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Uncertainties of drift coefficients and extrapolation errors:

Application to clock error prediction
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Abstract. In Global Navigation Satellite Systems, the on-board time has to be modelized and predicted in

order to broadcast the time parameters to final users. As a consequence, the time prediction performance of the

on-board clocks has to be characterized.

In order to estimate the time uncertainty of the on-board oscillator, a linear or parabolic fit is performed over

the sequence of observed time difference and extrapolated during the prediction period. In 1998, CNES pro-

posed specifications of orbit determination and time synchronization for GNSS-2. The needs of synchronization

were specified as the maximum error of the time difference prediction from the extrapolated fit.

The purpose of this paper is the estimation of this error for different types of noise. This is achieved by the

theoretical calculation of the variances of the drifts coefficients, of the residuals and of the extrapolation errors

in the case of quadratic and linear drift models affected by different types of red noises.

After the description of the method and its results, examples are given using real data and the predicted

extrapolation uncertainties are compared to the real extrapolation errors.
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sançon, 41 bis avenue de l’Observatoire, BP 1615, 25010 Besançon Cedex, FRANCE.
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1 Introduction

In Global Navigation Satellite Systems, the on-board time has to be modelized and predicted in order to broad-

cast the time parameters to final users. As a consequence, the time prediction performance of the on-board

clocks has to be characterized.

In order to estimate the time uncertainty of the on-board oscillator, a linear or parabolic fit is performed over

the sequence of observed time difference and extrapolated during the prediction period, i. e. when the satellite

is out of visibility. In 1998, CNES proposed specifications of orbit determination and time synchronization for

GNSS-2. The needs of synchronization were specified as the maximum error of the time difference prediction

from the extrapolated fit.

[Figure 1 about here.]

The question is then: how is this maximum error related to the noise levels of the clock ? Despite several

papers deal with this question [1, 2, 3, 4, 5, 6], a new approach was chosen here because we are not only

interested in the asymptotic trend of this maximum deviation but also in its evolution close to the interpolated

sequence.

In this paper, we will call Time Interval Error (TIE) the differences between the extrapolated parabola and

the real time deviation ������� (see figure 1, above). By definition, the TIE samples are then the residuals to this

parabola (see figure 1, below). However, in the following, we will limit the use of the word “residuals” to the

differences between the interpolated parabola and the real time deviation ������� .

[Figure 2 about here.]

The TIE is due to two effects: the error of determination of the parabolic parameters and the error due the

noise of the clock. Obviously, both of these errors may be positive or negative, and the ensemble average of

the TIE is equal to zero (see figure 2, above). Moreover, it can be easily shown that the statistics of the TIE
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is Gaussian (see figure 2, below). Consequently, we only have to estimate the variance of the TIE in order to

completely define its statistical characteristics.

Moreover, the removal of a quadratic fit from the time deviation sequence cancels out the non-stationarity

problem of very low frequency noises (see the moment condition in section 2.5 and in [7]), and the variance of

the TIE (i.e. the “true variance”) converges for all types of noise without considering an hypothetic low cut-off

frequency.

In order to determine an estimation of the TIE, we will already redefine the interpolation method. Then, we

will compare the equations giving the theoretical estimates of the variance of the TIE to simulations and to real

data.

2 Interpolation with the Tchebytchev polynomials

2.1 Interpolating functions

Let us consider a sequence of � time deviation data ������� , regularly spaced with a sampling period ��� :� ����� � ��� ���������	��
�
�
�� ���������� ��� , and ������ � � .
Rather than carrying out a classical quadratic least squares interpolation:

����������� ��� ����� � ��� � � �! ����� (1)

where  � ��� is the noise, i.e. the purely random behavior of ��� ��� , we use the first three Tchebytchev polynomials

[7, 8] as interpolating functions (see figure 3):"##################$ ##################%

& � �����'� () �
& � �����'� * +

� �-, ( � � � � � ( �/.10 ���� , � �2, ( �43
& � �����'� * 5

� �-, 0 � � �6, ( � � � � � ( � � � � 0 �879 � �� �� , 9 � �-, ( � �� � � � �-, 0 � � �-, ( �4:;

(2)
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[Figure 3 about here.]

The interpolation we want to perform is then:

������� � � � & � � ��� � � � & � ����� � � � & � ����� �! �����	
 (3)

where all the parameters
� � � � � ��� � ��� have the same dimension as ������� , i.e. a time.

Besides their dimensionless nature, the advantage of using these interpolating functions is related to their

normality and orthogonality which greatly simplify and improve the estimation of the parameters
� � , � � and� � as well as their statistical characteristics, as it will be shown further.

2.2 Properties of the interpolating functions

Let us define the vector
�& � associated to the interpolating function

& � ����� as:

�& � �
��������
�

& � ��� � �
...& � ���4��� � �

���������
	

 (4)

It is then possible to build the matrix 
 &�� :

 &� ��� �& � �& � �& ���/�

��������
�

& � � � � � & � � � � � & � ��� � �
...

...
...& � �������� � & � � ������ � & � � ������ �

� �������
	

 (5)

One of the main properties of the Tchebytchev polynomials lies in the orthonormality of the vectors associated

to these interpolating functions:


 &��� 
 &� � 
���� � (6)

where 
���� � is the unit matrix � +�� + � .
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2.3 Estimation of the parameters ��� ��� � � � � ���
Let us define the vector

��
as:

�� �
��������
�

����� � �
...

�����4����� �
���������
	

 (7)

This vector may be modeled by: �� � 
 &� �� � ��
(8)

where
��

is the vector whose components are the three parameters we want to estimate, and
��

the vector

standing for the purely random part of
��

:

�� �
��������
�
� �� �
� �

���������
	 and

�� �
��������
�

 ��� � �
... �������� �

���������
	

 (9)

In order to estimate
��
, we have to calculate:


 &���� �� � 
 &��� 
 &� �� � 
 &� � �� 
 (10)

From equation (6) and because the ensemble average 	 
 &� � ���
 �� , it is possible to estimate
��

with
� ��

defined

by: � �� � 
 &� � �� 
 (11)

Thus, the estimate
����

of the parameter
���

is easily obtained by calculating:

���� � �& ���� �� � ��������� � &�� ���4� � �����4� �	
 (12)

2.4 Relationships between ����� � � � � � � � and ��� � � � � � � � �
The classical parameters

� � � � ����������� of (1) may be easily deduced from the parameters
� � � � � ��� � �	� of (3). It

may be noticed that, with an infinite precision calculation, the following relationships are absolutely rigorous:
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the only differences must be attributed to truncature errors. Moreover, the Tchebytchev polynomials minimize

this sort of errors, because their covariance matrix is optimized for avoiding bad conditioning problems.

� � � () � � � , * + � �2, ( �� � � � ( � � � � * 5 � �2, 0 � � �2, ( �� � � � ( � � � � 0 � � � 
 (13)

� � , as
� � , � � and

� � , has the dimension of a time.

����� 0��� * +
� �-, ( � � � � � ( � � � , 9��� * 5 � �2, ( �

� �2, 0 � � � � � ( � � � � 0 � � � 
 (14)

� � , as � ���� and � ���� , is dimensionless.

��� � 9� �� * 5
� � , 0 � � �2, ( � � � � � ( � � � � 0 � � � 
 (15)

��� , as � �� �� , has the dimension of a frequency.

2.5 The moment condition

It is important to know if the estimates
�� � will converge, or, and this is equivalent, if the variance 	 �� �� 
 is finite.

It may be demonstrated that such a variance may be calculated in the frequency domain (see [9] and Ap-

pendix 1) as:

	 �� �� 
 � ���
	� 	 � � � �� � � ��� ���� �� ���� (16)

where � � �� � is the Fourier transform of the interpolating function
& � ����� and

� ���� �� � is the two-sided power

spectral density of ������� , see (26).

We assume that
� ���� �� � is modeled by a power law with a negative or null exponent (see (29)):

� ���� �� ���

� . The convergence condition for the estimates

�� � is then:

���
	� 	 ��� ���� � � �  � �� converges 
 (17)

The moment condition (see [7] and Appendix 2) implies the following equivalence:

����	� 	 � � � �� � � �  � �� converges �
������� � � & � � � � ���! � � � for �#"%$#" ,'& , (0 
 (18)
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Moreover, since the Tchebytchev polynomials constitute an orthonormal basis, each $ -order polynomial

may be rewritten as a linear combination of the Tchebytchev polynomials
& � � ��� whose order is smaller or equal

to $ :
�  �  � ��� � � � & � � ����
 (19)

Consequently, the polynomial �  is orthogonal to all Tchebytchev polynomials whose order is greater than $ :������� � � & � � � � ���! � � � if and only if ��� $ 
 (20)

This yield a simple method for verifying the convergence of an estimate
�� � for a given power law model of

� ���� �� � .
As an example, let us consider that

� ���� �� � may be modeled by a  ��� power law (i. e. a random walk FM).

The condition (18) implies that the variance of the estimator
� � will be finite if and only if :������� � � & � ��� � ���  � � � for $�� � and $�� ( 
 (21)

According to the properties of the orthogonal polynomials (20), only
& � ����� satisfies the condition (21). This

means that the variance of the parameters
� � and

� � is infinite unless we use a low cut-off frequency �� .
In other words, the divergence effect of such a noise for the lowest frequencies induces a linear drift: the

lower the low cut-off frequency, the higher the variance of the coefficients of this drift. Therefore, in order to

ensure the convergence of such a noise, we just have to remove a linear drift from the data sequence.

It may be noticed that this moment condition is much more useful than this application. It is the condition

which allows us to identify the convergence for low frequency noises and for high order drifts. It may be applied

to create new estimators (new variances) or to simulate low frequency noises with a very low cut-off frequency

�� .
Table 1 summarizes the convergences properties from  ��� noise to white noise.

[Table 1 about here.]
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3 Assessment principle of the interpolation and extrapolation errors

3.1 Estimation of the residuals

From (11), the residuals may be defined as a vector
�� :

���� �� , 
 &� � �� 
 (22)

The variance of the residuals � �� may be estimated by:

� �� � (� 	 �� � � �� 
 
 (23)

From (22) and because the ensemble average
� �� � 
 &� � ���� �� :

	 �� � � �� 
 � 	 �� � �� 
 , � � �� � � �� � 
 (24)

The scalar product 	 �� � �� 

is � times the variance � �� of the ������� data and the scalar product

� � �� � � �� �
is the

sum of the variances of each estimate
�� � , �� � and

�� � . Then, the variance of the residuals may be estimated by:

� �� � � �� , (� � � �� � � � �� � � � �� � ��
 (25)

3.2 Correlation of the samples

Obviously, the long term behavior of the TIE depends greatly on the type of noise. The autocorrelation function

� � ����� of the ������� data contains the information about this type of noise. The power spectral density (PSD)

� � �� � is the Fourier Transform of the autocorrelation function
� � � ��� . Thus, denoting by

� ���� �� � the two-sided

PSD and
� � �� � the one-sided PSD defined as :"###$ ###% � � �� � � 0 � ���� �� � �
	 �� �

� � �� � � � �
	 � � (26)

we have:

� � ��� � , �4� ����� ������ � � ����� � ��� � � �
	� 	 � ���� �� �  � � ����������������� � ��� � �
	� � � �� �"!$#&% 
 0&'  ��� � , �� � � �� 
 (27)
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Taking into account  � , the low cut-off frequency and �� , the high cut-off frequency, (27) may be rewritten:

� � ��� � , � � ��� � ���
��� � � �� �"!$#&% 
 0&'  ��� � , � � � � �� 
 (28)

We will use the power law model of
� � �� � :

� � �� ��� ��
� � ��� � �  � 
 (29)

It may be noticed that this model is more generally expressed in terms of frequency noise with the power

spectral density
�
� �� � of the frequency deviation � � ��� . Since � ����� is defined as:

� ������� � �������
� � � (30)

its power spectral density is then linked to
� � �� � by:

�
� �� ���	� ' �  � � � �� ��
 (31)

The power law model (29) may be rewritten:

�
� �� � � � ��

� � � � 
 �  � (32)

where the noise levels

 � are linked to the

� � by:


 � ��� ' � � � � � 
 (33)

In the following, the different types of noise are called:

� white PM for & � � (PM stands for Phase Modulation),

� flicker PM for & � , ( ,
� white FM for & � , 0 (FM stands for Frequency Modulation),

� flicker FM for & � , + ,
� random walk FM for & � , � .
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3.3 Calculation method of the TIE

By hypothesis, we consider that the TIE is the difference between the true time deviation ������� at time � , and the

extrapolation of the parabola (previously estimated from � � to �4����� ) up to this time � � �4����� :
����� � ����� ������� , �� � & � ����� , �� � & � ����� , �� � & � � ��� ���	� � � �������
 (34)

Thus, the quadratic ensemble average of TIE may be estimated by:

	 ����� � � ��� 
 � 	 � � ����� 
 � 	 �� �� 
 & �� ����� � 	 �� �� 
 & � � ����� � 	 �� �� 
 & �� �����, 0 
 	 ������� �� � 
 & � ����� � 	 ������� �� � 
 & � ����� � 	 ������� �� � 
 & � �������� 0 
 	 �� � �� � 
 & � � ��� & � ����� � 	 �� � �� � 
 & � � ��� & � ����� � 	 �� � �� � 
 & � � ��� & � ����� � 
 (35)

Consequently, for each type of noise, we have to know:

���� � ��������� � � ����� , the autocorrelation function of ������� ;

� the 3 variances 	 �� �� 
 � � �� � ;

� the 3 covariances 	 �� � �� � 
 ��� #�� � � � � � � � : actually, only 	 �� � �� � 
���� ;
� the 3 covariances 	 ��� ��� �� � 
 ��� #�� � �������	� � � � .

3.4 Example of the white PM noise

We illustrate the calculation of the TIE with the case of white PM.

� Autocorrelation (see table 2):

� � ������� � ���� ����� � � �  � � �����	� (36)

where � �� is the variance of the ������� data,
� � is the white PM noise level and  � is the low cut-off frequency

of the system.
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� Variances and covariances of the parameters
�� � : we define 
 ��� � the matrix of the parameter covariances

by:


 ��� � � � � �� � � �� � � � 	 
 &� � �� � �� � 
 &�� 
 � 
 &�� � 	 �� � �� � 
 
 &� (37)

where the component � ����� � of the matrix 	 �� � �� � 

is:

	 �� � �� � 
 ��� � ��� �����4� � ����� � � ��� � � � � � , �� ��
 (38)

Therefore:

	 �� � �� � 
 � � �  � 
 � � � (39)

where 
 � � � is the unit matrix � � � � � .


 ��� � � � �  � 
 &� � 
 &� � � �  � 
 ��� � 
 (40)

Thus, in the case of a white PM noise, the use of the interpolating functions
& � ����� lead us to parameters

which are completely decorrelated and with the same variance:

� #�� � � � � ��� ��� � �
	 � ���� � �	� � �� � � � �  � 
 (41)

� Covariances 	 ������� �� � 
 : �
�������

� �� � � 	 ������� 
 &� � �� 
 � 
 &�� � 	 ������� �� 
 
 (42)

If � � �4�����
	 ������� �� 
 �

��������
�

� � ��� , � � �
...

� � ��� , ������ �
���������
	
� � 
 (43)

Consequently, � #�� � ��������� � � ��� � .
� Variance of the residuals:

� �� � � � � � � , (� + � �  �;� � �  � �-, +� 
 (44)
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The number of samples � should be at least equal to 100, and we may assume that ��� ( . Therefore:

� ���� � �  � 
 (45)

Thus, the removal of a quadratic drift in a white PM noise does not modify its variance.

� Estimation of the TIE:

	 � ��� � ����� 
 � � �  � 
 ( � & �� ����� � & � � ����� � & �� ����� � (46)

	 � ��� � ����� 
 � � �  �
� � , 0 � � �2, ( � � � � � ( � � � � 0 � 7 ( � � � �� �� , + 9 � � �2, ( � � �� ��� + 9 ��� � � , ( 5 � � � � � �� �� , + 9 � 0 � � , � � � � � �-, 0 � �� �� � � � �	� � � , � ( � � � 5 ( � � , + 0 � � ( 0 � : 
 (47)

One may easily admit that �
� ( , then

	 ����� � � ��� 
 � � �  �� � � ( � � � �� �� , + 9 � � � �� �� � 0 5 0 � � � �� �� , � 0 � � �� � � � � ��� � �� 
 (48)

Let ��� denote the measurement time, i. e. the duration of the interpolated sequence:

��� � � � � 
 (49)

Equation (48) may be rewritten versus ��� :

	 ����� � � ��� 
 � � �  �� � � � ( � � � �

� �� , + 9 � � �
� �� � 0 5 0 � �

� �� , � 0 �

��� �	�  
 (50)

Since the origin of the time � is the beginning of the interpolated sequence, � must be greater than ��� .

This argument � may be replaced by the prediction time ��� . ��� is the extrapolation time whose origin is

the beginning of the extrapolated sequence (and the end of the interpolated sequence). ��� is then linked

to the argument � of (50) by:

��� ��� � ��� 
 (51)

By using (51), (50) becomes the following function of the two variables ��� and ��� :
	 ����� � � � � � � � � 
 � � �  �� � � � ( � � � ��� �� � + 9 � � ��� �� � 0 5 0 � ��� �� � � 0 � ���� �	�  
 (52)
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4 Theoretical results

Only the final results are given here, but the calculation details are available upon request to the authors.

4.1 Preliminary calculation

4.1.1 Autocorrelation of a time deviation sequence

The results given in Table 2 were calculated from (28).

[Table 2 about here.]

Since we are interested in the long term behavior of clocks, we will limit this study to the 3 “redest”

frequency noises: white FM, flicker FM and random walk FM.

4.1.2 Variance of the parameters
� � and

� �
According to the moment condition (18), the variance of the parameter

� � diverges for white FM, flicker FM

and random walk FM (see Table 1). On the same hand, the variance of the parameter
� � diverges for flicker

FM and random walk FM.

� White FM:

� �� � � ' � � � � � � � �5 
 (53)

� �� � � ' � � � � � � � �0 ( 
 (54)

� Flicker FM:

� �� � � 5 ' � � � � � ��� ��� 0 
 (55)

� Random walk FM:

� �� � � ' � � � � ��� � ��9 + 
 (56)

All the above equations were obtained under the assumption � � ( .
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4.2 Case of a quadratic interpolation

4.2.1 Variance of the residuals

From (25) we got the following results versus � � � � ��� :
� White FM :

� �� � ��� � � + ' � � � � � �+ 5 
 (57)

� Flicker FM:

� �� � ��� � � ' � � � � � ��0 � 
 (58)

� Random walk FM:

� �� � ��� � � ' � � ��� � ��+ ( 5 
 (59)

All the above equations were obtained under the assumption � � ( , i. e. � � � ��� .
4.2.2 Estimation of the TIE using the noise levels

The theoretical calculation of (35) yields the following variances versus the measurement time � � and the

prediction time � � (see definitions of � � in (49) and � � in (51)):

� White FM:

	 ����� � � � � � � � � 
 � 9 ' � � � � � �+ 5 � 5 � � ��� �� � ( ��� � ��� �� � 9 � � ��� �� � ( � ���� � � (  
 (60)

� Flicker FM:

	 � ��� � � � � � � � � 
 � ' � � � � � ��� 7 ( � 0 � ��� �� � 5 � 9 � ��� �� � 9 � 0 � ��� �� � � 0 � � ��� �� � ( + 9 � ��� �� � 0 � ������ � (� � 9 � ��� �� � �
� � ���� � � �  � 0 � ��� �� � � � ��� �� � � � ��� �� � 5 � ���� � (  :;
 (61)
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� Random walk FM:

	 � � � � � ��� � ��� � 
 � 0 ' � � ��� � ��+ ( 5 �
� 5 � � ��� �� � 9 � � � ��� �� � + � + � ��� �� � � 0 � ���� � 0  
 (62)

All the above equations were obtained under the assumption � � ( . Thus, under this assumption, the de-

pendence versus � cancels out: the variance of the residuals only depends on the length of the interpolated

sequence ��� , and the variance of the TIE only depends on the ratio
������ , whatever the number of samples � is.

4.2.3 Estimation of the TIE using the variance of the residuals

The relationships (60) to (62) needs an explicit knowledge of the noise levels
� � . However, for very long term

interpolation (several days), we may be sure of the dominant type of noise: the flicker FM for a cesium clock

or the random walk FM for a quartz oscillator.

Thus, the variance of the TIE may be directly estimated from the variance of the residuals :

� White FM : from (60) and (57) we got:

	 ����� � � � � � � � � 
 � 0 � �� � 5 � � ��� �� � ( ��� � ��� �� � 9 � � ��� �� � ( � ������ � (  
 (63)

� Flicker FM: from (61) and (58) we got:

	 � � � � � ��� � � � � 
 � + � �� 7 ( � 0 � ��� �� � 5 � 9 � ��� �� � 9 � 0 � ��� �� � � 0 � � ��� �� � ( + 9 � ��� �� � 0 � � ���� � (� � 9 � ��� �� � �
� ������ � ���  � 0 � ��� �� � � � ��� �� ��� � ��� �� � 5 ������ � (  : 
 (64)

� Random walk FM: from (62) and (59) we got:

	 � � � � � ��� � ��� � 
 � 0 � �� � � 5 � � ��� �� � 9 � � � ��� �� � + � + � ��� �� � � 0 � ���� � 0  
 (65)

However, such a method is less precise than the use of a correct estimation of the noise levels. This is due

to the statistics of the estimate of the variance of the residuals (see section 6).
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4.2.4 Asymptotic behavior

If
� �� � � ( , i. e. if � � � � � :

� White FM:

� �������� 	 	 � ��� � � � � � ��� � 
 � ( ��� � �� � ��� �� 
 (66)

� Flicker FM:

� �������� 	 	 � ��� � � � � � ��� � 
 � + ��� � �� � ��� �� 
 (67)

� Random walk FM:

� ���� � � 	 	 � ��� � � � � � ��� � 
 � � ��� � �� � ��� �� 
 (68)

It may be noticed that, for a fixed value of � �� , the asymptotic ratio of equation (68) over equation (67) as well

as the asymptotic ratio of equation (67) over equation (66) is exactly equal to 3 when ��� tends toward infinity.

Moreover, for long ��� values, the main contribution of the TIE is obviously due to the error on the quadratic

parameter
� � . Using a classical quadratic model such as (1), the variance of the TIE should be linked to the

variance of the quadratic classical parameter � � by:

� �������� 	 	 ����� � � � � � � � � 
 � � �� � � �� 
 (69)

Using (15), the variance of the quadratic classical parameter ��� may be obtained from the variance of the

quadratic Tchebytchev parameter
� � :

� �� � � ( � �� � � �� � �� � � ( � �� � � � �� � 
 (70)

It is easy to verify that (69) gives the same results as (66), (67) and (68).

4.3 Case of a linear interpolation

Cesium clocks are not affected by a quadratic drift. If such clocks are used, we may limit the fit to a linear

interpolation. In this case, for long term, the main contribution to the TIE will be due to the error on the
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parameter
� � and then will be lower than for a quadratic interpolation. It is then strongly recommended to

extrapolate the time deviation of a Cesium clock from a linear fit. On the other hand, the variance of the

residuals will be higher because a quadratic adjustment remains closer to the time data than a linear one.

4.3.1 Variance of the residuals

� White FM:

� �� � ��� � � 0&' � � � � ���( 5 (71)

� Flicker FM:

� �� � ��� � � ' � � � � � ��� (72)

� Random walk FM3:

� �� � ��� � � 0&' � � � � � ��( � 5 (73)

All the above equations were obtained under the assumption � � ( , i. e. � � � ��� .
4.3.2 Estimation of the TIE using the noise levels

� White FM:

	 ����� � � � � � � � � 
 � � ' � � � � � �( 5 � � �
��� �� �	� � ���� � (  
 (74)

� Flicker FM:

	 ����� � � ��� � � � � 
 � ' � � � � � ��+ 7 ( 0 � ��� �� � 0 � � ��� �� � 0 � � ��� �� � � ������ � (� 0 � � � ( � ���� ���
� 9 � ��� �� � 9 � �� � � ( � 0 � ��� �� � �

� � ���� � ���  � 9 � ��� �� � ( 5 � �� � � �  : 
 (75)

3The random walk FM is treated here for homogeneity, but a Cesium clock is never affected by this type of noise.
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� Random walk FM3:

	 � ��� � � ��� � ��� � 
 � � ' � � � � � ��( � 5 � + 5 � ��� �� � + � � ��� �� � ( ( ���� � � (  
 (76)

All the above equations were obtained under the assumption � � ( , i.e. � � � ��� .
4.3.3 Estimation of the TIE using the variance of the residuals

From (71), (72), (73) and (74), (75), (76), we obtained:

� White FM:

	 ����� � � � � � � � � 
 � 0 � �� � � � ��� �� �	� ������ � (  
 (77)

� Flicker FM:

	 � ��� � � � � � � � � 
 � + � �� 7 ( 0 � ��� �� � 0 � � ��� �� � 0 � � ��� �� � � � ���� � (� 0 � � � ( � � ���� �
� 9 � ��� �� � 9 ���� � � ( � 0 � ��� �� � �

� � ���� � ���  � 9 � ��� �� � ( 5 ������ � �  :�
 (78)

� Random walk FM3:

	 � � � � � � � � � � � 
 � � � �� � + 5 � ��� �� � + � � ��� �� � ( ( ���� � � (  
 (79)

4.3.4 Asymptotic behavior

If
���� � � , i. e. if � � ��� :

� White FM:

� � �� ��� 	 	 � � � � � ��� � ��� � 
 � ( � � �� � ��� �� 
 (80)

� Flicker FM:

� � �� � � 	 	 � ��� � � ��� � ��� � 
 � + 9 � �� � ��� �� � � � ���� � � 
 (81)
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� Random walk FM3:

� � �� � � 	 	 � � � � � ��� � ��� � 
 � ( � � � �� � ��� �� (82)

In this case, the time dependences of the variance of the TIE are different for the 3 types of noise: � ���� � ��
for the white FM,

� ��� � � � ��� � � ���� � �� for the flicker FM and � ���� � �� for the random walk FM. This is due to

the divergence of the variance of
� � for flicker and random walk FM.

[Table 3 about here.]

4.4 Relationships with the Time Variance

The Time Variance (TVAR), and its square root, the Time Deviation (TDEV), are commonly used for time

analysis [10]. Table 4 gives the relationships between the variance of the residuals � �� and TVAR � � � for an

integration time � � � � � � ��� . It is interesting to notice that, for a given type of noise, the ratio � �� � ������� � � �
is constant.

[Table 4 about here.]

5 Experimental validation

5.1 Monte-Carlo simulations

In order to verify the equations (60) to (62) and (74) to (76), we simulated time deviation sequences of different

types of noise (white FM, flicker FM and random walk FM) and we used quadratic and linear fits. For each

type of noise, 10,000 realizations were calculated with

� the same noise level:
� � � � ( 
 � � ( � ��� s,

� � � � + 
 +�� ( � �
	 or
� ��� � 5 
 � � ( � ��� � s ��� for the quadratic

fit,
� � � � + 
 5 � ( � � � s,

� � � �	� 
 � � ( � ��� or
� ��� � + 
 + � ( � ����� s ��� for the linear fit,

� the same number of data: 65,536,
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� the same number of data taken into account for the fit: � � � 9 � � ,
� the same time of estimation of the TIE:

� � � ������ equals to
�
8640, 9900, 11350, 13000, 14900, 17000,

19500, 22400, 25700, 29400, 33700, 38600, 44300, 50700, 58100, 65535 � .
The noise levels were chosen for getting a variance of the residuals equal to 1.

[Figure 4 about here.]

Figure 4 shows the curves corresponding to the square root of equations (60) to (62) compared to the

standard deviation estimated from the 10,000 simulations (i.e. half the width of the Gaussian of figure 2). The

simulations exhibits a quite good agreement with the theoretical curves.

The asymptotic behaviors are reached at the end of the log-log graphs. The benefits of the linear interpola-

tion are obvious.

5.2 Real clocks (quartz USO and atomic clocks)

[Figure 5 about here.]

[Figure 6 about here.]

Figure 5 compares the long term behavior of a real ultra-stable quartz oscillator (denoted “quartz 1” in table

5) to the bounds given by the estimated standard deviation of the TIE (the square root of equations (60) to (62)).

The data from the oscillator are time deviations sampled with a sampling period � � � ( � s, obtained at

CNES Toulouse (France) with their own reference clocks (Cs HP 5071A option 001 and H-Maser EFOS-16).

The fit was carried out over the first 24 hours of the sequence and extrapolated over the whole sequence (90

hours).

Allan variance revealed that 2 types of noise must be taken into account: white FM (

 � � ( � � ��� s, i.e.

� � ��� 0 � 5 � ( � � � � s) and random walk FM (

 � ��� ( � 5 � ( � � � � s

���
, i.e.

� � ��� � � ( � � � � s
���

). Thus, the

bounds of figures 5 were obtained by using the square root of the sum of (60) and (62).
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In figure 6, the fit was still performed over a 24 hours sequence, but the interpolated sequence was shifted

along the 90 hours data sequence. At each step ( � � � 10s) of this shift, the fit was extrapolated over 3.5 hours.

The TIE measured at this instant ( ��� � 3.5 hours) was plotted (solid line) and the interpolated sequence was

shifted again.

The TIE bounds of the upper figure (dashed lines) were estimated from the noise levels as in figure 5. In the

lower figure, the TIE bounds were estimated from the variance of the residuals, which was calculated at each

step of the shift. In this case, we assumed that the random walk FM was dominant and we used the square root

of (65).

The experimental TIE curves remain generally in the theoretical bounds. The few moments where the TIE

is outside the bounds is fully compatible with the statistics of TIE (see section 6).

[Table 5 about here.]

[Table 6 about here.]

Table 5 shows experimental results obtained with several clocks and a quadratic interpolation. The noise

levels were estimated from Allan variance measurements. This table compares “ � � exp.”, the standard deviation

of the residuals, with “ � � theo.”, the estimate of � � obtained from the square root of (57), (58), (59) and the

noise level coefficients.

This table compares also “ � ����� exp.”, the measured error between the parabola extrapolated over 3.5 hours

and the real time deviation of the clock at this instant, with “ � ����� theo. (from
� � )” estimated from the square

root of (60), (61), (62), and with “ � ����� theo. (from � � )” estimated from the square root of (63), (64), (65).

Table 6 shows the same type of results but limited to the cesium clocks and with a linear interpolation.

Here also, the agreement between measurements and estimates is quite good.

On the other hand, table 5 and 6 confirm that the standard deviation of the residuals is higher for a linear

interpolation than for a quadratic one, whereas it is the opposite for the standard deviation of the TIE.



Vernotte et al. - E 1319 - Final Version - Metrologia - February 1, 2001 22

6 Confidence intervals for the interpolation and extrapolation errors

Figures 5 and 6 shows that the real TIE may be outside the bounds of the estimated
�� ����� . Thus, it is important

to know the probability for the real TIE to be inside or outside these bounds. Moreover, it may be useful to

improve the TIE bounds by using confidence intervals. This may be achieved by studying the statistics of the

TIE.

6.1 Statistics of the TIE

As we pointed out in section 1, the real TIE is a centered Gaussian process:

� ��� � ��� � ��� ������� � � � � ����� �	
 (83)

where ��� ��� �	� � denotes a Laplace-Gauss distribution with a mean value � and a standard deviation � .
The real � ����� is estimated by

�� ����� :

�� ����� � 
 	 � � � � � ��� � ��� � 
 
 (84)

We want to obtain a coefficient �� ensuring the following confidence interval:

,�� � � �� �����  � ��� � ��� � ��� �  � � � � �� ����� with � % of confidence 
 (85)

Whatever the values of
� � � � ��� � � � � and

�� ����� are, it is always possible to define a coefficient � by:

� � � � � � � � � ��� � � �� ����� 
 (86)

This coefficient � may be written as:

� � � ��� � ��� � ��� ��� ����� � ����� � � � � � � �
 	 ����� � � � � � ��� � 
 
 (87)

The distribution of
� ��� � ��� � ��� � may be considered as a centered Laplace-Gauss distribution with a unitary

standard deviation, multiplied by its real standard deviation � ����� :

� � � � � � � � � ��� � ����� ��� � � � ( ��
 (88)
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Therefore, 	 � � � � � ��� � � � � 
 is �
�

distributed with � degrees of freedom (depending on the type of noise) and

with a mean value equal to the real variance � ������ :

	 � ��� � � ��� � ��� � 
 � � ������ �
�
�

�

 (89)

Thus, the distribution of the coefficient � is:

� � � ����� ��� � � � ( �� � ������ �
�
� � �

� ��� � � � ( ��
�
�� � �


 (90)

By definition, � follows a Student distribution with � degrees of freedom [11]. Consequently, for building the

confidence interval (85), we have to use the Student coefficients for � � . These coefficients are given in tables

[11].

However, it is then necessary to know the number of degrees of freedom of the Student distribution, or,

and this is equivalent, the number of degrees of freedom of the �
�

distribution followed by 	 � � � � � � � � � � � 
 .

Obviously, this number depends on how 	 � ��� � � ��� � ��� � 
 is estimated, i. e. from the variance of the residuals

or from the noise levels
� � .

6.2 Estimation from the variance of the residuals

Equations (60) to (62) and (77) to (79) shows that 	 � � � � � ��� � ��� � 
 is the product of a random variable
�� �� by

a constant number. Thus, the distribution of 	 � � � � � � � � � � � 
 is the same as the distribution of
�� �� , i. e. a �

�
distribution.

From Monte-Carlo simulations, we observed that the degrees of freedom of the distribution of
�� �� only

depend on the type of noise but, curiously, neither on the number of data � , nor the sampling period � � .
[Table 7 about here.]

We measured the following degrees of freedom � for the �
�

distribution of
�� �� :

� White FM: � � � ;
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� Flicker FM: � � + ;
� Random walk FM: � � 0 .

Therefore, the � � Student coefficient must be chosen with these degrees of freedom, according to the type of

noise. Table 7 gives these coefficients for a 70% confidence interval (1 � ) and for a 95% confidence interval

(2 � ).

Figure 7 shows the probability curves of the real TIE to be far from the extrapolated fit for an estimation of

�� ����� from
�� �� .

[Figure 7 about here.]

6.3 Estimation from the noise levels

In this case, the degrees of freedom of 	 � � � � � ��� � ��� � 
 are equal to the ones of the estimated noise level
�� � and

then, depend on the accuracy of its estimation. For instance, if
�� � was estimated by using the Allan variance,

its degrees of freedom depend on the length of the sequence and on the number of sample used by the Allan

variance [12, 13]. If this sequence is long enough, the degrees of freedom may be much greater as the values

obtained in section 6.2. The degrees of freedom have to be estimated at each noise level measurement [12, 13].

Therefore, if the noise levels are precisely determined, the estimation of
�� ����� is far better by using this

method than from the variance of the residuals.

6.4 Example

Let us consider the case of the clock Rb 1 in table 5. Figure 8 displays the Allan variance curve of this clock.

Let us study the case of a 1 day interpolated sequence, and 3.5h prediction time: � � =24h and � � =3.5h.

[Figure 8 about here.]
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6.4.1 Estimation from the variance of the residuals

Figure 8 shows that the random walk FM is dominant for � =1day ( � ����� slope). From table 7, we can build the

following confidence interval:

, ( 
 � �� �����  � � � � ��� � � � �  � ( 
 � �� ����� with 70% of confidence 
 (91)

Thus, since the experimental
�� � equals 1.2ns (see table 5), (65) yields for ��� =24h and � =27.5h:

, � 
 � ns  � � � � � � � � � �  � � 
 � ns with 70% of confidence 
 (92)

But, for 95% of confidence, we obtain:

, � 
 + �� �����  ����� � ��� � ��� �  � � 
 + �� ����� with 95% of confidence (93)

i. e.: , + � ns  � � � � ��� � � � �  � + � ns with 95% of confidence 
 (94)

This huge factor is characteristic of the Student distribution with a low number of degrees of freedom: the

probability for having a high estimate is much larger than for a Gaussian process (see fig. 7).

6.4.2 Estimation from the noise levels

We will assume that for a 1 day integration time, the random walk FM is dominant and the contributions of the

other noises may be neglected. Thus, the noise level
� ��� may be estimated from the Allan variance � �� � ( day � ,

by using the following relationship [1, 14]:

� �� � � ��� 0&' � � 
 � �+ � � ' � � � ���+ 
 (95)

This Allan variance estimate is �
�

distributed, and its variance is given by [12]:

� � 
 �� �� � � � � � 7 � ' � � � ���+ : � � � , ( �� ��� , ( � � (96)
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where the integer � is the number of independent sub-sequence of � -length in the sequence, i. e. the ratio of

the integration time � over the whole sequence length. The number of degrees of freedom of a �
�

distribution

is [11]:

� � 0  �
� � �

� � � �
� � 
 (97)

Thus, from (95), (96) and (97), the number of degrees of freedom of the estimate � �� � � � applied to a random

walk FM sequence of duration � � is given by:

� � � ��� , ( � �� � , ( � 
 (98)

Since the noise level estimate is obtained from this Allan variance estimate, the noise level estimate is �
�

distributed with the same number of degrees of freedom as the Allan variance estimate.

� Let us first consider the smallest sequence allowing us the calculation of the Allan variance over one

day, i. e. a 2 day length sequence: � � 0 . The first 2 day set of time deviation measurement gives:

� �� � ( day � � + 
 � � ( � � � � . From this Allan variance estimate, we obtain:
�� ��� � ( 
 � � ( � � � � s � � .

By using (98), we find � =1. From the table of Student coefficients [11], we can build the following

confidence interval:

, 0 �� �����  � ��� � ��� � ��� �  � 0 �� ����� with 70% of confidence 
 (99)

For ��� =24h and ��� =3.5h, (62) yields
�� ����� =11ns:

, 0 0 ns  � ��� � ��� � ��� �  � 0 0 ns with 70% of confidence 
 (100)

For 95% of confidence, we obtain:

, ( + �� �����  � � � � ��� � ��� �  � ( + �� ����� with 95% of confidence (101)

i. e.: , ( � � ns  � ��� � ��� � ��� �  � ( � � ns with 95% of confidence 
 (102)



Vernotte et al. - E 1319 - Final Version - Metrologia - February 1, 2001 27

Consequently, a minimal sequence length for the noise level estimation yields a worst confidence interval

than with the variance of the residuals (5 times larger here).

� Let us use the whole available sequence (931500s=10.8d) as in figure 8. In this case, � =10, � =8,

� �� � 1day � � � 
 � � ( � � � �
,
�� ����� � 
 + � ( � � � � s ��� and

�� ����� =5.4ns. The corresponding 70% confidence

interval is then (see table 7):

, ( 
 ( �� �����  � � � � � � � � � �  � ( 
 ( �� ����� with 70% of confidence (103)

i. e.: , 5 
 � ns  � ��� � ��� � ��� �  � 5 
 � ns with 70% of confidence 
 (104)

For 95% of confidence, we obtain:

, 0 
 + �� �����  � � � � ��� � ��� �  � 0 
 + �� ����� with 95% of confidence (105)

i. e.: , ( 0 ns  � ��� � � � � � � �  � ( 0 ns with 95% of confidence 
 (106)

This demonstrates the necessity to use the maximal available sequence length for estimating the noise

levels and then the standard deviation of the TIE.

It may be noticed that it is possible to get even more information about the noise levels, i. e. a narrower

confidence interval for the TIE, by using the multivariance method [14] and the total variance concept [15, 16].

7 Conclusion

The first application of this work may be the selection of clocks according to their time stability performances.

We may fix a limit for the maximum acceptable � � and TIE for a given interpolation sequence and extrapolation

time. Let us consider that for an interpolated period ��� =24h and for an extrapolated time � � =3.5h, we fix :



Vernotte et al. - E 1319 - Final Version - Metrologia - February 1, 2001 28

� �  2.1 ns and TIE  5ns. The use of equations (57) to (62) allows us to translate the above specifications

into specifications on the noise levels
� � (for instance, for a random walk FM, these specifications become

� ���  + 
 � � ( � � � � s ��� ). Furthermore, these specifications may be translated again in term of Allan variance

over 1 day (in the case of the random walk FM, it yields � � � 0 � 
 �  + � ( � ��� � ). Thus, we can obtain a very

simple criterion by using the Allan variance, ensuring that the specifications for � � and TIE will be respected.

Besides the interest of this method for navigation satellite systems, it may be used for defining a new method

for very long term stability analysis.

A clock may be continuously measured during a few days (e.g. a time deviation measurement with a

sampling period of 1 minute during 10 days). From these data, the noise levels of this clock could be precisely

determined [14, 8] and a quadratic fit could be carried out. Thus, if the clock is continuously running in the

same conditions, it could be possible to extrapolate the difference of this clock with the parabolic fit after a few

months or one year.

This analysis could be helpful to low accuracy purposes of time keeping, for instance for industrialists who

periodically send their clock to an accreditation laboratory, or for applications which need a large autonomy.

APPENDIX 1: Variance of an estimate calculated in the frequency domain

Let us consider an interpolating function

 � ��� whose Fourier transform is � �� � . In the same way as (12), let us

denote � the estimate obtained by this interpolated function :

� � � �
	� 	 
 ����� ��������� ��
 (A1-1)

If � is a centered Gaussian random variable, its variance is given by:

	�� � 
 � � . � �
	� 	 
 ����� ��� ����� � 3 ��� 
 (A1-2)

Since

 ����� and ������� are real, (A1-2) may be rewritten as:

	�� � 
 � � ���
	� 	 
 ����� 
 ����� � 	 ������� ������� � 
 � �!� ��� (A1-3)
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where the over line denotes a conjugate complex. Let us define � as � � � � , � . The equation (A1-3) may be

expressed as a convolution product:

	 � � 
 � � ���
	� 	 
 ����� 
 ��� � � � 	 ������� ��� � � � � 
 � � � �� ���
	� 	 � 
 � , ��� �

 � ����� � � �

� � ��� , ��� � ������� � � � � � � � 
 (A1-4)

By definition, the convolution product
� � ��� , ��� � ��������� � � � � is the autocorrelation function

� � ����� of ������� , the

Fourier transform of which is the power spectral density
� ���� �� � (see (26)). On the other hand, the Fourier

transform of � 
 � , ��� �

 � ����� � � � is � � �� � �

�
. Thus, from the Parceval-Plancherel theorem:

	�� � 
 � ���
	� 	 � � �� � �
� � ���� �� ����8� ���
	� � � �� � �

� � � �� ���� (A1-5)

where
� � �� � is the one-sided power spectral density of x(t), see (26).

Whereas this result was obtained with continuous sampled data, it may be applied to discrete sampling by

considering the sampling function

 ����� as a sum of Dirac distributions:


 ������� ��� �� ��� � 
 � � ��� , �4� ��
 (A1-6)

Therefore,

� � ���
	� 	 
 ����� ��������� � � ������ � � � 
 ���� � ������ � (A1-7)

which is an estimate of the same type as (12).

APPENDIX 2: The moment condition

Let us consider an interpolating function

 ����� whose Fourier transform is � �� � . In the same way as (A1-1),

this interpolating function is applied to a time deviation sequence ������� , the two-sided power spectral density of

which is
� ���� �� � , see (26). This power spectral density is assumed to be modelized by a negative power law,

see (29):

� ���� �� ���  � and &  � 
 (A2-1)
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The variance of the estimate � given by

 ����� applied to ��� ��� may be calculated in the frequency domain from

(A1-5), as demonstrated in Appendix 1. Therefore, this variance is finite if the following integral converges:

	�� � 
 is finite � ����	� 	 � � �� � �
�  � converges 
 (A2-2)

This problem with a singularity at zero frequency can be avoided by requiring � �� � to go to zero for small  ,

more rapidly than  �1� � ��� � � � . Since the MacLaurin expansion of � �� � near zero is:

� �� ��� � � � � �  � � ��� � � ��� � � �  �0 � � � ��� �  � � � � � �  �9 � � � ��� �  � � � � � � 
�
�
 �   $��
� �  ���  � � ��� � � � �  � (A2-3)

the requirement for � �� � means that the leading � ,'& � ( � � 0 terms of (A2-3) must vanish. As an example, if

& =-3, � �� � must go to zero for small  more rapidly than  � , then, the first � + � ( � � 0 � 0 terms of (A2-3)

must vanish.

On the other hand, � � � � , ������ � � � � � � � , . . . , �������� � � � � � � � � may be calculated in the time domain:"#############$ #############%
� � � ��� ���
	� 	 
 ������� ���� � ��� � � ��� � � � ���
	� 	 � ,
	 0 ' ��� 
 ������� ���

...� �  ���  � � ��� � � � � �
	� 	 � ,
	 0 ' ���  
 � ����� � 

(A2-4)

Therefore the convergence condition of (A2-2) leads to the following condition [7], called the moment

condition:

���
	� 	 � � �� � �
�  � �� converges � ���
	� 	 
 � �����  �� for � " $ " ,'& , (0 
 (A2-5)

As in Appendix 1, this condition may be applied to discrete sampling by considering the sampling function


 ����� as a sum of Dirac distributions. The moment condition for discrete sampling is then:

���
	� 	 � � �� � �
�  � �� converges �

������ � � � 
 ���� ���  � � � for � "%$ " ,'& , (0 
 (A2-6)

Glossary of symbols
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Cov � ��� � � Covariance between the random variables � and � .


 ��� � Covariance matrix of the Tchebytchev parameters
� � , � � and

� � .� � with ��� � � � ( � 0 � . The first 3 coefficients of a classical parabola, see (1).

�	� Student coefficient for a � % confidence interval. ����� Purely random behavior of the time deviation ������� (by opposition to the deterministic be-

havior, i. e. the drift).��
Vectorial form of  ����� . The components of

��
are the values of  ����� at each measurement

time, see (9).

 Fourier frequency variable.

�� Low cut-off frequency of the spectral density
� � �� � .


 � Noise level associated with the  � noise of the power spectral density of frequency deviation

�
� �� � .


 ����� Real function of time used as a sampling function.

� �� � Fourier transform of

 ����� , i. e. its associated transfer function.


���� � The unit matrix � � � .

	 Square root of -1.

� � Noise level associated with the  � noise of the power spectral density of time deviation

� � �� � , see (29).

��� ��� �	� � Laplace-Gauss distribution with a mean value � and a standard deviation � .
� Number of independent sub-sequence of � -length in a sequence of time or frequency devi-

ation.� Number of samples of the interpolated sequence.� � with ��� � � � ( � 0 � . The first 3 Tchebytchev parameters.�� � with ��� � � � ( � 0 � . Estimates of the first 3 Tchebytchev parameters.
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��
Vector whose components are the first 3 Tchebytchev parameters.� ��
Vector whose components are the estimates of the first 3 Tchebytchev parameters.

$ Integer used as the exponent of the time variable � in the moment condition (see (A2-5) and

(A2-6) in Appendix 2).

� � ����� Autocorrelation function of the time deviation sequence ������� .
� � �� � One-sided power spectral density of the time deviation sequence ������� , see (26).

� ���� �� � Two-sided power spectral density of the time deviation sequence ������� .
� ���� �� � is the Fourier

transform of the autocorrelation function
� � ����� .

�
� �� � One-sided power spectral density of the frequency deviation sequence � ����� .

TDEV � � � Time deviation of the integration time � . Square root of the time variance.

TVAR � � � Time variance of the integration time � . See [10].

����� � � � � ��� � Time Interval Error: difference between the extrapolated time deviation and the real time

deviation for an interpolated time ��� and an extrapolated time ��� .
	 ����� � � � � � ��� � 
 Variance of

� ��� � ��� � ��� � .
��� Measurement time: duration of the interpolated sequence, ��� � � � � .
� � Prediction time: extrapolation time, the origin of which is the beginning of the extrapolated

sequence (and the end of the interpolated sequence), see (51).

� Time variable.

������� Time deviation sample: the time difference between the real clock under study and an ideal

clock at time t, i. e. the gain or the loss of that ideal clock.��
Vectorial form of ������� . The components of

��
are the � time deviation samples, see (7).

� ����� Frequency deviation sample: � ������� � � ��� �
�
� .

& Exponent of  for a power law spectral density.

� Percentage of confidence for a confidence interval.
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� ����� Dirac distribution of the argument � .

� Estimate obtained by the interpolated function

 ����� , see (A1-1).

 � � � Variance of the estimate � .

� Degrees of freedom of a �
�

distribution.�� Vector whose components are the � residuals of the interpolated sequence, i. e. the differ-

ences between the � time deviation samples and the interpolated drift.

� �� Variance of the residuals of the interpolated sequence.

� �� � Standard deviation of the Tchebytchev parameters
� � .

� ����� Real standard deviation of
����� � ��� � ��� � , i. e. square root of 	 ����� � � � � � ��� � 
 .�� ����� Estimate of the standard deviation of

� ��� � ��� � � � � .
� �� Variance of a time deviation sequence composed of white noise (white PM), see (36).

� � � � � Allan deviation for an integration time � . Square root of the Allan variance.

� �� � � � Allan variance for an integration time � .� Integration time. Argument of the Allan variance and of TVAR.� � Sampling period of the time deviation sequence.& � ����� with � � � � � ( � 0 � . The first 3 Tchebytchev polynomials. � is the degree of the polynomial,

see (2).�& � Vector whose � components are the values of
& � ����� at each measurement time.


 &� Matrix of the 3 column vectors
�& � , �& � and

�& � .
� � �� � Fourier transform of the Tchebytchev polynomials

& � ����� .
�
�
� Chi-square distribution with � degrees of freedom.
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Table 1: Convergence of the
� � parameters versus the type of noise. A star � denotes the convergence.
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� � �� � � � ��� � , �4� � (with � ���� )
� � � � �

� ��� 
  ��� � ��� 7 (+  �� , 0 ' � � � � � , �� � � � 0&' �+ � � � , �4� � � : � ���+  ��
� � � 
  � � � � � 7 (0  �� � ' � � � � , �� � � � , + � 0 � � 0 � � � 0&' �� � � � , �� � � ��: � � �0  ��
� � � 
  � � � � � . (�� , ' � � � � , �� � � 0&' �  � ��� � , �� � � 3 � � �

 �
� ����
  ��� � ��� 
 , � , � � � 0&' �� � � � , �4� � � � ' �  �� � � � , �� � � � � ��� � � �  ��� �
� � � � �  �

Table 2: Correlations of the time deviation data ��� ��� versus the noise levels
� � . � is the Euler constant:� � � � 5 � � 0 . Assuming a sampling satisfying the Shannon rule, the high cut-off frequency is  �/� �� ��� . �� is

the low cut-off frequency.



TABLES 39
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Table 3: Summary of the theoretical results.
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� � �� � � � �  � � � � �  � � � ���  � �
TVAR � � � ' � � � � �+ ' � 
 0 � � � � + � , + 0 � � � 0 � � � � ��� �9 ( ( ' � � ��� � �( 5

Quadratic interpolation

� �� + ' � � � � �+ 5 ' � � � � � �0 � ' � � � � � �+ ( 5� ��� � � � � � � �+ 5 (� 
 0 � � � � + � , + 0 � � � 0 � � (0 + (� ���� � � � � � 0.51 0.18 0.066

Linear interpolation

� �� 0&' � � � � �( 5 ' � � � ��� �� 9 ' � � ��� � �+ ( 5� ��� � � � � � � 05 0+ 
 0 � � � � + � , + 0 � � � 0 � � 0� �� ���� � � � � � 0.63 0.30 0.16

Table 4: Comparison between the Time Variance TVAR � � � and the variance of the residuals � �� for different
types of noise and for quadratic and linear interpolation.
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Clock � � � 24h �

 � � 
 ��� 
 � � � � � � ����� � ����� � �����

exp. theo. exp. theo. theo.
(from


 � ) (from � � )
(s
���

) (s) (ns) (ns) (ns) (ns) (ns)
Quartz 1 ( 
 � � ( � ��� � 0 0 
 0 � ( � � � � � 
 5 � ( � � � � 1.4 1.4 7.1 6.2 6.6
Quartz 2 0 
 � � ( � ��� � ( 
 � � ( � � ��� ( 
 9 � ( � � � � 0 9.6 9.2 56.5 52.0 56.0
Quartz 3 + 
 � � ( � ��� � ( 
 � � ( � � ��� 9 
 � � ( � � � � 0 10.2 11.0 55.7 59.0 59.5

Rb 1 0 
 � � ( � ��� � ( 
 0 � ( � � � � 0 5 
 +�� ( � � � � 1.2 1.3 6.2 5.7 7.1
Cs 1 � 
 0 � ( � ��� � 0 0 ( 
 5 � ( � � � � 1.7 1.6 5.5 5.5 5.6
Cs 2 + 
 � � ( � ��� � 0 0 
 ( � ( � � � 	 ( 
 ( � ( � � � � 0.6 0.5 1.9 1.6 3.0

Table 5: Comparison between measured and estimated values of � � and � ����� for several clocks with a quadratic
interpolation.
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Clock � � � 24h �

 ��� 
 � � � � � � ����� � ����� � �����

exp. theo. exp. theo. theo.
(from


 � ) (from � � )
(s) (ns) (ns) (ns) (ns) (ns)

Cs 1 � 
 0 � ( � ��� � 0 ( 
 5 � ( � � ��� 2.0 2.1 4.1 4.6 4.5
Cs 2 + 
 � � ( � ��� � 0 
 ( � ( � � � 	 ( 
 ( � ( � � ��� 0.8 0.6 1.5 1.4 1.8

Table 6: Comparison between measured and estimated values of � � and � ����� for two Cesium clocks with a
linear interpolation.
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� � �� � � � � ��� � � � �� � �  � � 8 1.1 2.3� � �  � � 3 1.2 3.2� � �  ��� 2 1.4 4.3

Table 7: Degrees of freedom of
�� �� and

�� ����� , and confidence coefficients �� for 70% and 95% versus the types
of noise [11].
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Figure 1: Quadratic fit over a time deviation sequence of white FM (above). The fit is performed over the first
quarter of the sequence. The residuals of this fit (below) corresponds to our definition of TIE.
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Figure 2: Dispersion of the TIE for 20 realizations of the same white FM process (above). The histogram of
10000 realizations of the TIE estimates (here for s) exhibits a Gaussian behavior (below).
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Figure 3: The first 3 Tchebytchev polynomials calculated for � � ( ��� data.
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Figure 4: Comparison of the estimation of the standard deviation of the TIE calculated from the equation (60),
(61), (62), (74), (75), (76) (solid lines) and estimated over 10000 realizations of simulated noise for a quadratic
interpolation ( , , and ) and for a linear interpolation ( , and +). In order to use the same scale, the noise
levels were defined in such a way that the variance of the residuals is equal to one ( s,

and s for the quadratic interpolation, s,
and s for the linear interpolation). The error bars corresponding to the estimates of the
simulated noises are too small to be plotted on this graph. The lower plot shows the differences between the
theoretical curves and the simulation points: the larger error is equal to 5% but most of them are below 1%.
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Figure 5: Evolution of the TIE after the fitted sequence for an ultra-stable quartz oscillator. The fit was per-
formed over 1 day with a sampling period of 10s. The estimation of the TIE (dashed line) was performed
from equation (60) and (62) by using the noise level estimates:

� � 0 5 � ( � � � � s (

 � � � � ( � � � � s) and

s ( s ). These levels were estimated with the Allan variance over a 5
days sequence. The lower graph is an enlargement of the first 4 hours of the upper plot.
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Figure 6: Estimation of the TIE for the same oscillator as fig. 5. The fit was performed over a 1 day sliding
window. The TIE was measured 3.5 hours after the fitted sequence (solid line). The TIE bounds (dashed lines)
were estimated from the noise levels (above) or from the variance of the residuals (below).
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Figure 7: Cumulative distribution function of the real TIE expressed in
�� ����� units (e. g. 2 means 2

�� ����� ).
The estimate

�� ����� was obtained from the variance of the residuals
�� �� . The upper graph shows the probability

curves for the 3 low frequency noises. The lower graph compares the probability of the TIE for a PM with
the probability of laws with 1 degree of freedom and with 2 degrees of freedom. As an example, whereas
the probability of a random variable to be smaller than is 16% for a Laplace Gauss law, 21% for a law
and 25% for a law, the probability of the real TIE to be smaller than (to be under the lower bounds
of figures 5 and 6) is 24%.
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Figure 8: Allan variance plot of the clock Rb 1 (see table 5). The fit and the spectral analysis were performed
by using the multivariance method [14], including the Allan variance, the Picinbono variance and the modified
Allan variance. The sampling period was 1 s and the length of the sequence 10.8 days (931500 data).


