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g?ghwfrrgf,'uge theory of them replace also the structure group by a category (more precisely a Lie crossed module
Fiber bundles viewed as a category). But the base space remains still a simple manifold (possibly viewed
Category as a trivial category with only identity arrows). We propose a new principal categorical
Horizontal lift bundle structure, with a Lie crossed module as structure groupoid, but with a base space

belonging to a bigger class of categories (which includes non-trivial categories), that we
called affine 2-spaces. We study the geometric structure of the categorical bundles built
on these categories (which are a more complicated structure than the 2-bundles) and
the connective structures on these bundles. Finally we treat an example interesting for
quantum dynamics which is associated with the Bloch wave operator theory.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The geometry of the principal bundles plays an important role in theoretical physics. It is the natural framework to
model the fundamental interactions between point particles in classical field theory, and is the startpoint for the quantum
field theory [ 1]. Moreover in nonrelativistic quantum physics, the geometric (Berry) phase phenomenon [2] is closely related
to this geometry. A principal bundle naturally arises to treat cyclic quantum dynamics [3] or adiabatic quantum dynamics
driven by classical parameters [4-7]. These physical problems are associated with the holonomies or the horizontal lifts of
paths drawn on the base manifold of the principal bundle.

The horizontal lifts of surfaces cannot be defined within the framework of the principal bundles. The interest for the
horizontal lifts of surfaces arises from the development of the string and brane theories, in which the string and brane gauge
theory is associated with holonomies of surfaces [8-12]. Recently, we have shown that the geometric phases associated with
quantum systems submitted to some decoherence processes take place in higher gauge theories associated with horizontal
lifts of surfaces [13-15].

Geometric realizations of the abelian higher gauge theories are well understood, as gerbes with connection [ 16], bundle
gerbes [17] or twisted bundles [ 18]. For the non-abelian higher gauge theories, some generalizations of these geometric re-
alizations have been proposed: non-abelian gerbes with connection [ 19,20], non-abelian bundle gerbes [21,22], non-abelian
twisted bundles [22] and parallel transport over path spaces [23-25]. We can also cite the higher gauge structure arising
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in the study of the principal composite bundles [26]. In these approaches, the total space of the geometric structure is not
a smooth manifold as in the usual gauge theory but a category. For some of these approaches, the structure group is also
replaced by a structure which can be viewed as a category (as for example an extension of Lie groups). Another interesting
approach of non-abelian higher gauge theories has been proposed by Baez et al. and Wockel, the 2-bundles [27-31]. In this
approach, the structure group is replaced by a Lie crossed module. The different approaches seem to be equivalent [32].
The strategy followed by Baez et al. to define the 2-bundles is very interesting since it is based on the idea consisting to
substitute at each smooth manifold a geometric category called a 2-space. Unfortunately this goal seems unachieved since
in the 2-bundle theory the base space is restricted to the trivial 2-spaces (i.e. an usual manifold M considered as a category
M with Obj(M) = M and Morph(M) = {idy}xem). The reason of this restriction is the difficulty to define a “2-cover” of a
2-space. Indeed the definition of the union of two open sub-2-spaces is not clear since it needs to know how to compose
an arrow in one 2-space with an arrow in another one. The trivial 2-spaces are very poor categories since they have only
identity arrows.

In this paper, inspirited by the 2-bundle theory, we propose a new theory of categorical bundles with a bigger class of
2-spaces that we call the affine 2-spaces. It includes the trivial 2-spaces but also categories with non-trivial arrows. Moreover
the union of two affine open sub-2-spaces is clearly defined. The affine 2-spaces are introduced in the next section. Section 3
introduces the 2-bundles over affine 2-spaces and explores their algebraic and geometric properties. In particular we show
that the structure is very more rich than the usual 2-bundle theory, since a new kind of 1-transition functions appears.
2-bundles over affine 2-spaces are endowed with connective structures in Section 4, and the horizontal lifts are considered
in Section 5. Finally Section 6 presents a simple physical example based on the use of the Bloch wave operators and their
generalizations in quantum dynamics.

A note about the notations used here: let A be a category, Obj(A) denotes its set of objects, Morph(A) denotes its set of arrows
(so called morphisms), s : Morph(A) — Obj(A) denotes its source map, t : Morph(A) — Obj(A) denotes its target map,
o : Morph(A) x,— Morph(A) — Morph(A) denotes the composition of the arrows and id : Obj(A) — Morph(A) denotes its
identity map. Let G be a Lie group, e denotes its neutral element, Aut(G) denotes its group of automorphisms and Der(g) denotes
the algebra of the derivations of its Lie algebra g. Let M be a differential manifold, G,, denotes the set of C* functions from M to
G, TM denotes the tangent space of M and 2™ (M, X) denotes the set of X valued differential n-forms of M. Let P be a principal
bundle over M, HP denotes the horizontal tangent space of P, VP denotes the vertical tangent space of P and I" (M, P) denotes
the set of the sections from M to P.

2. Affine 2-spaces

Definition 1 (2-Space). A smooth 2-space is a category M such that Obj(.M) and Morph(.M) are smooth manifolds, and such
thats, t : Morph(M) — Obj(M), id : Obj(M) — Morph(M) and o : Morph(M)s x; Morph(M) — Morph(M) are smooth
maps.

Definition 2 (Affine Space). An affine space is defined by three kinds of data (M, E, ¢) where M is a manifold, E is a vector
space and ¢ : M?> — E is an application such that

i.VxeM,pk,x)= _0)
ii. Vx,y,z € 1\_/1) ox,y) +oU,2) = ok, 2). N
iii. Vxe M,V u €E,3ly € Msuchthate(x,y) = u.

An affine space is generally the consideration of a flat manifold where we identify each of their tangent spaces with the set
of bipoints. We want to extend this notion to more general situations.

Definition 3 (Affine 2-Space). We call affine 2-space the three kinds of data (M, R, ¢) where the category M is a 2-space,
R is a reflexive and symmetric relation on Obj(M) (if xRy we say that x and y are linkable) and ¢ : | |, o\ Obj(M)?ﬁ —
Morph(M) is a surjective map where

Obj(cM)% = {(Xn, ..., Xx1) € Obj(M)"|Vi < n, X1 1 RX;}.

An affine 2-space is such that

0. V(y,...,x) € Obj(M))z, s(p(y, ..., %) =xand t(g(y, ..., X)) =y.

i. Vx € Obj(M), p(x) = idyand V(...,x,X,...) € Obj(eM)yﬁ, Oy X, X%, . 0) = @, X, .. L),

ii. V(y,...,x) € Obj(M);'R,V(z,...,y) € Obj(M)‘/’ﬂ,go(z, e Vo, X) =9z, ., Y, X).

iii. Vx € Obj(M), Vf € Morph(M) withs(f) =x,3In € N*,3(z,...,x) € Obj(:M)?{R such that ¢(z, ..., x) = f. Moreover, if
np = min{n € N*|3(z,...,x) € Obj(:/%)?eﬂ such that ¢(z, ..., x) = f} thenthere existsonlyone (z, ...,x) € Obj(eM)';f)R
such that ¢(z,...,x) =f.

The assumptions i., ii. and iii. are weaker versions of the corresponding assumptions in the definition of an affine space. If

Vx,y € Obj(M) we have xRy we say that .M is totally linkable.
There are three important kinds of affine 2-space.
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Definition 4 (Euclidean Affine 2-Space). An affine 2-space is said euclidean if R is transitive (R is then an equivalence
relation) and if

Yy, ... %) € 0bj(M)]z, @, ..., %) =@y, X).
In the euclidean affine 2-space, the Chasles relation takes the same form than in the affine spaces

V(x,y,2) € Obj(M)]5, ¢(z,¥) 0 9y, X) = 9(z,%). (1)

Moreover there is a bijection between Morph(.M) and Obj(M)f:R.

Definition 5 (Spherical Affine 2-Space). An affine 2-space is said spherical if xRy = x = y.

In a spherical affine 2-space the set of the arrows is reduced to Morph(M) = {idy, x € Obj(-M)} (a spherical affine 2-space
is generally called a trivial 2-space).

Definition 6 (Hyperbolic Affine 2-space). An affine 2-space is said hyperbolic if Vn € N*, Obj(EM)'}ﬂ # o and

YO, oo x1), (2, -0 X2) € L, Obj(M)]z, @1 - X1) = @2, ..o %) = (V1,---,X1) ~ (V2,...,X2) where ~
signifies that the two sequences are equal modulo consecutive repetitions ((..., x, X, ...) ~ (..., X, ...)).

In a hyperbolic affine 2-space, there is a bijection between the set of the arrows and the set of the sorted collections of
linkable objects without consecutive repetitions. We restrict our attention on these three cases.

We note that an affine space (M, E, ¢) can be viewed as a totally linkable euclidean affine 2-space .M with Obj(M) = M

ﬁ
and_]\)/[orpg(M) = M X E with s(x, _u>) = x, t(x, _u>) = ysuchthate(x,y) = _u>,idx = (x, 0)and (e, _u)), _v>)o(x, _u)) =
(x, U + 7).

The justification of the adjectives euclidean, spherical and hyperbolic is the following. Let Obj(.M) be R?, the sphere S?
or the Poincaré hyperbolic plane. Let (D) be a geodesic of Obj(.M) and R be such that xRy if and only if the geodesic joining
x and y is parallel and not confused to (D). Let Morph(.M) be the set of the oriented piecewise geodesic paths with edges
parallel and not confused to (D). The affine 2-space M is then:

e euclidean if Obj(.M) is the plane (since it exists only one geodesic parallel to (D) and passing through a point x & (D));

e spherical if Obj(.M) is the sphere (since it does not exit a geodesic parallel to (D) and passing through a point x & (D));

e hyperbolic if Obj(.M) is the Poincaré plane (since it exists an infinity of geodesics parallel to (D) and passing through a
point x & (D)).

Property 1. An arrow f € Morph(M) of an affine 2-space has ¢ (s(f), t(f)) as inverse if M is euclidean, whereas if M is
hyperbolic then f is not invertible except if it is an identity arrow.

Proof. By definition for a euclidean affine 2-space, we have f = ¢(t(f), s(f)) and then f o @(s(f), t(f)) = @(t(f), s(f)) o
o), t(f)) = o), t(f)) = idir) and @(s(f), t(f)) of = p(s(f), t(f)) o p(t(f), s(f)) = p(s(f), s(f)) = ids()-

For a hyperbolic affine 2-space, let f be an invertible arrow and f ~! be its inverse. There exists (y, a, ..., b, x), (x, c, . ..,
d,y) such that ¢(y,a,...,b,x) = fand ¢(x,c,...,d,y) = f~'. We have then ¢(y,a,...,b,x) o p(x,C,...,d,y) =
oWy,a,...,b,x,c,...,d,y) = ¢(y). We have then (y,a,...,b,x,c,...,d,y) ~yandtheny=x=a=---=b=c¢
coeo=d. O

In order to enlighten the notation, the arrow ¢(y, ..., x) € Morph(M) of an affine 2-space will be denoted by 3(/_x We
have thenid, = % andZ.yoy.x=7.y.x
Let M be an affine 2-space, the category U such that Obj(U) is an open submanifold of Obj(.M) and Morph(U) =

© (UneN* Obj(‘u)’}ﬂ> is called an open affine sub-2-space. By contrast with the generic 2-spaces, it is possible to define

easily the union and the intersection of two open affine sub-2-spaces. Let U' and U? two open affine sub-2-spaces of M.
U' N U? and U' U U? are open affine sub-2-spaces defined by

obj(u! N u?) = obj(u!) Nobj(U?)  Obj(U' U U?) = Obj(U') U Obj(U?)

Morph(U' N U?) = ¢ <|_| (Obj(u") N Obj(uz))yﬁ)
neN*

Morph(U' U U?) = ¢ <|_| (Obj(u") U 0bj<‘u2>>7ﬂ) :

nenN*

We can note that Morph(U') U Morph(U?) € Morph(U'! U U?). The composition of arrows belonging to two open affine
sub-2-spaces is defined as follows:
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Let f € Morph(U') and g € Morph(U?) with s(g) = t(f) =y € Obj(U") N Obj(U?),gof = ¢(z,...,y, ..., x) where
(,...,x)and (z, . .., y) are the smaller collections of objects of U' and U? such that ¢(y, ...,x) =fande(z,...,y) =g.
We can then define a good open 2-cover of an affine 2-space M as being a set of open affine sub-2-spaces {U'}; such that
{Obj(Ub)}; is a good open cover of Obj(.M) (a set of contractible open sets such that Ui Obj(U’) = Obj(M)). An element U!
will be called a 2-chart.

In order to enlighten the notation we will simply denote by M = Obj(.M) the manifold of objects of an affine 2-space,
and by {U'}; its good open cover.

Example. Let (M, G, -) be a G-space, where M is manifold, G is a Lie group and - is an action of G on M. The G-space can be
viewed as an Euclidean affine space (M, R, ¢) with ObjM = M and MorphM = {(gG, x), x € M, gG, € G/G,} (where
Gx = {g € G, g - x = x} is the stabilizer of x). The identity, source and target maps are defined by id, = (G, X), S(gGy, X) = X
and t(gGy, X) = g - x, the arrow composition being (hGg.x, g - X) o (gGx, X) = (hgGy, X). x and y are linkable if and only if they
belong to the same orbit, i.e. xRy <= x € G-y. ¢(y,x) = (gGy, x) with y such that y = g - x. Remark: an open affine
sub-2-space of M is not a G-space, since MorphU = {(gGy, x); x € ObjU, gGy € G/Gy such that g - x € ObjU}.

3. Categorical principal bundles over affine 2-spaces

Definition 7 (Lie Crossed Module). A Lie crossed module § is the four kinds of data (G, H, t, «) where G and H are Lie groups,
t:H — Gand « : G — AutH are homomorphisms such that t is equivariant:

Vg € G,Yhe H t(og(h)) = gt(h)g™'
and satisfies the Peiffer identity:
Vh,h' € H am (W) =hW'h™".

Proposition 1 (A Lie Crossed Module as a Category). A Lie crossed module is equivalent to a groupoid with Obj($) = G and
Morph(4) = H x G where the semidirect product (called horizontal composition of arrows) is defined by

(h,g)(N', g") = (hag(l), gg")
the identity, source and target maps are defined by
idg = (en,g) s(h,g) =g t(h,g) =t(hg

and the usual arrow composition (called vertical composition of arrows) is defined by
(W, t(h)g) o (h,g) = (W'h, g).
The Lie crossed modules are the categorical versions of the Lie groups.

Definition 8 (Principal 2-Bundle Over an Affine 2-Space). Let M be an affine 2-space endowed with a 2-cover {U'}; and § be
a Lie crossed module. A principal 2-bundle over M with structure groupoid § consists to a category & and a full functor
7 € Funct($, M) surjective on the objects such that:

e Vi, the categories U' x § and 7~ (U') are naturally equivalent. We denote by ¢’ : U’ x § — 7~ 1(U') the equivalence
(called local trivialization) and by ¢’ : 7~ (U) — U’ x § its weak inverse.

e The functors Pr; ¢ and 7 restricted on w ~'(U') are equals.

e The fibration is compatible with the transitive right action of G on itself, i.e. Vx € U', Vg, g’ € G

¢'¢'(x, 2)g' = ¢'¢'(x, gg) (2)
where (x, 2)g’ = (x, gg’).

We denote by «' : Obj(U' x §) — Morph(U' x §) the natural equivalence between idyi,; and ¢'¢', and by &' :
Obj(rr ' (U)) — Morph(rr ~'(U)) the natural equivalence between id,,-1yi, and ¢'@':

Vix.g) €U x G sligy) = (.8  tlky) =¢'¢'(x.2) (3)
Vy..x € Morph(U'), Vh € H, Vg € G,

g © X h.g) = $'¢' (VX b g) 0 1y (4)

Vp €Obj(P),  s@) =p (&) =¢'$'(p) (5)

¥f € Morph(2), &g of = ¢'¢'() o iy, (6)
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Property 2. There exists k' € H, yi such that:

V(x,g) e U x G
P'¢'(x, 8) = (x, t(K(x))g) (7)
Vy..x € Morph(U), V(h,g) € H x G
P X, h,g) = (X, KK )™, £k (x))g) (8)
Vp € 71*1(U")
t(ik)) = ¢'(x, t(K (x))gp) (9)

withp = ¢'(x, g).

Proof. Since s(k;,) = (%, 8), Elfcig € Hand 3(xy, ..., X1, ) such that k, = (Xy..x, fcig,g). Since t(k),) = dioi(x, g),

X
we have x, = xand t(ki,)g = gl with $'p'(x,g) = (x,g). Let ki(x) = fcieG. By definition of a 2-bundle we have
Pol(x, 2) = Pd'(x,e0)g = (x, t(f(}'(g)g) = (x, t(k'(x))g) and then Vg € G, ki, = Ki(x) (modulo an ignored element of
ker(t) without consistent role because it is killed by the target map). We have then gj; = t(k'(x))g. This proves the first
equality.
If M is euclidean, then x..x = X .If M is spherical, X isthe only one arrow with source equal to x (and with target equal

to x). k' is a natural equivalence, then /c};g must be invertible. X...x must be then invertible, now the only invertible arrows

of a hyperbolic aft;m_e 2-space are the identities, then Xx= (x__qlsp 1<f_=M is hyperbc& ' ,
Leth € H and y...x € Morph(U'). Let hj',mx € H be such that ¢'¢'(y..x, h, g) = (¥...x, h;/...x’ g,). From Eq. (4) we have

(V. K@), thg) o Gox, h,g) = Gox. b, . gD o (X, K(x),8) (10)
and then
G-x KWh g) = Gox,h_KEx).g). (11)

We conclude that h}, , = k'(y)hk(x)~". This proves the second equality.
By definition t(k}) = ¢'¢'(p) = ¢'¢'¢'(x, g). The third equality comes from ¢/’ (x, gy) = (x, t(k'(x))gp). O

The natural equivalence is then «}, = ( X,k (x), 2).

Proposition 2 (Right Actions on a Principal 2-Bundle). There is two right actions R, R : H x G — Funct(P, $) of the Lie crossed
module on a principal 2-Bundle defined by:

Vp € Obj(P) withp = ¢'(x, gy)

R(h, 2)p = ¢'(x, gyt (M)g) (12)
Vf € Morph(P) with f = ¢'(y..x, hy, g)

R(h, g)f = ¢' (-, by, grt(h)g) (13)
Vp € Obj() with ¢'(p) = (x, &)
#'R(h, g)p = (x, &t (M) (14)

Vf € Morph(P) with ¢'(f) = (y..x, by, &)

P'R(h, )f = (%, by, Gt (W)g). (15)
Equivalently, R and R are defined by the following commutative diagrams:

U x G LN = ud) U x g PR = uh)

~t(h,g)l lR(h.g) ~t(h,g)T Tk(h,g)

U x g L) Tl U Ui x g (¢_ 77U
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Property 3. V(h,g) € H x G, I_Q(ozgq (h=1), g7 HR(h, g) is naturally equivalent to id . Let p(h, g) : Obj($) — Morph(P) be
the associated natural equivalence. ¥p € Obj(), s(pp(h, g)) = p and ¢'t(py(h, 8)) = (x, t(k'(x))gp) with p = ¢'(x, gp).
V(h,g) € H x G, R(h,g)R(agq(h‘]),g‘]) is naturally equivalent to idp. Let p(h,g) : Obj(#) — Morph(£) be the
associated natural equivalence. Vp € Obj(P), s(pp(h, g8)) = oi(x, t(lci(x))gp) with ¢'(p) = (x, gp) and t(pp(h, g)) =p.
Proof. The natural equivalences follow from the following diagram:
U xg «—— 7 (U
(pl
tlag 1 (h7),g7") 14 t(h,g) R(h,g) 11 R(ag1(h™"),g7")
i L’ —1,qi
U'xg <«— 7o (U)
¢l
where each double arrow is naturally equivalent to an identity.
By definition,
t(pp(h, 2)) = R(ag-1(h™"), g HR(h, ©)p = R(eag-1(h™"), g7 (x, gyt (h)g)

with p = ¢(x,g). We have then ¢'t(py(h,82)) = ¢'R(ag-1(h7"),g7 ") (x, gt(h)g). Since P'¢'(x, gpt(h)g) =
(x, t(k'(x))gpt (h)g) we have

P't(pp(h, £)) = (x, t(K (X))gpt (g~ "t(h™ ).
By definition, s(p, (h, g)) = R(h, g)I_Q(agq (h~1), g~ "p. Since

¢'R(ag-1(h 1), g7 )p = (X, gg~'t(h™ ")
with ¢!(p) = (x, §,), we have

PP R(etg-1 (™). 87 = tRyi g m1ro1y) = B/ LK (X)Zg ™t (hH).
And by definition of R, we have

R(h, ©)R(@g-1(h™"), g7 Dp = ¢'(x, t(K'(X))gpg~t(h™ Dt (h)g). O

Definition 9 (G-Transition Functions). We define the G-transition functions of a principal 2-bundle as being g € Gyinyi such
thatVx e U'N U/, Vg € G

PP (x,8) = . g" ). (16)
Property 4. The G-transition functions satisfy

g =tkx) F'®=t®x)g" "tk ). (17)
Proof. (x,g"(x) = ¢'¢(x, ec) = (x, t(K'(x))).

PYPP (x, ec) = ¢ (x, 8" () = (x, g7 (0" (X))
But we have also

PP P (x, ec) = p't(ic)
with p = ¢/(x, eg). Moreover t (k) = ¢/(x, t(k/ (x))g,) with p = ¢ (x, g).

P'(x, 0) = ¢ (x, 8p) = B¢ (x, ec) = P'P (x, &)
and then

x. t(k'(x) = (%, 8" (0g) = g = g'®) 'tk ).
Finally

PP (x. ec) = $'¢(x, LX)’ (0 LK ()

= (% g7tk (0)g" ®) 't (k' (x)).

We conclude that g/'(x) = t(l (x))g¥(x) "t (ki(x)). O
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Definition 10 (H-Transition Functions). We define the H-transition functions of a principal 2-bundle as being h¥ € H, (winui)?
such that Vy_.x € Morph(U N W), V(h,g) € H x G

PP xhg) = (Vox (h(y, %), 8" (%))(h, g)) (18)
= (X W (y, )iy (h), 87 (X)g). (19)

The fact that hif(y(ﬁc) depends only from the source and the target of fl_x (even if the affine 2-space is hyperbolic) is a
consequence of the following property:

Property 5. The G-transition functions and the H-transition functions are related by Vx,y € U' N U such that EU(/_X €
Morph(U' N W),

t(h' (v, x))g"(x) = g" ). (20)
Proof. We have “t(q_ﬁ"qb"(y(?(, en.ec)) = P'P(v.ec) = (v,87(y)). But we have also tP (. X ey, ec) =
X, h(y, %), 87(0) = 1, t(h (v, 0))gT (). D

In fact, we could have hi(yz,..z;x) = hi(y,x)¢¥(z,,...,z;) with ¢¥ e Kker(t). Since ¢¥ presents no consistent

information (because it is killed by the target map), for the sake of simplicity we consider that ¢V = ey. For the same
reason we consider that h(x, x) = ey, the H-transition functions are then trivial if the affine 2-space is spheric.

Property 6. The H-transition functions satisfy

hi(y, x) = K'(y)k'(x) ™! (21)
W'y, x) = K@)agip-1 (B, ) K@K DK@ (22)
Proof.
Gx, hi(y, %), 81(%) = $'d (-, ew, ec) = (X, K (K ®), t (K (x))).
We have

(»_bl¢l(_bl¢,(y(_xa €H, EG) = (.Y(—Xa h’](y’ X)agij(x) (hﬁ(yv X))7 gU(x)g]l(X))

Moreover we have

QPP I X en. ec) = P'PP ()
with f = ¢'(J.. x, ey, ec). But we have
PYY () =@ (k) of o))
withp = ¢/(x, ec) and q = ¢'(y, ec).
P of ok =GP Ik W Wk ()71, £ (K (%))gp)
withf = ¢/(J...x, hy, g,).
¢ X, en, ec) = ¢ (X, hy, 8) = $'¢' (VX en, ec) = $'¢/ VX, hy, g))

and then

Gx KK ) t (K () = (x, hi(y, X)lgii ) (M), 87(X)8p).
It follows that h, = argij-1(h?(y, X) "K' (¥)k'(x)~"). Finally we can identify h” (y, x)agii, (W' (v, X)) with h¥(y, X)atgii(,) (K ()
hyk (x)~1):

Wy, 0)egi ) (P (v, %)) = WY (v, Datgisy (K 1) agiy-1 (P (v, ) K @K@ D@0 ™. O

Property 7. We consider the sub-2-bundle a1 U N W N Uk at the intersection of three2-charts. The functors ¢'¢p/¢/¢* and
@ ok (restricted on U N W N UX) are naturally equivalents.
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Proof. This follows from the following commutative diagram:

ik ¢* —1(q;ijk P9 —1(q;ijk ¢ ik
U x g —— 77 (UY) ——— 77 (UY) —— U™ x g

|

UK x § —— 771 (UN) —— 77 U*) —— U x g
ok i, 134y ¢

where U = u' nwnuk O
Let A : Obj(U' N W N UK x §) — Morph(U' N W N U x ) be the associated natural equivalence:

s(h¥) = ¢p/Po*(x. g) = (x. g (0" (0g) (23)
r(h’”‘) =¢'p"(x.2) = (x.g*0)g) (24)
Rl g © DOP T X, . g) = o (X, h.g) o hIE. (25)

Let h¥*(x) € H be such that
% = (%, h¥*(x), g (0g" (x)). (26)

Since t(h%‘c) = (x, g (x)) we have g (x) = t(h?*(x))g¥ (x)g/*(x).

Definition 11 (2-transition Functions). We define the 2-transition functions of a principal 2-bundle as being h* € H, vinuinuk
such that Vx € U' N U/ N U*

t(h¥ (x))g" (x)g" (x) = g* (x). (27)

The 2-transition functions measure then the obstruction to lift & as an usual principal bundle, since they characterizes the
failure of the cocycle relation for the G-transition functions. We can remark that

W (%) = atgiigy (K (X) ™) (28)
hi(x) = ki(x)™! (29)
hi(x) = orgiigy (W) 7). (30)

Property 8. The natural equivalence hilk forsomeg € Gis

i = (%, h*(x), g7 (x)g* (0)g). (31)

Proof. Let i € H be such that hly = (%, hl, g%(x)g™*(x)g). We have then t(h))g!(x)g* (x)g = g*(x)g and g (x) =
t(h*())g (g (x). O

Property 9. The 2-transition functions measure also the failure of the cocycle relation for the H-transition functions in the
following sense:

(Y, X)agi e (W (v, %)) = W) ~"h* (v, )™ (x). (32)

Proof. By using the definition of hxec and the expressions of ¢! ¢’¢’¢" X, ey, ec) and of ¢! ¢k(y X, ey, ec), we find

(V. h*), g1 »)g* 1)) o Gx, Ry, X)atgi (W (y, %)), g7 (08" (x))
= (yo-x, ¥y, %), g% (%)) o (X, h*(x), g7 (x)g" (x)).
By composing the arrows, we find

G, K @RI (y, D agi (P, X)), g1 0g" (%) = Tmx, By, 0h* (), g (g (). O

Smce hi* is a natural equivalence, it has an inverse h*—1 such that Vx € U' N U/ N U¥ and Vg € G, h“k ! hjfg =

(X, en, g1(x)g*(x)g). Itis clear that hls ' = (%, hi*(x)~1, g (x)g) where hi* (x)~" is the inverse of h¥¥(x) in the group law
sense.
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Property 10. The 2-transition functions h'* can be viewed as the trivializations of the natural equivalence i/ on U' N W N U*
since we have

(X 000" 8% 00) = ¢(@y ) (33)

(x.ec)

Proof. By definition of i/ we have
¢’<z7’¢k0’(—x» €H, eG) - Eipk(y,ec) o ¢k(y<?(, ey, eG) KJ
We have then

PP T enec) = ¢y, )0 PP TX, en, ) o B (I

Pk(x.ec)”

)-

(x.e6)

By using the definition of hik we have

350 ° ¢ (K¢"(Ve )) ¢ ¢k(y X, €p, €G) 0 ¢( ¢k(x ec)) = ¢ ¢ (V X, ey, eg) o hﬂfc.
We can conclude that

uk ° ¢ (KJ

piik—1 __
o W) = gk eq) = g ' = @' (&

Pk (x, ec))

Property 11. The 2-transition functions obey to the generalized cocyle relation: Vx € U' N U/ N U* N U!
W (%) atgii ) (W (%)) = W™ ()R (x). (34)

Proof. This follows from the definition of the 2-transition functions:
t(h' (%)) (¢ (g (F ()8 0™ (08" (1) = (" ()g" )t (x)g" (%)g"' (0
= t("(x)g" g %) = g" (0
and

(R x)e(h™ (x)g" (g™ (x)g" (x) = t(hM (x)g™ (0g" (x) = g"(x). O

Our definition of a principal 2-bundle coincides with the definition of Baez et al. [27-31] for the spherical affine 2-spaces,
but our theory is more general since it can be applied with non-trivial base categories (with not only identity arrows) as
euclidean and hyperbolic affine 2-spaces. Since H-transition functions are trivial with a spherical affine 2-space (h¥(y, x) =
ey, VXxRy <= x =), these local data of the 2-bundles are absent from the theory of Baez etal. Because the non-abelian
bundle gerbes [19-21] are weakly equivalent to 2-bundles [32] the same remarks can be applied in the comparison of our
definition with the constructions of non-abelian bundle gerbes or twisted bundles. Nevertheless, the non-abelian bundle
gerbes present a kind of H-transition functions obeying to a structure equation similar to Eq. (32) (see [22]). But in that case,
the H-transition functions are not associated with arrows in a base category but with points of the manifold Y x, Y — M
where M is the base manifold and Y — M is a fiber bundle (the non-abelian gerbe construction consists to three floor local
H-principal bundlesover Y x); Yand Y xy Y xy Y [22] where all entities are usual manifolds and not explicitly categories
as in our construction). Categorical bundles over pathspaces [23-25] are defined over non-trivial categories, i.e. over
pathspaces of manifolds viewed as categories. Such categories are not affine 2-spaces and then the two constructions
are completely separated. Since a bundle over the pathspace of a manifold is built from an usual principal bundle with
connection over this manifold, it presents a trivial 2-transition functions (h¥*(x) = ey). To summarize, in term of local data
defining a categorical bundle, our construction seems the more general because it presents possibly non-trivial H-transition
functions (associated with arrows of a base category) and 2-transition functions.

Example. Let (&;)4—1,...n be the canonical basis of C" endowed with the usual inner product. We denotes by GL(n, C)
and U(n) the Lie groups of invertible and unitary matrices expressed in this canonical basis. Let U(m) be the subgroup
of U(n) (m < n) of unitary matrices of (Cm generated by (§;)q=1,..m- We call density matrix of C" a n x n matrix p
such that pt = p, p > 0,and trp = 1. Let o be a diagonal density matrix such that Va,b, a # b, 04q # Opp;
Ya > m, o4q = 0, and Z;":] 0aqa = 1. Let M be the manifold of density matrices of C" which are isospectral to o.
For p € M, letF, = {f € GL(n, C), such that f pof ' is isospectral to p}. Let H, be the stabilizer of p for the conjugation,
ie.H, = {h € GL(n, C), hpht = p}. H, C F,and F,/H, >~ U(n)/U(n), (where U(n), is the stabilizer of p for the adjoint
action, i.e. U(n), = {h € U(n), hph™! = p}). For all p, H, is isomorphic to H = H,. Let M be the totally linkable euclidean
affine 2-space defined by Obj(M) = M, Morph(M) = {([f], p), p € M, [f] € F,/H,}, with s([f], p) = p, t(f], p) = fpfT
(f being an element of the coset [f]),id, = ([idcr], p), and ([f'], Foft o ([f1, ,o) (IF'f1, p)-

We calla purlflcatlon of p € M,amatrix W € 9,,,(C) suchthat p = WW1T. W is not unique, and one of the purifications
of pis \/p. Let {U'}; be a good open cover of M such that Vp, p" € U',Ran p Nker p’ = ker p NRan p’ = {0}. Forall p € U’,
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we choose (Xéa)azlq_mm an orthonormal basis of Ran p (continuous in norm with respect to p). Let ZL € Mywm(C) be the
matrix representing (x},)a=1....m in the canonical basis, i.e. Z/’mb = (&lx;,). Note that Z}1Z! = idcm and Z)Z!l = Pran,

(orthogonal projection onto Ran p). By construction, Vp € U', 3f; € Fz;',oz}'j such that p = fiZloZIf). Let G = U(m),
g € U(m) defines a basis change of Ran p by its right action : Z, g.

Note that fo CH where o1 denotes the pseudomverse of o,ie.Vi > m (60D = 0and Vi < m,
(@ Vi = (o)) Indeed, /og /o 'o(/og/o ) = JogJo oo 'g7Jo =0 (¥g € U(m)).Let§ = (G.H.t, )

be the Lie crossed module defined by t(h) = ﬁ_]hﬁ and o (h) = ﬁgﬁ_lhﬁg‘lﬁ_l.

The purification of the density matrices defines a principal 2-bundle & over M with structure groupoid 4, where Obj(#)
is the set of the purifications of M, Morph? = {(f, W), W € Obj(P),f € Fywt} (with s(f, W) = W, t(f,W) = fW,
idy = (iden, W), (f', fW) o (f, W) = (f'f, W)). The projection functor 7 : # — M is defined by 7 (W) = WW and
7 (f. W) = (f]1. WW) ([f] € Fyw+ /Hww1)- The local trivializations of £, ¢' : U’ x § — P;i, are defined by:

(. 8) fizi\/og
([f].p,h.g)l N l(ff;;z;hZL*f,i*‘,f;z;;g)
—1
(Foft, o hJog) ffpfw‘ fpffh\rg

where f € [f]NU(n). We note that because offf ot _ffpf and Z' it = fZ! it follows thatffpr ffh\/»g f hfg
The inverse trivializations ¢' : i — U’ x § are defined by:

WW', o 'Z)h f
(f,W)l SN l(lfl wwhzlh it e et
1 it n‘
WWIF, /G Zgh st ot W)

We note that /o ZA;/WTff wip/W = Joo ZWWT Wwff w. | - -

By using the expressions of these trivializations, the local data of # are k'(p) = ZJf}'f}Z}, g'(p) = Z[f)'flZ),
W(, p) = Vofehp)f gl and

huk(ﬁ) - \/EZ;)Tf;;Tf/EPRanpfg_lf;;T_lpRanpf;;_lf;T_lZ;;\/E )

We note that in the case where m = 1 (i.e. where M is the space of pure states, p is a projection, p? = ,o),f/; e U(1) and
& is trivial in the sense where h¥*(p) = 1 and Obj is the Berry-Simon U(1)-bundle [4].

4. 2-connections

The definition of a connective structure on a principal 2-bundle over an affine 2-space needs to introduce the “Lie algebra
like” of a Lie crossed bundle. After this, before to consider the generic 2-connections, it is instructive to study the case of a
trivial 2-bundle.

4.1. Differential Lie crossed module

Definition 12 (Differential Lie Crossed Module). Let 4 = (G, H, t, «) be a Lie crossed module. The differential Lie crossed
module associated with § is the four kinds of data (g, b, the €y where g and h are the Lie algebras of G and H, and
the : h — gand o' : g — Der(h) are the maps induced by t and « in the Lie algebras, so

VX €g, VY €, tH(agt(Y)) = X, t7(Y)]
and

VY.Y eh, iy, (V) =Y, Y]

The semi-direct product of groups H x G induces a semi-direct sum of Lie algebras ) € g defined as being @ g (the
exterior direct sum being between the vector spaces without the algebra structures) endowed with the Lie bracket [., .];
such that

VX,X/eg, [X,X’]S:[X,X/]EEg
VY? Y/ € ha [Y5 Y/]S = [Y5 Y/]h € h
VX €g, VY €h, [X,Y]s=—[Y,X]s = a(Y) €.

To simplify the notation, we denote all the Lie brackets by [., .] without subscript.
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In the following, we denote by 7 : h € g — g the projection induced by the canonical projection h @ g — g defined by
the exterior direct sum of vector spaces.
Moreover, we will denote the adjoint representation of H x Gon h) € g by

VheH Vg eG VX eheg, Adhg)X=hgXg h™l. (35)

This notation is in accordance with the semi-direct product since

Ad(hy, g2)Ad(hy, g1)X = hygohigiXgy 'hy'gy 'hy ! (36)
= (hagohig, NeagiXg; ', ' (gahy'g; 'hyh) (37)
= Ad(hyag, (h1), £281)X (38)

with the following convention Ad(cg (h), g)X = ghg~'g'Xg’™ lgh—1g~1,

4.2. The notion of compatible connections
Before to examine the possibility to endow a trivial 2-bundle with a connective structure, we need a simple lemma.

Lemma 1. Let P be a principal G-bundle (G is a Lie group) over a manifold M with transition functions gU. Let f : G — K bea
group homomorphism. The right action of K on itself defines a right action of G on K: kf(g), k € K and g € G. The associated
bundle P x¢; K = {[(pg, f(g~1k), & € Gl}pep:kek constitutes a principal K-bundle over M with transition functions f (g9).

Proof. Let {U'}; be a good open cover of M, and ¢/ : U/ x G — Py be the local trivializations of P. Let ¢/ : U/ x K —
(P x¢s K) be the local trivializations of P x ¢ K: ¢/(x, k) = [(#/(x.g),f(g"D)k); g € GI. Since ¢/(x, g) = ¢'(x, g(x)g)
(for x € U' N U7), we have ¢/ (x, k) = [(¢'(x, g¥(x)g), f(g~)k); g € G]. By the variable change § = glg we have

Px, k) =[x 8),fE ! (x))k); g € Gl =¢'(x, f(gk). O

We want endow P Xy K with a connection which would be viewed as an image of a connection of P. The action of G on
K being not necessary faithful, we require only a notion of compatibility between the two connections:

Definition 13 (Compatible Connections). Let HP and H(P x¢ K) be connections (horizontal tangent spaces) of P and
Px¢gpK.Letj : P — P x¢yK be the map defined by Vp € P, j(p) = [(pg.f(g™"));& € Gl ie. j(P) = P x¢fex} C
P x¢ s K. We say that the two connections are compatible if j,H,P = Hjq,) (P x¢ K), where j, is the push-forward of
jletw € 2'(P,g) and ®» € (P x¢f K, ®) be the associated connection 1-forms (kerw = HP), we have then
j o = fU(w) e 21(P, £) where f1€ is Lie algebra homomorphism induced by f and j* is the pull-back of j.

4.3. 2-connection on a trivial 2-bundle

We consider a principal §-2-bundle & over an affine 2-space .M. In this section we suppose that # is trivial, in the sense
where its 2-transition functions are trivial : h¥*(x) = ey. In that case, the G-transition functions satisfy the cocycle relation
gix)gh(x) = g*(x) (vx e U ﬂUJHU") and define then a principal G-bundle P. We call it the object-bundle. The H-transition
functions satisfy h¥(y, X)agi (H*(y, X)) = h¥(y,x) (Vx € U' N U/ N U*). Let ¢7(y, x) = (hi(y,x),8%(x)) € Hx G winuy-
We see that q¥ satisfy the cocycle relation ¢¥(y, x)¢* (v, x) = q*(y, x) (Vx,y € U'N U/ N UX). ¥ can be then viewed as the
transition functions of a principal H x G-bundle Q over M2 = Ui (Ut x Ut )/gR - M/ﬂ We call it the arrow-bundle. We
denote by 7p and nQ the projections of P and Q.
P U XG> & &i being a functor, we have by definition

id¢i§x,g> = ¢i(?(a» eﬂs 2)
S(9'(%. h.2)) = ¢'(x. 9) (39)
t(P (X, h, £)) = ¢'(y, t(h)g).

We want formulate these relations in the language of the bundle theory in the case where 4 is trivial.

2
LetaA: M~ (MXA ) bethe diagonal map. Let A*Q = {(x, q) € M xQ|A(x) = mq(q)} be the H x G-bundle over M induced by

Q via A. By construction the transition functions of A*Q are g (x) = qi(A(x)) = (ey, g¥(x)). Clearly this is the transition
functions of the widening of P, i.e. P xg(H x G) (where we have considered G =~ {ey} x G as a subgroup of H x G, the
isomorphism between G and {ey} x G constituting the homomorphism for Lemma 1). We denote I = A*Q = P x¢(H x G)
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and we call it the identity-bundle. Let A, : . q§ : qQandL : P — I be defined by Vp € P, 1(p) = [(pg, en, g~ 1); g € G]. We

have then the following commutative diagram

P —— 1 =5 q
L [
M——M—2 M

We denote by A, : TI — TQ and by A} : 2¥Q — £2*I the push-forward and the pull-back of A, and by ¢, : TP — TI and
(* 1 2% — 2*P the push-forward and the pull-back of ..

2
Let I1; : (VMXA) : ;V’ Let IT;P = {(y,x,p) € M3 x Ply = mp(p)} be the G-bundle over M3 induced by P via IT;.
By construction the transition functions of IT{P are g;j(y, x) = giUT(y,x)) = gi(y).lett : Hx G — G be the
homomorphism defined by t(h, g) = t(h)g. The bundle Q Xy, G defined by ¢ and Lemma 1 has the same transition
functions t(q"(y, x)) = t(h"(y,x))g"(x) = g"(y). We have then T = IT{P = Q Xpy¢, G that we call it the target-bundle.

Let Ty, t , pT) = gand 7 :Q — T be defined by Vq € Q, 7(q) = [(q(h, g), g~ 't(h"")); h € H, g € G]. We have then the
following commutative diagram

p Iy T T Q

M < m2 M2

We denote by [Ty, : TT — TP and by [T}, : £2*P — $2*T the push-forward and the pull-back of ITy,,and by 7, : TQ — TT
and t* : 2*T — £2*Q the push-forward and the pull-back of z.

2
et I, : et = ,X,p) € X Plx = mp e the G-bundle over Induced by P via II,. By
Let I, : M2 7 M Let 1} = {(y,x,p) € M2 x P| (p)} be the G-bundl M2 induced by P via IT. B

¥,%) = x°
construction the transition functions of IT; P are gg (v, x) = g¥(x).Lets : HxG be the homomorphism defined by s(h, g) = g.
The bundle Q Xp.¢ s G defined by s and Lemma 1 has the same transition functions s(@¥(y,x)) = g¥(x). We have then

S = II;P = Q Xpxc,s G that we call the source-bundle. Let IT,, : G, ps) : Zand ¢ : Q — S be defined by Vq € Q,
¢(q) =[(qth,g),g~"); h € H, g € G]. We have then the following commutative diagram

P I, S 9 Q

M <2 M M2

We denote by T, : TS — TP and by [T, : £2*P — £2*S the push-forward and the pull-back of IT,,, and by ¢, : TQ — TS
and ¢* : 2*S — £2*Q the push-forward and the pull-back of ¢.
We denote by ¢}, and go}z the transition functions of P and Q (they corresponds respectively to the object and the arrow

parts of the functor ¢'). The three previous commutative diagrams can be rewritten as follows:

Aot (ph(x, 2)) = 0h (x. X, ey, 8)
My 06 (9p(v. X, h,2)) = ¢p(x, 8) (40)
Mot (9o, %, h, 8)) = ¢p (v, t(h)g).
This is the reformulation of the functor properties of ¢’ in the fiber bundle language.
Since P and Q are principal bundles, they have canonical vertical tangent spaces: T,P D V,P >~ g (Vp € P) and

T,Q D V,Q = h & g(Yq € Q). We define a connection of & as being two connections, one of P and one of Q, compatible
with the category structure of &, and then compatible with the commutative diagrams linking P and Q vial, T and S.

Definition 14 (2-Connection on a Trivial 2-Bundle). A 2-Connection on a trivial 2-bundle &, is the data of a connection HP
on P and a connection HQ on Q such that the horizontal spaces satisfy

VpeP  AutHP = Hao(pQ (41)

YqgeQ M1 7:HQ = Hyor(@P (42)

YgeQ HZ**g*HqQ = Hﬂz*og(q)P- (43)
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This definition can be expressed in the terms of the connection 1-forms. Let wp € £2'(P, g) be the connection 1-form of P
(kerwp = HP) and wy € 2'(Q, b & g) be the connection 1-form of Q (ker wg = HQ). We have then:

L*AICUQ = wp (44)
5‘*17;*601: = ng(wQ) (45)
T wp = tHe(wq) (46)

with ¢l = t4¢ @ id, defined on b & g.
We consider now the local data of the connection. Let a,ﬂ e I'(U', P) be the trivializing local section of P

vxeUnU, ol =oi®g’x) (47)
and o € I'(U' x U', Q) be the trivializing local section of Q

Vx,y €U, o)y, %) = og (1,04’ ¥, ). (48)
By the properties of the local trivializations we have
Ay ot (0p(®) = 04 (X, %)
My 0 5 (04 (. X)) = o} (%) (49)
My, 07 (04 (. %)) = o4 ().

We can then define a G-gauge potential A' = o}wp € 2'(U',g) and a H x G-gauge potential ' = oj'wg €
2UU' x U}R, h & g). The relations between the connection 1-forms and between the trivializing local sections induce

A'n'(x) = A® (50)
70 (. %) = A'X) 51
L0 0.%) = AW). (52)

This induces that '(y, x) = A'(x) + 7'(y, x) with ' € 2'(U" x U;ﬂ, h), such that n'(x, x) = 0 and

'y, %) = Aly) — A'(x) € RTU' x Uy, 7 (H)). (53)
By construction we have

el nt, A =g 'Aweg'®) +g" ) "dg"(x) (54)

v yeUnl, 0 =d00"700000+qdy,0 dq" v, % (55)

wheredp) =dy+d, = ﬁdx“ + %dy” denotes the exterior differential of M.

Property 12. Vx, y € U' N U’ we have

i (M, 0) = W@, 070 @, O (v, 0 + h (v, 0 dy hT (v, ) + W (v, 0~ agie (K0 (v, %), (56)

Proof. We have
¢yl = g hI AR 4 g hi il g
— gij—lAigij +gij—1hij—l[Ai, hij]gij _f_glj—lhij—lnihﬁgij.
Moreover
¢""'do)q" = g" ' dp)h'g" = g" (W d iy h))g” + g7 dg”.
We have then
=gl Al + gi1dgl + g7 (RTn'hY + Wi d gy kY + hTTAT W) Y. O
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Finally we can introduce the curvatures of the connections, F' = dA' + A' A A € 2*(U', g) and F' = dyn' + ' Ay €
2°(U' x Ujz, b & g). It is easy to see that F' can be decomposed as F' = F' + B’ with

B =doyn' +1' An'+ () € 22U x Uz, b). (57)
We can note that F! is equivariant: Vx, y € U N U/

P =gl 'Fig’ (58)
but the curving satisfies

agi (B) = "B 4 i ke (D). (59)

In the higher gauge theory literature, F' (or F' + t4¢(B")) is usually called the fake curvature and B' is usually called the
curving. We can also introduce the true curvature (or 3-curvature) H' = d(z)B’ + oz“e(B’) = d(z)F‘ +[ALF = —[nl,F] €
23U x U/R, h) which satisfies the generalized Bianchi identity d(z)H' + aﬁ‘,e(H Y+ [B,Fl1=0.

If M is hyperbolic, there exists also H x G-bundles over M} = Ui(Uf)7ﬁ (n > 3) denoted by Q™" with the
transition functions qg_l(z, ...,X) = ¢Y(z, x). We consider the case of Q®. The relations between Q® and P are the
same than between Q and P. Moreover Q® is related to Q by the partial diagonal maps: Ac 0 (¥,%) = (¥,¥,%) and
Az (y,%) — (v, %, x). This induces that Q® is endowed with a connection of gauge potential n' € Ql((U’)?R, h & g) such
that B

Aézi(x) = Al(x) (60)

A @ %) = 10,0 (61)

A Y. %) = 10,0 (62)
t(n'(@.y.%) = A@) (63)
7 (' (2.y. %) = A (64)

with Aq : x > (x, x, X) the diagonal map. This induces that n'(z, y, X) = n'(z, y)+1'(y, X) —A'(y) = 1'(z. y)+1' (. O +A (x).

The connection of Q® does not contain new information. This argument can be repeated for Q ">2.

4.4. 2-connection: general case

Let {P'}; and {Q'}; be the local principal G-bundles and H x G-bundles over U’ and U’ x U}R defined by P! = {¢'(x, g); x €
U,g € G} and Q' = {¢'(Jx,h,g); (y,x) € (U)ig,h € H,g € G}. The 2-transition functions hi*(x) constitute an
obstruction to lift {P'}; and {Q'}; as globally defined principal bundles (because of the failure of the cocycle relations for
g¥(x) and hi(y, x)). The construction followed in the previous section can nevertheless be reiterated over each 2-chart U’
but not globally. We have then local indentity-bundles I, local target-bundles T? and local source-bundles S'. Nevertheless
we need of a global bundle ensuring the global consistency of the connective structure. By definition of a Lie crossed module,
t(H) is a normal subgroup of G. We have then the following extension of groups:

1> HS>G63 G/t(H) > 1.

Let R be the principal G/t(H)-bundle over M defined by the transition functions e (g¥(x)) (since t (h¥*(x)) € ker p, p(g¥(x))
satisfies the cocycle relation ga(g”(x)gf"(x)) = p(g*(x))). Let P/t(H) be the principal G/t(H)-bundle over U' induced by
g with P'. We denote by ®' : P! — P!/t(H) the map defined by Vp € P!, 9(p) = pt(H) (where the canonical right action
of G on P' is simply denoted by a right multiplication). Clearly, P'/t(H) and R are diffeomorphic over U": P'/t(H) =~ Ry
Moreover we have the following commutative diagram over U’ N U/:

. ¢1a>/ ;
P\luimuf P\Ul‘muf'
0fl loi

WRW:Z

Ryin — Ruinui

where ¢}, are the local trivializations of R.
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Definition 15 (2-Connection on a 2-Bundle). A 2-connection on a 2-bundle #, is the data of connections HP! on P!,
connections HQ' on Q' and a connection HR on R such that the horizontal spaces satisfy

VpeP'  AutiHyP' = HppornQ' (65)
Vge Q'  IMusiHQ' = HpypooiqP' (66)
Vge Q' IMu.tHQ = Hﬂl*or(q)Pi (67)

Vp e P! 9LH,P' = Hyi)R. (68)

We can explain the relations between the connections by using the connection 1-forms w}, e (U, g), a)i2 e (U x
Ujg. b € g) and wx € 2'(R, 9"(9)) (9" : g — g/t"“(b) is Lie algebra homomorphism induced by ):

L*Aia)i2 = a)}; (69)
¢* I wp = w'(wp) (70)
T wp =t (wh) (71)

g = M (wp). (72)

Letoj € I'(U,P)and oy € I'(U' x Ujz, Q") be the trivializing local sections: o3 (x) = ¢'(x, ec) and o}y (y,x) =
¢'(JX. ey, ec). We can define the G-gauge potential A" = o}*w), € 2/(U', g) and the H » G-gauge potential n' = o), €
21U x U},ﬂ, h € g). By the same arguments that for the case of the trivial 2-bundles, we have 1'(y, x) = A'/(X) + 1'(y, %)
with r]i S .Ql(Ui X U}R’ h) and t—Ll‘t:’(r]i(‘y7 X)) — Al(}’) —Ai(X),

Consider the 1-form on U' N U/ defined by 6« — o*$*¢*wi. Since pi@iol(x) = ¢p'd'di(x, ec) = Pi(x, gT(X)) =
R(gY(x))op(x) we have

ob wfy — o PPl = Ax) — g1 () A g (x) — gT(x) T dgT (). (73)
But we have also
pue(a,{*a}',', _ oj*q_bi*qﬁi*w},) — Ulj;*ﬁj*wR _ Ulj;*éi*(ﬁi*l?i*a)R- (74)

But 9'¢'¢' = gl 19! = 9 and ¥io} (x) = ¥iol (x) (g (x)). We have then
P (0 o — o §" P wp) = dX) — p(E" () d WP’ (0) — pE’ (%) (e’ () (75)
=0 (76)
where @' = o}*0™wy is the gauge potential of R associated with the section ©#'o}(x) € I'(U', R). We conclude then that
A —g"X) A 0gT(x) — g¥(x) " dgl(x) € ker pt° = tHe(p).

Definition 16 (Potential-Transformation). We call the potential-transformation of the 2-connection, the 1-form ni e
21U N, ) such that

A =g"0 A g () + g ) dg" (%) + tH (" (x)). (77)
The gluing relation of the Pi-curvatures is not equivariant:

A+ A AN =gl (dAT+ AT A ADgY + e (dnT + oE(p) — P A ) (78)
but "¢ (dA" + A" A AY) is equivariant (with p(g%)). Let B}, € £22(U', b) be a 2-form such that

Bl (0) — giige-1 (Bipy, (0) = dn (%) + eyt (1" (0) = 0" (x) A 17 (o). 79)

Then F' = dA" + A' A A" — t"°(B,,;,) € 2*(U', g) is equivariant and belongs to the equivalence class of the 2-forms of P'
compatible with the curvature of R (p (F') = p(dA'+A' AA)) = da' +a’ Ad'). We consider then F' as being the fake curvature

of {P'}. We call B, the spherical part of the curving.
Property 13. The gluing relation of the H x G-gauge potential n' € 2'(U' x U}, b € g) is

70,0 =d@,0 000000+ @, 0 ded .0+ 0'®) + 07 @) -0 (0. (80)
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Proof. Let v/ € 2*((U'NU/)75, b € g) be v/ = 1/ — q'""n'q" — q'~'d 3 q". By using the properties of ' under the actions

of A*, t1 and ¢, and the gluing relation of A’ we find

Vix, x) = t"(n’(x)) (81)
ey, x) = (') (82)
T Wiy, x) = t*nix). (83)

This induces that vi(y, x) = tY¢ (57 (x)) + n¥(y) — n¥(x) (modulo an ignored element of ker t}¢ without significance). O

By following the same arguments as forAa triyial 2-bundle, we have '(y, x) = A'(x) +7'(y, x), with ' € 21 (U' x Uz, b)
satisfying the gluing relation: V(x,y) € (U' N ),

iy ¥, ) = 'y, 0" . 0 (v, ) + h (v, 0) " d ) h (v, )
+hy, 07 gl (Y, %)) + iy (0 () — " (). (84)

Let F' = d(2>’7 + ;7 A 77 e 2%(U' x Um, b & g) be the fake curvature. F' can be decomposed as F' = F + tl¢(B! o) B,

with an =doyn' +n' An'+ oc“e(n ) e 22U x Ui IR h) called the nonspherical part of the curving. B ph x)+ an(y, X) forms
the total curving. The gluing relatlon for the nonspherlcal part of the curving is

B = oy (007 Bl 05,20 + W3, 0™ s, (10 (v, ) )
+dn’ ) + o, ') — '@ A )
—dn(0) — o (1) + 100 A 00 + [0 3 00, Y 0] S

and for the total curving

By, %) = agiigy-1 ("W, 0By, 0T (y, %)) + agiiy-1 (h @, lale (W, x)))

Ui (*)+Bgp (%)

+dn" ) + el ' W) = 0" @) A" ®) + 0"y, %), 0" )] (86)

Property 14. The gluing relation of the potential-transformation is Vx € U' N U/ N U¥

Olgij(nij) + Olgijgjk(njk) _ hijkflagik(nik)hijk — hijkfldhijk + hyk 1 Lte(hljk) (87)
Proof.
giktLie(nik)gik—l — gikAkgik—l _Ai _ dgikgik—l
— gik (gjkflAjgjk +gjk*1dgﬂ‘ + tLie(njk ) ik—1 _ dglk ik—
— gik (gjkfl (gy 1Alglj +gy 1dgu + the(nu)) +g]k ]d Jjk
+tLie(77ik )gzk 1_ dgzk ik— 1

After some algebra we find
ik—1 zk LlE(nlk)glk 1 Ikgjk lgu 1 _Az gijgjkgik71Algzkg]k 10— 1+d(gu lk )glk Jk— 1gy 1
+gUtLie(nU)gU 1+gy tLle(nlk gjl( 1 y 1.

Finally by using the relation gi*g/*~1gi—1 = t(h*) we prove the property modulo an ignored element of ker t"“ without
significance. O

gighg

Table 1 summarizes the different data defining a 2-connection on a 2-bundle. In the other categorical bundle construc-
tions [16-18,21,22,27-31] the second column of Table 1 (concerning the local data over Mi) is absent. For the categorical

bundles over pathspaces [23-25] the curving B is not a 2-form on the manifold M, nor on Mi but on the total space of an
usual principal bundle over M. It is a connective structure different from the one presented in this paper, but due to its link
with the arrows of the pathspace category, we can consider it as equivalent to our nonspherical part of the curving but with-
out H-gauge potential 5'. For non-abelian gerbes with connection [19,20], similar data to the second column of Table 1 can
be found, but in this context there are defined as forms of the same manifold M because in this construction the non-trivial
categorical aspects are in the “fibers” (the gerbes) and not in the base space (as in our construction).
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Table 1
Local data of a 2-bundle with a 2-connection.
M M2
0-form 1-form 2-form 0-form 1-form 2-form
Al Fi
G gl
ki B§ph ni B;s
H 0 hi
hik

Example. Let M = {z € C, |z| < r} withr > 0 a constant, and the matrix H(z) = (0 z ) Forz € M (|z| < r), H(z) has

z =2

two different eigenvalues A+ (z) = 1(—r = /12 — |z|?), but for z € M (|z| = r), H(z) has only one eigenvalue Ay = —ir.
The generalized eigenvectors associated with an eigenvalue 1,(z) are solutions of (H(z) — A4(2))"¢4(z) = 0 forn > 1. For
z € M, the two linearly independent generalized eigenvectors are usual eigenvectors: H(z)¢+(z) = A+ (z)¢+(2), but for

V2 \z/r
H(2)¢$o(z) = Ao(2)¢o(2), and ¢o(—2) With H(2)po(—2) = rodo(—2) — 2ho0(2) (i.e. (H(z) — Ao(2))*do(—2) = 0). We
can note the collapses between the two eigenvectors lim, ., ¢+ (z) = ¢o(re'*"#?). Since the eigenvectors are defined up to
non-zero factor, we consider the local gauge changes: ¢q(z) = g4(2)¢a(z) with g, € C* (with lim, - 8+ (2) = go(re'¥8%)).
But in order to ensure the consistency of the equation H(z)¢o(—z) = Aodpo(—2) — 2Xoo(2), it is necessary to consider
the gauge change redefinitions h(—z, z) such that h(—z, z)go(z) = go(—2) (i.e. H(z)go(—2)o(—2) = Aogo(—2)Po(—2) —
2Moh(—2z, 2)g0(2)o(2)). The generalized eigenvectors of H(z) define a 2-bundle. Its base 2-space M is defined by Obj(M) =
M and zRzZ' ifz = Z' orif z = —z with |z| = r (the arrows between z and —z being associated with the fact that H(z) links
¢o0(—2) to ¢o(2)). The affine 2-space M is euclidean on its boundary (9M) and spherical on its interior (M). The Lie crossed

module (G, H, t, @) is defined by G = C* x C*, H = C*, t is the diagonal map t(h) = (g 2) and « is trivial (g = idy,

z € M, H(z) is not diagonalizable and its two linearly independent generalized eigenvectors are ¢(z) = —= < ! ) with

Vg e G).The gauge changes g(z) = (g+0(2) gf)(z)

(h(-z, 2), g(2)) with target t (h(—z, z)) (go @ 0 ) = (g"(_z) 0 ) We endow the 2-bundle with a 2-connection defined

) are elements of G, and the gauge change redefinition forz € dM are arrows

0 2@ 0 g(-2)
((ldg (2)) o ) e . .
by A(z) = (XI¢3(Z” wde—y | € 21(M, g), with x = 5 (1) (A(z) measures the local variations of the eigenvectors
19— @)
; PR . _ _ (xldgo(=2)) _ (xldeo(@)) 1 2~
with respect to the Schrodinger cat state x); and by n(—z,z) = (X190(—2)) ((60@)_ € £2°(0M, p) (8M/R ~ aM).

We have then t“¢(n(—z,z)) = A(—z) — A(z) for z € M. By gauge changes we have, A(z) = A(z) + g(z) " 'dg(z) and
i(—z,2) = n(~z,z) + h(-z,z) 'dh(—z, 2). G/t(H) ~ C* and a(z) = p"*(A(z)) = A+ (z) — A_(2) (a(z) = O forz € M).
This small example is interesting because it exhibits a trivial 2-bundle (a single 2-chart is sufficient to cover the base 2-space)
with highly non-trivial 2-connection (» # 0 and a # 0).

5. Horizontal lifts
5.1. Pseudosurfaces

The scheme of the construction of a 2-bundle over an affine 2-space shows that the natural objects which can be lift in
the bundle are not the surfaces but geometric entities related to the categorical structure.

Definition 17 (Pseudosurfaces). Let M be an affine 2-space. A pseudosurface is a smooth map y : [0, 1] — Morph(M) such
that y (u) is constant near u = 0 and nearu = 1.

By definition, all pseudosurface on a spherical affine 2-space is reduced to a path-identity in M (u — ids, @) )-
The path on M = Obj(M) defined by u + s(y (u)) is called the source-boundary of the pseudosurface y, and the path
u +— t(y(u))iscalled the target-boundary. Let {[0, 1] > u + x;(u) € M};j—1...., be the minimal set of smooth paths such that

y () = x(u)...x1 (u). Skel, (u) = (x,(u), ..., x1(u)) is called the skeleton of the pseudosurface. We note that a skeleton can
have junctions in the case where x;(u) = x;11(u) for u < u, (for example). A pseudosurface which has a skeleton reduced to
its boundary is said elementary. By definition, all pseudosurface on an euclidean affine 2-space is elementary. It is interesting
to point out some special cases of pseudosurfaces:

o A pseudosurface is said impervious if its boundary is closed: y(0) = idsy o)) and y(1) = idsg,(1y). An impervious
pseudosurface is well delimited.

e A pseudosurface is said cyclic if it is impervious and if y (0) = y (1).

e A pseudosurface is said pinched if Yu € [0, 1], s(y (1)) = s(y(0)) or/and t(y (u)) = t(y(0)).
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Definition 18 (Composition Laws of Pseudosurfaces). Let y;, and y, be two pseudosurfaces such that (for two parametrizations
u = y(u) and u — y,(u)) Skel,, (1) = Skel,, (0). The horizontal composition of these two pseudosurfaces is the
pseudosurface y; * y, defined by the skeleton

1
Skel,, (2u) ifue |:0, 2:|
Yu e [0, 1], Skel,, s, W) = 1
Skel,, Qu —1) ifue [5, 1] .

Let y1 and y, be two pseudosurfaces such that Vu, s(y; (1)) = t(y,(u)). The vertical composition of the two pseudosurfaces
is the pseudosurface (y7 o y5)(u) = y1(u) o y»(u) (in the r.h.s. o denotes the arrows composition of Morph(M)).

The pseudosurfaces define a category & 8 (M) with the smooth paths of M as objects, the pseudosurfaces as arrows and the
vertical composition as arrows composition.

5.2. Horizontal lifts of pseudosurfaces included in a single 2-chart

Definition 19 (Horizontal Lifts of an Elementary Pseudosurface). Let # be a 2-bundle over a affine 2-space M endowed with
a 2-connection. Let y : [0, 1] — Morph(M) be an elementary pseudosurface. Amap y : [0, 1] — Morph(#) is said to be a
horizontal lift of y if Vu € [0, 1], 7 (7 (u)) = y (u) and if y (u) € Morph(U') we have X)i/ (u) € H};(H)Q',Xs’(?)(u) € Hy P!
and Xt’(f/)(u) € HiwyP' where X}; € TQ' is the tangent vector of y viewed as a path in Q' and XS'(},), Xt’(};) € TP' are the
tangent vectors of s(y) and t(y) viewed as paths in P'.

Theorem 1. Let o € Funct(U', #) be the trivializing local section: o' (x) = ¢'(x, ec) = o}(x) and o' (JX) = ¢'(JX, en, ec) =
04 (v, X). Let y be an elementary pseudosurface completely included in U' (Yu € [0, 1], y (u) € ¢(U' x Ujz)). The horizontal
lift of y passing through o' (y (0)) is
. . (y(W),x(w) i
7w = ¢'(y (), Bye” fooaon 109 (88)

W,x) i . .
Pe” Jo@xop 100 € H x G is path-ordering exponential along the path u — (t(y (u)),s(y())) € U' x U}R (in order to
simplify the notation we have denoted s(y (u)) by x(u) and t(y (u)) by y(u)).

Y@XW) i

By definition of the path-ordering exponential, P, e~ Jy@xon 7 is solution of

oW
dP,e .0 1 ¢X)

du

u),x(u

. (Y, x@) i
= —n' (). x(w)P e~ T o) 7O (89)

Proof. By applying the horizontal lift formula (see [33]) in the local H x G-bundle Q' endowed with the connection
wq we have directly 7 (y(u)) = y(u) and X; (u) € HywQ'. By construction of the source and of the target bundles
we havg Xs"@(u) = n2**g*x;(u) and Xg(?)(u) = 41‘[1**r*X;./(u). ItA follows thgt w,",(Xs"@)(u)) = w;'j(ﬂz,.k*g,.ix}’; ) =
5"‘172**a)},(x;7 ) = ng(w’Q(X}l,(u))) = 0 since X}; () € HywQ' = kerw’Q. In the same manner a)},(Xt’(),)(u))

£ (wh (X} () = 0. We have then X[, (W), X/ ;, (u) € kerwj, = HP'. O

The horizontal lift of y passing through q € Morph(#) with 7(q) = y(0) is then ?;(u) = R(h, g)y'(u) where

(h,g) € H x Gis such that R(h, g)o'(y (0)) = q.
_ [ow.xw) . . . . X . .
P,e Jyx0) "0 s ap element of H » G represented in the universal enveloping algebra of h € g. It is more interesting

to have an expression of the horizontal lift as a couple (h(u), g(u)) with h(u) € H and g(u) € G. A such expression is simple

in the case where H is the center of G (1 — H L6 G/H — 1isthen a central extension of groups, t is just the canonical
injection of H in G and « is just the conjugation oz (h) = ghg™' = h).

Property 15. Let 1 — H L6 G/H — 1 be a central extension of groups. Let y be an elementary pseudosurface completely
included in U'. The group element of the horizontal lift of y is then

_ @) _ 0@ ) i
P, e Joo.xo) 100 — (e Jy@xoy 10 Py(ye oy ’”’”) € HxG. (90)

We suppose that Vu € [0, 1], x(1) and y(u) are linkable, and x(u) and y(0) are linkable. Let G)% be the closed path in U' x U’ defined
by[0, 1] 5 u — (y(u), x(u)) forits first part, [0, 1] > u — (y(1—u), x(1)) foritssecond part,and [0, 1] > u + (y(0), x(1—u))
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for its last part, and let 2 be a surface in U' x U' having €} as boundary (982 = C2). We call 8. a surface of the second kind
supported by the pseudosurface y. We have then

¥(1).x(1)) - Bl (y. i i i
e~ Joonoy 100 _ (e I Bas09 = ) @20 4= fiy 'IW"“)),ps(y)e*fs(y)’*’(")), (91)

Moreover we suppose that y is impervious. Let @;, be the closed path in U’ defined by [0, 1] 5 u +— y(u) (t(y)) for its first part
and [0, 1] 3 u + x(1 — u) (s(y) ") for its second part, and let 8} be a suface in U' having €} as boundary (38, = C)). We
call /SJ‘, a surface of the first kind supported by the pseudosurface y. We have then

YD) - Bl (y.x) — B i
]P’y57 Bt S n'(y.x) _ (e ff,q}Z/ hs (V. X)e ffgll/ sph(X)7 ]P’s(y)eifS(V)Al(x)) . (92)

Proof. Eq. (90) follows from the decomposition n'(y.x) = n'(y,x) + A'(x) with A'(x) € g and n'(y,x) € b, where

jxo) Ue9) . _ . . _ ; [(y((Ou))XX(%:)))) 7.0
Pyphe € G is the path-ordering exponential along the path u +— s(y(u)) = x(u) € U'. o e H

is written without the path-ordering since H is abelian if it is the center of G (the expression is then an usual exponential).
We suppose that Vu € [0, 1], x(1) and y(u) are linkable and x(u) and y(0) are linkable. We can decompose 7' as the
following

'y, X) = 0L, (v, 0)dx* + i, (v, x)dy" (93)
where 715 e 2! U(’X) and nﬁ € Q1Uéy) .. By considering the three parts of 6’5 we have
Ul
(V) (x)
ORCHE y0) MO
$ owen=[ " o+ [ doaan+ [ oo, (94)
e (¥(0).x(0)) (1 x(1)
By the Stokes theorem we have f(?% n' = ffglz/ doyn' = ff*% i, and then
YD) , y(1) X1
/ n'y,x) = / By (v, X) +f (v, x(1)) +/ ns(y(0), ). (95)
(¥(0),x(0)) 52 y(0) x(0)

Finally the horizontal lift of y is associated with Eq. (91). . ' o ' o
We suppose now that y is impervious. By the property of ' with t/¢ we have t“¢(ni(y, x)) = —A'(x) and "¢ (i (y, x)) =
Ai(y), and then

. . X : . i
t(e‘fsm BOON =) ”W'X“”) —pge ' (96)
Y

~fe1

Ai
By invoking a non-abelian Stokes theorem [34] we can write ]P’e; e "% asan ordering exponential along 5}, (a surface in

; . L —f 1A _f Al
U' having @; as boundary) of F' + tL’e(B'sph). But by construction P@}e %; € t(H) and then p <P@;e f@f/ ) = eg/n. We

can then choose Fi = 0 on 5;. We have then

) ) _f A
t(e—fs(y) 000y, n;(y,xm)) —Pe Fel (97)
Y

t <e*m} Biﬂ") . (98)

We have drastic reduction because we have supposed that Vu € [0, 1], y(u) and x(1) = y(1) are linkable and x(u) and

—f 1A . .
x(0) = y(0) are linkable. If this is not the case, ]P’e;e f@} & t(H) (n'(y, x(1)) and n'(y(0), x) are not defined).
For the general case (where H is not the center of G and is not necessary abelian) the situation is more complicated.

It follows Eq. (92). O

Property 16. Let § be any Lie crossed module (not necessary a central extension of group). Let y be an elementary pseudosurface
completely included in U'. The group element associated with the horizontal lift of y is

(y(u).x(u)) yW.x)) i Lie Y(0) o
P,e” Jo@xoy 100 _ ( ~Jxon TORTR, , Pye ~ho ") e H w g (99)
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IR ol

where h,;i 4i(u) = IPJ,[ 4w e H is defined as the solution of the equation

dhyi 4

o = —ni(y(u), X(u))hni'Ai — a,tLlée(u) (hni’Ai) . (100)
W.xW) i Y(0) 4i
Proof. Let U, = P, e J00x0) 10 and U, = Py, e~ 50 *® Leth, 4 = U, ,4U; .
dh,, 4 _ _
dz = —(+ AUy 1aUy "+ Upyaly 'A (101)
= —nhya —[A, hy.al. (102)

By the definition of the Lie bracket [A, h, a] = &4*(h, ). Because n € 2'(U',h) and &5* € £2'(U', Der(h)), we have
h,]qA €H. O

To make appear surface integrations for the element of H, we need use very complicated expressions issuing from the
non-abelian Stokes theorem [34]. To avoid this difficulty we will consider an infinitesimal elementary pseudosurface. To
this, we need some results of simplicial geometry '[35—37]. Let {K}nen be a family of smooth triangulations of U' x U} R
(a triangulation is a triangular network covering U' x U}R, a triangular cell of this network is called a simplex), such that

Unen Kn = U' x U}R. Let (C*(Ky, B), +, U, 8) be the Cech differential algebra defined by:

e CP(Ky, b) is the algebra of antisymmetric maps form (K;)? to b called the p-cochains.
e 8 : CP(Ky, h) — CP1(K,, h) the cobord operator is Vw € CP(Ky, §)

p+1
BOugiper = Y (1 Ouq_ iy (103)
j=0
u; € K, and {; signifies “deprive of u;".
o U: CP(Ky, b) x CI(Ky, ) — CPTI(K,, b) the cup-product is Yo € CP(K;, b), ¥V € C1(Ky, b)

1
((1) U n)”0~--“p+q = m Z (_])‘T [w”a(o)'"ua(P)’ n“a(ﬂ-#l)"‘“zr(ﬂ-*-q}]

OESptg+1

(104)

Sp+¢+1 being the group of permutations and (—1)“ being the signature of the permutation o.

At the inductive limit of the refinement n — +o0, the Cech differential algebra is isomorphic to the de Rham differential
algebra (9*,(U' X U}ﬂ, h), +, A, d(z)). The isomorphism is induced by the de Rham map R,, : £2*(U' x U}R, h) — C*(Ky, b),
Vo € QP(UT x Uz, b)

Rn(@0)ug..u, = / 2 (105)
(ug...up)

where (uo...u,) is a p dimensional submanifold of Ut x U;R forming a simplex with uo, . .., up as vertices ((uou1) is an edge,
(upuquy) is a triangular cell, (upu;uyus) is a tetrahedron, etc.). The reciprocal map is the Whitney map W;, : C*(K;, h) —
*U' x U}R, h) (see [35-37]). It is interesting to note that Vw € 2P(U' x U}(,R, h)

ORa(@))uy 11 = / Qo = BRu(@) = Ro(dry0) (106)

(ug---Up+1)
and Vo € 2P (U' x Ujz),Vn € 29(U" x U} 5)
lim Wi (Ra(@) URy () = @ A (107)
n—+o00

(the limit being defined with the topology of a L?-norm see [35-37]). Let €, be “the edge length” of K, (i.e. V1 € £21(U'x U}ﬁ),
Ri(Mugu; = O(en) withlim,_, o €, = 0). It is interesting to note that the Cartan structure equation 8 = da + o A o (with
a € 21(U' x UL, h)) takes the form

eRn(a)uluz e*Rn(Ul)uOuz eRn(Ol)uOul — eRn(ﬂ)uouluz +@(63) (108)

a+b+1a,b]+0(e3) fora,b € b and

by using the Baker-Campbell-Hausdorff formula [38] at the second order e%? = ¢
a,b=0(,).
Let y : [0, 1] — Morph(-M) be an elementary pseudosurface such that (y(0), x(0)), (y(1), x(1)), (¥(0), x(1)) € K,

with n large and such that Yu € [0, 1], x(1) and y(u) are linkable and x(u) and y(0) are linkable. Let GJ% be the closed
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path in U' x U' defined by [0,1] 3 u — (y(u), x(u)) for its first part, [0,1] > u — (1 — u), x(1)) for its second
part, and [0,1] > u +— (¥(0),x(1 — u)) for its last part. For the sake of simplicity we denote ug = (y(0), x(0)),
u; = (y(1),x(1)) and u, = (y(0), x(1)). We can assimilate /312, to the simplex (the triangular cell) (uguqu;) of K,,. By using
the Baker-Campbell-Hausdorff formula at the second order we have then

eRn(T]i)uluz e—Rn(ni)uouz e—Rn (Ai)uouz eRn (ﬁi)u0u1

— ESRn (ni)u0u1 up +Rn(fli)URn (ni)u0u1 uy +Rn (ni)URn (Ai)uoul uy +Rn (Ai)URn (ni)u0u1 uy +@(Eg)
— eRn(Bing)uOuluz‘F@(f?x) (109)

YD)
Finally by writing that P, e ~Jy@ oy 100

is

~ efnuour | the horizontal lift for an infinitesimal elementary pseudosurface y

v(1),x(1)) — [[.2 Bis(y. : i i i
f(y(o)xx«))) T (e .f/,,% ns(y,x)e_/s(y)n;(y@),x)e_j[(w n}(y,x(l))’e—fs(y),ql(x)). (110)

Moreover, if y is impervious we have

¥(1).x(1)) —[f.2 Biyx) — [[.1 B i
e Jooxon TON ~ (e Hgg Brsr0 = Iy SP"(X),e—fmA'(")). (111)

Definition 20 (Horizontal Lift Functor). Let #¢¢' : Morph(U)®!! — H x G be the map which associates to an elementary
) (1).x(1) )
pseudosurface the group element associated with its horizontal lift #¢'(y) = P,e ~Jy@xo) "l(”). We extend ¢

as a functor from £ $(U') to § transforming the horizontal compositions to horlzontal compositions and the vertical
compositions to vertical compositions:

HO (y1 % 12) = HLE (1) - HL (1) (112)
HO (y1 02) = HL (1) 0 HL (y2) (113)
denotes the group law of H x G.

“wn

This functor permits to define the horizontal lift of any pseudosurface y of U'. Let a decomposition

VZ(Vllo"'oyln)*"'*(ypl0"'°Vpn) (114)
where each y;; is an elementary pseudosurface. The horizontal lift of y is then
HE(y) = (HE (1) 0 -0 HL (Y1) - - - (FL (Yp1) © - - 0 HL (Vpn)- (115)

This decomposition is well defined because of the exchange laws: Yy11, y12, 121, Y22 € P8(U') with Skel,,, (0) = Skel,,, (1),
Skel,,, (0) = Skel,,, (1), s(y11(w)) = t(y12(1)) and s(y21 (1)) = t(y22(u))

(Y11 © Y12) * (Y21 0 ¥22) = (Y11 * ¥21) © (Y12 * ¥22) (116)
and Vhyy, hip, hz, hy1 € H, V812,822 € G

((hy1, t(h12)g12) © (hi2, 812)) - ((ha1, t(h22)g22) o (ha2, £22))
= ((h11, t(hi2)gr2) - (ha1, t(h22)222)) o ((hiz, &12) - (h22, €22)) - (117)

5.3. Horizontal lifts of pseudosurfaces crossing several 2-charts

Now, we need to define the horizontal lifts for pseudosurfaces extending on several charts. Well defined horizontal lifts
of paths and surfaces crossing several charts have been studied by Alvarez in [39]. Unfortunately, these results cannot be
used directly in the present context.

Proposition 3. Let y' be an elementary pseudosurface of U’ and y’ be an elementary pseudosurface of W such that y'(1) =
Y1 (0). Let x, = s(y' (1)) = s(yf(O)) euvinu andy, = t(y" i(1)) = t(3/(0)) € U'NU. Let y" and y be two otherelementary
pseudosurfaces of U' and W such that y" * y” = yJ % y! but with (y., X.) # (¥, x,). An horizontal lift of ¥/ * y' satisfying the
condition

PEHLY xy))) = ps(HLY ")) (118)
I *y))) = ptFeR *y"))) (119)
is defined by

HOW 5yl = OG- (W, %), 87()) - HE ). (120)
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Proof. We suppose that #£(y! x ') = (/) - q. - #0'(y') where g, € H x Gis a transition element at (y., x,) between
U' and W. We must have

uq Ux i — M u
so(s (Pye*fufﬁ’ “q. f“ﬂ*)) s<><s (Pye b 'qL~IP’ye‘f“°")) (121)

where u, = (yo.x), u1 = (@ 1D).s¢/ (1) = (t(Vj/(1)2;5(Vj/(1))) and up = (t(y'(0)),s(y'(0)) =
(t(y"(0)),s(y"(0))) (and y =y % y" = y/  y'). Since < A Lﬂ) Py~ fu ¥ = p,e~fu' ¥ we have

® (S (nyf“u:f : q>> =g (s <qi : Pye‘f”u: ﬁi)) . (122)

Because of the gluing relation of 7, and by an argument similar to Property 16 we have

s <Pye’f;}f> = h,s <IP’yef“u @l 1‘1(2)‘7“) (123)
= hs <qff<u;)—‘xp>yef$‘3 ﬁ"qif(u») (124)
where h, =P, e fu“f tLiE(nij(X))wf?e(qU*‘ e+ 14008 ¢ H We have then
2 <s (q”(ui)‘llpyef“lf 1 qiu,) - q*>> =p (S (q* Pye fu*—l)) (125)
and then

2 (s (Pyef““f u -q”f<u*)q*>) =p (s (q“’(ui)—1 ‘Pye f)) (126)

It follows that g, = qij(u )~! (modulo an H element without significance). Since the calculus is the same for the target
= Jur eHie (o () +aie
condition (h, = P, e W@+’ 1280y \ve dot not have another result. O

It is important to note that except for trivial 2-bundles (where n¥ = 0), #£()’ * y') # #L(y" % y"), and the horizontal
lift of a pseudosurface extending on two charts depends on an arbitrary point (y,, X,) chosen for the transition. This is a
consequence of the impossibility to lift {P}; and {Q'}; to usual bundles. The consistency of the connective structure being
defined by the global G/t (H)-bundle R, it is natural that the consistency of #£(3 * ') is ensured only for its projection by
o G— G/t(H).

Proposition 4. Let y' be an elementary pseudosurface of U' and y’ be an elementary pseudosurface of W such that s(y’) =
t(y') = G, C U' N U. An horizontal lift of ' o y' permitting the composition of #¢ (y’) and #¢'(y") is defined by

e oy = 30 () 0 <<eH,g"f‘<x*(1))—l> ((Pese™ o B e e M) o gt

- (en, g”(X.(O)))> (127)
with s(y! (u)) = t(y'(w) = x,(u) (Yu € [0, 1]).
Proof. The vertical composition of #£'(y") with #(y/) cannot directly be performed since
EHE () = Po,e Jeuh £ Bo e S = s(300 (1)), (128)
Since A = gi—1Aigh 4 gi—1dgi 4 ! (n¥) we have
i . Lie
Pe,e et = gi(x, (1)) e, e e e gl 0)). (129)
Since we have

s (P@*effe* gy (1) +et ,Pe e Jou” ) = IP’@*E_vIE*Ai (130)
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and since by using an argument similar to Property 16 we have
_ (i) g Lte B i _ iy cliec, . (pii
£ (Pe,e o 6T B, €S M) = g, e e A 0D (131)

we conclude that the different arrows can be composed. O

In contrast to the horizontal composition, #£(y/ o y') as defined by this proposition does not depend on an arbitrary
choice. G, and its end points are fixed by the source and target maps.

Proposition 5. Let y', y/, and y* be elementary pseudosurfaces of U', W and U* such that s(y*) = t(y’) = €., € U N1,
s(y'(1) = s (0) = t((0)) =s(y*(0)) =x, e U N NU*and t(y'(1)) = t(y*(0)) = y. € U' N UX. An horizontal lift
of (y* o y) % y' compatible with the previous definitions and with the exchange law:

(Y o) xy') = 20 (Y % v') o () xid,1) (132)
is defined by

g ((v* o y) +v) = ey o ) - {0 %), 8400 HL () 0
(¥ (x.), 81 (118" (0) Bygne b e | (133)

with xg = s(y*(0)). To simplify the notations we have denoted (ey, g) by g and we have supposed that the horizontal composition
“.” precedes the vertical composition “o”.

Proof. By applying the exchange law we have (y*o /)y’ = (y*oyd) % (¥ oidy(,i)) = (y*xy') o (3 xid,1)). By applying
Proposition 4 we have

F( x yh) o (¢ xidgyiy)) = HEY* %y o {g () @(CL) 0 FL(Y * idy(,i))E(K (%0) | (134)

withx; = s(y’f(l)) = t()/j(l)), C, = C,1Us(y') and q(C,) is defined as in Proposition 4. More precisely, by using the gluing
relations for A’ and for ¥ we find that

A+t (g (1Y) = g" ' AgY + g7 dg? + g (i () + atgigi (7)) &7 (135)
_ gij—lAigij +gij—1dgij +gij—1tLie (hijk—ldhijk + hijk—la/ﬁz;e(hijk) + hijk—lagik(nik)hijk) gij (136)
= g7 (W) (AT + £ (ague (™)) £ (h7)g" + g e () 7T d(hTg). (137)
It follows that
_ iy eliecg o (k) i _ , _ _ i
(q(C.)) = Pe,pe To AT gl e ) e, )) By e o (138)
and then
9(C,) = 74Ca) (h*(x,), g7(x,)) Py e o™ (139)

We have then
F )7 q(e,) o HL(Y * idg,i)E (K (X0))
= g7 gt @nghn ) ), gT)gH ) B e o e x|
o{gH )T e (HgM(xa) ) - {gj"(x*)’lgij(X.)*llPs(yi)e‘fs(y")Ait(k"(xO))} : (140)
By using the exchange law for the elements delimited by {} in the previous expression, we find
F ) TH@(CL) 0 HLGY x idy,i)E(K (X)) = (g ()T (@ (Car) 0 HE (V) (%)}
A ), g1 xg ) By e B e oo | (141)
Since #L(y* * ') = #L*(y*) (W*(y.. x.), g% (x.)) 71 #L(y"), Eq. (134) becomes
HUY %y o (F xidy)) = {HGH - { (B G %), g% x)) T ()
o {g )@ (Cu1) 0 HE (¥))g¥ (x.)}
), giee)gh ) B e o e xon | (142)

By using the exchange law for the elements delimited by {} we find the result of the proposition. O
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Similar formulae for the other situations with a branching point on a triple overlap can be obtained by the same manner.

With all these definitions, #¢ can be extended as a functor of |_|; P $(U" to § and define any horizontal lift relative to a
2-cover {U;};. #£ can be extended as a functor of £ 8(.M) to G only if the 2-bundle is trivial (independent from the choice
of a 2-cover and then on the choices of transition points for pseudosurfaces extending on several 2-charts).

6. Example: The Bloch wave operators in quantum dynamics

6.1. The Bloch wave operators

The studies of quantum dynamical systems with “large Hilbert space”, i.e. quantum systems involving a large number of
independent states in their dynamics, are generally difficult for the theoretical viewpoint as for the numerical viewpoint.
Methods involving active spaces, effective Hamiltonians and wave operators are good tools to solve this problem (see
[40-42]).

Let G(#) = {P € B(H#),P> = P,PT = P, trP = m} be the space of rank m orthogonal projectors of the separable
Hilbert space J# (B (#) denotes the set of bounded operators of #). If # is finite dimensional, i.e. # >~ C", G,,(C") is a
complex manifold called a complex grassmanian [43]. This manifold is endowed with a Kdhlerian structure (see [33]), and
particularly with a distance (called the Fubini-Study distance) defined by

VP, Py € Gu(C"),  distgs(Py, Py) = arccos | det Z] Z,|? (143)

where Z,Z, € M,.m(C) are the matrices of two arbitrary orthonormal basis of Ran P; and Ran P, expressed in an
orthonormal basis of C". We can note that 0 < distgs(P1, Py) < % The Fubini-Study distance measures the “quantum
compatibility” between the two subspaces Ran P; and Ran P, in the sense that distgs(Py, Py) = % if and only if Ran Pf N
RanP, # {0} or RanP; N Ran le # {0}, i.e. there exists a state of Ran P; for which the probability of obtaining the same
measures as that with a system in a state of Ran P, is zero (see [44]). For infinite dimensional Hilbert space, it is possible to
define a manifold G,, (#) endowed with a Kdhlerian structure by using the inductive limit technique (see [43]).

Let Py, P € Gy () be such that distes (P, P) < 3. We call wave operator associated with Ran Py and Ran P the operator
2 € B(F) defined by

2 = P(PyPPy) ! (144)

where (PyPPy) ™' = Py(PyPPy) Py is the inverse of P within Ran Py (it exists only if P is not too far from Py, i.e. distgs (P, Py) <
%). Usually the wave operators are used to solve eigen equation [40]. In that case, we solve an effective eigen equation

H g = A where H¥ = PoHS2 e L(RanPy) is the effective Hamiltonian within RanPy (H € B(¥) is the true

self-adjoint Hamiltonian), and we recover the true eigenvector associated with A, HYy = Ay, by ¥ = 2y, € RanP
(Yo = Poy). £2 is called a Bloch wave operator and is obtained by solving the Bloch equation
[H, 212 = 0. (145)

Since £22 = £2, a Bloch wave operator can be viewed as a non-linear generalization of an eigenprojector (an eigenprojector
satisfying [H, P] = 0 with P> = P). Physically, a Bloch wave operator compares the approximate eigenstates within Ran P,
(which is called the active subspace) with the associated true eigenstates.

We can define a weak left inverse of a wave operator: if 2 = P(PyPPy)~' then 2! = PyP satisfies 212 = P,.

In a same manner, in order to compare an approximate quantum dynamics within an active space Ran Py with the true
dynamics, we can introduce the time-dependent wave operator [41]:

2(t) = P(t)(PoP(t)Pp) " (146)
where (PoP(t)Py)~! is still the inverse within Ran Py, and where t — P(t) € Gn(#) is the solution of the Schrédinger-von
Neumann equation:

thP(t) = [H(t), P()]  P(0) =P (147)

H(t) € B(F) being the self-adjoint time-dependent Hamiltonian. We can then solve the effective Schrédinger equation
within Ran Py, 1hd; o (t) = H () (t), where H (t) = PoH (£)2(t) € £(Ran Py) is the effective Hamiltonian, and recover
the true wave function, 1hd; yr (t) = H(t)y (t), by ¥ (t) = 2 (t)Yo(t) (Por (t) = Yo(t)). The time-dependent wave operator
can be used only if the dynamics does not escape too far from the initial subspace, i.e. Vt, distgs(P(t), Py) < % Since

P(t) = U(t, 0)PoU(t, 0)', where U(t, 0) € U(H) is the evolution operator (1hU(t, 0) = H(t)U(t, 0), U(0, 0) = 1; U(H)
denotes the set of unitary operators of #), we can also write

2(t) = U(t, 0)(PoU(t, 0)Py) . (148)
By using this expression, it is not difficult to prove that the time-dependent wave operator satisfies

Q2(t) = [H(®), 2(0)]R2(¢)  £2(0) = P,. (149)
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We can also introduce the generalized time-dependent wave operator [45]:

2(t) = P(t)(Po(t)P(£)Po (1)) (150)

where t + P(t) € Gy (H) is the solution of the Schrédinger-von Neumann equation and where t + Py(t) € Gy (#) is a
©? instantaneous eigenprojector: Vt, [H(t), Py(t)] = 0. This wave operator satisfies

M2t = [H(E), 20)]2(t) +1h2(H)2()  2(0) = Py(0). (151)
This wave operator can be used to treat an almost adiabatic dynamics where the dynamics does not escape too far from the

instantaneous eigenspace, i.e. Vt, distgs(P(t), Po(t)) < 7. Let HT(t) = @) 'H(t)$2(t) € L(RanPy(t)) be an effective
= be a complete set of eigenvectors of H (t) (for the sake of

.....

true wave function which is the solution of the Schrédinger equation 1hd; v (t) = H(t)y¥ (t) with ¥(0) = ¢o4(0). Since
distgs(P(t), Po(t)) < 3 we wan write that ¥ (t) = Zg;l cp(£)2(t)op (t). By injected this expression in the Schrodinger
equation, we find that

m
U(t) = Z [Te—m-l JEEST (ydt' — [E A e — [} n(t’)dt’]ba 26 oy () (152)

b=1

where Te is the time ordering exponential (the Dyson series) and where the matrices ESF, A, ) € 9y m(C) are defined by

ET (1) = diagA\ T (1), ..., A7 (1)) (153)

At) = (Zo()'Zo(t) ™' Zo(0) 8:Zo (1) (154)

() = G©)Z(0) 72O 2O (02 (t) (155)

where Zy(t) € My, (C) is the matrix representing (Po1(t), ..., Pom(t)) in a fixed orthonormal basis of # >~ C" (if J¢ is

infinite dimensional, Zy(t) € (EZ(N))QM, £%(N) denoting the square integrable sequences representing the coefficients of
the decomposition of the states of # on a fixed orthonormal basis). A and » are the generators of two kinds of non-abelian
geometric phases. The next section discusses the geometric structure in which they take place.

Remark. The geometric structure associated with usual time-dependent wave operators P(t)(PoP(t)I"o)‘1 (with Py = 0)
has been studied in [44]. The present work focus on the generalized time-dependent wave operators (Py # 0).

6.2. The category of the m-dimensional subspaces

Before introducing the affine 2-space of the wave operators, we need to introduce an intermediate category.
We denote by L5, (#) the set of rank m linear operators of #. For an endomorphism f € £7(#) we consider the

1
decomposition ker f @ ker f where dim ker f* = dim Ranf = m. We introduce moreover the set
b4
£l () = [f € £2(), distrs(ker f*, Ranf) < E]

and Vq € N* we set

LI (H) = {(fq, .-, 1) € (L1 (#)", Ranf; = ker fi,}/x

where the equivalence relation is defined by

) / X ) =xFh o fD)
(For s )~y (fys o D) = {Ra;ﬁ:Ranﬂ,,w 1

with x (fg, ..., fi) = fy...f1 (the products being the operator composition).
Let & be the category defined by

e 0Obj(&) are the m-dimensional vector subspaces of #¢.

e Morph(&) = | |iZ, £7,(3) (we note that x (Morph(€)) = £ (J).)
e VE € Obj(8), idg = Pr (the orthogonal projection on E).

o Vf e Morph(€), s(f) = ker x(f)* and t(f) = Ran x (f).

o Vf.g € Morph(€),Ran x(g) = ker x ()" g of = [gg.....&1.fp. ... . fil, whereg = [gg, ... &11x.f = [fy, ... fily,
[.1, denoting the equivalence class associated with ~,.
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6.3. The affine 2-space of the wave operators

Let (M, R, £2) be the hyperbolic affine 2-space defined by
Obj(M) = G (F).
VP,Q € Gn(H),PRQ = distzs(P,Q) < 7.
Morph(M) = {Pg(Pg—1PgPq—1)"...(PaP1P2) ", Pi € G (H), distys(Piy1, Py) < 5}
«—
R(Py, ..., P1) = Py(Pq_1PgPy—1)~'...(PyP1Py) ! = Py...P;.
S(Pq(qulquqfﬂ_l---(Pzplpz)_l) = Ran Py, t(Pq(Pq,1PqPq71)_l...(P2P1P2)_l) = RanP,, idp = P(PPP)_1 = P.
The arrow composition is just the operator composition applied on the wave operators.

Let w € Funct(€, M) be the functor consisting to transform the vector spaces into their orthogonal projectors, and such
that

w([fq, s »fl])() = PRanfq (PRanfq,1PRanfqPRanfq,1)7]~~-(P1(erf1lPRanf1Pkerfli)7]- (156)

Prany; being the orthogonal projector on Ran f;.

Let (eq)q=1....n be the chosen orthonormal basis of #. Let {P}; be the set of orthogonal projectors on the spaces spanned
by m vectors of (e4)4=1.....n. We denote by I' the set of indices of the m vectors spanning Ran P! (Ran P! = Span(e,; a € I')).
Let U’ be the open chart of G,,(C") defined by

Ul = {P € G (CM|distys (P, P') < %} . (157)

{U"}; constitutes a good open cover of G, (C") and then {U'}; generated by §2 constitutes a good open 2-cover of M.VP € U',
there exists a basis (u4),¢;i of Ran P such that (see [43]):

Uy =g+ anbeb cap € C. (158)
bell
Ul gmeem) . . . . ) )
Themapé&': (Cap) i i 1S the coordinates map of U'. VP € U' we denote by Z) € 9,,»(C) the matrix representing
ael!, bgl

(uy, ..., um) in the basis (eq)g=1,

.....

» (we call it the coordinates matrix of P).

6.4. The trivial 2-bundle associated with the wave operators

Let & be the category defined by

o Obj(P) = {Z € Myum(C), det(Z1Z) # 0}. Obj(P) can be identified with the complex non-compact Stiefel manifold
(see [43]).

e Morph(£) = {(f, Z) € Morph(€) x Obj(£); s(f) = Span(Z)}. (Span(Z) denotes the vector space spanned by the vectors
represented by Z).

e s(f,Z2)=2Z;t(f,2) = x(f)Z (x (f)Z denotes the matrix in the fixed basis (eq)s—1
the m vectors represented by Z).

e id; = (P, Z) where P = Z(Z'Z)~'Z" is the orthogonal projector on Span(Z).

o R, W)o(fi,2) = (of1,Z) withW = x(f))Z.

Let w € Funct(#, M) be the functor defined by

» representing the action of y (f) on

.....

YZ € Obj(P), n(Z) =2(ZT2)7'z" € G (C) (159)
and
Y(f,Z) € Morph(®), 7(f,Z) = @ (f) (160)

& constitutes a principal 2-bundle over M with projection functor 7. Its structure groupoid § is constituted by G >~ GL(m, C)
the group of matrices representing the basis changes on C", and H >~ GL(m, C) the group of matrices representing the rank
m linear operators of #. t is then the isomorphism between H and G, and « is the conjugation. We can then defined the local
trivialization equivalences of &#:

VP € Gu(C"),g €G, ¢'(P,g) =Zig (161)

with Z} the coordinates matrix associated with P.

VZ € Obj(), ¢'(2) = 2Z'z)"'zt, (27} Z2) (162)
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with Z| the coordinates matrix of Z(Z"2) "1z, (zi'zi)~'z}Z is the passage matrix between the basis represented by Z} and
the basis represented by Z.

V$2 € Morph(M), (h,g) € H x G,

9@ h.8) = Gh @iy s 2y )7 Zhes B G2 2o s 2080 20T 2 20 (163)
where 2 = Pg(Pg_1PgPq—1)"...(P,P1P;) ! with Zéj the coordinates matrix of Ran P;.

Y(f,Z) € Morph(£),

(. 2) = @ (), W3 W) W' x(Z, &' 20724 2) (164)
where Z} is the coordinates matrix of Pyer y )L and W, is the coordinates matrix of Pran (r)- We have well t¢/(f,Z) =
¢'(t(f, Z)) since

WiwWh Wi Zi @z zy 'z 2 = witwi) T wi ez (165)

—_—
b

&P is a categorical generalization of the Stiefel bundle, the classifying universal bundle for the GL(m, C)-principal bundles
(see [43]).
By definition the G-transition functions of & are such that

VP eUNU, §¢P.ec) =P,z z) 'z zy = (. g(P)) (166)

where Z] is the coordinates matrix of P. We have then

gy = @i’z zi'Z. (167)
The H-transition functions are such that V§2 € Morph(£)
Zi ity it i T i1 T i it oin—1it i
' (2, en,ec) = (2, (Wy' W) ~'W'Wy(Z) 20) ™' 2y 24, (24 ) ™' 25 Zy) (168)
= (2,h7(Q. P).g"(P)) (169)
where Z} is the coordinates matrix of Py, o1 and W} is the coordinates matrix of Pga, . We have then
i@, Py = W 'wh-'wilwi(z' 217z (170)
The relation between the H-transition functions and the G-transition functions is well satisfied:
WQ. Pg'(P) = £'Q)2'2) 7)) 2z 7)) 7' 2] (171)
———————
P
= g"(Q)(zy Z) 7'z} z (172)
="Q). (173)
& is trivial in the sense where hi*(P) = ey since
giP)gp) = (2217 2 @' 717" 7k (174)
——————
P
= 2"z 171" Zk (175)
=g%p). (176)

6.5. The 2-connection associated with the geometric phases

The object-bundle of & is the Stiefel bundle, we can endow it with its natural connection (the universal connection of
the GL(m, C)-principal bundles, see the Narasimhan-Ramaman theorems [46,47]), which defines the following G-gauge
potential:

APy = ("2 21 dzE € 27 (Gn(H). 9). (177)
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Moreover we endow the arrow-bundle with a connection defining the following H-gauge potential:

n'(Q.P) = (23'Z)7'Z} (27 'dy2) Z) € 2 (Gu(#)2 5. b) (178)
with 2 = Q(PQP)~! and 2~ = PQ. Since £2Z} is a matrix representing a basis of Ran Q, 3g € G such that Wig~! = 227,
We have then

AQ) =g Q. P)g+g 'AP)g +g 'dg. (179)
The relation between the G-gauge potential and the H-gauge potential is then well satisfied (up to a G-gauge change).

6.6. Horizontal lifts and parallel transport

Lett +— P(t) € Gp(#) be a solution of the Schréodinger-von Neumann equation and t — Py(t) € Gp(#) be an
eigenprojector of the Hamiltonian. We suppose that the almost adiabatic condition is satisfied, Vt, distgs(P(t), Po(t)) <
7. To simplify, we suppose also that V¢, P(t),Q(t) € U'. The generalized time-dependent operator t > £2(t) =

P(t)(Py(t)P(t)Py(t))~! constitutes an elementary pseudosurface of M. The horizontal lift of £2 is then

(Py(£).P(t))

HE(Q) = Pge e p0) A1)

(180)
= Te~ o A’ ~f5 7" (181)
where
A1) = Zy(0'Zy()7'Z5(6) 8.2y (£)
and
7'(t) = Zy(0'Zy(0) 7 'Zy(0 271 ()20 Z5(0).
Z(")(t) being the coordinates matrix of Py(t). By applying the intermediate representation theorem [48] on Eq. (152) we have

m

w(t) — Z I:Te—lﬁ71 EEﬂ([/)d[/Te— [[; A(t/)dt/—for ﬂ(t/)dt/]ba Q(t)¢0b(t) (182)

b=1
n 1 2eff (i aet C3i e (sl

— Z I:Te_,ﬁ E9 (t")dt gl(t)Te—foA (t")dt —fo ni(t"dt gl(t)—l]ba X Q(t)¢0b(t) (183)
b=1
n —1 geff (¢/\a¢! ; . :

=Y [ O g0 ged (28’07 2©90n(0) (184)
b=1

where Zy(t) = Z(")(t)g"(t) (Zo(t) is the matrix representing the eigenvectors of H¥). The geometric phases of an almost
adiabatic quantum dynamics is then the horizontal lift of the pseudosurface defined by the generalized time-dependent
wave operator. The formula (152) can be then interpreted as being the parallel transport of ¢, (0) along the pseudosurface

£2 in the associated “vector 2-bundle” @ : & — .M, and modified by the conjugated dynamical phase Te~*""' £ ()dt’,
B (1) = Te~ JoAE)+n@de’ peff (ot fo AE)+n(ede’

Finally we can note that the use of an usual time-dependent wave operator (with Py = 0) is just a particular case of the
present discussion with a pinched pseudosurface.

7. Conclusion

The categorical bundle structure is extended to the case where the base space is not a trivial category but an affine
2-space. The new structure permits to define the horizontal lifts of objects called the pseudosurfaces. For an impervious
pseudosurface, we recover the horizontal lifts of the usual surfaces (the surface of the first kind supported by the
pseudosurface) previously studied by different authors [19-22,26-30], but the notion of pseudosurface is more general.
The condition tY¢(ni(y, x)) = Al(y) — Al(x) implies that A" € 21(U', t"¢(p)) (if U’ is totally linkable) and then that a' the
connection of the quotient bundle R must be pure gauge. This reduces the possible applications of the present work. The
most interesting cases are in these conditions, like the example presented Section 6, such that t(H) = G (i.e. t is a surjective
homomorphism) and especially when H = G and when t is an automorphism of G. Another example of this kind can be found
in [49] where the space of the density matrices endowed with a group action plays the role of an Euclidean affine 2-space.
Moreover we can have a non-trivial connection a' on the quotient bundle R if a part of the objects of the base 2-space are
linkable only to themselves. The fact that the wave operators of the quantum dynamics can be viewed as (not impervious)
pseudosurfaces augurs the future development of new kinds of non-abelian geometric phases for quantum systems,
particularly for the non-hermitian quantum systems where the wave operator seems play an important role [ 13]. Moreover
the possibility to study the new physical theories (as the string and brane theory) in the framework of this generalization
could be interesting since some attempts to develop a categorical theory of quantum gravity have been proposed [50,51].
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