Uncertainties of drift coefficients and extrapolation errors: Application to clock error prediction

F. Vernotte¹, J. Delporte², M. Brunet² and T. Tournier²

Abstract. In Global Navigation Satellite Systems, the on-board time has to be modelized and predicted in order to broadcast the time parameters to final users. As a consequence, the time prediction performance of the on-board clocks has to be characterized.

In order to estimate the time uncertainty of the on-board oscillator, a linear or parabolic fit is performed over the sequence of observed time difference and extrapolated during the prediction period. In 1998, CNES proposed specifications of orbit determination and time synchronization for GNSS-2. The needs of synchronization were specified as the maximum error of the time difference prediction from the extrapolated fit.

The purpose of this paper is the estimation of this error for different types of noise. This is achieved by the theoretical calculation of the variances of the drifts coefficients, of the residuals and of the extrapolation errors in the case of quadratic and linear drift models affected by different types of red noises.

After the description of the method and its results, examples are given using real data and the predicted extrapolation uncertainties are compared to the real extrapolation errors.

²J. Delporte, M. Brunet and T. Tournier: Centre National d'Études Spatiales, 18 avenue Edouard Belin, 31401 Toulouse Cedex 4, FRANCE.

E-mail: jerome.delporte@cnes.fr

¹F. Vernotte: Laboratoire d'Astrophysique de l'Observatoire de Besançon (LAOB), UPRES-A CNRS 6091, Observatoire de Besançon, 41 bis avenue de l'Observatoire, BP 1615, 25010 Besançon Cedex, FRANCE.

E-mail: francois@obs-besancon.fr

1 Introduction

In Global Navigation Satellite Systems, the on-board time has to be modelized and predicted in order to broadcast the time parameters to final users. As a consequence, the time prediction performance of the on-board clocks has to be characterized.

In order to estimate the time uncertainty of the on-board oscillator, a linear or parabolic fit is performed over the sequence of observed time difference and extrapolated during the prediction period, i. e. when the satellite is out of visibility. In 1998, CNES proposed specifications of orbit determination and time synchronization for GNSS-2. The needs of synchronization were specified as the maximum error of the time difference prediction from the extrapolated fit.

[Figure 1 about here.]

The question is then: how is this maximum error related to the noise levels of the clock ? Despite several papers deal with this question [1, 2, 3, 4, 5, 6], a new approach was chosen here because we are not only interested in the asymptotic trend of this maximum deviation but also in its evolution close to the interpolated sequence.

In this paper, we will call Time Interval Error (TIE) the differences between the extrapolated parabola and the real time deviation x(t) (see figure 1, above). By definition, the TIE samples are then the residuals to this parabola (see figure 1, below). However, in the following, we will limit the use of the word "residuals" to the differences between the **interpolated** parabola and the real time deviation x(t).

[Figure 2 about here.]

The TIE is due to two effects: the error of determination of the parabolic parameters and the error due the noise of the clock. Obviously, both of these errors may be positive or negative, and the ensemble average of the TIE is equal to zero (see figure 2, above). Moreover, it can be easily shown that the statistics of the TIE

is Gaussian (see figure 2, below). Consequently, we only have to estimate the variance of the TIE in order to completely define its statistical characteristics.

Moreover, the removal of a quadratic fit from the time deviation sequence cancels out the non-stationarity problem of very low frequency noises (see the moment condition in section 2.5 and in [7]), and the variance of the TIE (i.e. the "true variance") converges for all types of noise without considering an hypothetic low cut-off frequency.

In order to determine an estimation of the TIE, we will already redefine the interpolation method. Then, we will compare the equations giving the theoretical estimates of the variance of the TIE to simulations and to real data.

2 Interpolation with the Tchebytchev polynomials

2.1 Interpolating functions

Let us consider a sequence of N time deviation data x(t), regularly spaced with a sampling period τ_0 :

 $\{x(t_0), x(t_1), \ldots, x(t_{N-1})\}$, and $t_i = i\tau_0$.

Rather than carrying out a classical quadratic least squares interpolation:

$$x(t) = C_0 + C_1 t + C_2 t^2 + e(t)$$
(1)

where e(t) is the noise, i.e. the purely random behavior of x(t), we use the first three Tchebytchev polynomials [7, 8] as interpolating functions (see figure 3):

$$\Phi_{0}(t) = \frac{1}{\sqrt{N}}$$

$$\Phi_{1}(t) = \sqrt{\frac{3}{(N-1)N(N+1)}} \left[2\frac{t}{\tau_{0}} - (N-1) \right]$$

$$\Phi_{2}(t) = \sqrt{\frac{5}{(N-2)(N-1)N(N+1)(N+2)}} \left[6\frac{t^{2}}{\tau_{0}^{2}} - 6(N-1)\frac{t}{\tau_{0}} + (N-2)(N-1) \right].$$
(2)

[Figure 3 about here.]

The interpolation we want to perform is then:

$$x(t) = P_0 \Phi_0(t) + P_1 \Phi_1(t) + P_2 \Phi_2(t) + e(t).$$
(3)

where all the parameters $\{P_0, P_1, P_2\}$ have the same dimension as x(t), i.e. a time.

Besides their dimensionless nature, the advantage of using these interpolating functions is related to their normality and orthogonality which greatly simplify and improve the estimation of the parameters P_0 , P_1 and P_2 as well as their statistical characteristics, as it will be shown further.

2.2 Properties of the interpolating functions

Let us define the vector $\vec{\Phi}_i$ associated to the interpolating function $\Phi_i(t)$ as:

$$\vec{\Phi}_{i} = \begin{pmatrix} \Phi_{i}(t_{0}) \\ \vdots \\ \Phi_{i}(t_{N-1}) \end{pmatrix}.$$
(4)

It is then possible to build the matrix $[\Phi]$:

$$[\Phi] = \begin{pmatrix} \vec{\Phi}_0 & \vec{\Phi}_1 & \vec{\Phi}_2 \end{pmatrix} = \begin{pmatrix} \Phi_0(t_0) & \Phi_1(t_0) & \Phi_2(t_0) \\ \vdots & \vdots & \vdots \\ \Phi_0(t_{N-1}) & \Phi_1(t_{N-1}) & \Phi_2(t_{N-1}) \end{pmatrix}.$$
 (5)

One of the main properties of the Tchebytchev polynomials lies in the orthonormality of the vectors associated to these interpolating functions:

$$[\Phi]^T[\Phi] = [I_3] \tag{6}$$

where $[I_3]$ is the unit matrix (3×3) .

2.3 Estimation of the parameters $\{P_0, P_1, P_2\}$

Let us define the vector \vec{X} as:

$$\vec{X} = \begin{pmatrix} x(t_0) \\ \vdots \\ x(t_{N-1}) \end{pmatrix}.$$
(7)

This vector may be modeled by:

$$\vec{X} = [\Phi]\vec{P} + \vec{E} \tag{8}$$

where \vec{P} is the vector whose components are the three parameters we want to estimate, and \vec{E} the vector standing for the purely random part of \vec{X} :

$$\vec{P} = \begin{pmatrix} P_0 \\ P_1 \\ P_2 \end{pmatrix} \quad \text{and} \quad \vec{E} = \begin{pmatrix} e(t_0) \\ \vdots \\ e(t_{N-1}) \end{pmatrix}.$$
(9)

In order to estimate \vec{P} , we have to calculate:

$$[\Phi]^T \vec{X} = [\Phi]^T [\Phi] \vec{P} + [\Phi]^T \vec{E}.$$
(10)

From equation (6) and because the ensemble average $\langle [\Phi]^T \vec{E} \rangle = 0$, it is possible to estimate \vec{P} with $\vec{\hat{P}}$ defined by:

$$\vec{\hat{P}} = [\Phi]^T \vec{X}.$$
(11)

Thus, the estimate \hat{P}_j of the parameter P_j is easily obtained by calculating:

$$\hat{P}_j = \vec{\Phi}_j^T \cdot \vec{X} = \sum_{i=0}^{N-1} \Phi_j(t_i) x(t_i).$$
(12)

2.4 Relationships between $\{C_0, C_1, C_2\}$ and $\{P_0, P_1, P_2\}$

The classical parameters $\{C_0, C_1, C_2\}$ of (1) may be easily deduced from the parameters $\{P_0, P_1, P_2\}$ of (3). It may be noticed that, with an infinite precision calculation, the following relationships are absolutely rigorous:

the only differences must be attributed to truncature errors. Moreover, the Tchebytchev polynomials minimize this sort of errors, because their covariance matrix is optimized for avoiding bad conditioning problems.

$$C_0 = \frac{1}{\sqrt{N}} P_0 - \sqrt{\frac{3(N-1)}{N(N+1)}} P_1 + \sqrt{\frac{5(N-2)(N-1)}{N(N+1)(N+2)}} P_2.$$
(13)

 C_0 , as P_0 , P_1 and P_2 , has the dimension of a time.

$$C_1 = \frac{2}{\tau_0} \sqrt{\frac{3}{(N-1)N(N+1)}} P_1 - \frac{6}{\tau_0} \sqrt{\frac{5(N-1)}{(N-2)N(N+1)(N+2)}} P_2.$$
(14)

 C_1 , as $\frac{P_1}{\tau_0}$ and $\frac{P_2}{\tau_0}$, is dimensionless.

$$C_2 = \frac{6}{\tau_0^2} \sqrt{\frac{5}{(N-2)(N-1)N(N+1)(N+2)}} P_2.$$
 (15)

 $C_2,$ as $\frac{P_2}{\tau_0^2},$ has the dimension of a frequency.

2.5 The moment condition

It is important to know if the estimates \hat{P}_i will converge, or, and this is equivalent, if the variance $\langle \hat{P}_i^2 \rangle$ is finite.

It may be demonstrated that such a variance may be calculated in the frequency domain (see [9] and Appendix 1) as:

$$\left\langle \hat{P}_{i}^{2} \right\rangle = \int_{-\infty}^{+\infty} |\varphi_{i}(f)|^{2} S_{x}^{2S}(f) df \tag{16}$$

where $\varphi_i(f)$ is the Fourier transform of the interpolating function $\Phi_i(t)$ and $S_x^{2S}(f)$ is the two-sided power spectral density of x(t), see (26).

We assume that $S_x^{2S}(f)$ is modeled by a power law with a negative or null exponent (see (29)): $S_x^{2S}(f) \propto f^{\alpha}$. The convergence condition for the estimates \hat{P}_i is then:

$$\int_{-\infty}^{+\infty} |\varphi_i(f)|^2 f^{\alpha} df \quad \text{converges.}$$
(17)

The moment condition (see [7] and Appendix 2) implies the following equivalence:

$$\int_{-\infty}^{+\infty} |\varphi_i(f)|^2 f^{\alpha} df \quad \text{converges} \qquad \Leftrightarrow \qquad \sum_{j=0}^{N-1} \Phi_i(t_j) t_j^q = 0 \qquad \text{for} \quad 0 \le q \le \frac{-\alpha - 1}{2}.$$
(18)

Moreover, since the Tchebytchev polynomials constitute an orthonormal basis, each q-order polynomial may be rewritten as a linear combination of the Tchebytchev polynomials $\Phi_i(t)$ whose order is smaller or equal to q:

$$t^{q} = \sum_{i=0}^{q} P_{i} \Phi_{i}(t).$$
(19)

Consequently, the polynomial t^q is orthogonal to all Tchebytchev polynomials whose order is greater than q:

$$\sum_{j=0}^{N-1} \Phi_i(t_j) t_j^q = 0 \qquad \text{if and only if} \quad i > q.$$
(20)

This yield a simple method for verifying the convergence of an estimate \hat{P}_i for a given power law model of $S_x^{2S}(f)$.

As an example, let us consider that $S_x^{2S}(f)$ may be modeled by a f^{-4} power law (i. e. a random walk FM). The condition (18) implies that the variance of the estimator P_i will be finite if and only if :

$$\sum_{j=0}^{N-1} \Phi_i(t_j) t_j^q = 0 \quad \text{for} \quad q = 0 \quad \text{and} \quad q = 1.$$
(21)

According to the properties of the orthogonal polynomials (20), only $\Phi_2(t)$ satisfies the condition (21). This means that the variance of the parameters P_0 and P_1 is infinite unless we use a low cut-off frequency f_l .

In other words, the divergence effect of such a noise for the lowest frequencies induces a linear drift: the lower the low cut-off frequency, the higher the variance of the coefficients of this drift. Therefore, in order to ensure the convergence of such a noise, we just have to remove a linear drift from the data sequence.

It may be noticed that this moment condition is much more useful than this application. It is the condition which allows us to identify the convergence for low frequency noises and for high order drifts. It may be applied to create new estimators (new variances) or to simulate low frequency noises with a very low cut-off frequency f_l .

Table 1 summarizes the convergences properties from f^{-4} noise to white noise.

[Table 1 about here.]

3 Assessment principle of the interpolation and extrapolation errors

3.1 Estimation of the residuals

From (11), the residuals may be defined as a vector $\vec{\varrho}$:

$$\vec{\varrho} = \vec{X} - [\Phi]\hat{P}.$$
(22)

The variance of the residuals σ_e^2 may be estimated by:

$$\sigma_e^2 = \frac{1}{N} \left\langle \vec{\varrho}^T \cdot \vec{\varrho} \right\rangle. \tag{23}$$

From (22) and because the ensemble average $\left\langle \vec{\varrho}^T [\Phi] \vec{P} \right\rangle = 0$:

$$\left\langle \vec{\varrho}^T \cdot \vec{\varrho} \right\rangle = \left\langle \vec{X}^T \vec{X} \right\rangle - \left\langle \vec{P^T} \vec{P} \right\rangle.$$
 (24)

The scalar product $\langle \vec{X}^T \vec{X} \rangle$ is N times the variance σ_X^2 of the x(t) data and the scalar product $\langle \vec{P}T \vec{P} \rangle$ is the sum of the variances of each estimate \hat{P}_0 , \hat{P}_1 and \hat{P}_2 . Then, the variance of the residuals may be estimated by:

$$\sigma_e^2 = \sigma_X^2 - \frac{1}{N} \left(\sigma_{P_0}^2 + \sigma_{P_1}^2 + \sigma_{P_2}^2 \right).$$
(25)

3.2 Correlation of the samples

Obviously, the long term behavior of the TIE depends greatly on the type of noise. The autocorrelation function $R_x(t)$ of the x(t) data contains the information about this type of noise. The power spectral density (PSD) $S_x(f)$ is the Fourier Transform of the autocorrelation function $R_x(t)$. Thus, denoting by $S_x^{2S}(f)$ the two-sided PSD and $S_x(f)$ the one-sided PSD defined as :

$$\begin{cases} S_x(f) = 2S_x^{2S}(f) & \text{if } f \ge 0 \\ S_x(f) = 0 & \text{if } f < 0 \end{cases}$$
(26)

we have:

$$R_{x}(t_{j} - t_{i}) = \langle x(t_{i}) \cdot x(t_{j}) \rangle = \int_{-\infty}^{+\infty} S_{x}^{2S}(f) e^{+j2\pi f(t_{j} - t_{i})} df$$
$$= \int_{0}^{+\infty} S_{x}(f) \cos \left[2\pi f(t_{j} - t_{i})\right] df.$$
(27)

Taking into account f_l , the low cut-off frequency and f_h , the high cut-off frequency, (27) may be rewritten:

$$R_x(t_j - t_i) = \int_{f_l}^{f_h} S_x(f) \cos\left[2\pi f(t_j - t_i)\right] df.$$
 (28)

We will use the power law model of $S_x(f)$:

$$S_x(f) = \sum_{\alpha = -4}^{0} k_{\alpha} f^{\alpha}.$$
(29)

It may be noticed that this model is more generally expressed in terms of frequency noise with the power spectral density $S_y(f)$ of the frequency deviation y(t). Since y(t) is defined as:

$$y(t) = \frac{dx(t)}{dt},\tag{30}$$

its power spectral density is then linked to $S_x(f)$ by:

$$S_y(f) = 4\pi^2 f^2 S_x(f).$$
(31)

The power law model (29) may be rewritten:

$$S_y(f) = \sum_{\alpha = -2}^{+2} h_\alpha f^\alpha \tag{32}$$

where the noise levels h_{α} are linked to the k_{α} by:

$$h_{\alpha} = 4\pi^2 k_{\alpha-2}.\tag{33}$$

In the following, the different types of noise are called:

- white PM for $\alpha = 0$ (PM stands for Phase Modulation),
- flicker PM for $\alpha = -1$,
- white FM for $\alpha = -2$ (FM stands for Frequency Modulation),
- flicker FM for $\alpha = -3$,
- random walk FM for $\alpha = -4$.

3.3 Calculation method of the TIE

By hypothesis, we consider that the TIE is the difference between the true time deviation x(t) at time t, and the extrapolation of the parabola (previously estimated from t_0 to t_{N-1}) up to this time $t > t_{N-1}$:

$$TIE(t) = x(t) - \hat{P}_0 \Phi_0(t) - \hat{P}_1 \Phi_1(t) - \hat{P}_2 \Phi_2(t) \quad \text{and} \quad t > t_{N-1}.$$
(34)

Thus, the quadratic ensemble average of TIE may be estimated by:

$$\left\langle \mathrm{TIE}^{2}(t) \right\rangle = \left\langle x^{2}(t) \right\rangle + \left\langle \hat{P}_{0}^{2} \right\rangle \Phi_{0}^{2}(t) + \left\langle \hat{P}_{1}^{2} \right\rangle \Phi_{1}^{2}(t) + \left\langle \hat{P}_{2}^{2} \right\rangle \Phi_{2}^{2}(t) - 2 \left[\left\langle x(t) \hat{P}_{0} \right\rangle \Phi_{0}(t) + \left\langle x(t) \hat{P}_{1} \right\rangle \Phi_{1}(t) + \left\langle x(t) \hat{P}_{2} \right\rangle \Phi_{2}(t) \right] + 2 \left[\left\langle \hat{P}_{0} \hat{P}_{1} \right\rangle \Phi_{0}(t) \Phi_{1}(t) + \left\langle \hat{P}_{0} \hat{P}_{2} \right\rangle \Phi_{0}(t) \Phi_{2}(t) + \left\langle \hat{P}_{1} \hat{P}_{2} \right\rangle \Phi_{1}(t) \Phi_{2}(t) \right].$$
(35)

Consequently, for each type of noise, we have to know:

- $\langle x^2(t) \rangle = R_x(t)$, the autocorrelation function of x(t);
- the 3 variances $\left< \hat{P}_i^2 \right> = \sigma_{P_i}^2$;
- the 3 covariances $\left\langle \hat{P}_i \hat{P}_j \right\rangle = \operatorname{Cov}(P_i, P_j)$: actually, only $\left\langle \hat{P}_0 \hat{P}_2 \right\rangle \neq 0$;
- the 3 covariances $\langle x(t)\hat{P}_i \rangle = \text{Cov} (x(t), P_i).$

3.4 Example of the white PM noise

We illustrate the calculation of the TIE with the case of white PM.

• Autocorrelation (see table 2):

$$R_x(t) = \sigma_x^2 \delta(t) = k_0 f_h \delta(t), \tag{36}$$

where σ_x^2 is the variance of the x(t) data, k_0 is the white PM noise level and f_h is the low cut-off frequency of the system.

Variances and covariances of the parameters P
_i: we define [C_v] the matrix of the parameter covariances by:

$$[C_{v}] = \left\langle \vec{\hat{P}} \cdot \vec{\hat{P}}^{T} \right\rangle = \left\langle [\Phi]^{T} \vec{X} \cdot \vec{X}^{T} [\Phi] \right\rangle = [\Phi]^{T} \left\langle \vec{X} \cdot \vec{X}^{T} \right\rangle [\Phi]$$
(37)

where the component (i,j) of the matrix $\left\langle \vec{X}\cdot\vec{X}^{T}\right\rangle$ is:

$$\left\langle \vec{X} \cdot \vec{X}^T \right\rangle_{i,j} = \left\langle x(t_i) x(t_j) \right\rangle = R_x(t_j - t_i).$$
 (38)

Therefore:

$$\left\langle \vec{X} \cdot \vec{X}^T \right\rangle = k_0 f_h[I_N] \tag{39}$$

where $[I_N]$ is the unit matrix $(N \times N)$.

$$[C_v] = k_0 f_h[\Phi]^T[\Phi] = k_0 f_h[I_3].$$
(40)

Thus, in the case of a white PM noise, the use of the interpolating functions $\Phi_i(t)$ lead us to parameters which are completely decorrelated and with the same variance:

$$\operatorname{Cov}(P_i, P_j) = 0 \quad \text{if} \quad i \neq j \qquad \text{and} \quad \sigma_{P_i}^2 = k_0 f_h.$$
(41)

• Covariances $\langle x(t) \hat{P}_i \rangle$:

$$\left\langle x(t)\vec{\hat{P}}\right\rangle = \left\langle x(t)[\Phi]^T\vec{X}\right\rangle = [\Phi]^T\left\langle x(t)\vec{X}\right\rangle.$$
 (42)

If $t > t_{N-1}$

$$\left\langle x(t)\vec{X}\right\rangle = \begin{pmatrix} R_x(t-t_0) \\ \vdots \\ R_x(t-t_{N-1}) \end{pmatrix} = 0.$$
(43)

Consequently, $Cov(x(t), P_i) = 0$.

• Variance of the residuals:

$$\sigma_e^2 = R_x(0) - \frac{1}{N} 3k_0 f_h = k_0 f_h \frac{N-3}{N}.$$
(44)

The number of samples N should be at least equal to 100, and we may assume that $N \gg 1$. Therefore:

$$\sigma_e^2 \approx k_0 f_h. \tag{45}$$

Thus, the removal of a quadratic drift in a white PM noise does not modify its variance.

• Estimation of the TIE:

$$\left\langle \text{TIE}^{2}(t) \right\rangle = k_{0} f_{h} \left[1 + \Phi_{0}^{2}(t) + \Phi_{1}^{2}(t) + \Phi_{2}^{2}(t) \right]$$

$$\left\langle \text{TIE}^{2}(t) \right\rangle = \frac{k_{0} f_{h}}{(N-2)(N-1)N(N+1)(N+2)} \left[180 \frac{t^{4}}{\tau_{0}^{4}} - 360(N-1) \frac{t^{3}}{\tau_{0}^{3}} + 36(7N^{2} - 15N + 7) \frac{t^{2}}{\tau_{0}^{2}} - 36(2N^{3} - 7N^{2} + 7N - 2) \frac{t}{\tau_{0}} + (N^{5} + 9N^{4} - 41N^{3} + 51N^{2} - 32N + 12) \right].$$

$$\left(46 \right)$$

One may easily admit that $N \gg 1$, then

$$\left\langle \text{TIE}^{2}(t) \right\rangle \approx \frac{k_{0} f_{h}}{N^{5}} \left(180 \frac{t^{4}}{\tau_{0}^{4}} - 360 N \frac{t^{3}}{\tau_{0}^{3}} + 252 N^{2} \frac{t^{2}}{\tau_{0}^{2}} - 72 N^{3} \frac{t}{\tau_{0}} + N^{5} + 9 N^{4} \right).$$
 (48)

Let T_m denote the measurement time, i. e. the duration of the interpolated sequence:

$$T_m = N\tau_0. \tag{49}$$

Equation (48) may be rewritten versus T_m :

$$\left\langle \text{TIE}^2(t) \right\rangle \approx \frac{k_0 f_h}{N} \left(N + 180 \frac{t^4}{T_m^4} - 360 \frac{t^3}{T_m^3} + 252 \frac{t^2}{T_m^2} - 72 \frac{t}{T_m} + 9 \right).$$
 (50)

Since the origin of the time t is the beginning of the interpolated sequence, t must be greater than T_m . This argument t may be replaced by the prediction time T_p . T_p is the extrapolation time whose origin is the beginning of the extrapolated sequence (and the end of the interpolated sequence). T_p is then linked to the argument t of (50) by:

$$t = T_m + T_p. (51)$$

By using (51), (50) becomes the following function of the two variables T_m and T_p :

$$\left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx \frac{k_0 f_h}{N} \left(N + 180 \frac{T_p^4}{T_m^4} + 360 \frac{T_p^3}{T_m^3} + 252 \frac{T_p^2}{T_m^2} + 72 \frac{T_p}{T_m} + 9 \right).$$
 (52)

4 Theoretical results

Only the final results are given here, but the calculation details are available upon request to the authors.

4.1 Preliminary calculation

4.1.1 Autocorrelation of a time deviation sequence

The results given in Table 2 were calculated from (28).

[Table 2 about here.]

Since we are interested in the long term behavior of clocks, we will limit this study to the 3 "redest" frequency noises: white FM, flicker FM and random walk FM.

4.1.2 Variance of the parameters P_1 and P_2

According to the moment condition (18), the variance of the parameter P_0 diverges for white FM, flicker FM and random walk FM (see Table 1). On the same hand, the variance of the parameter P_1 diverges for flicker FM and random walk FM.

• White FM:

$$\sigma_{P_1}^2 \approx \frac{\pi^2 N^2 k_{-2} \tau_0}{5}.$$
(53)

$$\sigma_{P_2}^2 \approx \frac{\pi^2 N^2 k_{-2} \tau_0}{21}.$$
(54)

• Flicker FM:

$$\sigma_{P_2}^2 \approx \frac{5\pi^2 N^3 k_{-3} \tau_0^2}{72}.$$
(55)

• Random walk FM:

$$\sigma_{P_2}^2 \approx \frac{\pi^4 N^4 k_{-4} \tau_0^3}{63}.$$
(56)

All the above equations were obtained under the assumption $N \gg 1$.

4.2 Case of a quadratic interpolation

4.2.1 Variance of the residuals

From (25) we got the following results versus $T_m = N\tau_0$:

• White FM :

$$\sigma_e^2(T_m) \approx \frac{3\pi^2 k_{-2} T_m}{35}.$$
 (57)

• Flicker FM:

$$\sigma_e^2(T_m) \approx \frac{\pi^2 k_{-3} T_m^2}{24}.$$
 (58)

• Random walk FM:

$$\sigma_e^2(T_m) \approx \frac{\pi^4 k_{-4} T_m^3}{315}.$$
 (59)

All the above equations were obtained under the assumption $N \gg 1$, i. e. $T_m \gg \tau_0$.

4.2.2 Estimation of the TIE using the noise levels

The theoretical calculation of (35) yields the following variances versus the measurement time T_m and the prediction time T_p (see definitions of T_m in (49) and T_p in (51)):

• White FM:

$$\left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx \frac{6\pi^2 k_{-2} T_m}{35} \left(50 \frac{T_p^4}{T_m^4} + 100 \frac{T_p^3}{T_m^3} + 69 \frac{T_p^2}{T_m^2} + 19 \frac{T_p}{T_m} + 1 \right).$$
 (60)

• Flicker FM:

$$\left\langle \text{TIE}^{2}(T_{m}, T_{p}) \right\rangle \approx \frac{\pi^{2} k_{-3} T_{m}^{2}}{8} \left[192 \frac{T_{p}^{6}}{T_{m}^{6}} + 576 \frac{T_{p}^{5}}{T_{m}^{5}} + 692 \frac{T_{p}^{4}}{T_{m}^{4}} + 424 \frac{T_{p}^{3}}{T_{m}^{3}} + 136 \frac{T_{p}^{2}}{T_{m}^{2}} + 20 \frac{T_{p}}{T_{m}} + 1 + 96 \frac{T_{p}^{3}}{T_{m}^{3}} \ln \left(\frac{T_{p}}{T_{m} + T_{p}} \right) \left(2 \frac{T_{p}^{4}}{T_{m}^{4}} + 7 \frac{T_{p}^{3}}{T_{m}^{3}} + 9 \frac{T_{p}^{2}}{T_{m}^{2}} + 5 \frac{T_{p}}{T_{m}} + 1 \right) \right].$$

$$(61)$$

• Random walk FM:

$$\left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx \frac{2\pi^4 k_{-4} T_m^3}{315} \left(450 \frac{T_p^4}{T_m^4} + 690 \frac{T_p^3}{T_m^3} + 303 \frac{T_p^2}{T_m^2} + 42 \frac{T_p}{T_m} + 2 \right).$$
 (62)

All the above equations were obtained under the assumption $N \gg 1$. Thus, under this assumption, the dependence versus N cancels out: the variance of the residuals only depends on the length of the interpolated sequence T_m , and the variance of the TIE only depends on the ratio $\frac{T_p}{T_m}$, whatever the number of samples N is.

4.2.3 Estimation of the TIE using the variance of the residuals

The relationships (60) to (62) needs an explicit knowledge of the noise levels k_{α} . However, for very long term interpolation (several days), we may be sure of the dominant type of noise: the flicker FM for a cesium clock or the random walk FM for a quartz oscillator.

Thus, the variance of the TIE may be directly estimated from the variance of the residuals :

• White FM : from (60) and (57) we got:

$$\left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx 2\sigma_e^2 \left(50\frac{T_p^4}{T_m^4} + 100\frac{T_p^3}{T_m^3} + 69\frac{T_p^2}{T_m^2} + 19\frac{T_p}{T_m} + 1 \right).$$
 (63)

• Flicker FM: from (61) and (58) we got:

$$\left\langle \text{TIE}^{2}(T_{m}, T_{p}) \right\rangle \approx 3\sigma_{e}^{2} \left[192 \frac{T_{p}^{6}}{T_{m}^{6}} + 576 \frac{T_{p}^{5}}{T_{m}^{5}} + 692 \frac{T_{p}^{4}}{T_{m}^{4}} + 424 \frac{T_{p}^{3}}{T_{m}^{3}} + 136 \frac{T_{p}^{2}}{T_{m}^{2}} + 20 \frac{T_{p}}{T_{m}} + 1 + 96 \frac{T_{p}^{3}}{T_{m}^{3}} \ln \left(\frac{T_{p}}{T_{m} + T_{p}} \right) \left(2 \frac{T_{p}^{4}}{T_{m}^{4}} + 7 \frac{T_{p}^{3}}{T_{m}^{3}} + 9 \frac{T_{p}^{2}}{T_{m}^{2}} + 5 \frac{T_{p}}{T_{m}} + 1 \right) \right].$$
(64)

• Random walk FM: from (62) and (59) we got:

$$\left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx 2\sigma_e^2 \left(450 \frac{T_p^4}{T_m^4} + 690 \frac{T_p^3}{T_m^3} + 303 \frac{T_p^2}{T_m^2} + 42 \frac{T_p}{T_m} + 2 \right).$$
 (65)

However, such a method is less precise than the use of a correct estimation of the noise levels. This is due to the statistics of the estimate of the variance of the residuals (see section 6).

4.2.4 Asymptotic behavior

If $\frac{T_p}{T_m} \gg 1$, i. e. if $T_p \gg T_m$:

• White FM:

$$\lim_{T_p \to \infty} \left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx 100 \sigma_e^2 \frac{T_p^4}{T_m^4}.$$
(66)

• Flicker FM:

$$\lim_{T_p \to \infty} \left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx 300 \sigma_e^2 \frac{T_p^4}{T_m^4}.$$
(67)

• Random walk FM:

$$\lim_{T_p \to \infty} \left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx 900 \sigma_e^2 \frac{T_p^4}{T_m^4}.$$
(68)

It may be noticed that, for a fixed value of σ_e^2 , the asymptotic ratio of equation (68) over equation (67) as well as the asymptotic ratio of equation (67) over equation (66) is exactly equal to 3 when T_p tends toward infinity.

Moreover, for long T_p values, the main contribution of the TIE is obviously due to the error on the quadratic parameter P_2 . Using a classical quadratic model such as (1), the variance of the TIE should be linked to the variance of the quadratic classical parameter C_2 by:

$$\lim_{T_p \to \infty} \left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx \sigma_{C_2}^2 T_p^4.$$
(69)

Using (15), the variance of the quadratic classical parameter C_2 may be obtained from the variance of the quadratic Tchebytchev parameter P_2 :

$$\sigma_{C_2}^2 \approx \frac{180}{N^5 \tau_0^4} \sigma_{P_2}^2 = \frac{180}{NT_m} \sigma_{P_2}^2.$$
(70)

It is easy to verify that (69) gives the same results as (66), (67) and (68).

4.3 Case of a linear interpolation

Cesium clocks are not affected by a quadratic drift. If such clocks are used, we may limit the fit to a linear interpolation. In this case, for long term, the main contribution to the TIE will be due to the error on the

4.3.1 Variance of the residuals

• White FM:

$$\sigma_e^2(T_m) \approx \frac{2\pi^2 k_{-2} T_m}{15}$$
 (71)

• Flicker FM:

$$\sigma_e^2(T_m) \approx \frac{\pi^2 k_{-3} T_m^2}{9} \tag{72}$$

• Random walk FM³:

$$\sigma_e^2(T_m) \approx \frac{2\pi^4 k_{-4} T_m^3}{105}$$
(73)

All the above equations were obtained under the assumption $N \gg 1$, i. e. $T_m \gg \tau_0$.

4.3.2 Estimation of the TIE using the noise levels

• White FM:

$$\left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx \frac{4\pi^2 k_{-2} T_m}{15} \left(9 \frac{T_p^2}{T_m^2} + 9 \frac{T_p}{T_m} + 1 \right).$$
 (74)

• Flicker FM:

$$\left\langle \text{TIE}^{2}(T_{m}, T_{p}) \right\rangle \approx \frac{\pi^{2} k_{-3} T_{m}^{2}}{3} \left[12 \frac{T_{p}^{4}}{T_{m}^{4}} + 24 \frac{T_{p}^{3}}{T_{m}^{3}} + 20 \frac{T_{p}^{2}}{T_{m}^{2}} + 8 \frac{T_{p}}{T_{m}} + 1 + 2 \ln \left(1 + \frac{T_{p}}{T_{m}} \right) \left(6 \frac{T_{p}^{2}}{T_{m}^{2}} + 6 \frac{T_{p}}{T_{m}} + 1 \right) + 2 \frac{T_{p}^{3}}{T_{m}^{3}} \ln \left(\frac{T_{p}}{T_{m}} + T_{p} \right) \left(6 \frac{T_{p}^{2}}{T_{m}^{2}} + 15 \frac{T_{p}}{T_{m}} + 8 \right) \right].$$
(75)

³The random walk FM is treated here for homogeneity, but a Cesium clock is never affected by this type of noise.

• Random walk FM³:

$$\left\langle \text{TIE}^{2}(T_{m}, T_{p}) \right\rangle \approx \frac{8\pi^{4}k_{-4}T_{m}^{3}}{105} \left(35\frac{T_{p}^{3}}{T_{m}^{3}} + 39\frac{T_{p}^{2}}{T_{m}^{2}} + 11\frac{T_{p}}{T_{m}} + 1 \right).$$
 (76)

All the above equations were obtained under the assumption $N \gg 1$, i.e. $T_m \gg \tau_0$.

4.3.3 Estimation of the TIE using the variance of the residuals

- From (71), (72), (73) and (74), (75), (76), we obtained:
 - White FM:

$$\left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx 2\sigma_e^2 \left(9\frac{T_p^2}{T_m^2} + 9\frac{T_p}{T_m} + 1 \right).$$
 (77)

• Flicker FM:

$$\left\langle \text{TIE}^{2}(T_{m}, T_{p}) \right\rangle \approx 3\sigma_{e}^{2} \left[12\frac{T_{p}^{4}}{T_{m}^{4}} + 24\frac{T_{p}^{3}}{T_{m}^{3}} + 20\frac{T_{p}^{2}}{T_{m}^{2}} + 8\frac{T_{p}}{T_{m}} + 1 + 2\ln\left(1 + \frac{T_{p}}{T_{m}}\right) \left(6\frac{T_{p}^{2}}{T_{m}^{2}} + 6\frac{T_{p}}{T_{m}} + 1\right) + 2\frac{T_{p}^{3}}{T_{m}^{3}}\ln\left(\frac{T_{p}}{T_{m} + T_{p}}\right) \left(6\frac{T_{p}^{2}}{T_{m}^{2}} + 15\frac{T_{p}}{T_{m}} + 8\right) \right].$$

$$(78)$$

• Random walk FM³:

$$\left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx 4\sigma_e^2 \left(35\frac{T_p^3}{T_m^3} + 39\frac{T_p^2}{T_m^2} + 11\frac{T_p}{T_m} + 1 \right).$$
 (79)

4.3.4 Asymptotic behavior

If $\frac{t}{\tau_0} \gg N$, i. e. if $t \gg T_m$:

• White FM:

$$\lim_{T_p \to \infty} \left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx 18 \sigma_e^2 \frac{T_p^2}{T_m^2}.$$
(80)

• Flicker FM:

$$\lim_{T_p \to \infty} \left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx 36\sigma_e^2 \frac{T_p^2}{T_m^2} \ln\left(\frac{T_p}{T_m}\right).$$
(81)

• Random walk FM³:

$$\lim_{T_p \to \infty} \left\langle \text{TIE}^2(T_m, T_p) \right\rangle \approx 140 \sigma_e^2 \frac{T_p^3}{T_m^3}$$
(82)

In this case, the time dependences of the variance of the TIE are different for the 3 types of noise: T_p^2/T_m^2 for the white FM, $\ln(T_P/T_m)T_p^2/T_m^2$ for the flicker FM and T_p^3/T_m^3 for the random walk FM. This is due to the divergence of the variance of P_1 for flicker and random walk FM.

4.4 Relationships with the Time Variance

The Time Variance (TVAR), and its square root, the Time Deviation (TDEV), are commonly used for time analysis [10]. Table 4 gives the relationships between the variance of the residuals σ_e^2 and TVAR(τ) for an integration time $\tau = T_m = N\tau_0$. It is interesting to notice that, for a given type of noise, the ratio $\sigma_e^2/\text{TVAR}(\tau)$ is constant.

[Table 4 about here.]

5 Experimental validation

5.1 Monte-Carlo simulations

In order to verify the equations (60) to (62) and (74) to (76), we simulated time deviation sequences of different types of noise (white FM, flicker FM and random walk FM) and we used quadratic and linear fits. For each type of noise, 10,000 realizations were calculated with

- the same noise level: $k_{-2} = 1.4 \times 10^{-4}$ s, $k_{-3} = 3.3 \times 10^{-8}$ or $k_{-4} = 5.0 \times 10^{-12}$ s⁻¹ for the quadratic fit, $k_{-2} = 3.5 \times 10^{-3}$ s, $k_{-3} = 4.8 \times 10^{-7}$ or $k_{-4} = 3.3 \times 10^{-11}$ s⁻¹ for the linear fit,
- the same number of data: 65,536,

- the same number of data taken into account for the fit: N = 8640,
- the same time of estimation of the TIE: $\frac{T_m + T_p}{\tau_0}$ equals to {8640, 9900, 11350, 13000, 14900, 17000, 19500, 22400, 25700, 29400, 33700, 38600, 44300, 50700, 58100, 65535}.

The noise levels were chosen for getting a variance of the residuals equal to 1.

Figure 4 shows the curves corresponding to the square root of equations (60) to (62) compared to the standard deviation estimated from the 10,000 simulations (i.e. half the width of the Gaussian of figure 2). The simulations exhibits a quite good agreement with the theoretical curves.

The asymptotic behaviors are reached at the end of the log-log graphs. The benefits of the linear interpolation are obvious.

5.2 Real clocks (quartz USO and atomic clocks)

[Figure 5 about here.]

[Figure 6 about here.]

Figure 5 compares the long term behavior of a real ultra-stable quartz oscillator (denoted "quartz 1" in table 5) to the bounds given by the estimated standard deviation of the TIE (the square root of equations (60) to (62)).

The data from the oscillator are time deviations sampled with a sampling period $\tau_0 = 10$ s, obtained at CNES Toulouse (France) with their own reference clocks (Cs HP 5071A option 001 and H-Maser EFOS-16). The fit was carried out over the first 24 hours of the sequence and extrapolated over the whole sequence (90 hours).

Allan variance revealed that 2 types of noise must be taken into account: white FM ($h_0 = 10^{-22}$ s, i.e. $k_{-2} = 2, 5 \times 10^{-24}$ s) and random walk FM ($h_{-2} = 1, 5 \times 10^{-31}$ s⁻¹, i.e. $k_{-4} = 4 \times 10^{-33}$ s⁻¹). Thus, the bounds of figures 5 were obtained by using the square root of the sum of (60) and (62).

In figure 6, the fit was still performed over a 24 hours sequence, but the interpolated sequence was shifted along the 90 hours data sequence. At each step ($\tau_0 = 10$ s) of this shift, the fit was extrapolated over 3.5 hours. The TIE measured at this instant ($T_p = 3.5$ hours) was plotted (solid line) and the interpolated sequence was shifted again.

The TIE bounds of the upper figure (dashed lines) were estimated from the noise levels as in figure 5. In the lower figure, the TIE bounds were estimated from the variance of the residuals, which was calculated at each step of the shift. In this case, we assumed that the random walk FM was dominant and we used the square root of (65).

The experimental TIE curves remain generally in the theoretical bounds. The few moments where the TIE is outside the bounds is fully compatible with the statistics of TIE (see section 6).

[Table 5 about here.]

[Table 6 about here.]

Table 5 shows experimental results obtained with several clocks and a quadratic interpolation. The noise levels were estimated from Allan variance measurements. This table compares " σ_e exp.", the standard deviation of the residuals, with " σ_e theo.", the estimate of σ_e obtained from the square root of (57), (58), (59) and the noise level coefficients.

This table compares also " σ_{TIE} exp.", the measured error between the parabola extrapolated over 3.5 hours and the real time deviation of the clock at this instant, with " σ_{TIE} theo. (from k_{α})" estimated from the square root of (60), (61), (62), and with " σ_{TIE} theo. (from σ_e)" estimated from the square root of (63), (64), (65).

Table 6 shows the same type of results but limited to the cesium clocks and with a linear interpolation.

Here also, the agreement between measurements and estimates is quite good.

On the other hand, table 5 and 6 confirm that the standard deviation of the residuals is higher for a linear interpolation than for a quadratic one, whereas it is the opposite for the standard deviation of the TIE.

6 Confidence intervals for the interpolation and extrapolation errors

Figures 5 and 6 shows that the real TIE may be outside the bounds of the estimated $\hat{\sigma}_{TIE}$. Thus, it is important to know the probability for the real TIE to be inside or outside these bounds. Moreover, it may be useful to improve the TIE bounds by using confidence intervals. This may be achieved by studying the statistics of the TIE.

6.1 Statistics of the TIE

As we pointed out in section 1, the real TIE is a centered Gaussian process:

$$TIE(T_m, T_p) \equiv LG(0, \sigma_{TIE}).$$
(83)

where LG(m, s) denotes a Laplace-Gauss distribution with a mean value m and a standard deviation s.

The real σ_{TIE} is estimated by $\hat{\sigma}_{TIE}$:

$$\hat{\sigma}_{TIE} = \sqrt{\left\langle \text{TIE}^2(T_m, T_p) \right\rangle}.$$
(84)

We want to obtain a coefficient c_{β} ensuring the following confidence interval:

$$-c_{\beta} \cdot \hat{\sigma}_{TIE} < \text{TIE}(T_m, T_p) < +c_{\beta} \cdot \hat{\sigma}_{TIE}$$
 with β % of confidence. (85)

Whatever the values of $TIE(T_m, T_p)$ and $\hat{\sigma}_{TIE}$ are, it is always possible to define a coefficient c by:

$$TIE(T_m, T_p) = c \cdot \hat{\sigma}_{TIE}.$$
(86)

This coefficient c may be written as:

$$c = \frac{\text{TIE}(T_m, T_p)}{\hat{\sigma}_{TIE}} = \frac{\text{TIE}(T_m, T_p)}{\sqrt{\left\langle \text{TIE}^2(T_m, T_p) \right\rangle}}.$$
(87)

The distribution of $TIE(T_m, T_p)$ may be considered as a centered Laplace-Gauss distribution with a unitary standard deviation, multiplied by its real standard deviation σ_{TIE} :

$$TIE(T_m, T_p) \equiv \sigma_{TIE} LG(0, 1).$$
(88)

Therefore, $\langle \text{TIE}^2(T_m, T_p) \rangle$ is χ^2 distributed with ν degrees of freedom (depending on the type of noise) and with a mean value equal to the real variance σ_{TIE}^2 :

$$\left\langle \text{TIE}^2(T_m, T_p) \right\rangle \equiv \sigma_{TIE}^2 \frac{\chi_{\nu}^2}{\nu}.$$
 (89)

Thus, the distribution of the coefficient c is:

$$c \equiv \frac{\sigma_{TIE} LG(0,1)}{\sqrt{\sigma_{TIE}^2 \chi_{\nu}^2 / \nu}} = \frac{LG(0,1)}{\sqrt{\chi_{\nu}^2 / \nu}}.$$
(90)

By definition, c follows a Student distribution with ν degrees of freedom [11]. Consequently, for building the confidence interval (85), we have to use the Student coefficients for c_{β} . These coefficients are given in tables [11].

However, it is then necessary to know the number of degrees of freedom of the Student distribution, or, and this is equivalent, the number of degrees of freedom of the χ^2 distribution followed by $\langle \text{TIE}^2(T_m, T_p) \rangle$. Obviously, this number depends on how $\langle \text{TIE}^2(T_m, T_p) \rangle$ is estimated, i. e. from the variance of the residuals or from the noise levels k_{α} .

6.2 Estimation from the variance of the residuals

Equations (60) to (62) and (77) to (79) shows that $\langle \text{TIE}^2(T_m, T_p) \rangle$ is the product of a random variable $\hat{\sigma}_e^2$ by a constant number. Thus, the distribution of $\langle \text{TIE}^2(T_m, T_p) \rangle$ is the same as the distribution of $\hat{\sigma}_e^2$, i. e. a χ^2 distribution.

From Monte-Carlo simulations, we observed that the degrees of freedom of the distribution of $\hat{\sigma}_e^2$ only depend on the type of noise but, curiously, neither on the number of data N, nor the sampling period τ_0 .

[Table 7 about here.]

We measured the following degrees of freedom ν for the χ^2 distribution of $\hat{\sigma}_e^2$:

• White FM: $\nu \approx 8$;

- Flicker FM: $\nu \approx 3$;
- Random walk FM: $\nu \approx 2$.

Therefore, the c_{β} Student coefficient must be chosen with these degrees of freedom, according to the type of noise. Table 7 gives these coefficients for a 70% confidence interval (1 σ) and for a 95% confidence interval (2 σ).

Figure 7 shows the probability curves of the real TIE to be far from the extrapolated fit for an estimation of $\hat{\sigma}_{TIE}$ from $\hat{\sigma}_e^2$.

[Figure 7 about here.]

6.3 Estimation from the noise levels

In this case, the degrees of freedom of $\langle \text{TIE}^2(T_m, T_p) \rangle$ are equal to the ones of the estimated noise level \hat{k}_{α} and then, depend on the accuracy of its estimation. For instance, if \hat{k}_{α} was estimated by using the Allan variance, its degrees of freedom depend on the length of the sequence and on the number of sample used by the Allan variance [12, 13]. If this sequence is long enough, the degrees of freedom may be much greater as the values obtained in section 6.2. The degrees of freedom have to be estimated at each noise level measurement [12, 13].

Therefore, if the noise levels are precisely determined, the estimation of $\hat{\sigma}_{TIE}$ is far better by using this method than from the variance of the residuals.

6.4 Example

Let us consider the case of the clock Rb 1 in table 5. Figure 8 displays the Allan variance curve of this clock. Let us study the case of a 1 day interpolated sequence, and 3.5h prediction time: T_m =24h and T_p =3.5h.

[Figure 8 about here.]

6.4.1 Estimation from the variance of the residuals

Figure 8 shows that the random walk FM is dominant for $\tau = 1$ day ($\tau^{1/2}$ slope). From table 7, we can build the following confidence interval:

$$-1.4\hat{\sigma}_{TIE} < \text{TIE}(T_m, T_p) < +1.4\hat{\sigma}_{TIE}$$
 with 70% of confidence. (91)

Thus, since the experimental $\hat{\sigma}_e$ equals 1.2ns (see table 5), (65) yields for T_m =24h and t=27.5h:

$$-9.9 \text{ns} < \text{TIE}(T_m, T_p) < +9.9 \text{ns} \quad \text{with} \quad 70\% \text{ of confidence.}$$
(92)

But, for 95% of confidence, we obtain:

$$-4.3\hat{\sigma}_{TIE} < \text{TIE}(T_m, T_p) < +4.3\hat{\sigma}_{TIE} \qquad \text{with} \quad 95\% \text{ of confidence}$$
(93)

i. e.:

$$-30$$
ns $<$ TIE $(T_m, T_p) < +30$ ns with 95% of confidence. (94)

This huge factor is characteristic of the Student distribution with a low number of degrees of freedom: the probability for having a high estimate is much larger than for a Gaussian process (see fig. 7).

6.4.2 Estimation from the noise levels

We will assume that for a 1 day integration time, the random walk FM is dominant and the contributions of the other noises may be neglected. Thus, the noise level k_{-4} may be estimated from the Allan variance σ_y^2 (1day), by using the following relationship [1, 14]:

$$\sigma_y^2(\tau) = \frac{2\pi^2 \tau h_{-2}}{3} = \frac{8\pi^4 \tau k_{-4}}{3}.$$
(95)

This Allan variance estimate is χ^2 distributed, and its variance is given by [12]:

$$\sigma^2 \left[\hat{\sigma}_y^2(\tau) \right] = \left[\frac{8\pi^4 \tau k_{-4}}{3} \right]^2 \frac{9m - 10}{4(m-1)^2}$$
(96)

where the integer m is the number of independent sub-sequence of τ -length in the sequence, i. e. the ratio of the integration time τ over the whole sequence length. The number of degrees of freedom of a χ^2 distribution is [11]:

$$\nu = 2 \frac{\langle \chi^2 \rangle^2}{\sigma^2 \left(\chi^2\right)}.$$
(97)

Thus, from (95), (96) and (97), the number of degrees of freedom of the estimate $\sigma_y^2(\tau)$ applied to a random walk FM sequence of duration $m\tau$ is given by:

$$\nu = \frac{8(m-1)^2}{9m-10}.$$
(98)

Since the noise level estimate is obtained from this Allan variance estimate, the noise level estimate is χ^2 distributed with the same number of degrees of freedom as the Allan variance estimate.

Let us first consider the smallest sequence allowing us the calculation of the Allan variance over one day, i. e. a 2 day length sequence: m = 2. The first 2 day set of time deviation measurement gives: σ²_y(1day) = 3.9 × 10⁻²⁵. From this Allan variance estimate, we obtain: k⁻⁴ = 1.7 × 10⁻³²s⁻¹. By using (98), we find ν=1. From the table of Student coefficients [11], we can build the following confidence interval:

$$-2\hat{\sigma}_{TIE} < \text{TIE}(T_m, T_p) < +2\hat{\sigma}_{TIE} \qquad \text{with} \quad 70\% \text{ of confidence.}$$
(99)

For T_m =24h and T_p =3.5h, (62) yields $\hat{\sigma}_{TIE}$ =11ns:

 $-22ns < TIE(T_m, T_p) < +22ns$ with 70% of confidence. (100)

For 95% of confidence, we obtain:

$$-13\hat{\sigma}_{TIE} < \text{TIE}(T_m, T_p) < +13\hat{\sigma}_{TIE}$$
 with 95% of confidence (101)

i. e.:

$$-140$$
ns $<$ TIE $(T_m, T_p) < +140$ ns with 95% of confidence. (102)

Consequently, a minimal sequence length for the noise level estimation yields a worst confidence interval than with the variance of the residuals (5 times larger here).

Let us use the whole available sequence (931500s=10.8d) as in figure 8. In this case, m=10, ν=8,
 σ_y²(1day) = 9.7 × 10⁻²⁶, k₋₄ = 4.3 × 10⁻³³s⁻¹ and σ_{TIE}=5.4ns. The corresponding 70% confidence interval is then (see table 7):

$$-1.1\hat{\sigma}_{TIE} < \text{TIE}(T_m, T_p) < +1.1\hat{\sigma}_{TIE}$$
 with 70% of confidence (103)

i. e.:

$$-5.9$$
ns $<$ TIE $(T_m, T_p) < +5.9$ ns with 70% of confidence. (104)

For 95% of confidence, we obtain:

$$-2.3\hat{\sigma}_{TIE} < \text{TIE}(T_m, T_p) < +2.3\hat{\sigma}_{TIE} \qquad \text{with} \quad 95\% \text{ of confidence}$$
(105)

i. e.:

$$-12$$
ns $<$ TIE $(T_m, T_p) < +12$ ns with 95% of confidence. (106)

This demonstrates the necessity to use the maximal available sequence length for estimating the noise levels and then the standard deviation of the TIE.

It may be noticed that it is possible to get even more information about the noise levels, i. e. a narrower confidence interval for the TIE, by using the multivariance method [14] and the total variance concept [15, 16].

7 Conclusion

The first application of this work may be the selection of clocks according to their time stability performances. We may fix a limit for the maximum acceptable σ_e and TIE for a given interpolation sequence and extrapolation time. Let us consider that for an interpolated period T_m =24h and for an extrapolated time T_p =3.5h, we fix : $\sigma_e < 2.1$ ns and TIE<5ns. The use of equations (57) to (62) allows us to translate the above specifications into specifications on the noise levels k_{α} (for instance, for a random walk FM, these specifications become $k_{-4} < 3.7 \times 10^{-33} \text{s}^{-1}$). Furthermore, these specifications may be translated again in term of Allan variance over 1 day (in the case of the random walk FM, it yields $\sigma_y(24h) < 3 \times 10^{-13}$). Thus, we can obtain a very simple criterion by using the Allan variance, ensuring that the specifications for σ_e and TIE will be respected.

Besides the interest of this method for navigation satellite systems, it may be used for defining a new method for very long term stability analysis.

A clock may be continuously measured during a few days (e.g. a time deviation measurement with a sampling period of 1 minute during 10 days). From these data, the noise levels of this clock could be precisely determined [14, 8] and a quadratic fit could be carried out. Thus, if the clock is continuously running in the same conditions, it could be possible to extrapolate the difference of this clock with the parabolic fit after a few months or one year.

This analysis could be helpful to low accuracy purposes of time keeping, for instance for industrialists who periodically send their clock to an accreditation laboratory, or for applications which need a large autonomy.

APPENDIX 1: Variance of an estimate calculated in the frequency domain

Let us consider an interpolating function h(t) whose Fourier transform is H(f). In the same way as (12), let us denote θ the estimate obtained by this interpolated function :

$$\theta = \int_{-\infty}^{+\infty} h(t)x(t)dt.$$
(A1-1)

If θ is a centered Gaussian random variable, its variance is given by:

$$\left\langle \theta^{2} \right\rangle = \left\langle \left[\int_{-\infty}^{+\infty} h(t)x(t)dt \right]^{2} \right\rangle.$$
 (A1-2)

Since h(t) and x(t) are real, (A1-2) may be rewritten as:

$$\left\langle \theta^{2} \right\rangle = \int \int_{-\infty}^{+\infty} \overline{h(t)} h(t') \left\langle \overline{x(t)} x(t') \right\rangle dt dt'$$
 (A1-3)

where the over line denotes a conjugate complex. Let us define τ as $\tau = t' - t$. The equation (A1-3) may be expressed as a convolution product:

$$\left\langle \theta^2 \right\rangle = \int \int_{-\infty}^{+\infty} \overline{h(t)} h(t+\tau) \left\langle \overline{x(t)} x(t+\tau) \right\rangle dt d\tau = \int_{-\infty}^{+\infty} \left(\overline{h(-t)} * h(t) \right)_{(\tau)} \left\langle \left(\overline{x(-t)} * x(t) \right)_{(\tau)} \right\rangle d\tau.$$
 (A1-4)

By definition, the convolution product $\left\langle \left(\overline{x(-t)} * x(t)\right)_{(\tau)} \right\rangle$ is the autocorrelation function $R_x(t)$ of x(t), the Fourier transform of which is the power spectral density $S_x^{2S}(f)$ (see (26)). On the other hand, the Fourier transform of $\left(\overline{h(-t)} * h(t)\right)_{(\tau)}$ is $|H(f)|^2$. Thus, from the Parceval-Plancherel theorem:

$$\left\langle \theta^{2} \right\rangle = \int_{-\infty}^{+\infty} |H(f)|^{2} S_{x}^{2S}(f) df = \int_{0}^{+\infty} |H(f)|^{2} S_{x}(f) df$$
 (A1-5)

where $S_x(f)$ is the one-sided power spectral density of x(t), see (26).

Whereas this result was obtained with continuous sampled data, it may be applied to discrete sampling by considering the sampling function h(t) as a sum of Dirac distributions:

$$h(t) = \sum_{i=0}^{N-1} h_i \delta(t - t_i).$$
 (A1-6)

Therefore,

$$\theta = \int_{-\infty}^{+\infty} h(t)x(t)dt = \sum_{i=0}^{N-1} h(t_i)x(t_i)$$
(A1-7)

which is an estimate of the same type as (12).

APPENDIX 2: The moment condition

Let us consider an interpolating function h(t) whose Fourier transform is H(f). In the same way as (A1-1), this interpolating function is applied to a time deviation sequence x(t), the two-sided power spectral density of which is $S_x^{2S}(f)$, see (26). This power spectral density is assumed to be modelized by a negative power law, see (29):

$$S_x^{2S}(f) \propto f^{\alpha}$$
 and $\alpha < 0.$ (A2-1)

The variance of the estimate θ given by h(t) applied to x(t) may be calculated in the frequency domain from (A1-5), as demonstrated in Appendix 1. Therefore, this variance is finite if the following integral converges:

$$\left\langle \theta^2 \right\rangle$$
 is finite $\Leftrightarrow \int_{-\infty}^{+\infty} |H(f)|^2 f^{\alpha}$ converges. (A2-2)

This problem with a singularity at zero frequency can be avoided by requiring H(f) to go to zero for small f, more rapidly than $f^{(-\alpha-1)/2}$. Since the MacLaurin expansion of H(f) near zero is:

$$H(f) = H(0) + f\left(\frac{dH}{df}\right)_{(f=0)} + \frac{f^2}{2}\left(\frac{d^2H}{df^2}\right)_{(f=0)} + \frac{f^3}{6}\left(\frac{d^3H}{df^3}\right)_{(f=0)} + \dots + \frac{f^q}{q!}\left(\frac{d^qH}{df^q}\right)_{(f=0)} + R_q,$$
(A2-3)

the requirement for H(f) means that the leading $(-\alpha + 1)/2$ terms of (A2-3) must vanish. As an example, if α =-3, H(f) must go to zero for small f more rapidly than f^1 , then, the first (3 + 1)/2 = 2 terms of (A2-3) must vanish.

On the other hand, H(0), $\left(\frac{dH}{df}\right)_{(f=0)}$, ..., $\left(\frac{d^{q}H}{df^{q}}\right)_{(f=0)}$ may be calculated in the time domain:

$$\begin{cases} H(0) = \int_{-\infty}^{+\infty} h(t)dt, \\ \left(\frac{dH}{df}\right)_{(f=0)} = \int_{-\infty}^{+\infty} (-j2\pi t)h(t)dt, \\ \vdots \\ \left(\frac{d^{q}H}{df^{q}}\right)_{(f=0)} = \int_{-\infty}^{+\infty} (-j2\pi t)^{q}h(t)dt. \end{cases}$$
(A2-4)

Therefore the convergence condition of (A2-2) leads to the following condition [7], called the **moment** condition:

$$\int_{-\infty}^{+\infty} |H(f)|^2 f^{\alpha} df \quad \text{converges} \qquad \Leftrightarrow \qquad \int_{-\infty}^{+\infty} h(t) t^q = 0 \qquad \text{for} \quad 0 \le q \le \frac{-\alpha - 1}{2}.$$
(A2-5)

As in Appendix 1, this condition may be applied to discrete sampling by considering the sampling function h(t) as a sum of Dirac distributions. The moment condition for discrete sampling is then:

$$\int_{-\infty}^{+\infty} |H(f)|^2 f^{\alpha} df \quad \text{converges} \qquad \Leftrightarrow \qquad \sum_{i=0}^{N-1} h(t_i) t_i^q = 0 \qquad \text{for} \quad 0 \le q \le \frac{-\alpha - 1}{2}.$$
(A2-6)

Glossary of symbols

$\operatorname{Cov}(x,y)$	Covariance between the random variables x and y .
$[C_v]$	Covariance matrix of the Tchebytchev parameters P_0 , P_1 and P_2 .
C_i	with $i \in \{0, 1, 2\}$. The first 3 coefficients of a classical parabola, see (1).
c_{eta}	Student coefficient for a β % confidence interval.
$e\left(t ight)$	Purely random behavior of the time deviation $\boldsymbol{x}(t)$ (by opposition to the deterministic be-
	havior, i. e. the drift).
$ec{E}$	Vectorial form of $e(t)$. The components of \vec{E} are the values of $e(t)$ at each measurement
	time, see (9).
f	Fourier frequency variable.
f_l	Low cut-off frequency of the spectral density $S_x(f)$.
h_{lpha}	Noise level associated with the f^{α} noise of the power spectral density of frequency deviation
	$S_y(f).$
h(t)	Real function of time used as a sampling function.
H(f)	Fourier transform of $h(t)$, i. e. its associated transfer function.
$[I_n]$	The unit matrix $n \times n$.
J	Square root of -1.
k_{lpha}	Noise level associated with the f^{α} noise of the power spectral density of time deviation
	$S_x(f)$, see (29).
LG(m,s)	Laplace-Gauss distribution with a mean value m and a standard deviation s .
m	Number of independent sub-sequence of τ -length in a sequence of time or frequency devi-
	ation.
N	Number of samples of the interpolated sequence.
P_i	with $i \in \{0, 1, 2\}$. The first 3 Tchebytchev parameters.
\hat{P}_i	with $i \in \{0, 1, 2\}$. Estimates of the first 3 Tchebytchev parameters.

\vec{P}	Vector whose components are the first 3 Tchebytchev parameters.
$\vec{\hat{P}}$	Vector whose components are the estimates of the first 3 Tchebytchev parameters.
q	Integer used as the exponent of the time variable t in the moment condition (see (A2-5) and
	(A2-6) in Appendix 2).
$R_x(t)$	Autocorrelation function of the time deviation sequence $x(t)$.
$S_x(f)$	One-sided power spectral density of the time deviation sequence $x(t)$, see (26).
$S_x^{2S}(f)$	Two-sided power spectral density of the time deviation sequence $x(t)$. $S_x^{2S}(f)$ is the Fourier
	transform of the autocorrelation function $R_x(t)$.
$S_y(f)$	One-sided power spectral density of the frequency deviation sequence $y(t)$.
$TDEV(\tau)$	Time deviation of the integration time τ . Square root of the time variance.
$\mathbf{TVAR}(\tau)$	Time variance of the integration time τ . See [10].
$\mathrm{TIE}(T_m,T_p)$	Time Interval Error: difference between the extrapolated time deviation and the real time
	deviation for an interpolated time T_m and an extrapolated time T_p .
$\left\langle \mathrm{TIE}^2(T_m,T_p) \right\rangle$	Variance of $TIE(T_m, T_p)$.
T_m	Measurement time: duration of the interpolated sequence, $T_m = N\tau_0$.
T_p	Prediction time: extrapolation time, the origin of which is the beginning of the extrapolated
	sequence (and the end of the interpolated sequence), see (51).
t	Time variable.
$x\left(t ight)$	Time deviation sample: the time difference between the real clock under study and an ideal
	clock at time t, i. e. the gain or the loss of that ideal clock.
\vec{X}	Vectorial form of $x(t)$. The components of \vec{X} are the N time deviation samples, see (7).
y(t)	Frequency deviation sample: $y(t) = \frac{dx(t)}{dt}$.
α	Exponent of f for a power law spectral density.
eta	Percentage of confidence for a confidence interval.

$\delta(t)$	Dirac distribution of the argument t .
θ	Estimate obtained by the interpolated function $h(t)$, see (A1-1).
$\left< heta^2 \right>$	Variance of the estimate θ .
ν	Degrees of freedom of a χ^2 distribution.
$\vec{\varrho}$	Vector whose components are the N residuals of the interpolated sequence, i. e. the differ-
	ences between the N time deviation samples and the interpolated drift.
σ_e^2	Variance of the residuals of the interpolated sequence.
$\sigma_{P_i}^2$	Standard deviation of the Tchebytchev parameters P_i .
σ_{TIE}	Real standard deviation of $\text{TIE}(T_m, T_p)$, i. e. square root of $\langle \text{TIE}^2(T_m, T_p) \rangle$.
$\hat{\sigma}_{TIE}$	Estimate of the standard deviation of $TIE(T_m, T_p)$.
σ_x^2	Variance of a time deviation sequence composed of white noise (white PM), see (36).
$\sigma_y(\tau)$	Allan deviation for an integration time τ . Square root of the Allan variance.
$\sigma_y^2(\tau)$	Allan variance for an integration time τ .
Τ	Integration time. Argument of the Allan variance and of TVAR.
$ au_0$	Sampling period of the time deviation sequence.
$\Phi_i(t)$	with $i \in \{0, 1, 2\}$. The first 3 Tchebytchev polynomials. i is the degree of the polynomial,
	see (2).
$ec{\Phi}_i$	Vector whose N components are the values of $\Phi_i(t)$ at each measurement time.
$[\Phi]$	Matrix of the 3 column vectors $\vec{\Phi}_0$, $\vec{\Phi}_1$ and $\vec{\Phi}_2$.
$arphi_i(f)$	Fourier transform of the Tchebytchev polynomials $\Phi_i(t)$.
$\chi^2_{ u}$	Chi-square distribution with ν degrees of freedom.

References

- J. A. Barnes et al. Characterization of frequency stability. <u>IEEE Transactions on Instrumentation and</u> Measurement, IM-20(2):105–120, May 1971.
- [2] D. W. Allan. Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. <u>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</u>, UFFC-34(6):647–654, November 1987.
- [3] L. G. Bernier. Linear prediction of the non-stationary clock error function. In <u>Proceedings of EFTF 88</u>, pages 125–137, Neuchâtel, Switzerland, March 1988.
- [4] L. Di Piro, E. Perone, and P. Tavella. Random walk and first crossing time: applications in metrology. In Proceedings of EFTF 98, pages 388–391, Warsaw, Poland, March 1998.
- [5] A. Lepek. Clock prediction uncertainty. In <u>Proceedings of EFTF 98</u>, pages 205–208, Warsaw, Poland, March 1998.
- [6] J. D. Clarke, J. A. Davis, and J. R. Laverty. UTC and GNSS time scales. In <u>Proceedings of GNSS 2000</u>, Edinburgh, Scotland, UK, May 2000. To be published.
- [7] J. E. Deeter and P. E. Boynton. Techniques for the estimation of red power spectra. I. Context and methodology. <u>The Astrophysical Journal</u>, 261:337–350, October 1982.
- [8] F. Vernotte. Estimation of the power spectral density of frequency deviation samples: Comparison of three methods. In <u>Proceedings of the Joint Meeting of the 13th European Frequency and Time Forum and 1999</u> <u>IEEE International Frequency Control Symposium</u>, pages 1109–1112, Besançon, Avril 1999.
- [9] F. Vernotte, G. Zalamansky, M. McHugh, and E. Lantz. Cut-off frequencies and noise power law model of spectral density: adaptation of the multi-variance method for irregularly spaced timing data using

the lowest mode estimator approach. <u>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency</u> <u>Control, UFFC-43(3):403–409, May 1996.</u>

- [10] D.W. Allan, M.A. Weiss, and J.L. Jespersen. A frequency-domain view of time-domain characterization of clocks and time and frequency distribution systems. In <u>Proceedings of the 45th IEEE Frequency Control</u> <u>Symposium</u>, pages 667–678, May 1991.
- [11] G. Saporta. <u>Probabilités, analyse des données et statistique</u>. Editions Technip, Paris, 1990. ISBN 2-7108-0565-0.
- [12] P. Lesage and C. Audoin. Characterization of frequency stability: uncertainty due to the finite number of measurements. <u>IEEE Transactions on Instrumentation and Measurement</u>, IM-22(2):157–161, June 1973. See also comments in IM-24 p. 86 and correction in IM-25 p. 270.
- [13] D. A. Howe, D. W. Allan, and J. A. Barnes. Properties of signal sources and measurement methods. In <u>Proceedings of the 35th IEEE Frequency Control Symposium</u>, pages A25–A35, Philadelphia, PA, USA, May 1981.
- [14] F. Vernotte, E. Lantz, J. Groslambert, and J.J. Gagnepain. Oscillator noise analysis: multivariance measurement. <u>IEEE Transactions on Instrumentation and Measurement</u>, 42(2):342–350, Avril 1993.
- [15] C. A. Greenhall, D. A. Howe, and D. B. Percival. Total variance, an estimator of long-term frequency stability. <u>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</u>, 46(5):1183–1191, September 1999.
- [16] D.A. Howe. The total deviation approach to long-term characterization of frequency stability. <u>IEEE</u> Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(5):1102–1110, September 2000.

List of Tables

1	Convergence of the P_i parameters versus the type of noise. A star \star denotes the convergence.	37
2	Correlations of the time deviation data $x(t)$ versus the noise levels k_{α} . C is the Euler constant:	
	$C \approx 0,5772$. Assuming a sampling satisfying the Shannon rule, the high cut-off frequency is	
	$f_h = \frac{1}{2\tau_0}$. f_l is the low cut-off frequency.	38
3	Summary of the theoretical results.	39
4	Comparison between the Time Variance TVAR(τ) and the variance of the residuals σ_e^2 for	
	different types of noise and for quadratic and linear interpolation	40
5	Comparison between measured and estimated values of σ_e and σ_{TIE} for several clocks with a	
	quadratic interpolation.	41
6	Comparison between measured and estimated values of σ_e and σ_{TIE} for two Cesium clocks	
	with a linear interpolation.	42
7	Degrees of freedom of $\hat{\sigma}_e^2$ and $\hat{\sigma}_{TIE}$, and confidence coefficients c_β for 70% and 95% versus	
	the types of noise [11]	43

$S_x(f)$	$k_0 f^0$	$k_{-1}f^{-1}$	$k_{-2}f^{-2}$	$k_{-3}f^{-3}$	$k_{-4}f^{-4}$
P_0	*				
P_1	*	*	*		
P_2	*	*	*	*	*

Table 1: Convergence of the P_i parameters versus the type of noise. A star \star denotes the convergence.

Table 2: Correlations of the time deviation data x(t) versus the noise levels k_{α} . *C* is the Euler constant: $C \approx 0,5772$. Assuming a sampling satisfying the Shannon rule, the high cut-off frequency is $f_h = \frac{1}{2\tau_0}$. f_l is the low cut-off frequency.

$S_x(f)$	$k_{-2}f^{-2}$	$k_{-3}f^{-3}$	$k_{-4}f^{-4}$
$R_x(t)$	Se	e Table 2 page	38
$\sigma_{P_1}^2$	(53) page 13	-	-
$\sigma_{P_2}^2$	(54) page 13	(55) page 13	(56) page 13
Qua	adratic interpola	tion	_
σ_e^2	(57) page 14	(58) page 14	(59) page 14
$\left\langle \mathrm{TIE}^2(T_m, T_p) \right\rangle$ (from k_{α})	(60) page 14	(61) page 14	(62) page 15
$\left\langle \text{TIE}^2(T_m, T_p) \right\rangle$ (from σ_e^2)	(63) page 15	(64) page 15	(65) page 15
$\lim_{T_p \to \infty} \left\langle \mathrm{TIE}^2(T_m, T_p) \right\rangle$	(66) page 16	(67) page 16	(68) page 16
-			
Li	near interpolati	on	
σ_e^2	(71) page 17	(72) page 17	(73) page 17
$\left\langle \mathrm{TIE}^2(T_m, T_p) \right\rangle$ (from k_{α})	(74) page 17	(75) page 17	(76) page 18
$\left\langle \text{TIE}^2(T_m, T_p) \right\rangle$ (from σ_e^2)	(77) page 18	(78) page 18	(79) page 18
$\lim_{T_p \to \infty} \left\langle \text{TIE}^2(T_m, T_p) \right\rangle$	(80) page 18	(81) page 18	(82) page 19

Table 3: Summary of the theoretical results.

Table 4: Comparison between the Time Variance $\text{TVAR}(\tau)$ and the variance of the residuals σ_e^2 for different types of noise and for quadratic and linear interpolation.

Clock	$\sigma_y(24\mathrm{h})$	h_{-2}	h_{-1}	h_0	σ_e	σ_e	σ_{TIE}	σ_{TIE}	σ_{TIE}
					exp.	theo.	exp.	theo.	theo.
								(from h_{α})	(from σ_e)
		(s^{-1})		(s)	(ns)	(ns)	(ns)	(ns)	(ns)
Quartz 1	1.8×10^{-13}	0	2.2×10^{-26}	7.5×10^{-23}	1.4	1.4	7.1	6.2	6.6
Quartz 2	2.9×10^{-12}	1.4×10^{-29}	$1.6 imes 10^{-25}$	0	9.6	9.2	56.5	52.0	56.0
Quartz 3	$3.0 imes 10^{-12}$	1.4×10^{-29}	$6.4 imes 10^{-25}$	0	10.2	11.0	55.7	59.0	59.5
Rb 1	2.7×10^{-13}	1.2×10^{-31}	0	$5.3 imes 10^{-22}$	1.2	1.3	6.2	5.7	7.1
Cs 1	9.2×10^{-14}	0	0	1.5×10^{-21}	1.7	1.6	5.5	5.5	5.6
Cs 2	$3.0 imes 10^{-14}$	0	2.1×10^{-28}	1.1×10^{-22}	0.6	0.5	1.9	1.6	3.0

Table 5: Comparison between measured and estimated values of σ_e and σ_{TIE} for several clocks with a quadratic interpolation.

Clock	$\sigma_y(24h)$	h_{-1}	h_0	σ_e	σ_e	σ_{TIE}	σ_{TIE}	σ_{TIE}
				exp.	theo.	exp.	theo.	theo.
							(from h_{α})	(from σ_e)
			(s)	(ns)	(ns)	(ns)	(ns)	(ns)
Cs 1	9.2×10^{-14}	0	1.5×10^{-21}	2.0	2.1	4.1	4.6	4.5
Cs 2	$3.0 imes 10^{-14}$	2.1×10^{-28}	1.1×10^{-22}	0.8	0.6	1.5	1.4	1.8

Table 6: Comparison between measured and estimated values of σ_e and σ_{TIE} for two Cesium clocks with a linear interpolation.

$S_x(f)$	ν	$c_{70\%}$	$c_{95\%}$
$k_{-2}f^{-2}$	8	1.1	2.3
$k_{-3}f^{-3}$	3	1.2	3.2
$k_{-4}f^{-4}$	2	1.4	4.3

Table 7: Degrees of freedom of $\hat{\sigma}_e^2$ and $\hat{\sigma}_{TIE}$, and confidence coefficients c_β for 70% and 95% versus the types of noise [11].

List of Figures

1 2	Quadratic fit over a time deviation sequence of white FM (above). The fit is performed over the first quarter of the sequence. The residuals of this fit (below) corresponds to our definition of TIE. Dispersion of the TIE for 20 realizations of the same white FM process (above). The histogram of 10000 realizations of the TIE estimates (here for $t = 40000$ s) exhibits a Gaussian behavior	45
2	(below)	46
4	The first 3 Tchebytchev polynomials calculated for $N = 100$ data	47
	are below 1%	48
5	Evolution of the TIE after the fitted sequence for an ultra-stable quartz oscillator. The fit was performed over 1 day with a sampling period of 10s. The estimation of the TIE (dashed line) was performed from equation (60) and (62) by using the noise level estimates: $k_{-2} = 2.5 \times 10^{-24}$ s ($h_0 = 9.9 \times 10^{-23}$ s) and $k_{-4} = 4.0 \times 10^{-33}$ s ⁻¹ ($h_{-2} = 1.6 \times 10^{-31}$ s ⁻¹). These levels were estimated with the Allan variance over a 5 days sequence. The lower graph is an	
	enlargement of the first 4 hours of the upper plot.	49
6	Estimation of the TIE for the same oscillator as fig. 5. The fit was performed over a 1 day sliding window. The TIE was measured 3.5 hours after the fitted sequence (solid line). The TIE bounds (dashed lines) were estimated from the noise levels (above) or from the variance of the	
	residuals (below).	50
7	Cumulative distribution function of the real TIE expressed in $\hat{\sigma}_{TIE}$ units (e. g. 2 means 2 $\hat{\sigma}_{TIE}$). The estimate $\hat{\sigma}_{TIE}$ was obtained from the variance of the residuals $\hat{\sigma}_e^2$. The upper graph shows the probability curves for the 3 low frequency noises. The lower graph compares the probability of the TIE for a f^{-4} PM with the probability of χ^2 laws with 1 degree of freedom and with 2 degrees of freedom. As an example, whereas the probability of a random variable to be smaller than -1σ is 16% for a Laplace Gauss law, 21% for a χ_2^2 law and 25% for a χ_1^2 law, the probability of the real TIE to be smaller than $-1\hat{\sigma}_{TIE}$ (to be under the lower bounds of figures 5 and 6) is 24%.	51
8	Allan variance plot of the clock Rb 1 (see table 5). The fit and the spectral analysis were performed by using the multivariance method [14], including the Allan variance, the Picinbono variance and the modified Allan variance. The sampling period was 1 s and the length of the sequence 10.8 days (931500 data).	51

Figure 1: Quadratic fit over a time deviation sequence of white FM (above). The fit is performed over the first quarter of the sequence. The residuals of this fit (below) corresponds to our definition of TIE.

Figure 2: Dispersion of the TIE for 20 realizations of the same white FM process (above). The histogram of

Figure 3: The first 3 Tchebytchev polynomials calculated for N = 100 data.

Figure 5: Evolution of the TIE after the fitted sequence for an ultra-stable quartz oscillator. The fit was performed over 1 day with a sampling period of 10s. The estimation of the TIE (dashed line) was performed from equation (60) and (62) by using the poice level estimates: $h_{ext} = 2.5 \times 10^{-24}$ ($h_{ext} = 0.0 \times 10^{-23}$ c) and

Figure 6: Estimation of the TIE for the same oscillator as fig. 5. The fit was performed over a 1 day sliding window. The TIE was measured 3.5 hours after the fitted sequence (solid line). The TIE bounds (dashed lines) were estimated from the noise levels (above) or from the variance of the residuals (below).

Figure 7: Cumulative distribution function of the real TIE expressed in $\hat{\sigma}_{TIE}$ units (e.g. 2 means 2 $\hat{\sigma}_{TIE}$). The estimate $\hat{\sigma}_{TIE}$ was obtained from the variance of the residuals $\hat{\sigma}_e^2$. The upper graph shows the probability

Figure 8: Allan variance plot of the clock Rb 1 (see table 5). The fit and the spectral analysis were performed by using the multivariance method [14], including the Allan variance, the Picinbono variance and the modified Allan variance. The sampling period was 1 s and the length of the sequence 10.8 days (931500 data).