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A Bayesian Method for Oscillator Stability
Analysis

François Vernotte Gilles Zalamansky

Abstract

The power spectral density of frequency fluctuations of an oscillator is generally modeled as a

sum of power laws with integer exponents (from -2 to +2). However, a power law with a fractional

exponent may exist. We propose a method for measuring the level of such a noise process and

determining the probability density of the exponent. This yields a criterion for compatibility with an

integer exponent. This method is based upon a Bayesian approach called the reference analysis of

Bernardo-Berger. The application to a sequence of frequency measurement from a quartz oscillator

illustrates this paper.

Index Terms
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I. INTRODUCTION

T is commonly assumed that
���������

, the power spectral density (PSD) of frequency deviation

of an oscillator, may be modeled as the sum of 5 power laws, defining 5 types of noise:

� � �����
	 �
��
����� �

� � ��� (1)

where
� � is the level of the

� �
noise. But it may be noticed that models with non-integer exponents

are occasionally used.

The estimation of the noise levels is mainly achieved by using the Allan variance [1], which is
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defined versus the integration time � as:

� �� � � � 	 �� ��� �	� ��

� ����� ����� (2)

In the frequency domain, the Allan variance may be considered as a filter. If the Allan variance ver-

sus the integration time � is plotted, the graph exhibits different slopes, each slope corresponding

to a type of noise:

� �� � � � 	���� � � � � � �����
	 � � ��� ����� � 	 �! "� � � (3)

The estimation of
� �

yields an estimation of the noise level
� � .

However, this curve may exhibit an exponent  which seems to be non-integer. Does this

mean that the corresponding PSD is not compatible with the 5 power law model? In this paper,

we propose a method for estimating the most probable value of this exponent in order to solve this

ambiguity. This method is applied to an example of stability measurement.

II. CLASSICAL STABILITY ANALYSIS OF AN OSCILLATOR

A. Sequence of frequency measurements

[Fig. 1 about here.]

Figure 1 shows average frequency measurements # � of a 10 MHz quartz oscillator compared to a

Cesium clock. The sampling period is 10 s and the integration time of each frequency measurement

is also 10 s (sampling without dead time).

In order to obtain dimensionless
� �

samples, we must subtract the nominal frequency #%$ (10

MHz) from the frequency measurements and normalize by #&$ :� � 	 # � � #'$#�$ � (4)



Vernotte and Zalamansky: A BAYESIAN METHOD FOR OSCILLATOR STABILITY ANALYSIS 3

B. Variance analysis

[Fig. 2 about here.]

Figure 2 is a log-log plot of the Allan variance of the quartz
� �

samples versus the integration time

� . A least squares fit of these variance measurements (solid line), weighted by their uncertainties,

detects only two types of noise: a white noise and an
� � � noise. The corresponding noise level

estimations are:

� $ 	 � � � ����� ��� ��� �	� � 
�
 s at
� � ( ��
 % confidence)

� � �
	 � � ��� ��� � � ��� �	� � ��� s � 
 at

� � ( ��
 % confidence)

(for the assessment of the
� � noise levels and their uncertainties, we used the multivariance method

described in [2]).

However, for large � values (corresponding to low frequencies), the variance measurements

move away from the fitted curve. Two explanations are possible:

� instead of an
� � � noise, there is a noise whose non-integer exponent is comprised between

-2 and -3 ;

� since the uncertainty domains of the variance measurements contain the fitted curve, this

apparent divergence may be due to a statistical effect.

In order to choose between these two explanations, we decided to estimate the probability

density of the exponent with a Bayesian approach.
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III. BAYESIAN APPROACH

A. Principle

A.1 The Bayes theorem

The goal of all measurement is the estimation of an unknown quantity � from measurements

�
, i.e. determining � � ��� ��� , the density of probability of the quantity � knowing the measurements
�
. The Bayesian theory is based on the following equality [3]:

� � ��� ����� � ��� ��� �
	 � � � (5)

where � ��� ��� � is the distribution of the measurements
�

for a fixed value of the quantity � and
	 � � �

is the a priori density of probability of the quantity � , i.e. before performing any measurement.

The determination of this a priori density, called the prior, is generally one of the main diffi-

culties of this approach (particularly in the case of total lack of knowledge! ).

A.2 Properties of a prior

1. If several measurements � � 

� ����� � ����� are performed in order to estimate a quantity � , the

result of the estimation must be independent of the ordering of the measurements.

2. The result must be invariant under reparametrization of the problem: if a bijection trans-

forms � into ��� 	 � � � � , the prior must satisfy:

	 � � � �
	�	 � � � ��� � � � � � 
 (6)

where � � � � is the Jacobian of the transformation.

3. It must be possible to normalize the posterior distribution to one.

For example, Laplace considered that a uniform prior (
	 � � �
	 �

) should be chosen if no infor-

mation is available (1812). Unfortunately, this choice is not invariant under reparametrization

(condition 2) and does not always lead to a proper posterior distribution (condition 3).
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Jeffrey proposed to use the square root of the determinant of the Fisher information matrix as

a prior which respects these 3 conditions (1961). The Fisher information matrix � � � � is defined by:� � � � ������� 	 �
�
	 ��� � � � ��� ��� �	 � � 	 � � 
 � (7)

See [3] and [4] for a more thorough discussion about the choice of a prior.

In this paper we use the Bernardo-Berger prior which is an extension of the Jeffrey’s prior

when the parameters may be divided into nuisance parameters (here
� � ) and informative parame-

ters (here
�

) [3].

B. Spectral density and covariance matrix

Let us define the vector
�

whose components are the � � �
samples. We assume that

�
is a

Gaussian vector. The probability distribution of
�

is:

� �
� � 	������ � � ��������� ��

�
� � 	 ��� � � � � � (8)

where
�

is the covariance matrix. Since
� � �����

is the Fourier transform of ! � � � � , the autocorrela-

tion function of the frequency deviation, the general term of
�

is:

� ��� 	 �#"%$'&$�( � � � ���*),+.- � � 	 � �0/ � � / � � �*1 � (9)

where
�32

and
�34

are respectively the low cut-off frequency and the high cut-off frequency.

Equation (9) reveals the key role played by the spectral density of the noise in the expected

fluctuation. We will present a general method for estimating the parameters of the model for
� � � � �

.

C. Assumed model for the spectral density

We assume that the sequence of frequency measurements contains a white noise, whose level

� $ is known, and a red noise whose level
� � is unknown. This yields the following model for

� � � ���
:

� � �����
	 � $65 � � � � �
with � �87 � 7 � � (10)
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where
� $ 	 � � � � � � � 
�
 s,

� � and
�

are the unknown parameters.

Denote by
���

the noise vector normalized by the square root of the white level
� $ :��� 	 �

� � $ 	
�

��� � � ��$ (11)

where ��� is the actual standard deviation of the white noise ( ��� is easily estimated from high

sampling rate frequency measurements) and � $ the sampling period ( � $ 	 �	�
s in this case).

This normalized vector
� �

may be rewritten as the sum of a white noise component
� � and a

red noise component
���

: ��� 	 � � 5 � � � (12)

The corresponding normalized PSD
� � � ���

is:

� � �����
	 � 5
	 ��� � ��� �
(13)

where 	 is the normalized red noise level and
� � is an amplitude factor whose meaning will be

explained below (see equation (26)).

D. Statistical model

The part of the spectral density due to the red noise
� �

may be written:

� � � � �
	 	 ��� � � � � � (14)

We use the Bernardo-Berger analysis [3], [5] for estimating the unknown parameter � 	
� �

� 	 �
.

D.1 Construction of the estimators

Let us introduce the orthonormal basis of � � , �
��$ � ����� � � � � ����� � � � � 
 � , defined such as the 
�� 4
component of � � is:

� ��� 	��� � �0/ � � (15)
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where
/ �

is the time of the 
�� 4 frequency measurement and
�� � � / � is a polynomial of degree � ,

satisfying the orthonormality condition [6]:� � 
�� � $ �� � �0/ � � � ��
� � / � � 	�� � � � (16)

It can be shown than the expectation of the square of the scalar product of a vector � � by the noise

vector
�

is an estimate of the spectral density
� � � � �

for a given frequency
� �

[7]. Denote by
� �

the

scalar product of the estimator � � and the normalized noise vector
� �

:

� � 	 � � � ��� � (17)

Thus,
� �

may be considered as an estimate of the noise spectrum for the frequency
� �

.

Practically, we limited to 16 the number of estimators � � (from degrees 0 to 15) for limiting

the computation time and because the highest degrees, estimating the high frequency content, are

less informative for a red noise.

Moreover, in order to ensure convergence for very low frequencies (even if the low cut-off fre-

quency tends towards 0), the polynomials must satisfy the moment condition [6], [7]: the minimum

degree ��� � � of a polynomial to ensure convergence up to an exponent
�

is:

��� � ��� � � � �� � (18)

Since we have assumed
� � � � , the first 2 estimators (� $ and � 
 ) must be removed. Thus we have

� 	 � � estimators �
� � � ����� � � 

	 � and � 	 � � estimates � � � � ����� � � 

	 � .

D.2 Construction of the priors

The covariance matrix defined in relationship (9) is an ensemble average of the different esti-

mate products over an infinite number of realizations of this process:

� 	 � � � � �
� (19)� ��� 	 �
� � � � ��� � (20)
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As for the noise vector
���

, the estimate vector
�

may be split into two terms, according to equations

(12) and (17):
� 	 � � 5 � � � (21)

The covariance matrix may also be split:

� 	 � � � � �� � 5 � � � � �� � 	 � � 5
	 ��� � � � � � �
(22)

where � � is the identity matrix in �
�
. The general term of the matrix

� � � �
is:� � � � �'� ��� 	 � " $ &
���� ����� � � ��� � � � ����� 1 � (23)

where
� � �����

and
� � � ���

respectively denote the discrete Fourier transform of � � � / � and the complex

conjuguate of the discrete Fourier transform of � � �0/ � :
� � � � �
	 � � 
��

� $ � � �0/
� � ��� � � � 
 � 	 ��/ � � � (24)

The high cut-off frequency
�.4

in (23) is the Nyquist frequency and � is the total duration of the

sequence.

Let 	
� � � �

denote the 
 � 4 eigenvector of
� � � �

and 

� � � �

its 
 � 4 eigenvalue ( 
�� � � � ����� � � � � �
).

The averaged quadratic norm of the estimate vector
�

is:

��

��
 � � 	 � 5 	 ��� �
�
� 
� � � $ 
 � � � � 	 ��

� � 
 � � 5 ��
 � � 
 � � � (25)

The factor
� � is chosen in such a way that, for 	 	 �

, the averaged quadratic norms
��

� � 
 � � and��

� � 
 � � are equal. It follows:

� � 	 �
�
�
� 
� � $ 
 � � � � � (26)

The direct problem is now solved since
�

is a vector of �
�

with a probability distribution given

the parameter � equal to:

� � � � � � 	
�

� � 	 � � � � � � � � ��� � � �
�� � � � � 
 ��� � (27)
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Denoting “Tr
��� �

” the trace of a matrix
�

and � the matrix defined as:

� 	 � � � � � � �
(28)

the Fisher information matrix � � � � is (see [5]):

� � � � 	 ��
��� 	 ���	� � � � 
�

�
 � � � 
�

�
 � � 	 ��� � � � 
 � � � 
�
��
 � �	 ��� � � � 
 � � � 
 

�
 � � �	� � � � 
 � � � 
 � �

�
�� � (29)

The Jeffrey’s prior
	 � � � is defined as:

	 � � �
	 � ��� � � � � � (30)

The parameter � is a two-dimensional parameter composed of the exponent parameter
�

and of the

amplitude parameter 	 . Since we are mostly interested in
�

, 	 is called a nuisance parameter.

In presence of nuisance parameter, Bernardo and Berger suggested that
�

should first be fixed

and the conditional prior
	 � 	 � � � computed for that value. The full prior is then:

	 � � � 	 	 � 	 � � � � 	 � � � � (31)

The conditional prior
	 � 	 � � � is given by:

	 � 	 � � � 	 � � � � � � ��� � � � (32)

where
� � � � ��� 
 
 , � � � � ��� 
�� 	 � � � � �'� � 
 and

� � � � ��� � � are the elements of the Fisher information matrix� � � � .
The prior for

�
may be computed as:

	 � � � 	�� � ��� ��� " 	 � 	 � � � � � � � � � � 	 � � 
�� � 1 	�� (33)

where
�

is a normalization coefficient ensuring that � 	 � � � 1%� 	 �
and:

� � � � 	 �
	 � � � � �'� 
 
 � � � � � �'� � 
��� � � � �'� 
 
 � (34)

This prior is plotted in Figure 3.

[Fig. 3 about here.]
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D.3 Construction of the posteriors

According to the Bayes theorem, the posterior probability distribution is given by:

� � ��� � � 	 � � � ��� � 	 � � �� � ��� � � � �
	 � � � � 1 � � � (35)

The posterior probability distribution for
�

is then given by:

� � � � � � 	 � � � � � � � 	 �
	 � 	 � � � 	 � � � 1 	� � � ��� � � � � 	 � � 	 � 	 � � � � � 	 � � � � 1 	 � 1%� � � (36)

IV. RESULTS AND DISCUSSION

A. Compatibility with an integer exponent

[Fig. 4 about here.]

Figure 4 shows the posterior probability distribution for the exponent
�

of the red noise using the

Bernardo-Berger prior.

The median value obtained for the exponent, just as for the maximum of the distribution, is� 	 � � � � (the maximum of � � � � � � is -2.18, the median value is -2.19 and the mean value is -2.21).

The estimation result is :

� 	 � � � � � � � �
at
� � ( ��
 % confidence) �

Therefore
� 	 � � is fully compatible with this posterior distribution. Thus we may conclude

that the apparent divergence between the variance measurements and the fitted curve in Figure 2

is probably due to a statistical bias of the data. The spectral density
� � � � �

is then compatible with

the following model:
� � �����
	 � $65 � � �

� � � � (37)

B. Noise level estimation

[Fig. 5 about here.]
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Selecting an exponent value
� 	 � � , we obtained the posterior probability distribution plotted in

Figure 5. As in the variance analysis, we chose a confidence interval of 68% (16% probability that
� � � is smaller than the low bound and 16% probability that

� � � is greater than the high bound):

� � �
	

��� � � � 5 � � �
� � � �

�
�� � �	� � ��� s � 
 at
� � ( ��
 % confidence)

The difference between the median value (
� � �

	 � ����� � �	� � ��� s � 
 ) and the variance analysis value

(
� � �

	 � � ��� � �	� � ��� s � 
 ) is only 7%.

However, the confidence intervals given by these two methods are noticeably different. The

main difference concerns the symmetry of the variance analysis interval: in this case, we do not

take into account the fact that the noise levels are positive, whereas the prior of the Bayesian

approach is null for negative values of
� � � .

Moreover, the variance analysis interval seems to be a bit underestimated relative to the

Bayesian approach taken here.

V. CONCLUSION

The variance analysis is an useful tool for a quick estimation of the noise levels in the output

signal of an oscillator. However, a negative estimate of a noise level may occur. Generally, in this

case, this value is rejected and the corresponding noise level is assumed to be null. On the other

hand, although the Bayesian method is a bit more difficult, it takes properly into account the a

priori information, and gives a more reliable estimation of these noise levels and especially of their

confidence intervals.

However, the main advantage of the Bayesian method concerns the verification of the validity

of the power law model of spectral density. Each time the model is suspected, such an approach

should be used in order to estimate the exponent of the power law. In particular, this method should

be very interesting for the study of the
� � 
 and

� ��
 noise, whose origin remains mysterious [8].
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