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a b s t r a c t

Agauge theory is associatedwith a principal bundle endowedwith a connection permitting
to define horizontal lifts of paths. The horizontal lifts of surfaces cannot be defined into a
principal bundle structure. An higher gauge theory is an attempt to generalize the bundle
structure in order to describe horizontal lifts of surfaces. A such attempt is particularly
difficult for the non-abelian case. Some structures have been proposed to realize this goal
(twisted bundle, gerbes with connection, bundle gerbe, 2-bundle). Each of them uses a
category in place of the total space manifold of the usual principal bundle structure. Some
of them replace also the structure group by a category (more precisely a Lie crossedmodule
viewed as a category). But the base space remains still a simple manifold (possibly viewed
as a trivial category with only identity arrows). We propose a new principal categorical
bundle structure, with a Lie crossed module as structure groupoid, but with a base space
belonging to a bigger class of categories (which includes non-trivial categories), that we
called affine 2-spaces. We study the geometric structure of the categorical bundles built
on these categories (which are a more complicated structure than the 2-bundles) and
the connective structures on these bundles. Finally we treat an example interesting for
quantum dynamics which is associated with the Bloch wave operator theory.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The geometry of the principal bundles plays an important role in theoretical physics. It is the natural framework to
model the fundamental interactions between point particles in classical field theory, and is the startpoint for the quantum
field theory [1]. Moreover in nonrelativistic quantumphysics, the geometric (Berry) phase phenomenon [2] is closely related
to this geometry. A principal bundle naturally arises to treat cyclic quantum dynamics [3] or adiabatic quantum dynamics
driven by classical parameters [4–7]. These physical problems are associated with the holonomies or the horizontal lifts of
paths drawn on the base manifold of the principal bundle.

The horizontal lifts of surfaces cannot be defined within the framework of the principal bundles. The interest for the
horizontal lifts of surfaces arises from the development of the string and brane theories, in which the string and brane gauge
theory is associatedwith holonomies of surfaces [8–12]. Recently, we have shown that the geometric phases associatedwith
quantum systems submitted to some decoherence processes take place in higher gauge theories associated with horizontal
lifts of surfaces [13–15].

Geometric realizations of the abelian higher gauge theories are well understood, as gerbes with connection [16], bundle
gerbes [17] or twisted bundles [18]. For the non-abelian higher gauge theories, some generalizations of these geometric re-
alizations have been proposed: non-abelian gerbeswith connection [19,20], non-abelian bundle gerbes [21,22], non-abelian
twisted bundles [22] and parallel transport over path spaces [23–25]. We can also cite the higher gauge structure arising
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in the study of the principal composite bundles [26]. In these approaches, the total space of the geometric structure is not
a smooth manifold as in the usual gauge theory but a category. For some of these approaches, the structure group is also
replaced by a structure which can be viewed as a category (as for example an extension of Lie groups). Another interesting
approach of non-abelian higher gauge theories has been proposed by Baez et al. and Wockel, the 2-bundles [27–31]. In this
approach, the structure group is replaced by a Lie crossed module. The different approaches seem to be equivalent [32].
The strategy followed by Baez et al. to define the 2-bundles is very interesting since it is based on the idea consisting to
substitute at each smooth manifold a geometric category called a 2-space. Unfortunately this goal seems unachieved since
in the 2-bundle theory the base space is restricted to the trivial 2-spaces (i.e. an usual manifoldM considered as a category
M with Obj(M) = M and Morph(M) = {idx}x∈M ). The reason of this restriction is the difficulty to define a ‘‘2-cover’’ of a
2-space. Indeed the definition of the union of two open sub-2-spaces is not clear since it needs to know how to compose
an arrow in one 2-space with an arrow in another one. The trivial 2-spaces are very poor categories since they have only
identity arrows.

In this paper, inspirited by the 2-bundle theory, we propose a new theory of categorical bundles with a bigger class of
2-spaces thatwe call the affine 2-spaces. It includes the trivial 2-spaces but also categorieswith non-trivial arrows.Moreover
the union of two affine open sub-2-spaces is clearly defined. The affine 2-spaces are introduced in the next section. Section 3
introduces the 2-bundles over affine 2-spaces and explores their algebraic and geometric properties. In particular we show
that the structure is very more rich than the usual 2-bundle theory, since a new kind of 1-transition functions appears.
2-bundles over affine 2-spaces are endowed with connective structures in Section 4, and the horizontal lifts are considered
in Section 5. Finally Section 6 presents a simple physical example based on the use of the Bloch wave operators and their
generalizations in quantum dynamics.

A note about the notations used here: let A be a category, Obj(A) denotes its set of objects,Morph(A) denotes its set of arrows
(so called morphisms), s : Morph(A) → Obj(A) denotes its source map, t : Morph(A) → Obj(A) denotes its target map,
◦ : Morph(A)×s=t Morph(A) → Morph(A) denotes the composition of the arrows and id : Obj(A) → Morph(A) denotes its
identity map. Let G be a Lie group, eG denotes its neutral element, Aut(G) denotes its group of automorphisms and Der(g) denotes
the algebra of the derivations of its Lie algebra g. Let M be a differential manifold, GM denotes the set of C∞ functions from M to
G, TM denotes the tangent space of M andΩn(M, X) denotes the set of X valued differential n-forms of M. Let P be a principal
bundle over M, HP denotes the horizontal tangent space of P, VP denotes the vertical tangent space of P and Γ (M, P) denotes
the set of the sections from M to P.

2. Affine 2-spaces

Definition 1 (2-Space). A smooth 2-space is a categoryM such that Obj(M) andMorph(M) are smoothmanifolds, and such
that s, t : Morph(M)→ Obj(M), id : Obj(M)→ Morph(M) and ◦ : Morph(M)s×t Morph(M)→ Morph(M) are smooth
maps.

Definition 2 (Affine Space). An affine space is defined by three kinds of data (M, E, ϕ) where M is a manifold, E is a vector
space and ϕ : M2

→ E is an application such that

i. ∀x ∈ M , ϕ(x, x) =
−→
0 .

ii. ∀x, y, z ∈ M , ϕ(x, y)+ ϕ(y, z) = ϕ(x, z).
iii. ∀x ∈ M,∀−→u ∈ E, ∃!y ∈ M such that ϕ(x, y) = −→u .

An affine space is generally the consideration of a flat manifold where we identify each of their tangent spaces with the set
of bipoints. We want to extend this notion to more general situations.

Definition 3 (Affine 2-Space). We call affine 2-space the three kinds of data (M,R, ϕ) where the category M is a 2-space,
R is a reflexive and symmetric relation on Obj(M) (if xRy we say that x and y are linkable) and ϕ :


n∈N∗ Obj(M)n/R →

Morph(M) is a surjective map where

Obj(M)n/R = {(xn, . . . , x1) ∈ Obj(M)n|∀i < n, xi+1Rxi}.

An affine 2-space is such that

0. ∀(y, . . . , x) ∈ Obj(M)n/R , s(ϕ(y, . . . , x)) = x and t(ϕ(y, . . . , x)) = y.
i. ∀x ∈ Obj(M), ϕ(x) = idx and ∀(..., x, x, . . .) ∈ Obj(M)n/R , ϕ(..., x, x, . . .) = ϕ(..., x, . . .).
ii. ∀(y, . . . , x) ∈ Obj(M)n/R , ∀(z, . . . , y) ∈ Obj(M)

p
/R , ϕ(z, . . . , y) ◦ ϕ(y, . . . , x) = ϕ(z, . . . , y, . . . , x).

iii. ∀x ∈ Obj(M), ∀f ∈ Morph(M)with s(f ) = x, ∃n ∈ N∗, ∃(z, . . . , x) ∈ Obj(M)n/R such that ϕ(z, . . . , x) = f . Moreover, if
n0 = min{n ∈ N∗|∃(z, . . . , x) ∈ Obj(M)n/R such that ϕ(z, . . . , x) = f } then there exists only one (z, . . . , x) ∈ Obj(M)

n0
/R

such that ϕ(z, . . . , x) = f .

The assumptions i., ii. and iii. are weaker versions of the corresponding assumptions in the definition of an affine space. If
∀x, y ∈ Obj(M)we have xRywe say that M is totally linkable.

There are three important kinds of affine 2-space.
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Definition 4 (Euclidean Affine 2-Space). An affine 2-space is said euclidean if R is transitive (R is then an equivalence
relation) and if

∀(y, . . . , x) ∈ Obj(M)n/R, ϕ(y, . . . , x) = ϕ(y, x).

In the euclidean affine 2-space, the Chasles relation takes the same form than in the affine spaces

∀(x, y, z) ∈ Obj(M)3/R, ϕ(z, y) ◦ ϕ(y, x) = ϕ(z, x). (1)

Moreover there is a bijection between Morph(M) and Obj(M)2/R .

Definition 5 (Spherical Affine 2-Space). An affine 2-space is said spherical if xRy⇒ x = y.

In a spherical affine 2-space the set of the arrows is reduced to Morph(M) = {idx, x ∈ Obj(M)} (a spherical affine 2-space
is generally called a trivial 2-space).

Definition 6 (Hyperbolic Affine 2-space). An affine 2-space is said hyperbolic if ∀n ∈ N∗, Obj(M)n/R ≠ ∅ and
∀(y1, . . . , x1), (y2, . . . , x2) ∈


n Obj(M)n/R , ϕ(y1, . . . , x1) = ϕ(y2, . . . , x2) ⇒ (y1, . . . , x1) ∼ (y2, . . . , x2) where ∼

signifies that the two sequences are equal modulo consecutive repetitions ((..., x, x, . . .) ∼ (..., x, . . .)).

In a hyperbolic affine 2-space, there is a bijection between the set of the arrows and the set of the sorted collections of
linkable objects without consecutive repetitions. We restrict our attention on these three cases.

We note that an affine space (M, E, ϕ) can be viewed as a totally linkable euclidean affine 2-space M with Obj(M) = M
andMorph(M) = M×E with s(x,−→u ) = x, t(x,−→u ) = y such thatϕ(x, y) = −→u , idx = (x,

−→
0 ) and (ϕ(x,−→u ),−→v )◦(x,−→u ) =

(x,−→u +−→v ).
The justification of the adjectives euclidean, spherical and hyperbolic is the following. Let Obj(M) be R2, the sphere S2

or the Poincaré hyperbolic plane. Let (D) be a geodesic of Obj(M) and R be such that xRy if and only if the geodesic joining
x and y is parallel and not confused to (D). Let Morph(M) be the set of the oriented piecewise geodesic paths with edges
parallel and not confused to (D). The affine 2-space M is then:

• euclidean if Obj(M) is the plane (since it exists only one geodesic parallel to (D) and passing through a point x ∉ (D));
• spherical if Obj(M) is the sphere (since it does not exit a geodesic parallel to (D) and passing through a point x ∉ (D));
• hyperbolic if Obj(M) is the Poincaré plane (since it exists an infinity of geodesics parallel to (D) and passing through a

point x ∉ (D)).

Property 1. An arrow f ∈ Morph(M) of an affine 2-space has ϕ(s(f ), t(f )) as inverse if M is euclidean, whereas if M is
hyperbolic then f is not invertible except if it is an identity arrow.

Proof. By definition for a euclidean affine 2-space, we have f = ϕ(t(f ), s(f )) and then f ◦ ϕ(s(f ), t(f )) = ϕ(t(f ), s(f )) ◦
ϕ(s(f ), t(f )) = ϕ(t(f ), t(f )) = idt(f ) and ϕ(s(f ), t(f )) ◦ f = ϕ(s(f ), t(f )) ◦ ϕ(t(f ), s(f )) = ϕ(s(f ), s(f )) = ids(f ).

For a hyperbolic affine 2-space, let f be an invertible arrow and f −1 be its inverse. There exists (y, a, . . . , b, x), (x, c, . . . ,
d, y) such that ϕ(y, a, . . . , b, x) = f and ϕ(x, c, . . . , d, y) = f −1. We have then ϕ(y, a, . . . , b, x) ◦ ϕ(x, c, . . . , d, y) =
ϕ(y, a, . . . , b, x, c, . . . , d, y) = ϕ(y). We have then (y, a, . . . , b, x, c, . . . , d, y) ∼ y and then y = x = a = · · · = b = c =
· · · = d. �

In order to enlighten the notation, the arrow ϕ(y, . . . , x) ∈ Morph(M) of an affine 2-space will be denoted by←−−y...x. We
have then idx =

←−x and←−−z...y ◦←−−y...x =←−−−−z...y...x.
Let M be an affine 2-space, the category U such that Obj(U) is an open submanifold of Obj(M) and Morph(U) =

ϕ


n∈N∗ Obj(U)
n
/R


is called an open affine sub-2-space. By contrast with the generic 2-spaces, it is possible to define

easily the union and the intersection of two open affine sub-2-spaces. Let U1 and U2 two open affine sub-2-spaces of M.
U1
∩U2 and U1

∪U2 are open affine sub-2-spaces defined by

Obj(U1
∩U2) = Obj(U1) ∩ Obj(U2) Obj(U1

∪U2) = Obj(U1) ∪ Obj(U2)

Morph(U1
∩U2) = ϕ


n∈N∗

(Obj(U1) ∩ Obj(U2))n/R



Morph(U1
∪U2) = ϕ


n∈N∗

(Obj(U1) ∪ Obj(U2))n/R


.

We can note that Morph(U1) ∪Morph(U2) ( Morph(U1
∪U2). The composition of arrows belonging to two open affine

sub-2-spaces is defined as follows:
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Let f ∈ Morph(U1) and g ∈ Morph(U2)with s(g) = t(f ) = y ∈ Obj(U1) ∩ Obj(U2), g ◦ f = ϕ(z, . . . , y, . . . , x)where
(y, . . . , x) and (z, . . . , y) are the smaller collections of objects of U1 and U2 such that ϕ(y, . . . , x) = f and ϕ(z, . . . , y) = g .
We can then define a good open 2-cover of an affine 2-space M as being a set of open affine sub-2-spaces {Ui

}i such that
{Obj(Ui)}i is a good open cover of Obj(M) (a set of contractible open sets such that


i Obj(U

i) = Obj(M)). An element Ui

will be called a 2-chart.
In order to enlighten the notation we will simply denote by M = Obj(M) the manifold of objects of an affine 2-space,

and by {U i
}i its good open cover.

Example. Let (M,G, ·) be a G-space, where M is manifold, G is a Lie group and · is an action of G on M . The G-space can be
viewed as an Euclidean affine space (M,R, ϕ) with ObjM = M and MorphM = {(gGx, x), x ∈ M, gGx ∈ G/Gx} (where
Gx = {g ∈ G, g · x = x} is the stabilizer of x). The identity, source and target maps are defined by idx = (Gx, x), s(gGx, x) = x
and t(gGx, x) = g · x, the arrow composition being (hGg·x, g · x) ◦ (gGx, x) = (hgGx, x). x and y are linkable if and only if they
belong to the same orbit, i.e. xRy ⇐⇒ x ∈ G · y. ϕ(y, x) = (gGx, x) with y such that y = g · x. Remark: an open affine
sub-2-space of M is not a G-space, since MorphU = {(gGx, x); x ∈ ObjU, gGx ∈ G/Gx such that g · x ∈ ObjU}.

3. Categorical principal bundles over affine 2-spaces

Definition 7 (Lie Crossed Module). A Lie crossedmodule G is the four kinds of data (G,H, t, α)where G andH are Lie groups,
t : H → G and α : G→ AutH are homomorphisms such that t is equivariant:

∀g ∈ G,∀h ∈ H t(αg(h)) = gt(h)g−1

and satisfies the Peiffer identity:

∀h, h′ ∈ H αt(h)(h′) = hh′h−1.

Proposition 1 (A Lie Crossed Module as a Category). A Lie crossed module is equivalent to a groupoid with Obj(G) = G and
Morph(G) = H o G where the semidirect product (called horizontal composition of arrows) is defined by

(h, g)(h′, g ′) = (hαg(h′), gg ′)

the identity, source and target maps are defined by

idg = (eH , g) s(h, g) = g t(h, g) = t(h)g

and the usual arrow composition (called vertical composition of arrows) is defined by

(h′, t(h)g) ◦ (h, g) = (h′h, g).

The Lie crossed modules are the categorical versions of the Lie groups.

Definition 8 (Principal 2-Bundle Over an Affine 2-Space). Let M be an affine 2-space endowed with a 2-cover {Ui
}i and G be

a Lie crossed module. A principal 2-bundle over M with structure groupoid G consists to a category P and a full functor
π ∈ Funct(P ,M) surjective on the objects such that:

• ∀i, the categories Ui
× G and π−1(Ui) are naturally equivalent. We denote by φi

: Ui
× G→ π−1(Ui) the equivalence

(called local trivialization) and by φ̄i
: π−1(Ui)→ Ui

× G its weak inverse.
• The functors Pr1 φ̄i and π restricted on π−1(Ui) are equals.
• The fibration is compatible with the transitive right action of G on itself, i.e. ∀x ∈ U i, ∀g, g ′ ∈ G

φ̄iφi(x, g)g ′ = φ̄iφi(x, gg ′) (2)

where (x, g)g ′ = (x, gg ′).

We denote by κ i
: Obj(Ui

× G) → Morph(Ui
× G) the natural equivalence between idUi×G and φ̄iφi, and by κ̄ i

:

Obj(π−1(Ui))→ Morph(π−1(Ui)) the natural equivalence between idπ−1(Ui) and φ
iφ̄i:

∀(x, g) ∈ U i
× G, s(κ i

xg) = (x, g) t(κ i
xg) = φ̄

iφi(x, g) (3)

∀
←−−y...x ∈ Morph(Ui),∀h ∈ H,∀g ∈ G,

κ i
yt(h)g ◦ (

←−−y...x, h, g) = φ̄iφi(
←−−y...x, h, g) ◦ κ i

xg (4)

∀p ∈ Obj(P ), s(κ̄ i
p) = p t(κ̄ i

p) = φ
iφ̄i(p) (5)

∀f ∈ Morph(P ), κ̄ i
t(f ) ◦ f = φ

iφ̄i(f ) ◦ κ̄ i
s(f ). (6)
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Property 2. There exists ki ∈ HU i such that:
∀(x, g) ∈ U i

× G

φ̄iφi(x, g) = (x, t(ki(x))g) (7)

∀
←−−y...x ∈ Morph(Ui),∀(h, g) ∈ H o G

φ̄iφi(
←−−y...x, h, g) = (←−−y...x, ki(y)hki(x)−1, t(ki(x))g) (8)

∀p ∈ π−1(U i)

t(κ̄ i
p) = φ

i(x, t(ki(x))gp) (9)

with p = φi(x, gp).

Proof. Since s(κ i
xg) = (x, g), ∃k̊ixg ∈ H and ∃(xn, . . . , x1, x) such that κ i

xg = (
←−−xn...x, k̊ixg , g). Since t(κ i

xg) = φ̄iφi(x, g),
we have xn = x and t(k̊ixg)g = g i

x with φ̄iφi(x, g) = (x, g i
x). Let ki(x) = k̊ixeG . By definition of a 2-bundle we have

φ̄iφi(x, g) = φ̄iφi(x, eG)g ⇒ (x, t(k̊ixg)g) = (x, t(ki(x))g) and then ∀g ∈ G, k̊ixg = ki(x) (modulo an ignored element of
ker(t) without consistent role because it is killed by the target map). We have then g i

x = t(ki(x))g . This proves the first
equality.

IfM is euclidean, then←−−x...x =←−x . IfM is spherical,←−x is the only one arrowwith source equal to x (andwith target equal
to x). κ i is a natural equivalence, then κ i

xg must be invertible.←−−x...x must be then invertible, now the only invertible arrows
of a hyperbolic affine 2-space are the identities, then←−−x...x =←−x also if M is hyperbolic.

Let h ∈ H and←−−y...x ∈ Morph(Ui). Let hi
y...x ∈ H be such that φ̄iφi(

←−−y...x, h, g) = (←−−y...x, hi
y...x, g

i
x). From Eq. (4) we have

(
←−y , ki(y), t(h)g) ◦ (←−−y...x, h, g) = (←−−y...x, hi

y...x, g
i
x) ◦ (
←−x , ki(x), g) (10)

and then

(
←−−y...x, ki(y)h, g) = (←−−y...x, hi

y...xk
i(x), g). (11)

We conclude that hi
y...x = ki(y)hki(x)−1. This proves the second equality.

By definition t(κ̄ i
p) = φ

iφ̄i(p) = φiφ̄iφi(x, gp). The third equality comes from φ̄iφi(x, gp) = (x, t(ki(x))gp). �

The natural equivalence is then κ i
xg = (

←−x , ki(x), g).

Proposition 2 (Right Actions on a Principal 2-Bundle). There is two right actions R, R̄ : H oG→ Funct(P ,P ) of the Lie crossed
module on a principal 2-Bundle defined by:
∀p ∈ Obj(P ) with p = φi(x, gp)

R(h, g)p = φi(x, gpt(h)g) (12)

∀f ∈ Morph(P ) with f = φi(
←−−y...x, hf , gf )

R(h, g)f = φi(
←−−y...x, hf , gf t(h)g) (13)

∀p ∈ Obj(P ) with φ̄i(p) = (x, ḡp)

φ̄iR̄(h, g)p = (x, ḡpt(h)g) (14)

∀f ∈ Morph(P ) with φ̄i(f ) = (←−−y...x, h̄f , ḡf )

φ̄iR̄(h, g)f = (←−−y...x, h̄f , ḡf t(h)g). (15)

Equivalently, R and R̄ are defined by the following commutative diagrams:

Ui
× G

φi

−−−−→ π−1(Ui)

·t(h,g)

 R(h,g)

Ui
× G

φi

−−−−→ π−1(Ui)

Ui
× G

φ̄i

←−−−− π−1(Ui)

·t(h,g)

 R̄(h,g)

Ui
× G

φ̄i

←−−−− π−1(Ui)
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Property 3. ∀(h, g) ∈ H o G, R̄(αg−1(h
−1), g−1)R(h, g) is naturally equivalent to idP . Let ρ(h, g) : Obj(P )→ Morph(P ) be

the associated natural equivalence. ∀p ∈ Obj(P ), s(ρp(h, g)) = p and φ̄it(ρp(h, g)) = (x, t(ki(x))gp) with p = φi(x, gp).
∀(h, g) ∈ H o G, R(h, g)R̄(αg−1(h

−1), g−1) is naturally equivalent to idP . Let ρ̄(h, g) : Obj(P ) → Morph(P ) be the
associated natural equivalence. ∀p ∈ Obj(P ), s(ρ̄p(h, g)) = φi(x, t(ki(x))ḡp) with φ̄i(p) = (x, ḡp) and t(ρ̄p(h, g)) = p.

Proof. The natural equivalences follow from the following diagram:

Ui
× G

φi
−−−−→
←−−−−−

φ̄i
π−1(Ui)

·t(αg−1(h
−1), g−1) ↑↓ ·t(h, g) R(h, g) ↓↑ R̄(αg−1(h

−1), g−1)

Ui
× G

φi
−−−−→
←−−−−−

φ̄i
π−1(Ui)

where each double arrow is naturally equivalent to an identity.
By definition,

t(ρp(h, g)) = R̄(αg−1(h
−1), g−1)R(h, g)p = R̄(αg−1(h

−1), g−1)φi(x, gpt(h)g)

with p = φi(x, gp). We have then φ̄it(ρp(h, g)) = φ̄iR̄(αg−1(h
−1), g−1)φi(x, gpt(h)g). Since φ̄iφi(x, gpt(h)g) =

(x, t(ki(x))gpt(h)g)we have

φ̄it(ρp(h, g)) = (x, t(ki(x))gpt(h)gg−1t(h−1)).

By definition, s(ρ̄p(h, g)) = R(h, g)R̄(αg−1(h
−1), g−1)p. Since

φ̄iR̄(αg−1(h
−1), g−1)p = (x, ḡpg−1t(h−1))

with φ̄i(p) = (x, ḡp), we have

φiφ̄iR̄(αg−1(h
−1), g−1)p = t(κ̄ i

φi(x,ḡpg−1t(h−1))
) = φi(x, t(ki(x))ḡpg−1t(h−1)).

And by definition of R, we have

R(h, g)R̄(αg−1(h
−1), g−1)p = φi(x, t(ki(x))ḡpg−1t(h−1)t(h)g). �

Definition 9 (G-Transition Functions).Wedefine theG-transition functions of a principal 2-bundle as being g ij
∈ GU i∩U j such

that ∀x ∈ U i
∩ U j, ∀g ∈ G

φ̄iφj(x, g) = (x, g ij(x)g). (16)

Property 4. The G-transition functions satisfy

g ii(x) = t(ki(x)) g ji(x) = t(kj(x))g ij(x)−1t(ki(x)). (17)

Proof. (x, g ii(x)) = φ̄iφi(x, eG) = (x, t(ki(x))).

φ̄iφjφ̄jφi(x, eG) = φ̄iφj(x, g ji(x)) = (x, g ij(x)g ji(x)).

But we have also

φ̄iφjφ̄jφi(x, eG) = φ̄it(κ̄ j
p)

with p = φi(x, eG). Moreover t(κ̄ j
p) = φ

j(x, t(kj(x))gp)with p = φj(x, gp).

φi(x, eG) = φj(x, gp)⇒ φ̄iφi(x, eG) = φ̄iφj(x, gp)

and then

(x, t(ki(x))) = (x, g ij(x)gp)⇒ gp = g ij(x)−1t(ki(x)).

Finally

φ̄iφjφ̄jφi(x, eG) = φ̄iφj(x, t(kj(x))g ij(x)−1t(ki(x)))
= (x, g ij(x)t(kj(x))g ij(x)−1t(ki(x))).

We conclude that g ji(x) = t(kj(x))g ij(x)−1t(ki(x)). �
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Definition 10 (H-Transition Functions).We define the H-transition functions of a principal 2-bundle as being hij
∈ H(U i∩U j)2

such that ∀←−−y...x ∈ Morph(Ui
∩Uj), ∀(h, g) ∈ H o G

φ̄iφj(
←−−y...x, h, g) =

←−−y...x, (hij(y, x), g ij(x))(h, g)


(18)

= (
←−−y...x, hij(y, x)αg ij(x)(h), g

ij(x)g). (19)

The fact that hij(
←−−y...x) depends only from the source and the target of←−−y...x (even if the affine 2-space is hyperbolic) is a

consequence of the following property:

Property 5. The G-transition functions and the H-transition functions are related by ∀x, y ∈ U i
∩ U j such that ∃←−−y...x ∈

Morph(Ui
∩Uj),

t(hij(y, x))g ij(x) = g ij(y). (20)

Proof. We have t(φ̄iφj(
←−−y...x, eH , eG)) = φ̄iφj(y, eG) = (y, g ij(y)). But we have also t(φ̄iφj(

←−−y...x, eH , eG)) =
t(←−−y...x, hij(y, x), g ij(x)) = (y, t(hij(y, x))g ij(x)). �

In fact, we could have hij(
←−−−−yzn...z1x) = hij(y, x)ζ ij(zn, . . . , z1) with ζ ij

∈ ker(t). Since ζ ij presents no consistent
information (because it is killed by the target map), for the sake of simplicity we consider that ζ ij

= eH . For the same
reason we consider that hij(x, x) = eH , the H-transition functions are then trivial if the affine 2-space is spheric.

Property 6. The H-transition functions satisfy

hii(y, x) = ki(y)ki(x)−1 (21)

hji(y, x) = kj(y)αg ij(x)−1(h
ij(y, x)−1ki(y)ki(x)−1)kj(x)−1. (22)

Proof.

(
←−−y...x, hii(y, x), g ii(x)) = φ̄iφi(

←−−y...x, eH , eG) = (x, ki(y)ki(x)−1, t(ki(x))).

We have

φ̄iφjφ̄jφi(
←−−y...x, eH , eG) = (

←−−y...x, hij(y, x)αg ij(x)(h
ji(y, x)), g ij(x)g ji(x)).

Moreover we have

φ̄iφjφ̄jφi(
←−−y...x, eH , eG) = φ̄iφjφ̄j(f )

with f = φi(
←−−y...x, eH , eG). But we have

φ̄iφjφ̄j(f ) = φ̄i(κ̄ j
q ◦ f ◦ κ̄

j−1
p )

with p = φi(x, eG) and q = φi(y, eG).

φ̄i(κ̄ j
q ◦ f ◦ κ̄

j−1
p ) = φ̄iφj(

←−−y...x, kj(y)hpkj(x)−1, t(kj(x))gp)

with f = φj(
←−−y....x, hp, gp).

φi(
←−−y...x, eH , eG) = φj(

←−−y...x, hp, gp)⇒ φ̄iφi(
←−−y...x, eH , eG) = φ̄iφj(

←−−y...x, hp, gp)

and then

(
←−−y...x, ki(y)ki(x)−1, t(ki(x))) = (←−−y...x, hij(y, x)αg ij(x)(hp), g ij(x)gp).

It follows that hp = αg ij(x)−1(h
ij(y, x)−1ki(y)ki(x)−1). Finally we can identify hij(y, x)αg ij(x)(h

ji(y, x))with hij(y, x)αg ij(x)(k
j(y)

hpkj(x)−1):

hij(y, x)αg ij(x)(h
ji(y, x)) = hij(y, x)αg ij(x)(k

j(y)αg ij(x)−1(h
ij(y, x)−1ki(y)ki(x)−1)kj(x)−1). �

Property 7. We consider the sub-2-bundle π−1(Ui
∩Uj
∩Uk) at the intersection of three2-charts. The functors φ̄iφjφ̄jφk and

φ̄iφk (restricted on Ui
∩Uj
∩Uk) are naturally equivalents.



414 D. Viennot / Journal of Geometry and Physics 110 (2016) 407–435

Proof. This follows from the following commutative diagram:

Uijk
× G

φk

−−−−→ π−1(Uijk)
φjφ̄j

−−−−→ π−1(Uijk)
φ̄i

−−−−→ Uijk
× G κ i

↑κ̄ i 
Uijk
× G −−−−→

φk
π−1(Uijk) −−−−−→

id
π−1(Uj)

π−1(Uijk) −−−−→
φ̄i

Uijk
× G

where Uijk
= Ui

∩Uj
∩Uk. �

Let h̆ijk
: Obj(Ui

∩Uj
∩Uk

× G)→ Morph(Ui
∩Uj
∩Uk

× G) be the associated natural equivalence:

s(h̆ijk
xg) = φ̄

iφjφ̄jφk(x, g) = (x, g ij(x)g jk(x)g) (23)

t(h̆ijk
xg) = φ̄

iφk(x, g) = (x, g ik(x)g) (24)

h̆ijk
yt(h)g ◦ φ̄

iφjφ̄jφk(
←−−y...x, h, g) = φ̄iφk(

←−−y...x, h, g) ◦ h̆ijk
xg . (25)

Let hijk(x) ∈ H be such that

h̆ijk
xeG = (

←−x , hijk(x), g ij(x)g jk(x)). (26)

Since t(h̆ijk
xeG) = (x, g

ik(x))we have g ik(x) = t(hijk(x))g ij(x)g jk(x).

Definition 11 (2-transition Functions).We define the 2-transition functions of a principal 2-bundle as being hijk
∈ HU i∩U j∩Uk

such that ∀x ∈ U i
∩ U j
∩ Uk

t(hijk(x))g ij(x)g jk(x) = g ik(x). (27)

The 2-transition functions measure then the obstruction to lift P as an usual principal bundle, since they characterizes the
failure of the cocycle relation for the G-transition functions. We can remark that

hiji(x) = αg ij(x)(k
j(x)−1) (28)

hiij(x) = ki(x)−1 (29)

hijj(x) = αg ij(x)(k
j(x)−1). (30)

Property 8. The natural equivalence h̆ijk for some g ∈ G is

h̆ijk
xg = (

←−x , hijk(x), g ij(x)g jk(x)g). (31)

Proof. Let h̊ijk
xg ∈ H be such that h̆ijk

xg = (
←−x , h̊ijk

xg , g ij(x)g jk(x)g). We have then t(h̊ijk
xg)g ij(x)g jk(x)g = g ik(x)g and g ik(x) =

t(hijk(x))g ij(x)g jk(x). �

Property 9. The 2-transition functions measure also the failure of the cocycle relation for the H-transition functions in the
following sense:

hij(y, x)αg ij(x)(h
jk(y, x)) = hijk(y)−1hik(y, x)hijk(x). (32)

Proof. By using the definition of h̆ijk
xeG and the expressions of φ̄iφjφ̄jφk(

←−−y...x, eH , eG) and of φ̄iφk(
←−−y...x, eH , eG), we find

(
←−y , hijk(y), g ij(y)g jk(y)) ◦ (←−−y...x, hij(y, x)αg ij(x)(h

jk(y, x)), g ij(x)g jk(x))

= (
←−−y...x, hik(y, x), g ik(x)) ◦ (←−x , hijk(x), g ij(x)g jk(x)).

By composing the arrows, we find

(
←−−y...x, hijk(y)hij(y, x)αg ij(x)(h

jk(y, x)), g ij(x)g jk(x)) = (←−−y...x, hik(y, x)hijk(x), g ij(x)g jk(x)). �

Since h̆ijk is a natural equivalence, it has an inverse h̆ijk−1 such that ∀x ∈ U i
∩ U j

∩ Uk and ∀g ∈ G, h̆ijk−1
xg ◦ h̆ijk

xg =

(
←−x , eH , g ij(x)g jk(x)g). It is clear that h̆ijk−1

xg = (
←−x , hijk(x)−1, g ik(x)g)where hijk(x)−1 is the inverse of hijk(x) in the group law

sense.
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Property 10. The 2-transition functions hijk can be viewed as the trivializations of the natural equivalence κ̄ j on Ui
∩Uj

∩Uk

since we have

(
←−x , hijk(x)−1, g ik(x)) = φ̄i(κ̄

j
φk(x,eG)

). (33)

Proof. By definition of κ̄ j we have

φjφ̄jφk(
←−−y...x, eH , eG) = κ̄

j
φk(y,eG)

◦ φk(
←−−y...x, eH , eG) ◦ κ̄

j−1
φk(x,eG)

.

We have then

φ̄iφjφ̄jφk(
←−−y...x, eH , eG) = φ̄i(κ̄

j
φk(y,eG)

) ◦ φ̄iφk(
←−−y...x, eH , eG) ◦ φ̄i(κ̄

j−1
φk(x,eG)

).

By using the definition of h̆ijk we have

h̆ijk
yeG ◦ φ̄

i(κ̄
j
φk(y,eG)

) ◦ φ̄iφk(
←−−y...x, eH , eG) ◦ φ̄i(κ̄

j−1
φk(x,eG)

) = φ̄iφk(
←−−y...x, eH , eG) ◦ h̆ijk

xeG .

We can conclude that

h̆ijk
xeG ◦ φ̄

i(κ̄
j
φk(x,eG)

) = idφ̄iφk(x,eG) ⇒ h̆ijk−1
xeG = φ̄

i(κ̄
j
φk(x,eG)

). �

Property 11. The 2-transition functions obey to the generalized cocyle relation: ∀x ∈ U i
∩ U j
∩ Uk
∩ U l

hijl(x)αg ij(x)(h
jkl(x)) = hikl(x)hijk(x). (34)

Proof. This follows from the definition of the 2-transition functions:

t(hijl(x))(t(αg ij(x)(h
jkl(x))))g ij(x)g jk(x)gkl(x) = t(hijl(x))g ij(x)t(hjkl(x))g jk(x)gkl(x)

= t(hijl(x))g ij(x)g jl(x) = g il(x)

and

t(hikl(x))t(hijk(x))g ij(x)g jk(x)gkl(x) = t(hikl(x))g ik(x)gkl(x) = g il(x). �

Our definition of a principal 2-bundle coincides with the definition of Baez et al. [27–31] for the spherical affine 2-spaces,
but our theory is more general since it can be applied with non-trivial base categories (with not only identity arrows) as
euclidean and hyperbolic affine 2-spaces. Since H-transition functions are trivial with a spherical affine 2-space (hij(y, x) =
eH , ∀xRy ⇐⇒ x = y), these local data of the 2-bundles are absent from the theory of Baez etal. Because the non-abelian
bundle gerbes [19–21] are weakly equivalent to 2-bundles [32] the same remarks can be applied in the comparison of our
definition with the constructions of non-abelian bundle gerbes or twisted bundles. Nevertheless, the non-abelian bundle
gerbes present a kind ofH-transition functions obeying to a structure equation similar to Eq. (32) (see [22]). But in that case,
the H-transition functions are not associated with arrows in a base category but with points of the manifold Y ×M Y → M
whereM is the base manifold and Y → M is a fiber bundle (the non-abelian gerbe construction consists to three floor local
H-principal bundles over Y ×M Y and Y ×M Y ×M Y [22] where all entities are usual manifolds and not explicitly categories
as in our construction). Categorical bundles over pathspaces [23–25] are defined over non-trivial categories, i.e. over
pathspaces of manifolds viewed as categories. Such categories are not affine 2-spaces and then the two constructions
are completely separated. Since a bundle over the pathspace of a manifold is built from an usual principal bundle with
connection over this manifold, it presents a trivial 2-transition functions (hijk(x) = eH ). To summarize, in term of local data
defining a categorical bundle, our construction seems themore general because it presents possibly non-trivialH-transition
functions (associated with arrows of a base category) and 2-transition functions.

Example. Let (ξa)a=1,...,n be the canonical basis of Cn endowed with the usual inner product. We denotes by GL(n,C)
and U(n) the Lie groups of invertible and unitary matrices expressed in this canonical basis. Let U(m) be the subgroup
of U(n) (m < n) of unitary matrices of Cm generated by (ξa)a=1,...,m. We call density matrix of Cn a n × n matrix ρ
such that ρĎ

= ρ, ρ ≥ 0, and trρ = 1. Let σ be a diagonal density matrix such that ∀a, b, a ≠ b, σaa ≠ σbb;
∀a > m, σaa = 0, and

m
a=1 σaa = 1. Let M be the manifold of density matrices of Cn which are isospectral to σ .

For ρ ∈ M , let Fρ = {f ∈ GL(n,C), such that f ρf Ď is isospectral to ρ}. Let Hρ be the stabilizer of ρ for the conjugation,
i.e. Hρ = {h ∈ GL(n,C), hρhĎ = ρ}. Hρ ⊂ Fρ and Fρ/Hρ ≃ U(n)/U(n)ρ (where U(n)ρ is the stabilizer of ρ for the adjoint
action, i.e. U(n)ρ = {h ∈ U(n), hρh−1 = ρ}). For all ρ, Hρ is isomorphic to H ≡ Hσ . Let M be the totally linkable euclidean
affine 2-space defined by Obj(M) = M , Morph(M) = {([f ], ρ), ρ ∈ M, [f ] ∈ Fρ/Hρ}, with s([f ], ρ) = ρ, t([f ], ρ) = f ρf Ď
(f being an element of the coset [f ]), idρ = ([idCn ], ρ), and ([f ′], f ρf Ď) ◦ ([f ], ρ) = ([f ′f ], ρ).

We call a purification ofρ ∈ M , amatrixW ∈Mn×n(C) such thatρ = WW Ď.W is not unique, and one of the purifications
of ρ is

√
ρ. Let {U i

}i be a good open cover ofM such that ∀ρ, ρ ′ ∈ U i, Ran ρ ∩ ker ρ ′ = ker ρ ∩ Ran ρ ′ = {0}. For all ρ ∈ U i,
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we choose (χ i
ρa)a=1,...,m an orthonormal basis of Ran ρ (continuous in norm with respect to ρ). Let Z i

ρ ∈ Mn×m(C) be the
matrix representing (χ i

ρa)a=1,...,m in the canonical basis, i.e. Z i
ρab = ⟨ξa|χ

i
ρb⟩. Note that Z iĎ

ρ Z
i
ρ = idCm and Z i

ρZ
iĎ
ρ = PRan ρ

(orthogonal projection onto Ran ρ). By construction, ∀ρ ∈ U i, ∃f iρ ∈ FZ iρσZ iĎρ such that ρ = f iρZ
i
ρσZ

iĎ
ρ f

iĎ
ρ . Let G = U(m),

g ∈ U(m) defines a basis change of Ran ρ by its right action : Z i
ρg .

Note that
√
σG
√
σ
−1
⊂ H (where σ−1 denotes the pseudoinverse of σ , i.e. ∀i > m, (σ−1)ii = 0 and ∀i ≤ m,

(σ−1)ii = (σii)
−1). Indeed,

√
σg
√
σ
−1
σ(
√
σg
√
σ
−1
)Ď =
√
σg
√
σ
−1
σ
√
σ
−1g−1

√
σ = σ (∀g ∈ U(m)). Let G = (G,H, t, α)

be the Lie crossed module defined by t(h) =
√
σ
−1h
√
σ and αg(h) =

√
σg
√
σ
−1h
√
σg−1
√
σ
−1.

The purification of the density matrices defines a principal 2-bundleP overM with structure groupoid G, where Obj(P )
is the set of the purifications of M , MorphP = {(f ,W ),W ∈ Obj(P ), f ∈ FWWĎ} (with s(f ,W ) = W , t(f ,W ) = fW ,
idW = (idCn ,W ), (f ′, fW ) ◦ (f ,W ) = (f ′f ,W )). The projection functor π : P → M is defined by π(W ) = WW Ď and
π(f ,W ) = ([f ],WW Ď) ([f ] ∈ FWWĎ/HWWĎ ). The local trivializations of P , φi

: Ui
× G→ P|Ui , are defined by:

(ρ, g)

([f ],ρ,h,g)


(f ρf Ď,

√
σ
−1h
√
σg)

φi
=⇒

f iρZ
i
ρ

√
σg(f̊ f iρZ iρhZ iĎρ f i−1ρ ,f iρZ

i
ρg)

f if ρf ĎZ
i
f ρf Ďh
√
σg

where f̊ ∈ [f ]∩U(n). We note that because of f if ρf Ď = f̊ f iρ f̊
−1 and Z i

f ρf Ď = f̊ Z i
ρ , it follows that f if ρf ĎZ

i
f ρf Ďh
√
σg = f̊ f iρZ

i
ρh
√
σg .

The inverse trivializations φ̄i
: PUi → Ui

× G are defined by:

W

(f ,W )


fW

φ̄i
=⇒

(WW Ď,
√
σ
−1Z iĎ

WWĎ f
iĎ
WWĎW )([f ],WWĎ,Z iĎ

WWĎ f
iĎ
WWĎ f̊

−1ff iĎ−1
WWĎ Z

i
WWĎ ,

√
σ
−1Z iĎ

WWĎ f
iĎ
WWĎW )

(fWW Ďf ,
√
σ
−1Z iĎ

fWWĎf f
iĎ
fWWĎf Ď fW ).

.

We note that
√
σ
−1Z iĎ

fWWĎf f
iĎ
fWWĎf Ď fW =

√
σ
−1Z iĎ

WWĎ f
iĎ
WWĎ f̊ −1fW .

By using the expressions of these trivializations, the local data of P are ki(ρ) = Z iĎ
ρ f

iĎ
ρ f iρZ

i
ρ , g

ij(ρ) = Z iĎ
ρ f

iĎ
ρ f jρZ

j
ρ ,

hij(f , ρ) =
√
σ f̊ g ij(ρ)f̊ −1g ij(ρ)−1

√
σ
−1, and

hijk(ρ) =
√
σZ iĎ

ρ f
iĎ
ρ f kρ PRan ρ f

k−1
ρ f jĎ−1ρ PRan ρ f j−1ρ f iĎ−1ρ Z i

ρ

√
σ
−1.

We note that in the case wherem = 1 (i.e. whereM is the space of pure states, ρ is a projection, ρ2
= ρ), f iρ ∈ U(1) and

P is trivial in the sense where hijk(ρ) = 1 and ObjP is the Berry–Simon U(1)-bundle [4].

4. 2-connections

The definition of a connective structure on a principal 2-bundle over an affine 2-space needs to introduce the ‘‘Lie algebra
like’’ of a Lie crossed bundle. After this, before to consider the generic 2-connections, it is instructive to study the case of a
trivial 2-bundle.

4.1. Differential Lie crossed module

Definition 12 (Differential Lie Crossed Module). Let G = (G,H, t, α) be a Lie crossed module. The differential Lie crossed
module associated with G is the four kinds of data (g, h, tLie, αLie) where g and h are the Lie algebras of G and H , and
tLie : h→ g and αLie

: g→ Der(h) are the maps induced by t and α in the Lie algebras, so

∀X ∈ g,∀Y ∈ h, tLie(αLie
X (Y )) = [X, t

Lie(Y )]

and

∀Y , Y ′ ∈ h, αLie
tLie(Y )(Y

′) = [Y , Y ′].

The semi-direct product of groups H o G induces a semi-direct sum of Lie algebras h A g defined as being h ⊕ g (the
exterior direct sum being between the vector spaces without the algebra structures) endowed with the Lie bracket [., .]s
such that

∀X, X ′ ∈ g, [X, X ′]s = [X, X ′]g ∈ g

∀Y , Y ′ ∈ h, [Y , Y ′]s = [Y , Y ′]h ∈ h

∀X ∈ g,∀Y ∈ h, [X, Y ]s = −[Y , X]s = αLie
X (Y ) ∈ h.

To simplify the notation, we denote all the Lie brackets by [., .]without subscript.
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In the following, we denote by π g
: h A g→ g the projection induced by the canonical projection h⊕ g→ g defined by

the exterior direct sum of vector spaces.
Moreover, we will denote the adjoint representation of H o G on h A g by

∀h ∈ H,∀g ∈ G,∀X ∈ h A g, Ad(h, g)X = hgXg−1h−1. (35)

This notation is in accordance with the semi-direct product since

Ad(h2, g2)Ad(h1, g1)X = h2g2h1g1Xg−11 h−11 g−12 h−12 (36)

= (h2g2h1g−12 )g2g1Xg−11 g−12 (g2h−11 g−12 h−12 ) (37)

= Ad(h2αg2(h1), g2g1)X (38)

with the following convention Ad(αg(h), g ′)X = ghg−1g ′Xg ′−1gh−1g−1.

4.2. The notion of compatible connections

Before to examine the possibility to endow a trivial 2-bundle with a connective structure, we need a simple lemma.

Lemma 1. Let P be a principal G-bundle (G is a Lie group) over a manifold M with transition functions g ij. Let f : G → K be a
group homomorphism. The right action of K on itself defines a right action of G on K: kf (g), k ∈ K and g ∈ G. The associated
bundle P ×G,f K = {[(pg, f (g−1)k), g ∈ G]}p∈P;k∈K constitutes a principal K-bundle over M with transition functions f (g ij).

Proof. Let {U i
}i be a good open cover of M , and ϕj

: U j
× G → P|U j be the local trivializations of P . Let φ̃j

: U j
× K →

(P ×G,f K)|U j be the local trivializations of P ×G,f K : φ̃j(x, k) = [(φj(x, g), f (g−1)k); g ∈ G]. Since φj(x, g) = φi(x, g ij(x)g)
(for x ∈ U i

∩ U j), we have φ̃j(x, k) = [(φi(x, g ij(x)g), f (g−1)k); g ∈ G]. By the variable change ĝ = g ijg we have

φ̃j(x, k) = [(φi(x, ĝ), f (ĝ−1)f (g ij(x))k); ĝ ∈ G] = φ̃i(x, f (g ij)k). �

Wewant endow P ×G,f K with a connection which would be viewed as an image of a connection of P . The action of G on
K being not necessary faithful, we require only a notion of compatibility between the two connections:

Definition 13 (Compatible Connections). Let HP and H(P ×G,f K) be connections (horizontal tangent spaces) of P and
P ×G,f K . Let j : P → P ×G,f K be the map defined by ∀p ∈ P , j(p) = [(pg, f (g−1)); g ∈ G], i.e. j(P) = P ×G,f {eK } ⊂
P ×G,f K . We say that the two connections are compatible if j∗HpP = Hj(p)(P ×G,f K), where j∗ is the push-forward of
j. Let ω ∈ Ω1(P, g) and ω̃ ∈ Ω1(P ×G,f K , k) be the associated connection 1-forms (kerω = HP), we have then
j∗ω̃ = f Lie(ω) ∈ Ω1(P, k)where f Lie is Lie algebra homomorphism induced by f and j∗ is the pull-back of j.

4.3. 2-connection on a trivial 2-bundle

We consider a principal G-2-bundle P over an affine 2-space M. In this section we suppose that P is trivial, in the sense
where its 2-transition functions are trivial : hijk(x) = eH . In that case, the G-transition functions satisfy the cocycle relation
g ij(x)g jk(x) = g ik(x) (∀x ∈ U i

∩U j
∩Uk) and define then a principalG-bundle P .We call it the object-bundle. TheH-transition

functions satisfy hij(y, x)αg ij(x)(h
jk(y, x)) = hik(y, x) (∀x ∈ U i

∩ U j
∩ Uk). Let qij(y, x) = (hij(y, x), g ij(x)) ∈ H o G

(U i∩U j)2 .
We see that qij satisfy the cocycle relation qij(y, x)qjk(y, x) = qik(y, x) (∀x, y ∈ U i

∩ U j
∩ Uk). qij can be then viewed as the

transition functions of a principal H o G-bundle Q over M2
△
=


i(U
i
× U i)/R ⊂ M2

/R . We call it the arrow-bundle. We
denote by πP and πQ the projections of P and Q .
φi
: Ui
× G→ P|Ui being a functor, we have by definition

idφi(x,g) = φ
i(
←−xx , eH , g)

s(φi(
←−yx , h, g)) = φi(x, g)

t(φi(
←−yx , h, g)) = φi(y, t(h)g).

(39)

We want formulate these relations in the language of the bundle theory in the case where P is trivial.

Let∆ : M → M2
△

x → (x, x)
bethe diagonalmap. Let∆∗Q = {(x, q) ∈ M×Q |∆(x) = πQ (q)} be theHoG-bundle overM induced by

Q via ∆. By construction the transition functions of ∆∗Q are g ij
I (x) = qij(∆(x)) = (eH , g ij(x)). Clearly this is the transition

functions of the widening of P , i.e. P ×G(H o G) (where we have considered G ≃ {eH} o G as a subgroup of H o G, the
isomorphism between G and {eH} o G constituting the homomorphism for Lemma 1). We denote I = ∆∗Q = P ×G(H o G)
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and we call it the identity-bundle. Let∆∗ :
I → Q

(x, q) → q and ι : P → I be defined by ∀p ∈ P , ι(p) = [(pg, eH , g−1); g ∈ G]. We
have then the following commutative diagram

P
ι

−−−−→ I
∆∗

−−−−→ Q  
M M

∆
−−−−→ M2

△

.

We denote by∆∗∗ : TI → TQ and by∆∗
∗
: Ω∗Q → Ω∗I the push-forward and the pull-back of∆∗, and by ι∗ : TP → TI and

ι∗ : Ω∗I → Ω∗P the push-forward and the pull-back of ι.

Let Π1 :
M2
△
→ M

(y, x) → y
. Let Π∗1 P = {(y, x, p) ∈ M2

△
× P|y = πP(p)} be the G-bundle over M2

△
induced by P via Π1.

By construction the transition functions of Π∗1 P are g ij
T (y, x) = g ij(Π1(y, x)) = g ij(y). Let t : H o G → G be the

homomorphism defined by t(h, g) = t(h)g . The bundle Q ×HoG,t G defined by t and Lemma 1 has the same transition
functions t(qij(y, x)) = t(hij(y, x))g ij(x) = g ij(y). We have then T = Π∗1 P = Q ×HoG,t G that we call it the target-bundle.
LetΠ1∗ :

T → P
(y, x, p) → p and τ : Q → T be defined by ∀q ∈ Q , τ(q) = [(q(h, g), g−1t(h−1)); h ∈ H, g ∈ G]. We have then the

following commutative diagram

P
Π1∗
←−−−− T

τ
←−−−− Q  

M
Π1

←−−−− M2
△

M2
△

.

We denote byΠ1∗∗ : TT → TP and byΠ∗1∗ : Ω
∗P → Ω∗T the push-forward and the pull-back ofΠ1∗, and by τ∗ : TQ → TT

and τ ∗ : Ω∗T → Ω∗Q the push-forward and the pull-back of τ .

Let Π2 :
M2
△
→ M

(y, x) → x
. Let Π∗2 = {(y, x, p) ∈ M2

△
× P|x = πP(p)} be the G-bundle over M2

△
induced by P via Π2. By

construction the transition functions ofΠ∗2 P are g ij
S (y, x) = g ij(x). Let s : HoG be the homomorphismdefined by s(h, g) = g .

The bundle Q ×HoG,s G defined by s and Lemma 1 has the same transition functions s(qij(y, x)) = g ij(x). We have then
S = Π∗2 P = Q ×HoG,s G that we call the source-bundle. Let Π2∗ :

S → P
(y, x, p) → pand ς : Q → S be defined by ∀q ∈ Q ,

ς(q) = [(q(h, g), g−1); h ∈ H, g ∈ G]. We have then the following commutative diagram

P
Π2∗
←−−−− S

ς
←−−−− Q  

M
Π2

←−−−− M2
∆ M2

∆

.

We denote byΠ2∗∗ : TS → TP and byΠ∗2∗ : Ω
∗P → Ω∗S the push-forward and the pull-back ofΠ2∗, and by ς∗ : TQ → TS

and ς∗ : Ω∗S → Ω∗Q the push-forward and the pull-back of ς .
We denote by ϕi

P and ϕi
Q the transition functions of P and Q (they corresponds respectively to the object and the arrow

parts of the functor φi). The three previous commutative diagrams can be rewritten as follows:
∆∗ ◦ ι


ϕi
P(x, g)


= ϕi

Q (x, x, eH , g)
Π2∗ ◦ ς


ϕi
Q (y, x, h, g)


= ϕi

P(x, g)
Π1∗ ◦ τ


ϕi
Q (y, x, h, g)


= ϕi

P(y, t(h)g).
(40)

This is the reformulation of the functor properties of φi in the fiber bundle language.
Since P and Q are principal bundles, they have canonical vertical tangent spaces: TpP ⊃ VpP ≃ g (∀p ∈ P) and

TqQ ⊃ VqQ ≃ h A g (∀q ∈ Q ). We define a connection of P as being two connections, one of P and one of Q , compatible
with the category structure of P , and then compatible with the commutative diagrams linking P and Q via I , T and S.

Definition 14 (2-Connection on a Trivial 2-Bundle). A 2-Connection on a trivial 2-bundle P , is the data of a connection HP
on P and a connection HQ on Q such that the horizontal spaces satisfy

∀p ∈ P ∆∗∗ι∗HpP = H∆∗◦ι(p)Q (41)

∀q ∈ Q Π1∗∗τ∗HqQ = HΠ1∗◦τ(q)P (42)

∀q ∈ Q Π2∗∗ς∗HqQ = HΠ2∗◦ς(q)P. (43)
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This definition can be expressed in the terms of the connection 1-forms. Let ωP ∈ Ω
1(P, g) be the connection 1-form of P

(kerωP = HP) and ωQ ∈ Ω
1(Q , h A g) be the connection 1-form of Q (kerωQ = HQ ). We have then:

ι∗∆∗
∗
ωQ = ωP (44)

ς∗Π∗2∗ωP = π
g(ωQ ) (45)

τ ∗Π∗1∗ωP = tLie
•
(ωQ ) (46)

with tLie
•
= tLie ⊕ idg defined on h A g.

We consider now the local data of the connection. Let σ i
P ∈ Γ (U

i, P) be the trivializing local section of P

∀x ∈ U i
∩ U j, σ

j
P(x) = σ

i
P(x)g

ij(x) (47)

and σ i
Q ∈ Γ (U

i
× U i,Q ) be the trivializing local section of Q :

∀x, y ∈ U i, σ
j
Q (y, x) = σ

i
Q (y, x)q

ij(y, x). (48)

By the properties of the local trivializations we have
∆∗ ◦ ι


σ i
P(x)


= σ i

Q (x, x)
Π2∗ ◦ ς


σ i
Q (y, x)


= σ i

P(x)
Π1∗ ◦ τ


σ i
Q (y, x)


= σ i

P(y).
(49)

We can then define a G-gauge potential Ai
= σ i∗

P ωP ∈ Ω1(U i, g) and a H o G-gauge potential ηi = σ i∗
Q ωQ ∈

Ω1(U i
× U i

/R, h A g). The relations between the connection 1-forms and between the trivializing local sections induce

∆∗ηi(x) = Ai(x) (50)

π g(ηi(y, x)) = Ai(x) (51)

tLie
•
(ηi(y, x)) = Ai(y). (52)

This induces that ηi(y, x) = Ai(x)+ ηi(y, x)with ηi ∈ Ω1(U i
× U i

/R, h), such that ηi(x, x) = 0 and

tLie(ηi(y, x)) = Ai(y)− Ai(x) ∈ Ω1(U i
× U i

/R, t
Lie(h)). (53)

By construction we have

∀x ∈ U i
∩ U j, Aj(x) = g ij(x)−1Ai(x)g ij(x)+ g ij(x)−1dg ij(x) (54)

∀x, y ∈ U i
∩ U j, ηj(y, x) = qij(y, x)−1ηi(y, x)qij(y, x)+ qij(y, x)−1d(2)qij(y, x) (55)

where d(2) = dx + dy = ∂
∂xµ dx

µ
+

∂
∂yν dy

ν denotes the exterior differential ofM2
△
.

Property 12. ∀x, y ∈ U i
∩ U j we have

αg ij(x)

ηj(y, x)


= hij(y, x)−1ηi(y, x)hij(y, x)+ hij(y, x)−1d(2)hij(y, x)+ hij(y, x)−1αLie

Ai(x)(h
ij(y, x)). (56)

Proof. We have

qij−1ηiqij = g ij−1hij−1Aihijg ij
+ g ij−1hij−1ηihijg ij

= g ij−1Aig ij
+ g ij−1hij−1

[Ai, hij
]g ij
+ g ij−1hij−1ηihijg ij.

Moreover

qij−1d(2)qij = g ij−1hij−1d(2)hijg ij
= g ij−1(hij−1d(2)hij)g ij

+ g ij−1dg ij.

We have then

ηj = g ij−1Aig ij
+ g ij−1dg ij

+ g ij−1 hij−1ηihij
+ hij−1d(2)hij

+ hij−1
[Ai, hij

]

g ij. �
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Finally we can introduce the curvatures of the connections, F i
= dAi

+ Ai
∧ Ai
∈ Ω2(U i, g) and F i

= d(2)ηi + ηi ∧ ηi ∈
Ω2(U i

× U i
/R, h A g). It is easy to see that F i can be decomposed as F i

= F i
+ Bi with

Bi
= d(2)ηi + ηi ∧ ηi + αLie

Ai (η
i) ∈ Ω2(U i

× U i
/R, h). (57)

We can note that F i is equivariant: ∀x, y ∈ U i
∩ U j

F j
= g ij−1F ig ij (58)

but the curving satisfies

αg ij(B
j) = hij−1Bihij

+ hij−1αLie
F i (h

ij). (59)

In the higher gauge theory literature, F i (or F i
+ tLie(Bi)) is usually called the fake curvature and Bi is usually called the

curving. We can also introduce the true curvature (or 3-curvature) H i
= d(2)Bi

+ αLie
Ai (B

i) = d(2)F i
+ [Ai, F i

] = −[ηi, F i
] ∈

Ω3(U i
× U i

/R, h)which satisfies the generalized Bianchi identity d(2)H i
+ αLie

Ai (H
i)+ [Bi, F i

] = 0.
If M is hyperbolic, there exists also H o G-bundles over Mn

△
=


i(U

i)n/R (n ≥ 3) denoted by Q (n−1) with the
transition functions qijn−1(z, . . . , x) = qij(z, x). We consider the case of Q (2). The relations between Q (2) and P are the
same than between Q and P . Moreover Q (2) is related to Q by the partial diagonal maps: ∆t : (y, x) → (y, y, x) and
∆s : (y, x) → (y, x, x). This induces that Q (2) is endowed with a connection of gauge potential ηi ∈ Ω1((U i)3/R, h A g) such
that

∆∗0η
i(x) = Ai(x) (60)

∆∗s η
i(y, x) = ηi(y, x) (61)

∆∗t η
i(y, x) = ηi(y, x) (62)

tLie
•
(ηi(z, y, x)) = Ai(z) (63)

π g(ηi(z, y, x)) = Ai(x) (64)

with∆0 : x → (x, x, x) the diagonalmap. This induces thatηi(z, y, x) = ηi(z, y)+ηi(y, x)−Ai(y) = ηi(z, y)+ηi(y, x)+Ai(x).

The connection of Q (2) does not contain new information. This argument can be repeated for Q (n>2).

4.4. 2-connection: general case

Let {P i
}i and {Q i

}i be the local principal G-bundles andH oG-bundles over U i and U i
×U i

/R defined by P i
= {φi(x, g); x ∈

U i, g ∈ G} and Q i
= {φi(

←−yx , h, g); (y, x) ∈ (U i)2/R, h ∈ H, g ∈ G}. The 2-transition functions hijk(x) constitute an
obstruction to lift {P i

}i and {Q i
}i as globally defined principal bundles (because of the failure of the cocycle relations for

g ij(x) and hij(y, x)). The construction followed in the previous section can nevertheless be reiterated over each 2-chart Ui

but not globally. We have then local indentity-bundles I i, local target-bundles T i and local source-bundles S i. Nevertheless
we need of a global bundle ensuring the global consistency of the connective structure. By definition of a Lie crossedmodule,
t(H) is a normal subgroup of G. We have then the following extension of groups:

1→ H
t
−→ G

℘
−→ G/t(H)→ 1.

Let R be the principal G/t(H)-bundle overM defined by the transition functions℘(g ij(x)) (since t(hijk(x)) ∈ ker℘,℘(g ij(x))
satisfies the cocycle relation ℘(g ij(x)g jk(x)) = ℘(g ik(x))). Let P i/t(H) be the principal G/t(H)-bundle over U i induced by
℘ with P i. We denote by ϑ i

: P i
→ P i/t(H) the map defined by ∀p ∈ P i, ϑ i(p) = pt(H) (where the canonical right action

of G on P i is simply denoted by a right multiplication). Clearly, P i/t(H) and R are diffeomorphic over U i: P i/t(H) ≃ R|U i .
Moreover we have the following commutative diagram over U i

∩ U j:

P j
|U i∩U j

φiφ̄j

−−−−→ P i
|U i∩U j

ϑ j

 ϑ i

R|U i∩U j
ϕiRϕ

j−1
R

−−−−→ R|U i∩U j

where ϕi
R are the local trivializations of R.
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Definition 15 (2-Connection on a 2-Bundle). A 2-connection on a 2-bundle P , is the data of connections HP i on P i,
connections HQ i on Q i and a connection HR on R such that the horizontal spaces satisfy

∀p ∈ P i ∆∗∗ι∗HpP i
= H∆∗◦ι(p)Q

i (65)

∀q ∈ Q i Π2∗∗ς∗HqQ i
= HΠ2∗◦ς(q)P

i (66)

∀q ∈ Q i Π1∗∗τ∗HqQ i
= HΠ1∗◦τ(q)P

i (67)

∀p ∈ P i ϑ i
∗
HpP i
= Hϑ i(p)R. (68)

We can explain the relations between the connections by using the connection 1-forms ωi
P ∈ Ω

1(U i, g), ωi
Q ∈ Ω

1(U i
×

U i
/R, h A g) and ωR ∈ Ω

1(R, ℘Lie(g)) (℘Lie
: g→ g/tLie(h) is Lie algebra homomorphism induced by ℘):

ι∗∆∗
∗
ωi

Q = ω
i
P (69)

ς∗Π∗2∗ω
i
P = π

g(ωi
Q ) (70)

τ ∗Π∗1∗ω
i
P = tLie

•
(ωi

Q ) (71)

ϑ i∗ωR = ℘
Lie(ωi

P). (72)

Let σ i
P ∈ Γ (U i, P i) and σ i

Q ∈ Γ (U i
× U i

/R,Q
i) be the trivializing local sections: σ i

P(x) = φi(x, eG) and σ i
Q (y, x) =

φi(
←−yx , eH , eG). We can define the G-gauge potential Ai

= σ i∗
P ω

i
P ∈ Ω

i(U i, g) and the H o G-gauge potential ηi = σ i∗
Q ω

i
Q ∈

Ω1(U i
× U i

/R, h A g). By the same arguments that for the case of the trivial 2-bundles, we have ηi(y, x) = Ai(x) + ηi(y, x)
with ηi ∈ Ω1(U i

× U i
/R, h) and tLie(ηi(y, x)) = Ai(y)− Ai(x).

Consider the 1-form on U i
∩ U j defined by σ j∗

P ω
j
P − σ

j∗
P φ̄

i∗φi∗ωi
P . Since φ

iφ̄iσ
j
P(x) = φiφ̄iφj(x, eG) = φi(x, g ij(x)) =

R(g ij(x))σ i
P(x)we have

σ
j∗
P ω

j
P − σ

j∗φ̄i∗φi∗ωi
P = Aj(x)− g ij(x)−1Ai(x)g ij(x)− g ij(x)−1dg ij(x). (73)

But we have also

℘Lie(σ
j∗
P ω

j
P − σ

j∗φ̄i∗φi∗ωi
P) = σ

j∗
P ϑ

j∗ωR − σ
j∗
P φ̄

i∗φi∗ϑ i∗ωR. (74)

But ϑ iφiφ̄i
= ϕi

Rϕ
i−1
R ϑ i

= ϑ i and ϑ iσ
j
P(x) = ϑ

iσ i
P(x)℘(g

ij(x)). We have then

℘Lie(σ
j∗
P ω

j
P − σ

j∗
P φ̄

i∗φi∗ωi
P) = aj(x)− ℘(g ij(x))−1ai(x)℘(g ij(x))− ℘(g ij(x))−1d℘(g ij(x)) (75)

= 0 (76)

where ai = σ i∗
P ϑ

i∗ωR is the gauge potential of R associated with the section ϑ iσ i
P(x) ∈ Γ (U

i, R). We conclude then that
Aj(x)− g ij(x)−1Ai(x)g ij(x)− g ij(x)−1dg ij(x) ∈ ker℘Lie

= tLie(h).

Definition 16 (Potential-Transformation). We call the potential-transformation of the 2-connection, the 1-form ηij ∈
Ω1(U i

∩ U j, h) such that

Aj(x) = g ij(x)−1Ai(x)g ij(x)+ g ij(x)−1dg ij(x)+ tLie(ηij(x)). (77)

The gluing relation of the P i-curvatures is not equivariant:

dAj
+ Aj
∧ Aj
= g ij−1(dAi

+ Ai
∧ Ai)g ij

+ tLie(dηij + αLie
Aj (η

ij)− ηij ∧ ηij) (78)

but ℘Lie(dAi
+ Ai
∧ Ai) is equivariant (with ℘(g ij)). Let Bi

sph ∈ Ω
2(U i, h) be a 2-form such that

Bj
sph(x)− αg ij(x)−1(B

i
sph(x)) = dηij(x)+ αLie

Aj(x)(η
ij(x))− ηij(x) ∧ ηij(x). (79)

Then F i
= dAi

+ Ai
∧ Ai
− tLie(Bi

sph) ∈ Ω
2(U i, g) is equivariant and belongs to the equivalence class of the 2-forms of P i

compatible with the curvature of R (℘(F i) = ℘(dAi
+Ai
∧Ai) = dai+ai∧ai).We consider then F i as being the fake curvature

of {P i
}. We call Bi

sph the spherical part of the curving.

Property 13. The gluing relation of the H o G-gauge potential ηi ∈ Ω1(U i
× U i

/R, h A g) is

ηj(y, x) = qij(y, x)−1ηi(y, x)qij(y, x)+ qij(y, x)−1d(2)qij(y, x)+ tLie(ηij(x))+ ηij(y)− ηij(x). (80)
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Proof. Let ν ij ∈ Ω2((U i
∩ U j)2/R, h A g) be ν ij = ηj − qij−1ηiqij − qij−1d(2)qij. By using the properties of ηi under the actions

of∆∗, tLie and π g, and the gluing relation of Ai we find

ν ij(x, x) = tLie(ηij(x)) (81)

tLie
•
(ν ij(y, x)) = tLie(ηij(y)) (82)

π g(ν ij(y, x)) = tLie(ηij(x)). (83)

This induces that ν ij(y, x) = tLie(ηij(x))+ ηij(y)− ηij(x) (modulo an ignored element of ker tLie without significance). �

By following the same arguments as for a trivial 2-bundle, we have ηi(y, x) = Ai(x)+ηi(y, x), with ηi ∈ Ω1(U i
×U i

/R, h)

satisfying the gluing relation: ∀(x, y) ∈ (U i
∩ U j)/R

αg ij(x)(η
j(y, x)) = hij(y, x)−1ηi(y, x)hij(y, x)+ hij(y, x)−1d(2)hij(y, x)

+ hij(y, x)−1αLie
Ai(x)(h

ij(y, x))+ αg ij(x)(η
ij(y)− ηij(x)). (84)

Let F i
= d(2)ηi + ηi ∧ ηi ∈ Ω2(U i

× U i
/R, h A g) be the fake curvature. F i can be decomposed as F i

= F i
+ tLie(Bi

sph) + Bi
ns

with Bi
ns = d(2)ηi+ηi∧ηi+αLie

Ai (η
i) ∈ Ω2(U i

×U i
/R, h) called the nonspherical part of the curving. Bi

sph(x)+Bi
ns(y, x) forms

the total curving. The gluing relation for the nonspherical part of the curving is

Bj
ns(y, x) = αg ij(x)−1


hij(y, x)−1Bi

ns(y, x)h
ij(y, x)+ hij(y, x)−1αLie

F i(x)(h
ij(y, x))


+ dηij(y)+ αLie

Aj(x)(η
ij(y))− ηij(y) ∧ ηij(y)

− dηij(x)− αLie
Aj(x)(η

ij(x))+ ηij(x) ∧ ηij(x)+ [ηi(y, x), ηij(y)] (85)

and for the total curving

Bj(y, x) = αg ij(x)−1

hij(y, x)−1Bi(y, x)hij(y, x)


+ αg ij(x)−1


hij(y, x)−1αLie

F i(x)+Bisph(x)
(hij(y, x))


+ dηij(y)+ αLie

Aj(x)(η
ij(y))− ηij(y) ∧ ηij(y)+ [ηi(y, x), ηij(y)]. (86)

Property 14. The gluing relation of the potential-transformation is ∀x ∈ U i
∩ U j
∩ Uk

αg ij(η
ij)+ αg ijg jk(η

jk)− hijk−1αg ik(η
ik)hijk

= hijk−1dhijk
+ hijk−1αLie

Ai (h
ijk). (87)

Proof.

g iktLie(ηik)g ik−1
= g ikAkg ik−1

− Ai
− dg ikg ik−1

= g ik g jk−1Ajg jk
+ g jk−1dg jk

+ tLie(ηjk)

g ik−1
− Ai
− dg ikg ik−1

= g ik g jk−1 g ij−1Aig ij
+ g ij−1dg ij

+ tLie(ηij)

g jk
+ g jk−1dg jk

+ tLie(ηjk)

g ik−1
− Ai
− dg ikg ik−1.

After some algebra we find

g ijg jkg ik−1g iktLie(ηik)g ik−1g ikg jk−1g ij−1
= Ai
− g ijg jkg ik−1Aig ikg jk−1g ij−1

+ d(g ijg jkg ik−1)g ikg jk−1g ij−1

+ g ijtLie(ηij)g ij−1
+ g ijg jktLie(ηjk)g jk−1g ij−1.

Finally by using the relation g ikg jk−1g ij−1
= t(hijk) we prove the property modulo an ignored element of ker tLie without

significance. �

Table 1 summarizes the different data defining a 2-connection on a 2-bundle. In the other categorical bundle construc-
tions [16–18,21,22,27–31] the second column of Table 1 (concerning the local data over M2

△
) is absent. For the categorical

bundles over pathspaces [23–25] the curving B is not a 2-form on the manifold M , nor on M2
△
but on the total space of an

usual principal bundle overM . It is a connective structure different from the one presented in this paper, but due to its link
with the arrows of the pathspace category, we can consider it as equivalent to our nonspherical part of the curving but with-
out H-gauge potential ηi. For non-abelian gerbes with connection [19,20], similar data to the second column of Table 1 can
be found, but in this context there are defined as forms of the same manifoldM because in this construction the non-trivial
categorical aspects are in the ‘‘fibers’’ (the gerbes) and not in the base space (as in our construction).



D. Viennot / Journal of Geometry and Physics 110 (2016) 407–435 423

Table 1
Local data of a 2-bundle with a 2-connection.

M M2
△

0-form 1-form 2-form 0-form 1-form 2-form

Ai F i

G g ij

ki Bi
sph ηi Bi

ns
H ηij hij

hijk

Example. Let M = {z ∈ C, |z| ≤ r} with r > 0 a constant, and the matrix H(z) =


0
z

z̄
−2ır


. For z ∈ M̊ (|z| < r), H(z) has

two different eigenvalues λ±(z) = ı(−r ±

r2 − |z|2), but for z ∈ ∂M (|z| = r), H(z) has only one eigenvalue λ0 = −ır .

The generalized eigenvectors associated with an eigenvalue λa(z) are solutions of (H(z)− λa(z))nφa(z) = 0 for n ≥ 1. For
z ∈ M̊ , the two linearly independent generalized eigenvectors are usual eigenvectors: H(z)φ±(z) = λ±(z)φ±(z), but for
z ∈ ∂M , H(z) is not diagonalizable and its two linearly independent generalized eigenvectors are φ0(z) = 1

√
2


ı

z/r


with

H(z)φ0(z) = λ0(z)φ0(z), and φ0(−z) with H(z)φ0(−z) = λ0φ0(−z) − 2λ0φ0(z) (i.e. (H(z) − λ0(z))2φ0(−z) = 0). We
can note the collapses between the two eigenvectors lim|z|→r φ±(z) = φ0(reı arg z). Since the eigenvectors are defined up to
non-zero factor, we consider the local gauge changes: φ̃a(z) = ga(z)φa(z)with ga ∈ C∗ (with lim|z|→r g±(z) = g0(reı arg z)).
But in order to ensure the consistency of the equation H(z)φ0(−z) = λ0φ0(−z) − 2λ0φ0(z), it is necessary to consider
the gauge change redefinitions h(−z, z) such that h(−z, z)g0(z) = g0(−z) (i.e. H(z)g0(−z)φ0(−z) = λ0g0(−z)φ0(−z) −
2λ0h(−z, z)g0(z)φ0(z)). The generalized eigenvectors ofH(z) define a 2-bundle. Its base 2-spaceM is defined by Obj(M) =
M and zRz ′ if z = z ′ or if z = −z with |z| = r (the arrows between z and−z being associated with the fact that H(z) links
φ0(−z) to φ0(z)). The affine 2-space M is euclidean on its boundary (∂M) and spherical on its interior (M̊). The Lie crossed
module (G,H, t, α) is defined by G = C∗ × C∗, H = C∗, t is the diagonal map t(h) =


h
0
0
h


, and α is trivial (αg = idH ,

∀g ∈ G). The gauge changes g(z) =


g+(z)
0

0
g−(z)


are elements of G, and the gauge change redefinition for z ∈ ∂M are arrows

(h(−z, z), g(z))with target t(h(−z, z))


g0(z)
0

0
g0(z)


=


g0(−z)

0
0

g0(−z)


. We endow the 2-bundle with a 2-connection defined

by A(z) =

⟨χ |dφ+(z)⟩
⟨χ |φ+(z)⟩

0
0

⟨χ |dφ−(z)⟩
⟨χ |φ−(z)⟩


∈ Ω1(M, g), with χ = 1

√
2


1
1


(A(z) measures the local variations of the eigenvectors

with respect to the Schrödinger cat state χ ); and by η(−z, z) = ⟨χ |dφ0(−z)⟩
⟨χ |φ0(−z)⟩

−
⟨χ |dφ0(z)⟩
⟨χ |φ0(z)⟩

∈ Ω1(∂M, h) (∂M2
/R ≃ ∂M).

We have then tLie(η(−z, z)) = A(−z) − A(z) for z ∈ ∂M . By gauge changes we have, Ã(z) = A(z) + g(z)−1dg(z) and
η̃(−z, z) = η(−z, z) + h(−z, z)−1dh(−z, z). G/t(H) ≃ C∗ and a(z) = ℘Lie(A(z)) = A+(z) − A−(z) (a(z) = 0 for z ∈ M̊).
This small example is interesting because it exhibits a trivial 2-bundle (a single 2-chart is sufficient to cover the base 2-space)
with highly non-trivial 2-connection (η ≠ 0 and a ≠ 0).

5. Horizontal lifts

5.1. Pseudosurfaces

The scheme of the construction of a 2-bundle over an affine 2-space shows that the natural objects which can be lift in
the bundle are not the surfaces but geometric entities related to the categorical structure.

Definition 17 (Pseudosurfaces). Let M be an affine 2-space. A pseudosurface is a smooth map γ : [0, 1] → Morph(M) such
that γ (u) is constant near u = 0 and near u = 1.

By definition, all pseudosurface on a spherical affine 2-space is reduced to a path-identity inM (u → ids(γ (u))).
The path on M = Obj(M) defined by u → s(γ (u)) is called the source-boundary of the pseudosurface γ , and the path

u → t(γ (u)) is called the target-boundary. Let {[0, 1] ∋ u → xi(u) ∈ M}i=1,...,n be theminimal set of smooth paths such that
γ (u) =

←−−−−−−−
xn(u)...x1(u). Skelγ (u) = (xn(u), . . . , x1(u)) is called the skeleton of the pseudosurface. We note that a skeleton can

have junctions in the case where xi(u) = xi+1(u) for u ≤ u∗ (for example). A pseudosurface which has a skeleton reduced to
its boundary is said elementary. By definition, all pseudosurface on an euclidean affine 2-space is elementary. It is interesting
to point out some special cases of pseudosurfaces:
• A pseudosurface is said impervious if its boundary is closed: γ (0) = ids(γ (0)) and γ (1) = ids(γ (1)). An impervious

pseudosurface is well delimited.
• A pseudosurface is said cyclic if it is impervious and if γ (0) = γ (1).
• A pseudosurface is said pinched if ∀u ∈ [0, 1], s(γ (u)) = s(γ (0)) or/and t(γ (u)) = t(γ (0)).
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Definition 18 (Composition Laws of Pseudosurfaces). Let γ1 and γ2 be twopseudosurfaces such that (for twoparametrizations
u → γ1(u) and u → γ2(u)) Skelγ2(1) = Skelγ1(0). The horizontal composition of these two pseudosurfaces is the
pseudosurface γ1 ∗ γ2 defined by the skeleton

∀u ∈ [0, 1], Skelγ1∗γ2(u) =


Skelγ2(2u) if u ∈


0,

1
2


Skelγ1(2u− 1) if u ∈


1
2
, 1

.

Let γ1 and γ2 be two pseudosurfaces such that ∀u, s(γ1(u)) = t(γ2(u)). The vertical composition of the two pseudosurfaces
is the pseudosurface (γ1 ◦ γ2)(u) = γ1(u) ◦ γ2(u) (in the r.h.s. ◦ denotes the arrows composition of Morph(M)).

The pseudosurfaces define a category PS(M)with the smooth paths ofM as objects, the pseudosurfaces as arrows and the
vertical composition as arrows composition.

5.2. Horizontal lifts of pseudosurfaces included in a single 2-chart

Definition 19 (Horizontal Lifts of an Elementary Pseudosurface). Let P be a 2-bundle over a affine 2-space M endowed with
a 2-connection. Let γ : [0, 1] → Morph(M) be an elementary pseudosurface. A map γ̃ : [0, 1] → Morph(P ) is said to be a
horizontal lift of γ if ∀u ∈ [0, 1], π(γ̃ (u)) = γ (u) and if γ (u) ∈ Morph(Ui) we have X i

γ̃
(u) ∈ Hγ̃ (u)Q i, X i

s(γ̃ )(u) ∈ Hs(γ̃ (u))P i

and X i
t(γ̃ )(u) ∈ Ht(γ̃ (u))P i where X i

γ̃
∈ TQ i is the tangent vector of γ̃ viewed as a path in Q i and X i

s(γ̃ ), X
i
t(γ̃ ) ∈ TP i are the

tangent vectors of s(γ̃ ) and t(γ̃ ) viewed as paths in P i.

Theorem 1. Let σ i
∈ Funct(Ui,P ) be the trivializing local section: σ i(x) = φi(x, eG) = σ i

P(x) and σ
i(
←−yx) = φi(

←−yx , eH , eG) =
σ i
Q (y, x). Let γ be an elementary pseudosurface completely included in Ui (∀u ∈ [0, 1], γ (u) ∈ ϕ(U i

× U i
/R)). The horizontal

lift of γ passing through σ i(γ (0)) is

γ̃ i(u) = φi(γ (u), Pγ e
−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x)
) (88)

Pγ e
−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x)
∈ H o G is path-ordering exponential along the path u → (t(γ (u)), s(γ (u))) ∈ U i

× U i
/R (in order to

simplify the notation we have denoted s(γ (u)) by x(u) and t(γ (u)) by y(u)).

By definition of the path-ordering exponential, Pγ e
−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x) is solution of

dPγ e
−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x)

du
= −ηi(y(u), x(u))Pγ e

−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x)
. (89)

Proof. By applying the horizontal lift formula (see [33]) in the local H o G-bundle Q i endowed with the connection
ωQ we have directly π(γ̃ (u)) = γ (u) and X i

γ̃
(u) ∈ Hγ̃ (u)Q i. By construction of the source and of the target bundles

we have X i
s(γ̃ )(u) = Π2∗∗ς∗X i

γ̃
(u) and X i

t(γ̃ )(u) = Π1∗∗τ∗X i
γ̃
(u). It follows that ωi

P(X
i
s(γ̃ )(u)) = ωi

P(Π2∗∗ς∗X i
γ̃
(u)) =

ς∗Π∗2∗ω
i
P(X

i
γ̃
(u)) = π g(ωi

Q (X
i
γ̃
(u))) = 0 since X i

γ̃
(u) ∈ Hγ̃ (u)Q i

= kerωi
Q . In the same manner ωi

P(X
i
t(γ̃ )(u)) =

tLie
•
(ωi

Q (X
i
γ̃
(u))) = 0. We have then X i

s(γ̃ )(u), X
i
t(γ̃ )(u) ∈ kerωi

P = HP i. �

The horizontal lift of γ passing through q ∈ Morph(P ) with π(q) = γ (0) is then γ̃ i
q(u) = R(h, g)γ̃ i(u) where

(h, g) ∈ H o G is such that R(h, g)σ i(γ (0)) = q.

Pγ e
−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x) is an element of H oG represented in the universal enveloping algebra of h A g. It is more interesting
to have an expression of the horizontal lift as a couple (h(u), g(u))with h(u) ∈ H and g(u) ∈ G. A such expression is simple
in the case whereH is the center of G (1→ H

t
−→ G→ G/H → 1 is then a central extension of groups, t is just the canonical

injection of H in G and α is just the conjugation αg(h) = ghg−1 = h).

Property 15. Let 1→ H
t
−→ G→ G/H → 1 be a central extension of groups. Let γ be an elementary pseudosurface completely

included in Ui. The group element of the horizontal lift of γ is then

Pγ e
−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x)
=


e−

 (y(u),x(u))
(y(0),x(0)) η

i(y,x)
, Ps(γ )e

−
 x(u)
x(0) Ai(x)


∈ H o G. (90)

We suppose that ∀u ∈ [0, 1], x(1) and y(u) are linkable, and x(u) and y(0) are linkable. Let C2
γ be the closed path inU i

×U i defined
by [0, 1] ∋ u → (y(u), x(u)) for its first part, [0, 1] ∋ u → (y(1−u), x(1)) for its second part, and [0, 1] ∋ u → (y(0), x(1−u))
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for its last part, and let S2
γ be a surface in U i

× U i having C2
γ as boundary (∂S2

γ = C2
γ ). We call S2

γ a surface of the second kind
supported by the pseudosurface γ . We have then

Pγ e
−
 (y(1),x(1))
(y(0),x(0)) η

i(y,x)
=


e
−


S2γ
Bins(y,x)e−


s(γ ) η

i
s(y(0),x)e−


t(γ ) η

i
t (y,x(1)), Ps(γ )e

−

s(γ ) A

i(x)

. (91)

Moreover we suppose that γ is impervious. Let C1
γ be the closed path in U i defined by [0, 1] ∋ u → y(u) (t(γ )) for its first part

and [0, 1] ∋ u → x(1 − u) (s(γ )−1) for its second part, and let S1
γ be a surface in U i having C1

γ as boundary (∂S1
γ = C1

γ ). We
call S1

γ a surface of the first kind supported by the pseudosurface γ . We have then

Pγ e
−
 (y(1),x(1))
(y(0),x(0)) η

i(y,x)
=


e
−


S2γ
Bins(y,x)e

−


S1γ
Bisph(x)

, Ps(γ )e
−

s(γ ) A

i(x)

. (92)

Proof. Eq. (90) follows from the decomposition ηi(y, x) = ηi(y, x) + Ai(x) with Ai(x) ∈ g and ηi(y, x) ∈ h, where

Ps(γ )e
−
 x(u)
x(0) Ai(x)

∈ G is the path-ordering exponential along the path u → s(γ (u)) = x(u) ∈ U i. e−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x)
∈ H

is written without the path-ordering since H is abelian if it is the center of G (the expression is then an usual exponential).
We suppose that ∀u ∈ [0, 1], x(1) and y(u) are linkable and x(u) and y(0) are linkable. We can decompose ηi as the

following

ηi(y, x) = ηisµ(y, x)dx
µ
+ ηitµ(y, x)dy

µ (93)

where ηis ∈ Ω
1U i

(x)U i
(y)

and ηit ∈ Ω
1U i

(y)U i
(x)

. By considering the three parts of C2
γ we have


C2
γ

ηi(y, x) =
 (y(1),x(1))

(y(0),x(0))
ηi(y, x)+

 y(0)

y(1)
ηit(y, x(1))+

 x(0)

x(1)
ηis(y(0), x). (94)

By the Stokes theorem we have


C2
γ
ηi =


S2
γ
d(2)ηi =


S2
γ
Bi
ns, and then (y(1),x(1))

(y(0),x(0))
ηi(y, x) =


S2
γ

Bi
ns(y, x)+

 y(1)

y(0)
ηit(y, x(1))+

 x(1)

x(0)
ηis(y(0), x). (95)

Finally the horizontal lift of γ is associated with Eq. (91).
We suppose now that γ is impervious. By the property of ηi with tLie we have tLie(ηis(y, x)) = −A

i(x) and tLie(ηit(y, x)) =
Ai(y), and then

t

e−


s(γ ) η

i
s(y(0),x)−


t(γ ) η

i
t (y,x(1))


= PC1

γ
e
−


C1
γ

Ai
. (96)

By invoking a non-abelian Stokes theorem [34] we can write PC1
γ
e
−


C1
γ

Ai
as an ordering exponential along S1

γ (a surface in

U i having C1
γ as boundary) of F i

+ tLie(Bi
sph). But by construction PC1

γ
e
−


C1
γ

Ai
∈ t(H) and then ℘


PC1

γ
e
−


C1
γ

Ai

= eG/H . We

can then choose F i
= 0 on S1

γ . We have then

t

e−


s(γ ) η

i
s(y(0),x)−


t(γ ) η

i
t (y,x(1))


= PC1

γ
e
−


C1
γ

Ai
(97)

= t

e
−


S1γ
Bisph

. (98)

It follows Eq. (92). �

We have drastic reduction because we have supposed that ∀u ∈ [0, 1], y(u) and x(1) = y(1) are linkable and x(u) and

x(0) = y(0) are linkable. If this is not the case, PC1
γ
e
−


C1
γ

Ai
∉ t(H) (ηi(y, x(1)) and ηi(y(0), x) are not defined).

For the general case (where H is not the center of G and is not necessary abelian) the situation is more complicated.

Property 16. Let G be any Lie crossed module (not necessary a central extension of group). Let γ be an elementary pseudosurface
completely included in Ui. The group element associated with the horizontal lift of γ is

Pγ e
−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x)
=


Pγ e
−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x)+αLie
Ai(x) , Ps(γ )e

−
 y(0)
x(0) Ai(x)


∈ H o G (99)
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where hηi,Ai(u) = Pγ e
−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x)+αLie
Ai(x) ∈ H is defined as the solution of the equation

dhηi,Ai
du
= −ηi(y(u), x(u))hηi,Ai − α

Lie
Ai(u)


hηi,Ai


. (100)

Proof. Let Uη+A = Pγ e
−
 (y(u),x(u))
(y(0),x(0)) η

i(y,x) and UA = Ps(γ )e
−
 y(0)
x(0) Ai(x). Let hη,A = Uη+AU−1A .

dhη,A
du
= −(η + A)Uη+AU−1A + Uη+AU−1A A (101)

= −ηhη,A − [A, hη,A]. (102)

By the definition of the Lie bracket [A, hη,A] = αLie
A (hη,A). Because η ∈ Ω1(U i, h) and αLie

A ∈ Ω1(U i,Der(h)), we have
hη,A ∈ H . �

To make appear surface integrations for the element of H , we need use very complicated expressions issuing from the
non-abelian Stokes theorem [34]. To avoid this difficulty we will consider an infinitesimal elementary pseudosurface. To
this, we need some results of simplicial geometry [35–37]. Let {Kn}n∈N be a family of smooth triangulations of U i

× U i
/R

(a triangulation is a triangular network covering U i
× U i

/R , a triangular cell of this network is called a simplex), such that
n∈N Kn = U i

× U i
/R . Let (C∗(Kn, h),+,∪, δ) be the Čech differential algebra defined by:

• Cp(Kn, h) is the algebra of antisymmetric maps form (Kn)
p to h called the p-cochains.

• δ : Cp(Kn, h)→ Cp+1(Kn, h) the cobord operator is ∀ω ∈ Cp(Kn, h)

(δω)u0...up+1 =

p+1
j=0

(−1)jωu0...ûj...up+1 (103)

ui ∈ Kn and ûj signifies ‘‘deprive of uj’’.
• ∪ : Cp(Kn, h)× Cq(Kn, h)→ Cp+q(Kn, h) the cup-product is ∀ω ∈ Cp(Kn, h), ∀η ∈ Cq(Kn, h)

(ω ∪ η)u0...up+q =
1

(p+ 1)!(q+ 1)!


σ∈Sp+q+1

(−1)σ [ωuσ(0)...uσ(p) , ηuσ(p+1)...uσ(p+q) ] (104)

Sp+q+1 being the group of permutations and (−1)σ being the signature of the permutation σ .

At the inductive limit of the refinement n → +∞, the Čech differential algebra is isomorphic to the de Rham differential
algebra (Ω∗(U i

×U i
/R, h),+,∧, d(2)). The isomorphism is induced by the de Rhammap Rn : Ω

∗(U i
×U i

/R, h)→ C∗(Kn, h),
∀ω ∈ Ωp(U i

× U i
/R, h)

Rn(ω)u0...up =


⟨u0...up⟩

ω (105)

where ⟨u0...up⟩ is a p dimensional submanifold of U i
×U i

/R forming a simplex with u0, . . . , up as vertices (⟨u0u1⟩ is an edge,
⟨u0u1u2⟩ is a triangular cell, ⟨u0u1u2u3⟩ is a tetrahedron, etc.). The reciprocal map is the Whitney map Wn : C∗(Kn, h) →
Ω∗(U i

× U i
/R, h) (see [35–37]). It is interesting to note that ∀ω ∈ Ωp(U i

× U i
/R, h)

(δRn(ω))u0...up+1 =


⟨u0...up+1⟩

d(2)ω ⇐⇒ δRn(ω) = Rn(d(2)ω) (106)

and ∀ω ∈ Ωp(U i
× U i

/R), ∀η ∈ Ω
q(U i
× U i

/R)

lim
n→+∞

Wn(Rn(ω) ∪ Rn(η)) = ω ∧ η (107)

(the limit being definedwith the topology of a L2-norm see [35–37]). Let ϵn be ‘‘the edge length’’ ofKn (i.e.∀η ∈ Ω1(U i
×U i

/R),
Rn(η)u0u1 = O(ϵn)with limn→+∞ ϵn = 0). It is interesting to note that the Cartan structure equation β = dα+ α ∧ α (with
α ∈ Ω1(U i

× U i
R, h)) takes the form

eRn(α)u1u2 e−Rn(α)u0u2 eRn(α)u0u1 = eRn(β)u0u1u2+O(ϵ3n ) (108)

by using the Baker–Campbell–Hausdorff formula [38] at the second order eaeb = ea+b+
1
2 [a,b]+O(ϵ3n ) for a, b ∈ h and

a, b = O(ϵn).
Let γ : [0, 1] → Morph(M) be an elementary pseudosurface such that (y(0), x(0)), (y(1), x(1)), (y(0), x(1)) ∈ Kn

with n large and such that ∀u ∈ [0, 1], x(1) and y(u) are linkable and x(u) and y(0) are linkable. Let C2
γ be the closed
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path in U i
× U i defined by [0, 1] ∋ u → (y(u), x(u)) for its first part, [0, 1] ∋ u → (y(1 − u), x(1)) for its second

part, and [0, 1] ∋ u → (y(0), x(1 − u)) for its last part. For the sake of simplicity we denote u0 = (y(0), x(0)),
u1 = (y(1), x(1)) and u2 = (y(0), x(1)). We can assimilate S2

γ to the simplex (the triangular cell) ⟨u0u1u2⟩ of Kn. By using
the Baker–Campbell–Hausdorff formula at the second order we have then

eRn(η
i)u1u2 e−Rn(η

i)u0u2 e−Rn(A
i)u0u2 eRn(η

i)u0u1

= eδRn(η
i)u0u1u2+Rn(η

i)∪Rn(ηi)u0u1u2+Rn(η
i)∪Rn(Ai)u0u1u2+Rn(A

i)∪Rn(ηi)u0u1u2+O(ϵ3n )

= eRn(B
i
ns)u0u1u2+O(ϵ3n ). (109)

Finally by writing that Pγ e
−
 (y(1),x(1))
(y(0),x(0)) η

i(y,x)
≃ eRn(η

i)u0u1 , the horizontal lift for an infinitesimal elementary pseudosurface γ
is

Pγ e
−
 (y(1),x(1))
(y(0),x(0)) η

i(y,x)
≃


e
−


S2γ
Bins(y,x)e−


s(γ ) η

i
s(y(0),x)e−


t(γ ) η

i
t (y,x(1)), e−


s(γ ) A

i(x)

. (110)

Moreover, if γ is impervious we have

Pγ e
−
 (y(1),x(1))
(y(0),x(0)) η

i(y,x)
≃


e
−


S2γ
Bins(y,x)e

−


S1γ
Bisph(x)

, e−

s(γ ) A

i(x)

. (111)

Definition 20 (Horizontal Lift Functor). Let Hℓi : Morph(Ui)[0,1] → H o G be the map which associates to an elementary

pseudosurface the group element associated with its horizontal lift Hℓi(γ ) = Pγ e
−
 (y(1),x(1))
(y(0),x(0)) η

i(y,x). We extend Hℓi

as a functor from PS(Ui) to G transforming the horizontal compositions to horizontal compositions and the vertical
compositions to vertical compositions:

Hℓi(γ1 ∗ γ2) = Hℓi(γ1) ·Hℓ
i(γ2) (112)

Hℓi(γ1 ◦ γ2) = Hℓi(γ1) ◦Hℓi(γ2) (113)

‘‘·’’ denotes the group law of H o G.

This functor permits to define the horizontal lift of any pseudosurface γ of Ui. Let a decomposition

γ = (γ11 ◦ · · · ◦ γ1n) ∗ · · · ∗ (γp1 ◦ · · · ◦ γpn) (114)

where each γij is an elementary pseudosurface. The horizontal lift of γ is then

Hℓi(γ ) = (Hℓi(γ11) ◦ · · · ◦Hℓi(γ1n)) · · · · · (Hℓ
i(γp1) ◦ · · · ◦Hℓi(γpn)). (115)

This decomposition iswell defined because of the exchange laws:∀γ11, γ12, γ21, γ22 ∈ PS(Ui)with Skelγ11(0) = Skelγ21(1),
Skelγ12(0) = Skelγ22(1), s(γ11(u)) = t(γ12(u)) and s(γ21(u)) = t(γ22(u))

(γ11 ◦ γ12) ∗ (γ21 ◦ γ22) = (γ11 ∗ γ21) ◦ (γ12 ∗ γ22) (116)

and ∀h11, h12, h22, h21 ∈ H , ∀g12, g22 ∈ G

((h11, t(h12)g12) ◦ (h12, g12)) · ((h21, t(h22)g22) ◦ (h22, g22))
= ((h11, t(h12)g12) · (h21, t(h22)g22)) ◦ ((h12, g12) · (h22, g22)) . (117)

5.3. Horizontal lifts of pseudosurfaces crossing several 2-charts

Now, we need to define the horizontal lifts for pseudosurfaces extending on several charts. Well defined horizontal lifts
of paths and surfaces crossing several charts have been studied by Alvarez in [39]. Unfortunately, these results cannot be
used directly in the present context.

Proposition 3. Let γ i be an elementary pseudosurface of Ui and γ j be an elementary pseudosurface of Uj such that γ i(1) =
γ j(0). Let x⋆ = s(γ i(1)) = s(γ j(0)) ∈ U i

∩U j and y⋆ = t(γ i(1)) = t(γ j(0)) ∈ U i
∩U j. Let γ i′ and γ j′ be two other elementary

pseudosurfaces of Ui and Uj such that γ j′
∗ γ i′
= γ j
∗ γ i but with (y′⋆, x

′
⋆) ≠ (y⋆, x⋆). An horizontal lift of γ j

∗ γ i satisfying the
condition

℘(s(Hℓ(γ j
∗ γ i))) = ℘(s(Hℓ(γ j′

∗ γ i′))) (118)

℘(t(Hℓ(γ j
∗ γ i))) = ℘(t(Hℓ(γ j′

∗ γ i′))) (119)

is defined by

Hℓ(γ j
∗ γ i) = Hℓj(γ j) ·


hij(y⋆, x⋆), g ij(x⋆)

−1
·Hℓi(γ i). (120)
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Proof. We suppose that Hℓ(γ j
∗ γ i) = Hℓj(γ j) · q⋆ ·Hℓi(γ i)where q⋆ ∈ H o G is a transition element at (y⋆, x⋆) between

Ui and Uj. We must have

℘

s


Pγ e−
 u1
u⋆ η

j
· q⋆ · Pγ e

−
 u⋆
u0
ηi

= ℘


s


Pγ e
−
 u1
u′⋆
ηj

· q′⋆ · Pγ e
−
 u′⋆
u0 η

i


(121)

where u⋆ = (y⋆, x⋆), u1 = (t(γ j(1)), s(γ j(1))) = (t(γ j′(1)), s(γ j′(1))) and u0 = (t(γ i(0)), s(γ i(0))) =

(t(γ i′(0)), s(γ i′(0))) (and γ = γ j′
∗ γ i′
= γ j
∗ γ i). Since


Pγ e
−
 u1
u′⋆
ηj
−1

Pγ e−
 u1
u⋆ η

j
= Pγ e−

 u′⋆
u⋆ η

j
, we have

℘


s


Pγ e−
 u′⋆
u⋆ η

j
· q⋆


= ℘


s

q′⋆ · Pγ e

−
 u′⋆
u⋆ η

i


. (122)

Because of the gluing relation of η, and by an argument similar to Property 16 we have

s


Pγ e−
 u′⋆
u⋆ η

j

= h⋆s


Pγ e

 u′⋆
u⋆ qij−1ηiqij+qij−1d(2)qij


(123)

= h⋆s

qij(u′⋆)

−1Pγ e
 u′⋆
u⋆ η

i
qij(u⋆)


(124)

where h⋆ = Pγ e
−
 u′⋆
u⋆ tLie(ηij(x))+αLie

tLie• (qij−1ηiqij+qij−1d(2)q
ij)
∈ H . We have then

℘


s

qij(u′⋆)

−1Pγ e
 u′⋆
u⋆ η

i
qij(u⋆) · q⋆


= ℘


s

q′⋆ · Pγ e

−
 u′⋆
u⋆ η

i


(125)

and then

℘


s


Pγ e
 u′⋆
u⋆ η

i
· qij(u⋆)q⋆


= ℘


s

qij(u′⋆)

−1q′⋆ · Pγ e
−
 u′⋆
u⋆ η

i


. (126)

It follows that q⋆ = qij(u⋆)−1 (modulo an H element without significance). Since the calculus is the same for the target

condition (h⋆ = Pγ e
−
 u′⋆
u⋆ tLie(ηij(y))+αLie

tLie• (qij−1ηiqij+qij−1d(2)q
ij) ), we dot not have another result. �

It is important to note that except for trivial 2-bundles (where ηij = 0), Hℓ(γ j
∗ γ i) ≠ Hℓ(γ j′

∗ γ i′), and the horizontal
lift of a pseudosurface extending on two charts depends on an arbitrary point (y⋆, x⋆) chosen for the transition. This is a
consequence of the impossibility to lift {P i

}i and {Q i
}i to usual bundles. The consistency of the connective structure being

defined by the global G/t(H)-bundle R, it is natural that the consistency of Hℓ(γ j
∗ γ i) is ensured only for its projection by

℘ : G→ G/t(H).

Proposition 4. Let γ i be an elementary pseudosurface of Ui and γ j be an elementary pseudosurface of Uj such that s(γ j) =
t(γ i) = C⋆ ⊂ U i

∩ U j. An horizontal lift of γ j
◦ γ i permitting the composition of Hℓj(γ j) and Hℓi(γ i) is defined by

Hℓ(γ j
◦ γ i) = Hℓj(γ j) ◦


(eH , g ij(x⋆(1))−1) ·


PC⋆e

−

C⋆
αgij (η

ij)+αLie
Ai , PC⋆e

−

C⋆

Ai

◦Hℓi(γ i)


· (eH , g ij(x⋆(0)))


(127)

with s(γ j(u)) = t(γ i(u)) = x⋆(u) (∀u ∈ [0, 1]).

Proof. The vertical composition of Hℓi(γ i)with Hℓj(γ j) cannot directly be performed since

t(Hℓi(γ i)) = PC⋆e
−

C⋆

Ai
≠ PC⋆e

−

C⋆

Aj
= s(Hℓj(γ j)). (128)

Since Aj
= g ij−1Aig ij

+ g ij−1dg ij
+ tLie(ηij)we have

PC⋆e
−

C⋆

Aj
= g ij(x⋆(1))−1PC⋆e

−

C⋆

Ai+tLie(αgij (η
ij))g ij(x⋆(0)). (129)

Since we have

s


PC⋆e
−

C⋆
αgij (η

ij)+αLie
Ai , PC⋆e

−

C⋆

Ai

= PC⋆e

−

C⋆

Ai (130)
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and since by using an argument similar to Property 16 we have

t


PC⋆e
−

C⋆
αgij (η

ij)+αLie
Ai , PC⋆e

−

C⋆

Ai

= PC⋆e

−

C⋆

Ai+tLie(αgij (η
ij)) (131)

we conclude that the different arrows can be composed. �

In contrast to the horizontal composition, Hℓ(γ j
◦ γ i) as defined by this proposition does not depend on an arbitrary

choice. C⋆ and its end points are fixed by the source and target maps.

Proposition 5. Let γ i, γ j, and γ k be elementary pseudosurfaces of Ui, Uj and Uk such that s(γ k) = t(γ j) = C⋆1 ∈ Uk
∩ U j,

s(γ i(1)) = s(γ j(0)) = t(γ j(0)) = s(γ k(0)) = x⋆ ∈ U i
∩ U j
∩ Uk and t(γ i(1)) = t(γ k(0)) = y⋆ ∈ U i

∩ Uk. An horizontal lift
of (γ k

◦ γ j) ∗ γ i compatible with the previous definitions and with the exchange law:

Hℓ

γ k
◦ γ j

∗ γ i
= Hℓ


(γ k
∗ γ i) ◦ (γ j

∗ ids(γ i))


(132)

is defined by

Hℓ

γ k
◦ γ j

∗ γ i
= Hℓ(γ k

◦ γ j) ·

(hik(y⋆, x⋆), g ik(x⋆))−1Hℓi(γ i) ◦

(hijk(x⋆), g ij(x⋆)g jk(x⋆))−1Ps(γ i)e
−

s(γ i) A

i
t(ki(x0))


(133)

with x0 = s(γ i(0)). To simplify the notations we have denoted (eH , g) by g andwe have supposed that the horizontal composition
‘‘·’’ precedes the vertical composition ‘‘◦’’.
Proof. By applying the exchange lawwe have (γ k

◦γ j)∗γ i
= (γ k

◦γ j)∗ (γ i
◦ ids(γ i)) = (γ

k
∗γ i)◦ (γ j

∗ ids(γ i)). By applying
Proposition 4 we have

Hℓ((γ k
∗ γ i) ◦ (γ j

∗ ids(γ i))) = Hℓ(γ k
∗ γ i) ◦


g jk(x1)−1(q(C⋆) ◦Hℓ(γ j

∗ ids(γ i)))t(k
i(x0))


(134)

with x1 = s(γ k(1)) = t(γ j(1)),C⋆ = C⋆1∪s(γ i) and q(C⋆) is defined as in Proposition 4. More precisely, by using the gluing
relations for Aj and for ηjk we find that

Aj
+ tLie(αg jk(η

jk)) = g ij−1Aig ij
+ g ij−1dg ij

+ g ij−1tLie

αg ij(η

ij)+ αg ijg jk(η
jk)

g ij (135)

= g ij−1Aig ij
+ g ij−1dg ij

+ g ij−1tLie

hijk−1dhijk

+ hijk−1αLie
Ai (h

ijk)+ hijk−1αg ik(η
ik)hijk g ij (136)

= g ij−1t(hijk)−1

Ai
+ tLie(αg ik(η

ik))

t(hijk)g ij

+ g ij−1t(hijk)−1d(hijkg ij). (137)

It follows that

t(q(C⋆)) = PC⋆1e
−

C⋆1

Aj+tLie(αgjk (η
jk))g ij(x⋆)−1t(hijk(x⋆))−1Ps(γ i)e

−

s(γ i) A

i
(138)

and then

q(C⋆) = qjk(C⋆1)(hijk(x⋆), g ij(x⋆))−1Ps(γ i)e
−

s(γ i) A

i
. (139)

We have then

g jk(x1)−1(q(C⋆) ◦Hℓ(γ j
∗ ids(γ i)))t(k

i(x0))

=

g jk(x1)−1qjk(C⋆1)g jk(x⋆)


·


(hijk(x⋆), g ij(x⋆)g jk(x⋆))−1Ps(γ i)e

−

s(γ i) A

i
t(ki(x0))


◦

g jk(x1)−1Hℓk(γ k)g jk(x⋆)


·


g jk(x⋆)−1g ij(x⋆)−1Ps(γ i)e

−

s(γ i) A

i
t(ki(x0))


. (140)

By using the exchange law for the elements delimited by {} in the previous expression, we find

g jk(x1)−1(q(C⋆) ◦Hℓ(γ j
∗ ids(γ i)))t(k

i(x0)) =

g jk(x1)−1(qjk(C⋆1) ◦Hℓj(γ j))g jk(x⋆)


·


(hijk(x⋆), g ij(x⋆)g jk(x⋆))−1Ps(γ i)e

−

s(γ i) A

i
t(ki(x0))


. (141)

Since Hℓ(γ k
∗ γ i) = Hℓk(γ k)(hik(y⋆, x⋆), g ik(x⋆))−1Hℓi(γ i), Eq. (134) becomes

Hℓ((γ k
∗ γ i) ◦ (γ j

∗ ids(γ i))) =

Hℓk(γ k)


·

(hik(y⋆, x⋆), g ik(x⋆))−1Hℓi(γ i)


◦

g jk(x1)−1(qjk(C⋆1) ◦Hℓj(γ j))g jk(x⋆)


·


(hijk(x⋆), g ij(x⋆)g jk(x⋆))−1Ps(γ i)e

−

s(γ i) A

i
t(ki(x0))


. (142)

By using the exchange law for the elements delimited by {}we find the result of the proposition. �
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Similar formulae for the other situations with a branching point on a triple overlap can be obtained by the samemanner.
With all these definitions, Hℓ can be extended as a functor of


i PS(Ui) to G and define any horizontal lift relative to a

2-cover {Ui}i. Hℓ can be extended as a functor of PS(M) to G only if the 2-bundle is trivial (independent from the choice
of a 2-cover and then on the choices of transition points for pseudosurfaces extending on several 2-charts).

6. Example: The Bloch wave operators in quantum dynamics

6.1. The Bloch wave operators

The studies of quantum dynamical systems with ‘‘large Hilbert space’’, i.e. quantum systems involving a large number of
independent states in their dynamics, are generally difficult for the theoretical viewpoint as for the numerical viewpoint.
Methods involving active spaces, effective Hamiltonians and wave operators are good tools to solve this problem (see
[40–42]).

Let Gm(H) = {P ∈ B(H), P2
= P, PĎ

= P, trP = m} be the space of rank m orthogonal projectors of the separable
Hilbert space H (B(H) denotes the set of bounded operators of H). If H is finite dimensional, i.e. H ≃ Cn, Gm(Cn) is a
complex manifold called a complex grassmanian [43]. This manifold is endowed with a Kählerian structure (see [33]), and
particularly with a distance (called the Fubini-Study distance) defined by

∀P1, P2 ∈ Gm(Cn), distFS(P1, P2) = arccos | det ZĎ
1Z2|

2 (143)

where Z1, Z2 ∈ Mn×m(C) are the matrices of two arbitrary orthonormal basis of Ran P1 and Ran P2 expressed in an
orthonormal basis of Cn. We can note that 0 ≤ distFS(P1, P2) ≤ π

2 . The Fubini-Study distance measures the ‘‘quantum
compatibility’’ between the two subspaces Ran P1 and Ran P2 in the sense that distFS(P1, P2) = π

2 if and only if Ran P⊥1 ∩
Ran P2 ≠ {0} or Ran P1 ∩ Ran P⊥2 ≠ {0}, i.e. there exists a state of Ran P1 for which the probability of obtaining the same
measures as that with a system in a state of Ran P2 is zero (see [44]). For infinite dimensional Hilbert space, it is possible to
define a manifold Gm(H) endowed with a Kählerian structure by using the inductive limit technique (see [43]).

Let P0, P ∈ Gm(H) be such that distFS(P0, P) < π
2 . We call wave operator associated with Ran P0 and Ran P the operator

Ω ∈ B(H) defined by

Ω = P(P0PP0)−1 (144)

where (P0PP0)−1 = P0(P0PP0)−1P0 is the inverse of P within Ran P0 (it exists only if P is not too far from P0, i.e. distFS(P, P0) <
π
2 ). Usually the wave operators are used to solve eigen equation [40]. In that case, we solve an effective eigen equation
Heffψ0 = λψ0 where Heff

= P0HΩ ∈ L(Ran P0) is the effective Hamiltonian within Ran P0 (H ∈ B(H) is the true
self-adjoint Hamiltonian), and we recover the true eigenvector associated with λ, Hψ = λψ , by ψ = Ωψ0 ∈ Ran P
(ψ0 = P0ψ).Ω is called a Bloch wave operator and is obtained by solving the Bloch equation

[H,Ω]Ω = 0. (145)

SinceΩ2
= Ω , a Bloch wave operator can be viewed as a non-linear generalization of an eigenprojector (an eigenprojector

satisfying [H, P] = 0 with P2
= P). Physically, a Bloch wave operator compares the approximate eigenstates within Ran P0

(which is called the active subspace) with the associated true eigenstates.
We can define a weak left inverse of a wave operator: ifΩ = P(P0PP0)−1 thenΩ−1 = P0P satisfiesΩ−1Ω = P0.
In a same manner, in order to compare an approximate quantum dynamics within an active space Ran P0 with the true

dynamics, we can introduce the time-dependent wave operator [41]:

Ω(t) = P(t)(P0P(t)P0)−1 (146)

where (P0P(t)P0)−1 is still the inverse within Ran P0, and where t → P(t) ∈ Gm(H) is the solution of the Schrödinger–von
Neumann equation:

ıh̄Ṗ(t) = [H(t), P(t)] P(0) = P0 (147)

H(t) ∈ B(H) being the self-adjoint time-dependent Hamiltonian. We can then solve the effective Schrödinger equation
within Ran P0, ıh̄∂tψ0(t) = Heff (t)ψ0(t), whereHeff (t) = P0H(t)Ω(t) ∈ L(Ran P0) is the effective Hamiltonian, and recover
the true wave function, ıh̄∂tψ(t) = H(t)ψ(t), byψ(t) = Ω(t)ψ0(t) (P0ψ(t) = ψ0(t)). The time-dependent wave operator
can be used only if the dynamics does not escape too far from the initial subspace, i.e. ∀t , distFS(P(t), P0) < π

2 . Since
P(t) = U(t, 0)P0U(t, 0)Ď, where U(t, 0) ∈ U(H) is the evolution operator (ıh̄U̇(t, 0) = H(t)U(t, 0), U(0, 0) = 1; U(H)
denotes the set of unitary operators of H), we can also write

Ω(t) = U(t, 0)(P0U(t, 0)P0)−1. (148)

By using this expression, it is not difficult to prove that the time-dependent wave operator satisfies

ıh̄Ω̇(t) = [H(t),Ω(t)]Ω(t) Ω(0) = P0. (149)



D. Viennot / Journal of Geometry and Physics 110 (2016) 407–435 431

We can also introduce the generalized time-dependent wave operator [45]:

Ω(t) = P(t)(P0(t)P(t)P0(t))−1 (150)

where t → P(t) ∈ Gm(H) is the solution of the Schrödinger–von Neumann equation and where t → P0(t) ∈ Gm(H) is a
C2 instantaneous eigenprojector: ∀t , [H(t), P0(t)] = 0. This wave operator satisfies

ıh̄Ω̇(t) = [H(t),Ω(t)]Ω(t)+ ıh̄Ω(t)Ω̇(t) Ω(0) = P0(0). (151)

This wave operator can be used to treat an almost adiabatic dynamics where the dynamics does not escape too far from the
instantaneous eigenspace, i.e. ∀t , distFS(P(t), P0(t)) < π

2 . Let H
eff (t) = Ω(t)−1H(t)Ω(t) ∈ L(Ran P0(t)) be an effective

Hamiltonian within Ran P0(t). Let {φ0a(t) ∈ Ran P0(t)}a=1,...,m be a complete set of eigenvectors of Heff (t) (for the sake of
simplicity, we consider here that Heff is diagonalizable), associated with the eigenvalues {λeffa (t)}a=1,...,m. Let ψ(t) be the
true wave function which is the solution of the Schrödinger equation ıh̄∂tψ(t) = H(t)ψ(t) with ψ(0) = φ0a(0). Since
distFS(P(t), P0(t)) < π

2 we wan write that ψ(t) =
m

b=1 cb(t)Ω(t)φ0b(t). By injected this expression in the Schrödinger
equation, we find that

ψ(t) =
m

b=1


Te−ı h̄

−1  t
0 Eeff (t ′)dt ′−

 t
0 A(t ′)dt ′−

 t
0 η(t

′)dt ′

ba
Ω(t)φ0b(t) (152)

where Te is the time ordering exponential (the Dyson series) and where the matrices Eeff , A, η ∈Mm×m(C) are defined by

Eeff (t) = diag(λeff1 (t), . . . , λ
eff
m (t)) (153)

A(t) = (Z0(t)ĎZ0(t))−1Z0(t)Ď∂tZ0(t) (154)

η(t) = (Z0(t)ĎZ0(t))−1Z0(t)ĎΩ(t)−1Ω̇(t)Z0(t) (155)

where Z0(t) ∈ Mn×m(C) is the matrix representing (φ01(t), . . . , φ0m(t)) in a fixed orthonormal basis of H ≃ Cn (if H is
infinite dimensional, Z0(t) ∈


ℓ2(N)

⊗m, ℓ2(N) denoting the square integrable sequences representing the coefficients of
the decomposition of the states of H on a fixed orthonormal basis). A and η are the generators of two kinds of non-abelian
geometric phases. The next section discusses the geometric structure in which they take place.

Remark. The geometric structure associated with usual time-dependent wave operators P(t)(P0P(t)P0)−1 (with Ṗ0 = 0)
has been studied in [44]. The present work focus on the generalized time-dependent wave operators (Ṗ0 ≠ 0).

6.2. The category of the m-dimensional subspaces

Before introducing the affine 2-space of the wave operators, we need to introduce an intermediate category.
We denote by L∞m (H) the set of rank m linear operators of H . For an endomorphism f ∈ L∞m (H) we consider the

decomposition ker f
⊥

⊕ ker f ⊥ where dim ker f ⊥ = dimRan f = m. We introduce moreover the set

L1
m(H) =


f ∈ L∞m (H), distFS(ker f

⊥, Ran f ) <
π

2


and ∀q ∈ N∗ we set

Lq
m(H) = {(fq, . . . , f1) ∈ (L

1
m(H))

q, Ran fi = ker f ⊥i+1}/χ

where the equivalence relation is defined by

(fq, . . . , f1)∼χ (f ′q, . . . , f
′

1) ⇐⇒


χ(fq, . . . , f1) = χ(f ′q, . . . , f

′

1)

Ran fi = Ran f ′i ,∀i

with χ(fq, . . . , f1) = fq...f1 (the products being the operator composition).
Let E be the category defined by

• Obj(E) are them-dimensional vector subspaces of H .
• Morph(E) =


∞

q=1 L
q
m(H) (we note that χ(Morph(E)) = L∞m (H).)

• ∀E ∈ Obj(E), idE = PE (the orthogonal projection on E).
• ∀f ∈ Morph(E), s(f ) = kerχ(f )⊥ and t(f ) = Ranχ(f ).
• ∀f , g ∈ Morph(E), Ranχ(g) = kerχ(f )⊥; g ◦ f = [gq, . . . , g1, fp, . . . , f1]χ where g = [gq, . . . , g1]χ , f = [fp, . . . , f1]χ ,
[.]χ denoting the equivalence class associated with∼χ .
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6.3. The affine 2-space of the wave operators

Let (M,R,Ω) be the hyperbolic affine 2-space defined by

• Obj(M) = Gm(H).
• ∀P,Q ∈ Gm(H), PRQ ⇐⇒ distFS(P,Q ) < π

2 .
• Morph(M) = {Pq(Pq−1PqPq−1)−1...(P2P1P2)−1, Pi ∈ Gm(H), distFS(Pi+1, Pi) < π

2 }

• Ω(Pq, . . . , P1) = Pq(Pq−1PqPq−1)−1...(P2P1P2)−1 =
←−−−
Pq...P1.

• s(Pq(Pq−1PqPq−1)−1...(P2P1P2)−1) = Ran P1, t(Pq(Pq−1PqPq−1)−1...(P2P1P2)−1) = Ran Pq, idP = P(PPP)−1 = P .
• The arrow composition is just the operator composition applied on the wave operators.

Let ϖ ∈ Funct(E,M) be the functor consisting to transform the vector spaces into their orthogonal projectors, and such
that

ϖ([fq, . . . , f1]χ ) = PRan fq(PRan fq−1PRan fqPRan fq−1)
−1...(Pker f⊥1 PRan f1Pker f⊥1 )

−1. (156)

PRan fi being the orthogonal projector on Ran fi.
Let (ea)a=1,...,n be the chosen orthonormal basis of H . Let {P i

}i be the set of orthogonal projectors on the spaces spanned
by m vectors of (ea)a=1,...,n. We denote by I i the set of indices of the m vectors spanning Ran P i (Ran P i

= Span(ea; a ∈ I i)).
Let U i be the open chart of Gm(Cn) defined by

U i
=


P ∈ Gm(Cn)|distFS(P, P i) <

π

2


. (157)

{U i
}i constitutes a good open cover of Gm(Cn) and then {Ui

}i generated byΩ constitutes a good open 2-cover ofM. ∀P ∈ U i,
there exists a basis (ua)a∈I i of Ran P such that (see [43]):

ua = ea +

b∉I i

cabeb cab ∈ C. (158)

The map ξ i : U
i
→ Cm(n−m)

P → (cab)a∈Ii,b∉Ii
is the coordinates map of U i. ∀P ∈ U i we denote by Z i

0 ∈ Mn×m(C) the matrix representing

(u1, . . . , um) in the basis (ea)a=1,...,n (we call it the coordinates matrix of P).

6.4. The trivial 2-bundle associated with the wave operators

Let P be the category defined by

• Obj(P ) = {Z ∈ Mn×m(C), det(ZĎZ) ≠ 0}. Obj(P ) can be identified with the complex non-compact Stiefel manifold
(see [43]).
• Morph(P ) = {(f , Z) ∈ Morph(E)×Obj(P ); s(f ) = Span(Z)}. (Span(Z) denotes the vector space spanned by the vectors

represented by Z).
• s(f , Z) = Z; t(f , Z) = χ(f )Z (χ(f )Z denotes the matrix in the fixed basis (ea)a=1,...,n representing the action of χ(f ) on

them vectors represented by Z).
• idZ = (P, Z)where P = Z(ZĎZ)−1ZĎ is the orthogonal projector on Span(Z).
• (f2,W ) ◦ (f1, Z) = (f2 ◦ f1, Z)with W = χ(f1)Z .

Let π ∈ Funct(P ,M) be the functor defined by

∀Z ∈ Obj(P ), π(Z) = Z(ZĎZ)−1ZĎ
∈ Gm(Cn) (159)

and

∀(f , Z) ∈ Morph(P ), π(f , Z) = ϖ(f ) (160)

P constitutes a principal 2-bundle overMwith projection functorπ . Its structure groupoidG is constituted byG ≃ GL(m,C)
the group of matrices representing the basis changes on Cm, and H ≃ GL(m,C) the group of matrices representing the rank
m linear operators ofH . t is then the isomorphism betweenH and G, and α is the conjugation.We can then defined the local
trivialization equivalences of P :

∀P ∈ Gm(Cn), g ∈ G, φi(P, g) = Z i
0g (161)

with Z i
0 the coordinates matrix associated with P .

∀Z ∈ Obj(P ), φ̄i(Z) = (Z(ZĎZ)−1ZĎ, (Z i
0
Ď
Z i
0)
−1Z i

0
Ď
Z) (162)
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with Z i
0 the coordinates matrix of Z(ZĎZ)−1ZĎ. (Z i

0
ĎZ i

0)
−1Z i

0
ĎZ is the passage matrix between the basis represented by Z i

0 and
the basis represented by Z .

∀Ω ∈ Morph(M), (h, g) ∈ H o G,

φi(Ω, h, g) = (Z i
0qh(Z

i
0q−1

Ď
Z i
0q−1)

−1Z i
0q−1

Ď
, Z i

0q−1(Z
i
0q−2

Ď
Z i
0q−2)

−1Z i
0q−2

Ď
, . . . , Z i

02(Z
i
01

Ď
Z i
01)
−1Z i

01
Ď
, Z i

01g) (163)

whereΩ = Pq(Pq−1PqPq−1)−1...(P2P1P2)−1 with Z i
0j the coordinates matrix of Ran Pj.

∀(f , Z) ∈ Morph(P ),

φ̄i(f , Z) = (ϖ(f ), (W i
0
Ď
W i

0)
−1W i

0
Ď
χ(f )Z i

0, (Z
i
0
Ď
Z i
0)
−1Z i

0
Ď
Z) (164)

where Z i
0 is the coordinates matrix of Pkerχ(f )⊥ and W i

0 is the coordinates matrix of PRanχ(f ). We have well tφ̄i(f , Z) =
φ̄i(t(f , Z)) since

(W i
0
Ď
W i

0)
−1W i

0
Ď
f Z i

0(Z
i
0
Ď
Z i
0)
−1Z i

0
Ď  

P

Z = (W i
0
Ď
W i

0)
−1W i

0
Ď
fZ (165)

P is a categorical generalization of the Stiefel bundle, the classifying universal bundle for the GL(m,C)-principal bundles
(see [43]).

By definition the G-transition functions of P are such that

∀P ∈ U i
∩ U j, φ̄iφj(P, eG) = (P, (Z i

0
Ď
Z i
0)
−1Z i

0
Ď
Z j
0) = (P, g

ij(P)) (166)

where Z i
0 is the coordinates matrix of P . We have then

g ij(P) = (Z i
0
Ď
Z i
0)
−1Z i

0
Ď
Z j
0. (167)

The H-transition functions are such that ∀Ω ∈ Morph(P )

φ̄iφj(Ω, eH , eG) = (Ω, (W i
0
Ď
W i

0)
−1W i

0
Ď
W j

0(Z
j
0
Ď
Z j
0)
−1Z j

0
Ď
Z i
0, (Z

i
0
Ď
Z i
0)
−1Z i

0
Ď
Z j
0) (168)

= (Ω, hij(Q , P), g ij(P)) (169)

where Z i
0 is the coordinates matrix of PkerΩ⊥ andW i

0 is the coordinates matrix of PRanΩ . We have then

hij(Q , P) = (W i
0
Ď
W i

0)
−1W i

0
Ď
W j

0(Z
j
0
Ď
Z j
0)
−1Z j

0
Ď
Z i
0. (170)

The relation between the H-transition functions and the G-transition functions is well satisfied:

hij(Q , P)g ij(P) = g ij(Q )(Z j
0
Ď
Z j
0)
−1Z j

0
Ď
Z i
0(Z

i
0
Ď
Z i
0)
−1Z i

0
Ď  

P

Z j
0 (171)

= g ij(Q )(Z j
0
Ď
Z j
0)
−1Z j

0
Ď
Z j
0 (172)

= g ij(Q ). (173)

P is trivial in the sense where hijk(P) = eH since

g ij(P)g jk(P) = (Z i
0
Ď
Z i
0)
−1Z i

0
Ď
Z j
0(Z

j
0
Ď
Z j
0)
−1Z j

0
Ď  

P

Zk
0 (174)

= (Z i
0
Ď
Z i
0)
−1Z i

0
Ď
Zk
0 (175)

= g ik(P). (176)

6.5. The 2-connection associated with the geometric phases

The object-bundle of P is the Stiefel bundle, we can endow it with its natural connection (the universal connection of
the GL(m,C)-principal bundles, see the Narasimhan–Ramaman theorems [46,47]), which defines the following G-gauge
potential:

Ai(P) = (Z i
0
Ď
Z i
0)
−1Z i

0
Ď
dZ i

0 ∈ Ω
1(Gm(H), g). (177)
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Moreover we endow the arrow-bundle with a connection defining the following H-gauge potential:

ηi(Q , P) = (Z i
0
Ď
Z i
0)
−1Z i

0
Ď 
Ω−1d(2)Ω


Z i
0 ∈ Ω

1(Gm(H)
2
/R, h) (178)

withΩ = Q (PQP)−1 andΩ−1 = PQ . SinceΩZ i
0 is a matrix representing a basis of RanQ , ∃g ∈ G such that W i

0g
−1
= ΩZ i

0.
We have then

Ai(Q ) = g−1ηi(Q , P)g + g−1Ai(P)g + g−1dg. (179)
The relation between the G-gauge potential and the H-gauge potential is then well satisfied (up to a G-gauge change).

6.6. Horizontal lifts and parallel transport

Let t → P(t) ∈ Gm(H) be a solution of the Schrödinger–von Neumann equation and t → P0(t) ∈ Gm(H) be an
eigenprojector of the Hamiltonian. We suppose that the almost adiabatic condition is satisfied, ∀t , distFS(P(t), P0(t)) <
π
2 . To simplify, we suppose also that ∀t , P(t),Q (t) ∈ U i. The generalized time-dependent operator t → Ω(t) =
P(t)(P0(t)P(t)P0(t))−1 constitutes an elementary pseudosurface of M. The horizontal lift ofΩ is then

Hℓi(Ω) = PΩe−
 (P0(t),P(t))
(P0(0),P(0))

(Ai+ηi) (180)

= Te−
 t
0 Ãi(t ′)dt ′−

 t
0 η̃

i(t ′) (181)
where

Ãi(t) = (Z i
0(t)

ĎZ i
0(t))

−1Z i
0(t)

Ď∂tZ i
0(t)

and
η̃i(t) = (Z i

0(t)
ĎZ i

0(t))
−1Z i

0(t)
ĎΩ−1(t)Ω̇(t)Z i

0(t).

Z i
0(t) being the coordinates matrix of P0(t). By applying the intermediate representation theorem [48] on Eq. (152) we have

ψ(t) =
m

b=1


Te−ı h̄

−1 Êeff (t ′)dt ′Te−
 t
0 A(t ′)dt ′−

 t
0 η(t

′)dt ′

ba
Ω(t)φ0b(t) (182)

=

m
b=1


Te−ı h̄

−1 Êeff (t ′)dt ′g i(t)Te−
 t
0 Ãi(t ′)dt ′−

 t
0 η̃

i(t ′)dt ′g i(t)−1

ba
×Ω(t)φ0b(t) (183)

=

m
b=1


Te−ı h̄

−1 Êeff (t ′)dt ′g i(t)Hℓi(Ω)g i(t)−1

ba
Ω(t)φ0b(t) (184)

where Z0(t) = Z i
0(t)g

i(t) (Z0(t) is the matrix representing the eigenvectors of Heff ). The geometric phases of an almost
adiabatic quantum dynamics is then the horizontal lift of the pseudosurface defined by the generalized time-dependent
wave operator. The formula (152) can be then interpreted as being the parallel transport of φ0a(0) along the pseudosurface
Ω in the associated ‘‘vector 2-bundle’’ϖ : E →M, and modified by the conjugated dynamical phase Te−ı h̄

−1 Êeff (t ′)dt ′ :

Êeff (t) = Te−
 t
0 (A(t

′)+η(t ′))dt ′Eeff (t)Te+
 t
0 (A(t

′)+η(t ′))dt ′ .

Finally we can note that the use of an usual time-dependent wave operator (with Ṗ0 = 0) is just a particular case of the
present discussion with a pinched pseudosurface.

7. Conclusion

The categorical bundle structure is extended to the case where the base space is not a trivial category but an affine
2-space. The new structure permits to define the horizontal lifts of objects called the pseudosurfaces. For an impervious
pseudosurface, we recover the horizontal lifts of the usual surfaces (the surface of the first kind supported by the
pseudosurface) previously studied by different authors [19–22,26–30], but the notion of pseudosurface is more general.
The condition tLie(ηi(y, x)) = Ai(y) − Ai(x) implies that Ai

∈ Ω1(U i, tLie(h)) (if U i is totally linkable) and then that ai the
connection of the quotient bundle R must be pure gauge. This reduces the possible applications of the present work. The
most interesting cases are in these conditions, like the example presented Section 6, such that t(H) = G (i.e. t is a surjective
homomorphism) and especiallywhenH = G andwhen t is an automorphismofG. Another example of this kind can be found
in [49] where the space of the density matrices endowed with a group action plays the role of an Euclidean affine 2-space.
Moreover we can have a non-trivial connection ai on the quotient bundle R if a part of the objects of the base 2-space are
linkable only to themselves. The fact that the wave operators of the quantum dynamics can be viewed as (not impervious)
pseudosurfaces augurs the future development of new kinds of non-abelian geometric phases for quantum systems,
particularly for the non-hermitian quantum systems where the wave operator seems play an important role [13]. Moreover
the possibility to study the new physical theories (as the string and brane theory) in the framework of this generalization
could be interesting since some attempts to develop a categorical theory of quantum gravity have been proposed [50,51].
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