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Time stability characterization and spectral aliasing

Part Il: a frequency-domain approach

F. Vernotte, G. Zalamansky and E. Lantz

Abstract. We showed in Part | of this paper [1] that the estimation of the white-phase noise level of a sampled
signal may be achieved with variances even if the sampling frequency is far lower than the high cut-off frequency.
In Part Il, the effects of spectral aliasing for the different types of noise are reviewed. The responses of the Allan
variance and the modified Allan variance for high-frequency noises are calculated taking into account the spectral
aliasing. It is demonstrated that the effects of spectral aliasing for low-frequency noises may be neglected.

1. Introduction aliasing, i.e. the white-phase noise and the flicker-phase
noise.

The variances (Allan variance, modified Allan variance, ) .
...) arepowerful tools for spectral analysis. Variance 2+ 1heoretical study of spectral aliasing
measurements may easily be translated into noise-lev
measurements since the variance responses for all typ
of noises are well known. However, the sampling
process applied over a noise may induce severe bi
if it is not performed according to sampling theory,
i.e. if the Nyquist frequency is lower than the high
cut-off frequency of the analogue signal. In this case
spectral aliasing may completely alter the noise-leve
measurements.

I . .
251 General case: reminder of sampling theory

t us consider the time error functioi'(t) of an
oscillator andX ( f) its Fourier transform. Lef;, be the
high cut-off frequency, defined as the highest frequency
for which X (f) is non-zero (we discuss the value and
the physical meaning ofy, for each type of noise). We
showed in [1] that the high cut-off frequengy, is the

We showed in a previous paper [1] these effectdower of th_e system high cut-off freq_uen_cy an_d the noise
for a white-phase noise, using a time-domain approactP0cess high cut-off frequency. This signal is sampled
We presented a procedure which can recover both thdith @ sampling frequency,,. Let z(¢) be an infinite

white-phase noise level and the high cut-off frequencyp@duence of samples df (). This sequence(t) can
in some cases. be written as (see [2] or [3] for sampling theory)

Part Il of this paper deals with the effects of spectral Fo
aliasing for all types of noise (for power law exponents z(t) = X(t) x Z §(fopt — 1), (1)
of the spectral density of phase from 0 to -5). In order
to study these effects, a frequency-domain approach
is used. The results for the white-phase noise ar
consistent with those obtained in [1] by using a time-

i=—

here é(t) is the Dirac distribution. The Fourier
ransform of this sequence is

domain approach. The responses of the Allan variance . 1 = f
and the modified Allan variance are calculated versus  z(f) = X(f) x Z 5( - Z'>, )
the high cut-off frequency and the sampling frequency foo = \Jo

for the types of noise which are altered by spectralypere * denotes a convolution product. Thus, for
a frequency f, lower than the Nyquist frequency
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Then, whatever the frequendgy, the Fourier transform frequencyfy, (a white-phase noise without such a cut-off
Z(f) of z(t) may be written as frequency could not exist because it would correspond
to an infinite power). As the Fourier transform of

—+ox . . . . .
. S 5 ) a white Gaussian process is also a white Gaussian
w(f)=X()+ 4 Z X(f+ife)= process, the Fourier transform af(¢) is then a white
70,i=—o Gaussian process of standard deviatigg. Therefore,
X(f)+ AX(f). (4) the square of the modulus of its Fourier transform is

chi-square distributed around the valug:=. Thus, the
spectral densityx (f) of X (¢), which is the expectation
The termA X (f) accounts for spectral aliasing. It of the square of the modulus of the Fourier transform
can easily be verified that this term is nullfif < f,,/2  of X(¢), may be modelled as
(sampling theorem). In the reverse caég,, < 2fu),

X(t) can no longer be recovered. However, &$t) Sx(f) =ko f* =IX(f)” = osx2

is a random noise, some statistical properties of this if f<fu (6)
noise can still be obtained. For the sake of simplicity, Sx(f) =0 »

let us suppose thah,/ fop = imax + 1/2, Wher€i,.. is X\ = it >t

a finite integer. Follf| < f.p/2, (4) may be rewritten \yheres.. is the standard deviation of (f) for f < fu.
as (see Figure 1) Thus, from (5), the Fourier transform oft) is the
i sum of (2imax + 1) white Gaussian random numbers.
F(f) = X(f+ifs). 5y The standard deviation of the sum afindependent
H) z (F+ife) ®) gaussian white processes of standard deviatiors
é/ﬁa. The standard deviation, of Z(f) is then

1="tmax

In this paper, we successively consider the cas

of white-phase noise, flicker-phase noise and low- e
frequency noises. Tox = V2imax + 1 osx. 7)

. _ Let us defines, (f) as the expectation of the square
2.2 Case of white-phase noise of the modulus of the Fourier transform oft). In the

_ _ _ following, we refer to this quantity as the “apparent”
Let us consider the time error functiof (¢) of an  spectral density. The differences between apparent and
oscillator as a white Gaussian noise with a high cut-ofeal spectral density are pointed out in [1]. Theg(f)

is then
f)A
541 Sx(f) = U?z = (2imax + 1) U%X =
(i + DSX(1) =295 5. @
sp
Then, z(t) is also a white Gaussian process, and
its spectral density may be modelled as
Sx(f) = kOaan (9)
* Convolution product where
L) 4 Fow = 2 1% . (10)
fsp
Consequently, the sampling of a white-phase noise
of level ko with a high cut-off frequencyf, and a
sampling frequency,, yields a white-phase noise with
a levelko, = 2k fu/fsp and a high cut-off frequency
equal to the Nyquist frequencx = fs,/2 (of course,
, | s2(f) = Sx(f) if fu = fx [2, 3)).
fop 2f,p Therefore,.afte_r sampl_ing a sig_na_ll WiFh a sampling
Frequency frequency f;p, it is impossible to distinguish a white-

phase noise of levek, and high cut-off frequency

Figure 1. The sampling with a frequency, induces fu from a white-phase noise of levelk, and high

spectral aliasing since each frequency sanfple the sum cut-off frequencyf,/A: the measured level ig% ko
of the amplitudes of all frequencigs+i f., (i is an integer). in both cases (see Figure 2). Thus, neither the Allan
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Table 1. Experimental measurements of the white-phase noise léyek(0.5, f, = 100 Hz, 8192 samples).

Sampling frequency,, /Hz 100 50 20 10 5
Measured leveko, 1.005+0.8 % 1.9522.4% 5.08& 1.5% 9.981:2.9% 19.841%1.3%
where
koa = 2A-ko
=(f+ifp) % (14)
The term)_, w(f+i fsp) 0; is the sum of 2i,ax +
T 1) Gaussian white processes of standard deviation
“ o;. As the sum of two independent Gaussian white
processes of standard deviatienando, is a Gaussian
white process of standard deviatiofo} + o3, this
ko sum may be rewritten as
| 5wl +ifa) i =0/ (7)
fN = fsp/2 fsp fh = A'fsp
Frequency U _ w f +i fsp (15)
Figure 2. Sampling a white noise with a sampling frequency V V
A times lower than the high cut-off frequency of this
noise yields a measurement of the noise |@ltimes where w’(f) is a white Gaussian process of standard
greater than the real level. Furthermore, it is impossible deVIatlon 1
to distinguish two noises of which the produétsf,, are Then,

the same.

variance, nor the modified Allan variance (nor any other

E(f) = VEaw' (f) D (F+ifp) ! (16)

variance, nor any other method) are able to measure the i

real white-phase level after sampling. The produgh,
is the total noise power.

We experimentally confirmed this aliasing result by
using a white-noise generator with a variable sampling

frequency (see Table 1).
2.3 Case of flicker-phase noise

Let us consider the time error functioX (¢) of an
oscillator as a flicker-phase noise of leviel; and high
cut-off frequency f,,. The spectral densitysx(f) of
X(t) may be modelled as

Sx(f) =k_1 7 (11)

The Fourier transform ofX (¢) is a white Gaussian
processw(f) of standard deviation 1, multiplied by

vVEk_1 fﬁl:
X(f)=w(f) Vk_1 fL. (12)

After sampling, the Fourier transform of the
sampled signal is (see Section 2.1, (5))

Fimax

2

1="tmax

Z w(f +i fup) (f +i L)% =

Vi S

i(f) X(f+ifp) =k 1x

(f +ifsp)oi, (13)
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Thus, the apparent spectral density(f) of the
sampled signak(¢) may be modelled as

“+imax

Z |f+7;fsp|_1 =

1="Tmax

82:(f) = k-1

-1

ki f7 ko Z |f +i fol

1=—Imax

Tmax

k,1 Z |f+7;fsp|717 (17)
i=+1
sz(f) = Sx(f) + AS(f), (18)
where
-1
AS(f)=kor D f+ifepl™ +Ea
S il =2k S (i f) " (19)
i=+1 i=+1
imax f -1

AS(f)=2k_1 ft > ( i ) ., (20

i=—+1
with 0 < f/fs, < 1/2. Moreover, it can be shown that,
for 0 < e < 1/2,

.
li )1
Jim > (e+1)

i=1

= In(N). (21)
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ThUS, If fh > fspn
1 fh . _
AS (f) =2k 1 fo, In =ko = k-1
fsp k
_____ 0 - N
constant, (22)
(y 1/f slope

with (,v;< (log-log plot)

kO _ 2 k—l In (fh/fsp) ] (23)

fsp

Thus, after sampling a flicker-phase noise with a ‘ |
sampling frequency much lower than the high cut-off 1Hz f!N f,
frequency of this noise, the flicker level is properly
determined, but a white-phase noise also appears (see Frequency

Figure 3). The higher the cut-off frequency, the greater

the white-phase level. This level could even mask th higher than th st £ elds a fal

fIiCker-phase level requenc_y 19 er than the Nqust requency yields a ailse
L . . . ., white noise. The lower the Nyquist frequency, the higher

The approximation of relationship (21) is valid he |evel of this noise.

only for fi, > fs, but (23) is biased iff, is close

to f,. For example, if the high cut-off frequency is The same calculations as those of the previous

equal to the Nyquist frequency, (23) yields a negativesection show that the sampling, with a sampling

white level (which is nonsensical) whereas the signal isrequencyf.,, yields an apparent spectral density f)
properly sampled and no white level appears. Similarlyas

if fop = fu, (23) implies a null white level. However,

igure 3. Sampling a flicker-phase noise with a high cut-off

a calculation with no approximation gives, in this case, I e
Sr(f) = ka Z |f +ZfSp| . (26)
fsp 1=—
sp = Jh d 0<f< . .
Joo = fi a f 2 = We do not consider here the high cut-off frequency
4k 2% because this sum converges tor< —2. We calculate
< ASL(f) < : (24)  this sum in the worst case, i.e. for an infinite high
3fsp .fSp _
cut-off frequency,
In order to confirm our results, we simulated N I o
a flicker-phase noise with different high cut-off $o(f) = ko f*+2ka Y (f+ifop)®, (27)
frequencies. Table 2 compares the measurements i=1
obtained with the multi-variance method and the levels s (f) = Sx(f) + AS.(f), (28)
calculated from (23). These results seem to confirm our
theoretical considerations. where
+ox «
2.4 Case of low-frequency noises AS,(f) =2ka f2 Z <f{p + Z) 7 (29)

i=1
Let us now consider the spectral densfty(f) of the
time error function of an oscillator affected by &t
phase noise with-5 < o < —2 (f~° phase noise could

with 0 < f/fs, < 1/2. Moreover, it can be shown that,
for0<e<1/2anda < -2,

affect millisecond pulsar timings): N
J\lfim (e4+)*=1. (30)

Sx(f) = ka f°. (25) im1
Table 2. Experimental measurements of the false white-phase nbise (0, k_; = 1, fi, = 1 Hz, 8192 samples). For high

fu/ fsp values, the approximation in (21) becomes valid and the meagyresiclose to the theoretica.

In/fsp 1 2 4 8 16 32 64 128 256

k—1 (measured) 0.909 1.03 0.985 0.991 0.991 0.981 0.946 1.03 0.904
+7% +4% 2% +4% +3% +5% +6% +7% +9%

ko (measured) 1.74 4.50 15.6 44.2 108 260 619 1446 3252
+15% +10% +3% +3% +3% +3% +3% +3% 4%

ko (theoretical) 0 2.77 11.1 33.3 88.7 222 532 1242 2839
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Thus, 3.1.1 Response for white-phase noise

AS.(f) = 2ka [§, = ko = constant. (1) In the case of a white-phase noise, the spectral density
As for the flicker-phase noise, the noise level isOf the instantaneous normalized frequency deviation
properly determined, but the sampling adds a falsénay be modelled as (without taking into account the
white-phase noise to the signal. We may calculate th8igh cut-off frequency)
ratio Rsx(f) = s.(f)/Sx(f) in order to estimate the

influence of this effect. Obviously, this effect is greatest S,(f) = ha fH2 (35)
for the highest frequency, i.e. the Nyquist frequency . .
) The response of the Allan variance is then
Rsx(fx) = 14201 (32) teo sint(wrf)
for @ = =2 Rey(fx) = 1.5 73(7) :/0 2 tar e fraf =
for a = =5 Rsy(fn) = 1.0625. oh too
2 .
These results shows that the white-phase level is, (wr)? /0 sin(wr f) df. (36)

at worst, of the same order as th® phase level

for the higher frequencies. Thus, as we experimentall)é_ L o
verified, this effect may be neglected far< —2. In ince this integral does not converge for infinite

the next section, we study the influence of spectraj’eduencies, the high cut-off frequency must be taken
aliasing over variance responses for white-phase noidgt® account. Assuming thaf, (f) is null if f > fu,
and flicker-phase noise only. It becomes

3. Responses of variances for high-frequency noises 012/( )= (2h§2 /fh it (e ) df = ih;f}; .(37)
wT weT

his result is the classical response of the Allan variance
or a white-phase noise.
However, for a sampled signal, the high cut-off

The result of a variance with a transfer functiéf f)
applied to a signal with a one-sided spectral densit
S,(f) may be calculated as [4]

) . .
2, \ 2 _ frequency must be considered as the Nyquist frequency
oy(7) = /0 H (NI S,(Hdf = and, translating (10) from phase-noise levgl into
p frequency-noise level,, the measured level is
| e s, gar, @) A
0 hoa = 2 f— ha, (38)
sp

whereS; (f) is the apparent spectral density as defined . o
in Section 2.2. In the following, we take into account thewhere fy, is the characteristic high cut-off frequency.
fact that the calculations of the variances are performedhen, the response of the Allan variance for a white-

over the apparent spectral density. phase noise may be rewritten as
i 3(2fnha/fsp) [
3.1 The Allan variance o2(r) = ( 4;22{ sz) N (39)

The square of the modulus of the transfer function of,

. . Since the sampling frequency is twice the Nyquist
the Allan variance is [4] frequency:
-4
' f)
H ()2 =25 f) (34)
| J( )| (7 f)2 05(7) . 3ha fu (40)

The filter response of the Allan variance acts like an Amer
approximate constant-Q filter which analyses broadbandhus, the expression of the Allan variance for a badly
power law spectra efficiently. The filter thus has asampled white-phase noise is the same as the theoretical
ratio of centre frequency to bandpass which is constangXpression for an analogue computation.
One of the most attractive features of using the Allan
variance is its ability to sort out various noises by3.1.2 Response for flicker-phase noise
the slopes on the Allan variance plot. However, the
response from the sidelobes of (34) cause leakagd the case of a flicker-phase noise, the spectral density
in the case of white- and flicker-phase modulationof the instantaneous normalized frequency deviation
(PM), making their slope indistinguishable and theirmay be modelled as (without taking into account the
level dependent ory,. This paper is not concerned high cut-off frequency)
with leakage, but rather addresses the problem of
undersampling. S,(f) =hy (41)
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The response of the Allan variance is then 107 st
+o0 : 4( ) fa= 1kHz = ------
2 s (mT +1 1078 h e
ol(1) = 2——_p, fHUASf fh= 1GHz
o(7) /0 (m7 f)? 3 .
25 too i 4 ‘§ 10° ¢
- 12 / sin” (w7 f) df. 42)
(1TT) J0 f E 1070 b
Since this integral does not converge for infinite§ B
frequencies, the high cut-off frequency must be takerg " |
into account. Assuming that,(f) is null if f > f,, ©
it becomes 07
fh int 13 L 1 t
05(7') = 2h22 / sin” (w7 f) df. (43) R 10 100 1000 10 000
(m7) f Time /s

This quantity may be approximated by Figure 4. Influence of the high cut-off frequencg, on

9 1.038 4+ 31n (27 f, 7) the response of the Allan variance for a flicker-phase noise
o,(1) = 22 h1. (44)  (hy, = 107'¢s?, sampling frequency., = 1 Hz).
This result is the classical response of the Allan variance
for a flicker-phase noise. 3.2 Modified Allan variance

For a sampled signal, however, the high cut-off
frequency must be considered as the Nyquist frequency
and a white noise level appears (see Section 2.32
Consequently, the result of the Allan variance is the
same as the one obtained for a signal of which the 6
high cut-off frequency is the Nyquist frequency and of |Hyi(f))? = 2 sin” (w7 f) (49)
which the spectral density may be modelled as (7 )2 n2sin?(wro f)’

he square of the modulus of the transfer function of
he modified Allan variance is [5-7]

Si(f) =hi f 4 he f2 (45)  wherer, is the sampling period and is defined as
with, translating (23) from phase noise levdlg and " = T_/TO- ) ]
k_, to frequency noise levet, and hy: This transfer function decreases more quickly
versus frequency than the Allan variance. Thus, the
2h 1n (ffh) modified Allan variance has significantly less leakage
hy = ———=4 (46) as evidenced in (49) above. The greatés (the greater
fop n is), the faster this function decreases. Thust iis

where f;, is the characteristic high cut-off frequency. greater thar, only the amplitude of this function for

Thus, the response of the Allan variance for athe lowest frequencies is significant. Moreover, for the
flicker-phase noise with a characteristic high cut-offlow frequencies, the following approximation may be
frequency fi, and sampled with a sampling frequency used:

fop IS
2(py = LOIS+ 3In(2wfst) . 3hafx o f < g = sin(wrof) ~ wrof. (50)
T = 422 P ym2r2
1.038 + 3In(2wfxT) Then, if 7 > 719, (49) may be rewritten as [8]:
- 4m272 !
3[2haIn (Fu/ Fap)/ fp] (PP =2 S (@)
* e @D M= S e o )2
sin® (w7 f
Since fx = fop/2: = #- (51)
1.038 + 31n(m fi, 7)
oo(1) = P hi. (48)

The asymptotic behaviour (for large values) of

In this case also, the expression of the Allan variancgne modified Allan variance for a signal with a spectral

for an undersampled flicker-phase noise is the same Fensity S, (f), may be written as [7, 8]
the theoretical expression for an analogue computation. Y

Figure 4 shows the influence of the high cut-off oo . 6
frequency f;, on the Allan variance response, in the mod o2 (1) = / M
case of a flicker-phase noise. Y Jo (m7f)*

Sy(f)df. (52)
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3.2.1 Response for the white-phase noise Hence, the asymptotic response of the modified
Allan variance for a flicker-phase noise with a
The asymptotic response of the modified Allan variancesharacteristic high cut-off frequency;, and sampled

for a white-phase noise is with a sampling frequency,, is
+oo . 6
mod o2(7) = / o SHI (77 f) ho f2df mod 02(7) =
Y 0 (w7 f)*
oy [ siS(mrf) 3[81n() - 31a(3) + 2l (/) fon)]
= w22 ,/0 (w7 f)? df. (53) 82712 L

(59)

This integral converges even for an infinite high cut-off

frequency. The result is Figure 5 shows the influence of the high cut-off

) 3hs frequencyfi, on the modified Allan variance response,
mod o, (1) = R (54)  in the case of a flicker-phase noise.
Thus, the asymptotic response (for largevalues) of | 47 : : ‘
the modified Allan variance for a white-phase noisé‘ correct sampling
does not depend on the high cut-off frequency. ThiTE 0s | he Mz o ]
result is true in the case of an analogue computatio‘_z R hi= 16Hz

of the variance.

For a sampled signal, however, the real noise lev
must be replaced by the apparent noise level given i
(38):

10° L

ATlan va

<
3

— 3(2fhh2/f5p) _ 3hth

do?(r) = = .
o Uy(T) 8m273 4m? f, 73

(59)

Squ;e root of modiff
3

2
S

The asymptotic response of the modified Allan varianci
for a badly sampled white-phase noise depends then on, . , .
both high cut-off frequency and sampling frequency. i ! 10 100 1000 10000

Time /s

3.2.2 Response for the flicker-phase noise Figure 5. Influence of the high cut-off frequencf, on the

] ) . ) response of the modified Allan variance for a flicker-phase
For flicker-phase noise also, the modified Allan variancenoise .., = 10~'¢s?, sampling frequency., = 1 Hz).

converges without taking into account the high cut-

off frequency. Then, the asymptotic response of thet., Conclusion

modified Allan variance for a flicker-phase noise may be

calculated without taking into account the high cut-off Since the effects of spectral aliasing are only noticeable

frequency: for white-phase noise and flicker-phase noise, the
responses of the variances were calculated versus the

mod 02 (1) = 3[81n(2) 2—3111(3)] hy. (56)  characteristic high cut-off frequency, which is the lower

82T of the system cut-off frequency and the real cut-off

However, if this flicker-phase noise is badly frequency, taking into account:
sampled, a white-phase noise appears. Thus, the the increase of the white noise level in the case of

response of the modified Allan variance is white-phase noise;
9 3[81n(2) — 31n(3)] 3ho + the white noise level which appears in the case of
HlOdO'J(T): 1+ . flicker-ph H
1 Sm2r2 Sm273 icker-phase noise.

(57) However, the effects of spectral aliasing, as a result
of the sampling process, must be distinguished from
the natural dependence of a variance on the cut-off

From (46), this becomes frequency.
Table 3 gives the responses of the Allan variance
mod o2(r) = 2182 =3B, and the modified Allan variance for white-phase noise
Y 8272 and flicker-phase noise corrected for the effects of
3 [2hyIn (fu/ fsp)/ fop] spectral aliasing. It can be seen that the response of
8273 P (58)  the Allan variance is not modified. The responses of
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Table 3. Transfer functions and responses of Allan variance
and modified Allan variance for white-phase noise and
flicker-phase noise without spectral aliasing (rows 3 and 4)

On the other hand, it would be interesting to

estimate the opposite effect: what happens in the case

and with spectral aliasing (rows 5 and 6).

of low-frequency noise (flicker frequency noise and
random-walk frequency noise) if the duration of the
sampled sequence is far lower than the inverse of the

5,(f)  ay(r) Mod o7 (7) low cut-off frequency of the signal. This will be the
. subject of a future paper.
|H(f)]2 w sin® (w7 f)
Tf): 1
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