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Time stability characterization and spectral aliasing

Part II: a frequency-domain approach

F. Vernotte, G. Zalamansky and E. Lantz

Abstract. We showed in Part I of this paper [1] that the estimation of the white-phase noise level of a sampled
signal may be achieved with variances even if the sampling frequency is far lower than the high cut-off frequency.
In Part II, the effects of spectral aliasing for the different types of noise are reviewed. The responses of the Allan
variance and the modified Allan variance for high-frequency noises are calculated taking into account the spectral
aliasing. It is demonstrated that the effects of spectral aliasing for low-frequency noises may be neglected.

1. Introduction

The variances (Allan variance, modified Allan variance,
. . . ) arepowerful tools for spectral analysis. Variance
measurements may easily be translated into noise-level
measurements since the variance responses for all types
of noises are well known. However, the sampling
process applied over a noise may induce severe bias
if it is not performed according to sampling theory,
i.e. if the Nyquist frequency is lower than the high
cut-off frequency of the analogue signal. In this case,
spectral aliasing may completely alter the noise-level
measurements.

We showed in a previous paper [1] these effects
for a white-phase noise, using a time-domain approach.
We presented a procedure which can recover both the
white-phase noise level and the high cut-off frequency
in some cases.

Part II of this paper deals with the effects of spectral
aliasing for all types of noise (for power law exponents
of the spectral density of phase from 0 to –5). In order
to study these effects, a frequency-domain approach
is used. The results for the white-phase noise are
consistent with those obtained in [1] by using a time-
domain approach. The responses of the Allan variance
and the modified Allan variance are calculated versus
the high cut-off frequency and the sampling frequency
for the types of noise which are altered by spectral
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aliasing, i.e. the white-phase noise and the flicker-phase
noise.

2. Theoretical study of spectral aliasing

2.1 General case: reminder of sampling theory

Let us consider the time error function of an
oscillator and its Fourier transform. Let be the
high cut-off frequency, defined as the highest frequency
for which is non-zero (we discuss the value and
the physical meaning of for each type of noise). We
showed in [1] that the high cut-off frequency is the
lower of the system high cut-off frequency and the noise
process high cut-off frequency. This signal is sampled
with a sampling frequency . Let be an infinite
sequence of samples of . This sequence can
be written as (see [2] or [3] for sampling theory)

(1)

where is the Dirac distribution. The Fourier
transform of this sequence is

(2)

where * denotes a convolution product. Thus, for
a frequency lower than the Nyquist frequency

:

(3)
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Then, whatever the frequency, the Fourier transform
of may be written as

(4)

The term accounts for spectral aliasing. It
can easily be verified that this term is null if
(sampling theorem). In the reverse case, ,

can no longer be recovered. However, as
is a random noise, some statistical properties of this
noise can still be obtained. For the sake of simplicity,
let us suppose that , where is
a finite integer. For , (4) may be rewritten
as (see Figure 1)

(5)

In this paper, we successively consider the case
of white-phase noise, flicker-phase noise and low-
frequency noises.

2.2 Case of white-phase noise

Let us consider the time error function of an
oscillator as a white Gaussian noise with a high cut-off

Figure 1. The sampling with a frequencysp induces
spectral aliasing since each frequency sampleis the sum
of the amplitudes of all frequencies sp ( is an integer).

frequency (a white-phase noise without such a cut-off
frequency could not exist because it would correspond
to an infinite power). As the Fourier transform of
a white Gaussian process is also a white Gaussian
process, the Fourier transform of is then a white
Gaussian process of standard deviation. Therefore,
the square of the modulus of its Fourier transform is
chi-square distributed around the value . Thus, the
spectral density of , which is the expectation
of the square of the modulus of the Fourier transform
of , may be modelled as

(6)

where is the standard deviation of for .
Thus, from (5), the Fourier transform of is the

sum of white Gaussian random numbers.
The standard deviation of the sum of independent
gaussian white processes of standard deviationis

. The standard deviation of is then

(7)

Let us define as the expectation of the square
of the modulus of the Fourier transform of . In the
following, we refer to this quantity as the “apparent”
spectral density. The differences between apparent and
real spectral density are pointed out in [1]. Thus,
is then

(8)

Then, is also a white Gaussian process, and
its spectral density may be modelled as

(9)

where

(10)

Consequently, the sampling of a white-phase noise
of level with a high cut-off frequency and a
sampling frequency , yields a white-phase noise with
a level and a high cut-off frequency
equal to the Nyquist frequency (of course,

if [2, 3]).
Therefore, after sampling a signal with a sampling

frequency , it is impossible to distinguish a white-
phase noise of level and high cut-off frequency

from a white-phase noise of level and high
cut-off frequency : the measured level is
in both cases (see Figure 2). Thus, neither the Allan
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Table 1. Experimental measurements of the white-phase noise level (0 0.5, h 100 Hz, 8192 samples).

Sampling frequencysp 100 50 20 10 5
Measured level 0a 1.005± 0.8 % 1.952± 2.4 % 5.080± 1.5 % 9.981± 2.9 % 19.841± 1.3 %

Figure 2. Sampling a white noise with a sampling frequency
times lower than the high cut-off frequency of this

noise yields a measurement of the noise leveltimes
greater than the real level. Furthermore, it is impossible
to distinguish two noises of which the products0 h are
the same.

variance, nor the modified Allan variance (nor any other
variance, nor any other method) are able to measure the
real white-phase level after sampling. The product
is the total noise power.

We experimentally confirmed this aliasing result by
using a white-noise generator with a variable sampling
frequency (see Table 1).

2.3 Case of flicker-phase noise

Let us consider the time error function of an
oscillator as a flicker-phase noise of level and high
cut-off frequency . The spectral density of

may be modelled as

(11)

The Fourier transform of is a white Gaussian
process of standard deviation 1, multiplied by

:

(12)

After sampling, the Fourier transform of the
sampled signal is (see Section 2.1, (5))

(13)

where

(14)

The term is the sum of
Gaussian white processes of standard deviation

. As the sum of two independent Gaussian white
processes of standard deviationand is a Gaussian
white process of standard deviation , this
sum may be rewritten as

(15)

where is a white Gaussian process of standard
deviation 1.
Then,

(16)

Thus, the apparent spectral density of the
sampled signal may be modelled as

(17)

(18)

where

(19)

(20)

with . Moreover, it can be shown that,
for ,

(21)
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Thus, if ,

(22)

with

(23)

Thus, after sampling a flicker-phase noise with a
sampling frequency much lower than the high cut-off
frequency of this noise, the flicker level is properly
determined, but a white-phase noise also appears (see
Figure 3). The higher the cut-off frequency, the greater
the white-phase level. This level could even mask the
flicker-phase level.

The approximation of relationship (21) is valid
only for , but (23) is biased if is close
to . For example, if the high cut-off frequency is
equal to the Nyquist frequency, (23) yields a negative
white level (which is nonsensical) whereas the signal is
properly sampled and no white level appears. Similarly,
if , (23) implies a null white level. However,
a calculation with no approximation gives, in this case,

(24)

In order to confirm our results, we simulated
a flicker-phase noise with different high cut-off
frequencies. Table 2 compares the measurements
obtained with the multi-variance method and the levels
calculated from (23). These results seem to confirm our
theoretical considerations.

2.4 Case of low-frequency noises

Let us now consider the spectral density of the
time error function of an oscillator affected by an
phase noise with ( phase noise could
affect millisecond pulsar timings):

(25)

Figure 3. Sampling a flicker-phase noise with a high cut-off
frequency higher than the Nyquist frequency yields a false
white noise. The lower the Nyquist frequency, the higher
the level of this noise.

The same calculations as those of the previous
section show that the sampling, with a sampling
frequency , yields an apparent spectral density
as

(26)

We do not consider here the high cut-off frequency
because this sum converges for . We calculate
this sum in the worst case, i.e. for an infinite high
cut-off frequency,

(27)

(28)

where

(29)

with . Moreover, it can be shown that,
for and ,

(30)

Table 2. Experimental measurements of the false white-phase noise (0 ,
�1 , h 1 Hz, 8192 samples). For high

h sp values, the approximation in (21) becomes valid and the measured0 is close to the theoretical0.

h sp 1 2 4 8 16 32 64 128 256

�1 (measured) 0.909 1.03 0.985 0.991 0.991 0.981 0.946 1.03 0.904
± 7 % ± 4 % ± 2 % ± 4 % ± 3 % ± 5 % ± 6 % ± 7 % ± 9 %

0 (measured) 1.74 4.50 15.6 44.2 108 260 619 1446 3252
± 15 % ± 10 % ± 3 % ± 3 % ± 3 % ± 3 % ± 3 % ± 3 % ± 4 %

0 (theoretical) 0 2.77 11.1 33.3 88.7 222 532 1242 2839
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Thus,

(31)

As for the flicker-phase noise, the noise level is
properly determined, but the sampling adds a false
white-phase noise to the signal. We may calculate the
ratio in order to estimate the
influence of this effect. Obviously, this effect is greatest
for the highest frequency, i.e. the Nyquist frequency

.

(32)

for
for .

These results shows that the white-phase level is,
at worst, of the same order as the phase level
for the higher frequencies. Thus, as we experimentally
verified, this effect may be neglected for . In
the next section, we study the influence of spectral
aliasing over variance responses for white-phase noise
and flicker-phase noise only.

3. Responses of variances for high-frequency noises

The result of a variance with a transfer function
applied to a signal with a one-sided spectral density

may be calculated as [4]

(33)

where is the apparent spectral density as defined
in Section 2.2. In the following, we take into account the
fact that the calculations of the variances are performed
over the apparent spectral density.

3.1 The Allan variance

The square of the modulus of the transfer function of
the Allan variance is [4]

p

p
(34)

The filter response of the Allan variance acts like an
approximate constant-Q filter which analyses broadband
power law spectra efficiently. The filter thus has a
ratio of centre frequency to bandpass which is constant.
One of the most attractive features of using the Allan
variance is its ability to sort out various noises by
the slopes on the Allan variance plot. However, the
response from the sidelobes of (34) cause leakage
in the case of white- and flicker-phase modulation
(PM), making their slope indistinguishable and their
level dependent on . This paper is not concerned
with leakage, but rather addresses the problem of
undersampling.

3.1.1 Response for white-phase noise

In the case of a white-phase noise, the spectral density
of the instantaneous normalized frequency deviation
may be modelled as (without taking into account the
high cut-off frequency)

(35)

The response of the Allan variance is then

p

p

p
p (36)

Since this integral does not converge for infinite
frequencies, the high cut-off frequency must be taken
into account. Assuming that is null if ,
it becomes

p
p

p
(37)

This result is the classical response of the Allan variance
for a white-phase noise.

However, for a sampled signal, the high cut-off
frequency must be considered as the Nyquist frequency
and, translating (10) from phase-noise level into
frequency-noise level , the measured level is

(38)

where is the characteristic high cut-off frequency.
Then, the response of the Allan variance for a white-
phase noise may be rewritten as

p
(39)

Since the sampling frequency is twice the Nyquist
frequency:

p
(40)

Thus, the expression of the Allan variance for a badly
sampled white-phase noise is the same as the theoretical
expression for an analogue computation.

3.1.2 Response for flicker-phase noise

In the case of a flicker-phase noise, the spectral density
of the instantaneous normalized frequency deviation
may be modelled as (without taking into account the
high cut-off frequency)

(41)
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The response of the Allan variance is then

p

p

p

p
(42)

Since this integral does not converge for infinite
frequencies, the high cut-off frequency must be taken
into account. Assuming that is null if ,
it becomes

p

p
(43)

This quantity may be approximated by

p

p
(44)

This result is the classical response of the Allan variance
for a flicker-phase noise.

For a sampled signal, however, the high cut-off
frequency must be considered as the Nyquist frequency
and a white noise level appears (see Section 2.3).
Consequently, the result of the Allan variance is the
same as the one obtained for a signal of which the
high cut-off frequency is the Nyquist frequency and of
which the spectral density may be modelled as

(45)

with, translating (23) from phase noise levels and
to frequency noise level and :

(46)

where is the characteristic high cut-off frequency.
Thus, the response of the Allan variance for a

flicker-phase noise with a characteristic high cut-off
frequency and sampled with a sampling frequency

is

p

p p

p

p

p
(47)

Since :

p

p
(48)

In this case also, the expression of the Allan variance
for an undersampled flicker-phase noise is the same as
the theoretical expression for an analogue computation.

Figure 4 shows the influence of the high cut-off
frequency on the Allan variance response, in the
case of a flicker-phase noise.

Figure 4. Influence of the high cut-off frequencyh on
the response of the Allan variance for a flicker-phase noise
( +1

�16 2, sampling frequencysp ).

3.2 Modified Allan variance

The square of the modulus of the transfer function of
the modified Allan variance is [5-7]

p

p p
(49)

where is the sampling period and is defined as
.

This transfer function decreases more quickly
versus frequency than the Allan variance. Thus, the
modified Allan variance has significantly less leakage
as evidenced in (49) above. The greateris (the greater

is), the faster this function decreases. Thus, ifis
greater than , only the amplitude of this function for
the lowest frequencies is significant. Moreover, for the
low frequencies, the following approximation may be
used:

p
p

p p (50)

Then, if , (49) may be rewritten as [8]:

p

p p

p

p
(51)

The asymptotic behaviour (for large values) of
the modified Allan variance for a signal with a spectral
density , may be written as [7, 8]

p

p
(52)
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3.2.1 Response for the white-phase noise

The asymptotic response of the modified Allan variance
for a white-phase noise is

p

p

p

p

p
(53)

This integral converges even for an infinite high cut-off
frequency. The result is

p
(54)

Thus, the asymptotic response (for largevalues) of
the modified Allan variance for a white-phase noise
does not depend on the high cut-off frequency. This
result is true in the case of an analogue computation
of the variance.

For a sampled signal, however, the real noise level
must be replaced by the apparent noise level given in
(38):

p p
(55)

The asymptotic response of the modified Allan variance
for a badly sampled white-phase noise depends then on
both high cut-off frequency and sampling frequency.

3.2.2 Response for the flicker-phase noise

For flicker-phase noise also, the modified Allan variance
converges without taking into account the high cut-
off frequency. Then, the asymptotic response of the
modified Allan variance for a flicker-phase noise may be
calculated without taking into account the high cut-off
frequency:

p
(56)

However, if this flicker-phase noise is badly
sampled, a white-phase noise appears. Thus, the
response of the modified Allan variance is

p p

(57)

From (46), this becomes

p

p
(58)

Hence, the asymptotic response of the modified
Allan variance for a flicker-phase noise with a
characteristic high cut-off frequency and sampled
with a sampling frequency is

p

(59)

Figure 5 shows the influence of the high cut-off
frequency on the modified Allan variance response,
in the case of a flicker-phase noise.

Figure 5. Influence of the high cut-off frequencyh on the
response of the modified Allan variance for a flicker-phase
noise ( +1

�16 2, sampling frequencysp ).

4. Conclusion

Since the effects of spectral aliasing are only noticeable
for white-phase noise and flicker-phase noise, the
responses of the variances were calculated versus the
characteristic high cut-off frequency, which is the lower
of the system cut-off frequency and the real cut-off
frequency, taking into account:

• the increase of the white noise level in the case of
white-phase noise;

• the white noise level which appears in the case of
flicker-phase noise.

However, the effects of spectral aliasing, as a result
of the sampling process, must be distinguished from
the natural dependence of a variance on the cut-off
frequency.

Table 3 gives the responses of the Allan variance
and the modified Allan variance for white-phase noise
and flicker-phase noise corrected for the effects of
spectral aliasing. It can be seen that the response of
the Allan variance is not modified. The responses of
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Table 3. Transfer functions and responses of Allan variance
and modified Allan variance for white-phase noise and
flicker-phase noise without spectral aliasing (rows 3 and 4)
and with spectral aliasing (rows 5 and 6).

y
2
y Mod 2

y

2
4 p

p 2

6 p

p 4

+2
+2 +2 h

p2 2

+2

p2 3

+1
+1 p h

p2 2 +1
p2 2 +1

+2
+2 +2 h

p2 2

+2 h

p2 sp
3

+1
+1 p h

p2 2 +1

p2 2

f

f

p2 3
sp

+1

other variances may be calculated for these noises also,
using relationships (10) and (23).

These relationships may then be used in order
to determine the real noise levels if the high cut-
off frequency is known. However, if this frequency
is unknown, only the product may be measured in
the case of a pure white-phase noise. For a flicker-phase
noise mixed with a white phase-noise, it is impossible
to know whether the white-phase noise level is a real
one or a result of the spectral aliasing of the flicker-
phase noise. However, the procedure given in [1] may
solve this ambiguity.

On the other hand, it would be interesting to
estimate the opposite effect: what happens in the case
of low-frequency noise (flicker frequency noise and
random-walk frequency noise) if the duration of the
sampled sequence is far lower than the inverse of the
low cut-off frequency of the signal. This will be the
subject of a future paper.
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