-bundle with a base space being a trivial category is [21-24] the data of a family of
connections on the objects related by a kind of gauge changes associated with the arrows.

More precisely, let Bi(#s) = Obj#' be viewed as a principal bundle over Zi(Hs).VW € Bi(Hs), the (left) vertical tangent
space at W is defined by

Vi Bi(Hs) = (XW, X € g\ b'"} (209)

where g is the Lie algebra associated with G and h! is the Lie algebra associated with H! (h'! = {0} on the regular strata).
We define the (left) horizontal tangent space at W by

HL B(Hs) = (X € TwB(Hs), XW* = 0} (210)

On the regular strata, H‘f\,B"(HS) is a connection for the G—principal bundle Bi(#s). This connection is characterized by the
connection 1-form a)W € R(B'(Hs), g) defined by ww( )= XW~'.Onthe singular strata we consider the trivial G-bundle

G x Y(Hs)and we set an arbitrary connection H(g a)(G x Xi(Hs)) such that q),,*nc* A {,)(G x Xi(Hs)) = H;;’,(ng(g),a)Bi(HS)‘
L

We introduce wy, € o1 (BI(HS) g) such that 71”* ,’,*ww is the connection 1-form of G x X(#s). Two different choices of
arbitrary connections in H (G x X' i(Hg)) are related by @k, — ok, = nw € 21(B/(#s), h'!) which is a h1-gauge change
of the second kind.

Let @ : ObjP' — G be a left equivariant map from B{(Hs) to G (YW € Bi(Hs), Vg € G, ®(gW) = gd(W)). @ defines a
gauge transformation a, : Obj2' — Obj 2! by a4(W) = ®(W)W. Under this gauge transformation, the connection 1-form
becomes:

@ 0y (X) = Wy (A0 X) 211)
= Dy (PW)E) + @y (dD(W)D(W) ' B(W)W) (212)
since Vy/(t) a curve on Bi(HS) having X as tangent vector at t = 0 (y(0) = W), we have d%%(y(t)) = %(d?(y(t))y(t)) =

LUy (1) + @(y (1), and then ap. X = Lap(y(1))|,_, = dPP'OW + X (dPD " : Bi(Hs) — g). It follows that

@l by (X) = O(W)wh (X)D(W) ™ + do(W)d(W)™! (213)

Let T : Obj 2" — \Jyycpipq)Kiy e @ right equivariant map (YW € Bi(#s), Vk € K}, T(Wk) = Y (W)k). T defines another
kind of gauge transformation ay : ObjP' — ObjP' by ay(W) = WY (W). Under this gauge transformation of the second
kind, the connection 1-form becomes

Ty (X) = Oy ) (arsX) (214)

= Oy (XY (W) + oy (W (W)Y (W)~ dT (W) (215)

since %ay(y(t)) = dzgt T(y(t)+ p(t )dT(y(t) and then ar.X = XT + WY~ dY (Y ~1dY : Bi(#s) — €, £, being the Lie

algebra of K}, ). It follows that

Ty wpy(X) = oy (X) + Wdr (W)Y (W)~ 'w* (216)
(Wdrr~'wwwt + WWT(WdTT’]W*)T = WdTYT~'W + WTdTY~'W = 0, we have then WdY (W)Y (W)~'W* ¢
ol(Hs)wwt C b = @gecgb'g‘l. The gauge transformation of the second kind is then a hi gauge transformation. The

connection on 2’ is then not constituted by a single usual connection of B'(#s), but by a family of usual connections of
Bi(#s) related by additions of hi-valued 1-forms.

We are now able to provide the local expressions of the connection. Let s € I'(X(Hs), B(Hs)) be a local section
(s:0 > Wy(o)). We have

S*(OL = dWsW; = SQ[ S 91(21‘(%5)’ g) (2]7)

The G-gauge potential *2l of the connection is the generator of the operator valued geometric phase (the connection having
being defined for that purpose). Under a gauge change of the first kind W;(c) — g(o )Ws(o) (with g € 2°(XZ(Hs), G)), the
gauge potential becomes:

&9 =g'ug™" +dgg ™! (218)
Under a gauge change of the second kind Wy(o') — Wi(o k(o) (with k € QI(Zi(Hs), I(&,(a))). the gauge potential becomes:

SleISQ(-i—Snk (219)
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with $n, = Wsdkk‘1W; e 21(Z(Hs), b!) (the hi-potential-transformation becomes under a gauge change of the first kind
&n, = g°nkg~1). The arbitrary nature of the hi-potential-transformation is clear in the formalism (it is gauge change of the
second kind).

The composite nature of the bundle Bi(#s) permits also to consider an intermediate entity between the local and

. . 1
the global expression of the connection. Let s* € I'(D'(#Hs), B'(Hs)) be the local section (s*(p) = W ;(p)) such that
Se

4
s*(p) = mys(s(mp(p))). The 1-form:
1 1 )
st = dW W =% € 2'(D'(Hs), 9) (220)

Se o

satisfies for all h € £°(D/(Hs), HY) such that h(p) € GL(Hs), = g,Hig, ! (¢h(gp. mp(p)) = p), the following gauge
transformation rule:

hsi _ sI -1 -1
A = B*Ah~" + dhh (221)
Property 3. Vg € 2°(Di(Hs), G) we have
1 1
“Agpgt) =g Ap)g ™" +dgg" +g°n(g, p)g”! (222)

where*n € 21(G x Di(Hs), E) is a gauge change of the second kind.

) 1
Proof. Vp € D'(Hs), 3k, € K such that s*(p) = W = ,/pk,. In a first time, we consider the case of the global section
Se

*(0) = V7.

1
dy/o/p +/pdJ/p =dp = d/p/p +(dy/p/p)' = o+ dp") (223)
1
= 3IX,, st.X) =X, d/p/p= 4P +X, (224)
1
dy/p/p" = 4"+ X" (225)

0 1
We denote by v**2(p) = d/p./p" the gauge potential for the global section, and by degy(p) = %d,op*. By noting that

? -t —
X,0*p + p(X,p*)" = 0, we see that v**2l and 4* are related by a hi-gauge change.

1 1
V*A(gpg') = *Agpg") + Xy pg18 ' 0%g ! (226)
1 o
= Ed(gpg*)(gpg*)*+xgpg+g* Tp*g™! (227)
1 _ _
= 58dpp’g "4 dgg™!
1 L1 - B B
+g <§pdngT Tp* — 58 'dg + g ' Xy pe18" 0 )g ! (228)
1
= gV A(p)g~" +dgg™"
1 _ * 1 _ — - * * —
+g <5pdg*gT ot — 8 ldg + g7 X, g18 10 — X0 > g (229)
n1(8,0)

nip + pn}L =0,nis aE—gauge change.
We return to the general case:

1 1 .
S*A(p) = dWSTW*T = V*U(p) + pdk k" /p (230)
®  Se

T 1
“Agpg") = gV Wplg™" +dgg”! +gm(g. plgT + VErgidke,eik i/ gpg! (231)

)
=g®Ap)g " +dgg" +gm(g. p)g!



D. Viennot / Journal of Geometry and Physics 133 (2018) 42-70 65

+ VEpgtdiy ik, VaogT — g/pdkk,' o' (232)

1

gn(g.p)g~

mp + ony = g 'Vgpgtdky,gike,giv/g0gt 8o
— Jpdk,k, /o + pg'Vg0E" Kypgrdk, 1\ g0g1g" !
—Jpkodk /p (233)

Since kdk~! = —dkk~" and pg' = g~ '\/gogTv/gpg’ = pg'\/gpg’ =g '\/gpg' we have o0+ pnl = 0,1, is ahi-gauge
change. O

1 — i
s*2 plays the roles of a H'-gauge potential and of a G/H'-connection 1-form. The local and the intermediate expressions
of the connection are related by

\
A(p) = g, " Ump(p))g, ' + dg,g, " + 8,V n(g,. 0)g, " (234)

Conversely we have

R
Ao) = (mp**A)0) (235)
591 defines the curving [19,21-23] of #' as

SBL = a9 — SUA A S € R3(Z(Hs), bi) (236)
Property 4. *Bi(c) € bi

Proof. Since AWWT = dWW we have dAWWT — A A d(WWT) = —dW A dWT. It follows that dAWWT — A AAWWT — A A
WWidh = —dW A dWT. We have then BWWT = 2l A WWTUF + dW A dWT and WWTBLT = —2WWT A U + dW A dWT,
implying that BBWW' + WWTB = 0 = B! € gl(Hs)yw+ C b. O

Remark, for a regular stratum, P! is flat: *B* = 0 (° = dWSWS“ is pure gauge). Under a gauge change of the first kind,
the curving becomes

gsBL — gsBLgf] (237)
and under a gauge change of the second kind, it becomes
HBE =B+ dne — “me A e — [, i (238)

As in Ref. [19,21-23] we can define fake curvatures of &, as being Ft = d*Al — AL A Al — B! € Q2(Xi(Hs), gr)
(AL = tr(XTT5)X;, (X;); being generators of g ) and SFB- = dSABL — SABL A SABL — 5Bl € Q2(Zi(Hs), bi) CABL = PP(sQ), P?
being the projection of B(#s) onto gi(#Hs),). SF" is the fake curvature of 2" with respect to the generator of the dynamics and
SFBL s the fake curvature of 2! with respect to the Sjéqvist-Andersson connection. For the adiabatic case, interpretations of B*
and F* can be found in Ref. [26], the curving is a measure of the “kinematic decoherence” (decoherence induced by variations
in Y{(#s) during the dynamics), and the fake curvature is a measure of the non-adiabaticity of the system entangled with
the ancilla. To understand these quantities in a non-adiabatic context, let ¥ € I'(Xi(Hs), Hs ® H.4) be a local section of a
singular stratum i. We denoteby p = (0, ...,0,p1,...,Pm) € X(n)(m < n = dim#s, p; € |0, 1[) the local coordinates of
o € Y(#s). By a Schmidt decomposition [3] we can write that

3p'(p) € Hs. IA'(P) € Har (D)= V/Pi#'(D) ® x'(P) (239)
i=1

After some algebras, we can show that the curving associated with this section satisfies
m
tris (P(P)B(P)) = ) pi(Fa(p) = As(P) A As(p))i (240)
i=1

with p(p) = 7A(P(P)); Falp) = dA(p) + AAp) A Aulp) € U Z(Hs), Muxm(C)) is the curvature associated with
the Berry potential of the ancilla vectors of the Schmidt decomposition A 4(p); = (Xi(p)ldxj(p))HA. Except non-abelian
corrections, the statistical average of the curving a)p(BL) is essentially the average of the ancilla Berry curvature for the
Schmidt decomposition. Let ¢, 6%, 6¢ € X(#s)be three infinitely close points. Let (6%¢?c¢) be the infinitesimal triangular
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simplex defined by these points. We have
e_ff<aa,,b,,c>FA ~ ZbCanZab (241)

with (Z%); = (xi(p")|x;(p)). Now, if {xi(p*)}i=1...m spans the same subspace that {xi(p®)}i=1....m, then Z% is just a matrix
of basis change inner to this subspace and |det(Z%)| = 1. If the subspace spanned by {xi(p")}i=1....m is different from the
subspace spanned by {xi(p)}i=1....m, then |det(Z®®)| < 1. If follows that det(efff«f”ﬂbff‘f““) is a measure of the change of
subspace in the neighbourhood of the simplex (o%c¢). It follows that F4(p) measures the propensity of the dynamics to
leave the subspace spanned by {xi(p)}i1....m. Finally the curving B'(p) measures the propensity of the dynamics to leave
the subspace spanned by {¢i(p) ® xi(p)}i=1....m- In order to describe the dynamics in the neighbourhood of p (denoted by
the dimension of this subspace will be larger than m. Finally we can understand B'(p) as the measure of the propensity of
the system to leave its initial singular stratum to a less singular stratum. In accordance to this interpretation, B' is zero in
regular strata. With similar arguments F* and FB* measure the propensity of the system to leave S (¥ ) and to leave a regime
involving only phases by invariance.

5.3.2. The connective structure of the right principal categorical bundle
Let the following commutative diagrams:

obj2 —% 5 Morph2 Obj2 «—— Morph2 Obj2 <« Morpho

WHS l l WHS WHS l les WHS l les

Obj. 4 _ Morph.#i  Obj.#' «—— Morph.#'  Obj.#' «——— Morph.

where we consider Obj2' as a K'-principal bundle on Obj.#' and Morph2' as K' x K'-principal bundle on Morph.#'. A
connection on a principal 2-bundle with a base space being a non-trivial category is [40] the data of connections Hy Obj2'
and Hg wyMorph2' compatible in the sense where

id.HwObj2' = Hi1,, , w)Morph2' (242)

t.Hig wyMorph2' = H,yObj2' (243)
(g.W) gl

s«H(g.wyMorph2' = Hy,0bj.2' (244)

the vertical tangent spaces being defined by VyyObj2' = V§ Bi(#s) = {WX, X € €} and V(g wyMorph2' = {(0, WX), X €
£, }. The connections are characterized by connection 1-forms, ol € 21(0bj.#, ¢)and ®, € 21(Morph.#', ¢ 3 ¢)related
by

id*o® = of (245)
s‘wy = 7' (wy) (246)
t*of = the(of) (247)

with ™ (828 =~ € g fitar ¢ Let ¢, € I'(Obj.#',0bj2)) and ¢, € I'(Morph.#!, Morph2') be the

Ya3X - X Y3X — Y4X
trivializing local sections:
o(p) = dlo(p. Tas) = /p (248)
5 (2, ) = ¢o(g, P, Vo as Ta) = (VEPET/D™, /D) (249)
These local sections satisfy:
ideyp) = 6 (idp) = (T34, /) (250)
s(s-(g, p)) = sols(g. ) = VP (251)
t(s—(h, p)) = so(t(g, p)) = Vgrg! (252)
)

The local data of the connection, the gauge potentials AR = ¢fwf € 27(0bj.#', ¥)and A*, = ¢* of € 2'(Morph.z', ¢ 3 ¢
are such that

id*A% (p) = Aj(p) (253)
) = AX(p) (254)
) = Al(gpg") (255)

'A% (g. p

)
tte(A" (g, p)
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These conditions imply that A® (g, p) = AR(p) + AR (g, p) with AR (g, p) € £2'(Morph.#, ¥) such that

AR (135, p) = 0 (256)
A% (g, p) = AS(gpg") — Ag(p) (257)
In order to the horizontal lift of the arrows corresponding to the parallel transport of p induces the geometric phases, we
must have
(0. T3.4) (0. k) gy '/ upgakt
(g‘zl-PJHAJHA)J( M(gm-ﬂquk)l %} l(ggl,gil,/gmpg;}k'?)
T T
(82nga> 13¢.4) (8angq» qk) ZapgikR

+
;. Uhleg s/ ARt

. [
where gy = Te hijp “ is the left geometric phase, kR = 1(@710 'z is the (right) Uhlmann geometric phase, and
(q, k) € Morph.# is the searched horizontal lift:

R g¢/
(@) = T Bl s (258)

— ((_ ~foi gmf (__fo IARdt ) (259)

-1
— ¥, AR dr . . . .
where i f R = <1(T_e Jo gy Jp 4t ) fA’;Te I .7 by virtue of the intermediate representation theorem [41].

We have in the definition of the parallel transport gm,oguk and not gy.,/p kR as for the right connection, because we
want that the target of a parallel transported arrow correspond to an usual parallel transport in the “target bundle”,

i.e. Go(gupgi )kt = \/gupgik®.
By considering the definition of ¢, we find

—fYi AR g ARd -
(N/gmpg;}r_e Wl o4 5, Jppe ot ’) = (ga. 22"/ gupglK") (260)
inducing that
— i, AR ar +
Te 7 8vP™" =/gupgy Suv/P (261)

Te 0 e o2~ 4 _ g8
—
It follows from the last equality that A® (g, p) = AR(gpg!) <= AR (g, p) + AR(p) = AR(gpg). We have clearly AR(p) =

AR(p), the “object” right connection is the Uhlmann connection. From the first equality, we see that the gauge potential of
the “arrow” right connection is such that

(8. p) = d(Verggvp) (Vere gvp) (262)

= dy/gpgt Vgt + Vgt dgg~'Vepgt
1
+/gog! g/ Up)g " Vepg! (263)

1 1
gogt (—f'm(gpg*) + dgg‘lg”%l(p)g‘l) Vepgt (264)

0 1
Vo U(gpgh) =gV uAg +dgg ! + g«[n(g, 0)g ! by virtue of Property 3. It follows that

A (g, p) = —vVgrg' g¥n(g, plg~'Verg! (265)
The connections define the curving [40] of 2! is
Bf = dAR + AR AAR +[AR AR ] € 2% (Morph.4', ¥) (266)
and the fake curvature of 2! is
FR = dAR + AR A AR 4 BR € 2%(Morph./', ¢') (267)

FR(14 1> P)is just the curvature of the Uhlmann connection, it is a measure of the holonomy with respect to the Uhlmann’s
parallelism (relative phase factor [10]) for infinitesimal loops starting from p. The Uhlmann’s curvature is related to the
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Table 5

The different data of the connective structures of 22’ and 2'.
Differential form symb. Side Degree Base space Values Interpretation
Left gauge change of the 1st kind g L 0 TiHs) G Unitary and SLOCC operations on S
Right gauge change k R 0 Di(Hs) K Unobservable reconfigurations of .A
Left gauge change of the 2nd kind Nk L 1 TiHs) bi Unobservable reconfigurations of .A
Left gauge potential A L 1 Ti(Hs) g Generator of the operator valued geometric phase
Potential-connection IQL L 1 Di(Hs) g Generator of the operator valued geometric phase
Right object gauge potential AR R 1 Di(Hs) 4 Generator of the Uhlmann/Sjoqvist geometric phase
Right arrow gauge potential AR R 1 GxDi(Hs) ¢ Unitary and SLOCC operations on S
Left curving B L 2 TiHs) b Measure of the kinematic decoherence
Left fake curvature Ft L 2 TiHs) ar Measure of the transitions outsite S (¥)
Two-sided left fake curvature FBL L 2 TiHs) b Measure of the non-invariance
Right curving BR R 2 Gx Di(Hs) # Correction needed by the arrow structure
Right fake curvature FR R 2 Gx Di(Hs) ¢ Measure of the quantum estimation difficulty
Two-sided right fake curvature FBR R 2 G x Di(Hs) & Measure of the non-invariance

quantum Fisher information matrix [42], and it measures the difficulty to realize an estimation of the mixed state by
measurements in the neighbourhood of p. The curving is just a correction associated with the shift between the two
purifications of gpgT, i.e. g./pand \/gpgt.

We can note that it is possible to choose another “object” right connection as being another Uhlmann like connections. In
particular, we can choose the Sjqvist-Andersson connection by replacing AR by ABR, in this case kR is the Sjéqvist geometric
phase, and the rest of the discussion is totally similar. The fake curvature is then written FB® = dABR 4 ABR A ABR 4 BR
The possibility of changing the “object” right connection follows from the definition of the parallel transport of the arrows

(8o, 8y 1/ g ,ogglkR). If we change the definition of the right geometric phase k® (by passing, for example, from the Uhlmann

to the Sjéqvist geometric phase), the arrows (in Morph2' and Morph.#*) change in consequence, since gy is generated by

iU+ N/ /P . .
Table 5 summarizes the different data of the connective structures.

6. Conclusion

The Lindblad equation describes a quantum system S in contact with a very large environment (a reservoir) R. From a
theoretical point of view, if @ € H s ® Hr is the state of the system plus the reservoir, p = try |®)) (@ | obeys (under some
assumptions [2]) to the Lindblad equation. But in practice, @ is unknown because of the very large number of degrees of
freedom of R (the partial trace models the forgetting of the “informations” concerning R ). The purification process permits
to introduce ¥ € Hs ® H 4 such that p = try, , |¥)) (¥ [, where the ancilla .4 plays the role of a small effective environment.
Another approaches describing open quantum systems by a Schrédinger equation have been proposed [2,43,44] (see also
Appendix). These approaches involve stochastic processes in the Schrédinger equation in order to describe the effects of
the environment onto the quantum system. These frameworks are not adapted for our goal which consists to obtain a
geometrization of the dynamics of open quantum systems, in order to use some methods issuing from the differential
geometry. It is difficult to include random variables in a geometric framework, this induces the use of unsual geometries
(based on stochastic and Ito calculus). Our approach permits to treat the dynamics of open quantum systems with the
usual differential geometric methods. Moreover, with respect to the approaches consisting to model the environment with
a high number of degrees of freedom, we propose a representation using an ancilla with minimal dimension as a kind of
“effective minimal environment”. This is important in practice for the use of the geometric tools on concrete example as for
examples for the control of quantum systems hampered by the effects of the environment as in Ref. [26]. For the numerical
computations of the geometric fields and for the size of the numerical data set to analyse, it is very important in practice
to have a description involving the smallest Hilbert space. The price to pay to have a description in a small Hilbert space,
without stochastic processes, is the nonlinearity of the Schrédinger equation governing ¥. Moreover, in contrast with a
precise description of the microscopic physics of the environment, the dynamics in our approach is still determined by the
quantum jump operators and then by only the effects on the quantum system without knowledge of the environment. This
is the reason of the gauge degree of freedom in the geometric description (the gauge changes interpreted as inobservable
reconfigurations of the ancilla). Our approach can be then applied in situations where the physics of the environment is badly
known and where the parameters of the Lindblad equation (jump rates, jump operators) are phenomenologically obtained
from an experimental analysis.

The purified dynamics presented in this paper can permit to study the dynamics of open quantum systems submitted to
relaxation processes, with the tools used for pure states. In particular we have shown how the geometric phases appear in
this context, unifying some concepts previously introduced by different authors. The geometric structure involved by the
purification and the geometric phases, is richer than the case of the pure states, and needs the use of the category theory. We
hope that these facts can help to understand dynamics of open quantum systems and enlighten the position of the density
matrix theory in the landscape of the geometric and gauge structures in theoretical physics.
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In this paper, we have restricted our attention onto quantum systems described by finite dimensional Hilbert spaces. The
extension of this work to infinite dimensional Hilbert spaces is an interesting question but it needs to treat some difficulties.
Firstly, the various manifolds considered in this paper become infinite dimensional in that case. This involves the use of very
special geometric methods with some topological cautions (for example the use of direct limits on chains of submanifolds
with increasing dimension such that the union is the infinite dimensional manifold). Secondly, if the Hilbert space becomes
infinite dimensional, the mixed states are not necessarily represented by a density operator. It is the case only if the relevant
space of system observables is a von Neumann algebra. If it is just a C*-algebra a, the mixed states are only defined as linear
functionals of a such that VA € a, w(ATA) > 0 and ||| = 1 (Yo, 3p such that w(A) = tr(pA) if and only if the Hilbert space
is finite dimensional or if a is a von Neumann algebra) [31]. In the two cases, the study of the Lindblad equation must be
replaced by the study of transformation semigroups onto C* or von Neumann algebras. This needs a generalization of the
purification procedure in this context with anew some topological cautions.

The role of the category theory in quantum physics is an intriguing question, and it could be interesting to study the
relations of the structure presented in this paper with the categorical structures proposed in other quantum problems
[45-47]. Moreover, it will be interesting in future works to generalize the holonomic quantum computation approach
[27-30] to open quantum systems by using the description based on the categorical bundles.
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Appendix. Comparison with other Schrodinger equations associated with the open quantum systems

We have shown that the purified state obeys on the regular strata to the nonlinear Schrédinger equation:
. 1
¥, = HY @ 15, ¥, + 57/"1} LI, W, cHs®Ha (A1)

with Hf = Hg — %FkTFk. Ref. [6] studies a nonlinear Schrédinger equation for the pure evolution closest to the Lindblad
evolution in the sense that it is viewed has the dynamics of some tangent vectors of Dy(#.s). This equation is the following:

thyy = (HT — (HT) ) 3 + iy (0 g (T — (D) ¥ € Hs (A2)

where (0),, = (¥ |O|y) (VO € B(Hs)). Except the shift of the operators by their average values, the structure of this equation
is similar to Eq. (A.1). In fact, suppose that during a short time the dynamics remains on the singular stratum of the pure
states: p = [y)(y], in that case W), = [¢) (Y| and W] = |y} (| (with ¥o = y(t = 0)). The Eq. (43) becomes then

i @y = (HTy + 2y iy ) @ v (A3)

which is very close to Eq. (A.2) (except the shift of the operators and a % factor).

The deterministic part of the Liouville equation for a piecewise deterministic process is (see Ref. [2] chapter 6.1) 1hyy =
H 5y’<||1“,4//||2¢. Since ||T]?> = (F,f I}y, it is very close to our equation for a dynamics remaining on the pure
state stratum. This is valid only between two quantum jumps; in a same manner equation (A.3) could be approximatively
valid only during a short time until the quantum jumps described by the operator %y"(l“,j)wfk tend to leave the pure state
stratum. To describe quantum jumps we add a stochastic process (see Ref. [2,43]): ¥ € Hs

I
ihdy = HY ydt + iyk<r,jrk>wdt + 1dN¥ ( ko 1HS> v (A4)
2 | el
1 .
orihdy = H ydt + %yk ((r,j + D)y T — Z<F’<T + Fk>2¢> Ydt

+1y/ykdw) (rk —~ %<FJ + Fm) W (A5)

where dN[" is a Poisson process and th" is @ Wiener process. The first equation is the representation as a piecewise
deterministic process and the second one is called quantum state diffusion process. The density matrix is then p =
E (|¢){¥|) where E is the expectation value with respect to the stochastic process.

Ref. [48] proposes a Schrédinger equation following the dynamics induced by the Lindblad equation:

Y, =HT @ 1,1, — 13 @ HOW T, + *n@ 'Y, 7, e Hs @ Ha (A6)

(the operators of # s being transformed into operators of #_4 by the non canonical isomorphism 0% ) (¢?| 0%g1&4) (€8]
((£q)a and (&), being the two chosen fixed basis of Hs and # 4)). Eq. (A.6) is linear, but it is not an equation for the
purification, since in this case Y, = p%;¢, ® £” and then try, , |1),) (1,,| # p. In fact, if we choose the H 4 = Hs*, Eq. (A.6)
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Table A.6

Properties of the Schrédinger equations associated with an open quantum system.
Schrédinger equation Generator of the quantum jumps Nature dim. Relation with the density matrix
Hilbert-Schmidt representation wkn ® 1",:" “superlinear”™ n? p=I7,)
Purification %kuk ® Fki(llfp) Nonlinear n? p = try o W) (Pl
Closest pure evolution ly"(l",f)v,l“k Nonlinear n tr(8p — 8|y) (v |)? is minimum [6]
Piecewise deterministic process dNk (Hl“:ﬁ -1y s) Nonlinear stochastic n o =E(|¥){¥])
Quantum state diffusion l«/deWtk(Fk - %(Fk + 1",:)1,,) Nonlinear stochastic n p =E(¥)(¥])

2 An operator on the Hilbert-Schmidt space of operators is called superlinear in the physics literature.

is precisely the Lindblad equation in the Hilbert-Schmidt representation (in the Liouville space), |T,,)) = p%¢a) ® (b =p
(Eq. (A.6) is then just a reformulation of the “superoperator” formalism).

The comparisons between the different Schrédinger equations associated with an open quantum system are summarized
Table A.6.
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