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Interplay of disorder and magnetic field in the superconducting vortex state
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1Centro de Fı´sica das Interacc¸ões Fundamentais, Instituto Superior Te´cnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
2Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
~Received 17 June 2003; revised manuscript received 29 September 2003; published 5 March 2004!

We calculate the density of states of an inhomogeneous superconductor in a magnetic field where the
positions of vortices are distributed completely at random. We consider both the cases ofs-wave andd-wave
pairing. For both pairing symmetries either the presence of disorder or increasing the density of vortices
enhances the low-energy density of states. In thes-wave case the gap is filled and the density of states is a
power law at low energies. In thed-wave case the density of states is finite at zero energy and it rises linearly
at very low energies in the Dirac isotropic case (aD5t/D051, wheret is the hopping integral andD0 is the
amplitude of the order parameter!. For slightly higher energies the density of states crosses over to a quadratic
behavior. As the Dirac anisotropy increases~asD0 decreases with respect to the hopping term! the linear region
decreases in width. Neglecting this small region the density of states interpolates between quadratic and back
to linear asaD increases. The low-energy states are strongly peaked near the vortex cores.
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I. INTRODUCTION

The interaction between the superconductor quasiparti
and the vortices induced by an external magnetic field
been a subject of considerable recent interest.1–3 In the pres-
ence of vortices the quasiparticles feel the combined effec
the external magnetic field and the spatially varying field
the chiral supercurrents. By performing a gauge transfor
tion to effectively reduce the system to the one in a z
average magnetic field it was shown3 that the natural low-
energy quasiparticle modes are Bloch waves rather than
Dirac Landau levels proposed in Refs. 1 and 2. The result
Ref. 3 also showed that the quasiparticles besides feeli
Doppler shift caused by the moving supercurrents4 ~Volovik
effect! also feel a quantum ‘‘Berry-like’’ term due to a hal
flux Aharonov-Bohm scattering of the quasiparticles by
vortices.

The effect of disorder on the low-energy density of sta
of superconductors has also been a subject of much re
activity,5 particularly in the case ofd-wave symmetry. Sev-
eral conflicting predictions have appeared in the literat
which have mainly concentrated on the effect of the prese
of impurities. Some progress toward understanding the
parity of theoretical results has been achieved realizing
the details of the type of disorder affect significantly t
density of states.5 Particularly in the case ofd-wave super-
conductors, in contrast to conventional gappeds-wave super-
conductors, the presence of gapless nodes is expected
fect the transport properties. Using a field theore
description and linearizing the spectrum around the f
Dirac-like nodes it has been suggested that the system
critical. It was obtained that the density of states is of
typer(e);ueua, wherea is a nonuniversal exponent depe
dent on the disorder, and that the low-energy modes are
tended states~critical metal!.6 Taking into account the effect
of internodal scattering~hard scattering! it has been shown
that an insulating state is obtained instead, where the den
of states still vanishes at low energy but with an expon
a51 independent of disorder.7 The addition of time-reversa
0163-1829/2004/69~9!/094503~12!/$22.50 69 0945
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breaking creates two new classes designated spin qua
Hall effect I and II, due to their similarities to the usu
quantum Hall effect, corresponding to the hard and soft s
tering cases, respectively.5 The proposed formation of a pair
ing with a symmetry of the typed1 id breaks time-inversion
symmetry8 but up to now remains a theoretical possibilit
On the other hand applying an external magnetic field na
rally breaks time-reversal invariance and therefore it is i
portant to study the density of states in this case.

In general, disorder is due to the presence of impurit
which may either scatter the quasiparticles and/or may se
as pinning centers for the field induced vortices. The den
of states of a dirty but homogeneouss-wave superconducto
in a high magnetic field, where the quasiparticles scatter
scalar impurities, was considered using a Landau-le
basis.9 For small amounts of disorder it was found th
r(e);e2 but when the disorder is higher than some critic
value a finite density of states is created at the Fermi surf
In the same regime of high magnetic fields, but with ra
domly pinned vortices and no impurities, the density
states at low energies increases significantly with respec
the lattice case suggesting a finite value at zero energ10

References 11 and 12 considered the effects of random
statistically independent scalar and vector potentials
d-wave quasiparticles and it was predicted12 that at low en-
ergiesr(e);r01ae2, where r0;B1/2. The effect of ran-
domly pinneddiscretevortices on the spectrum of ad-wave
superconductor was considered recently and a prelimin
report was presented in Ref. 13 for the isotropic case. In
work we study the density of states as a function of vor
density and consider the effects of the Dirac anisotropy.
also study the local density of states~LDOS! and the inverse
participation ratio~IPR!, and study the effect of disorder o
the localization of the low-energy states.

The nature of the low-energy states in the presence
single vortex withs-wave symmetry was solved long ago.14

There are localized bound states in the vortex core. T
d-wave symmetry case led to some early controversy bu
was eventually clearly demonstrated that the low-ene
©2004 The American Physical Society03-1
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states, even though strongly peaked near the vortex c
extend along the four nodal directions and are indeed d
calized as shown by the behavior of IPR.15 In the vortex
lattice the states are naturally also extended.3,16 In the clean
limit it is therefore expected that the external field will in
crease the low-energy density of states. The expectation
these are delocalized is evidenced by the increase of the
mal conductivity with field17 in contrast to the reducing ef
fect of conventional superconductors.18

The addition of impurities in zero magnetic field has be
studied using the Bogoliubov–de Gennes~BdG! equations. It
was found that thed-wave superconductivity is mainly de
stroyed locally near a strong scatterer. The superfluid den
is strongly suppressed near the impurities but only mil
affected elsewhere.19 No evidence for localization of the
low-energy states was found and accordingly the superfl
density is indeed suppressed but less than expected20,21 and,
accordingly, the decrease of the critical temperature with
order is much slower than the previously expected in acc
dance with experiments.22 Similar results of an inhomoge
neous order parameter were also obtained fors-wave
superconductors.23

The question we address in this paper is the influenc
the positional disorder of the vortices on the quasipart
states of either ans- or ad-wave superconductor in an exte
nal magnetic field and we will not consider the scattering
impurities. Typically, in a BCS-type superconductor, vortic
and quasiparticles see different disorders, due to their dif
ent scales. Vortices are large objects and their cores, eve
high-temperature superconductors, are significantly pin
only by very strong ‘‘catastrophic’’ disorder which is ofte
quite localized—a fine example is a hole punched throug
lattice of YBa2Cu3O7 ~YBCO! or Bi2Sr2CaCu2O8 irradiated
by ions and riddled with such ‘‘columnar pins.’’ In contras
no low-energy quasiparticles go through these columnar
but are rather scattered by more microscopic forms of dis
der. A realistic system well described by our model is the
fore a high quality YBCO crystal irradiated with a low de
sity of columnar pins.

Also, previous studies of the influence of impurities wi
no magnetic field applied showed interesting low-ene
densities of states but which vanishes at zero energy. P
ous studies of the influence of vortices on the density
states of clean systems~no impurities! revealed a qualitative
change due to the interactions of the quasiparticles with
circulating supercurrents around the vortices. Furtherm
the study of independent scalar and vector random poten
yielded a finite density of states at zero energy. It is theref
interesting to separate the effect of randomly pinned vorti
on the quasiparticles since we expect this to be the domi
effect in these disordered systems at low energies.

We obtain that the low-energy states are strongly pea
near the vortex locations as evidenced by the LDOS.
higher energies the states have a very uniform distribu
throughout the system. For these states the IPR scale
1/L2 indicative of extended states. In the case of the lo
energy states the same quantity does not follow this sca
but does not saturate either. The results indicate at be
large value for the localization length but are more consis
09450
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with extended states rather than with localized states. Th
probably a consequence of finite-size effects indicating t
the system sizes considered are smaller than the localiza
length.

In Sec. II we describe the model and present the B
equations to be solved, and consider the effect of the vort
on the supercurrent profiles. In Sec. III we study the effe
of positional disorder ons-wave superconductors. In Sec. I
we considerd-wave superconductors for the isotropic a
anisotropic cases. Also we study the spatial structure of
low-lying quasiparticle states. We end with the conclusio

II. DESCRIPTION OF THE MODEL

The strong correlations of the high-Tc materials are typi-
cally modeled using a Hubbard-like Hamiltonian for th
electrons. The superconductivity is considered using a B
like formulation which provides good agreement with e
perimental results. Even though the normal phase of th
materials is particularly challenging it is by now accept
that the phenomenology in the superconducting phase is
sonably well described by the BCS theory.

A. Bogoliubov–de Gennes Hamiltonian

We will consider the lattice formulation of a disordere
d-wave superconductor in a magnetic field. We start from
Bogoliubov–de Gennes equationsHc5ec where c†(r )
5„u* (r ),v* (r )… and where the matrix Hamiltonian is give
by

H5S ĥ D̂

D̂† 2ĥ†D ~1!

with3,16

ĥ52t(
d

expF2
ie

\cEr

r1d

A~r !•dlG ŝd2eF ~2!

and

D̂5D0(
d

e( i /2)f(r )ĥde
( i /2)f(r ). ~3!

The sums are over nearest neighbors (d56x,6y on the
square lattice!; A(r ) is the vector potential associated wi
the uniform external magnetic fieldB5“3A, the operator
ŝd is defined through its action on space dependent functio
ŝdu(r )5u(r1d), and the operatorĥd describes the symme
try of the order parameter.

The application of the uniform external magnetic fieldB
generates in type-II superconductors compensating vort
each carrying one-half of the magnetic quantum flux,f0/2.
We take the London limit, which is valid for low magneti
field and over most of theH-T phase diagram in extrem
type-II superconductors such as the cuprates, assuming
the size of the vortex cores is negligible and placing ea
vortex core at the center of a plaquette~unit cell!. The Nf
vortices are distributed randomly over theL3L plaquettes.
In this limit we can take the order parameter amplitudeD0
3-2
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constant everywhere in space and we can factorize the p
of the order parameter as shown in Eq.~3!.

At this stage, it is convenient to perform a singular gau
transformation to eliminate the phase of the off-diago
term ~3! in the matrix Hamiltonian. We consider the unita
Franz-Tesˇanovićgauge transformationH→U 21HU, where3

U5S eifA(r ) 0

0 e2 ifB(r )D ~4!

with fA(r )1fB(r )5f(r ). The phase fieldf(r ) is then de-
composed at each site of the two-dimensional lattice into
.
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componentsfA(r ) and fB(r ) which are assigned, respec
tively, to a set of vorticesA, positioned at$r i

A% i 51,NA
, and a

set of vorticesB, positioned at$r i
B% i 51,NB

. The phase fields

fm5A,B are naturally defined through the equation

“3“fm~r !52pz(
i

d~r2r i
m!, ~5!

where the sum runs only over them-type vortices. After car-
rying out the gauge transformation~4! the Hamiltonian~1!
reads
H85S 2t(
d

eiV d
A(r )ŝd2eF D0(

d
e2 i (df/2)ĥde

i (df/2)

D0(
d

e2 i (df/2)ĥd
†ei (df/2) t(

d
e2 iV d

B(r )ŝd1eF

D . ~6!
e
ble

y
s of
h

-

s
f

-

ex-

n
per-
en
tion
o
gu-
t the
rtex
The phase factors are given by16 Vd
m(r )5* r

r1dks
m
•dl

and df(r )5fA(r )2fB(r ), where \ks
m5mvs

m5\“fm

2(e/c)A is the superfluid momentum vector for them su-
percurrent. Physically, the vorticesA are only visible to the
particles and the vorticesB are only visible to the holes
Each resultingm subsystem is then in an effective magne
field

Beff
m 52

mc

e
“3vs

m5B2f0z(
i

d2~r2r i
m!, ~7!

where each vortex carries now an effective quantum m
netic flux f0. For the case of a regular vortex lattice,3,16

these effective magnetic fields vanish simultaneously on
erage if the magnetic unit cell contains two vortices, one
each type. More generally, in the absence of spatial sym
tries, as it is the case for disordered systems, these effe
magnetic fieldsBeff

m5A,B vanish if the numbers of vortices o
the two typesA andB are equal, i.e.,NA5NB , and their sum
equals to the number of elementary quantum fluxes of
external magnetic field penetrating the system. As the n
ber of vorticesNf in the two-dimensional system of sizeL
3L is proportional to the quantized magnetic flux pierci
through the system, we choose to parametrize the magn
field intensity by the ratio of the number of vortices,Nf
5NA1NB , to the number of lattice sites,B5Nf /(L3L).

We consider here the disorder induced by the random
ning of theNf vortices over the two-dimensionalL3L lat-
tice. As the effective magnetic fields~7! experienced by the
particles and the holes vanish on average within the ga
transformation~4! we are allowed to use periodic bounda
conditions on the square lattice@C(x1nL,y)5C(x,y
1mL)5C(x,y) with n,mPZ]. The L3L original lattice
becomes then a magnetic supercell where the vortices
placed at random with a mean intervortex spacing,
51/AB. The disorder in the system is then established ov
g-
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lengthL. As shown in Fig. 3 of Ref. 13 the scaling with th
system size is quite good and we do not expect noticea
finite-size effects~except perhaps very close to zero energ!.

In order to compute the eigenvalues and eigenvector
the Hamiltonian~6! we seek for eigensolutions in the Bloc
form Cnk

† (r )5e2 ik•r(Unk* ,Vnk* ) where k is a point of the
Brillouin zone. In the following we will label these eigenso
lutions with the indexn5(n,k). We diagonalize then the
Hamiltoniane2 ik•rH8eik•r for a large number of pointsk in
the Brillouin zone and for many different realization
~around 100! of the random vortex pinning. The results o
these computations are shown in Sec. III for thes-wave dis-
ordered superconductor case and in Sec. IV for thed-wave
disordered superconductor case.

B. Profiles of supercurrents

The m superfluid wave vectorks
m(r ) characterizes the su

percurrents induced by them vortices. This vector can be
calculated for an arbitrary configuration of vortices16 like

ks
m~r !52pE d2k

~2p!2

ik3z

k21l22 (
i 51

`

eik•(r2r i
m). ~8!

Here l is the magnetic penetration length and the sum
tends over the infinite number ofm-type vortex positions. We
consider the casel→` which is an excellent approximatio
in extreme type-II systems such as high-temperature su
conductors. In this limit the repulsive interaction betwe
vortices is not screened and therefore the vortex distribu
is not strictly arbitrary—long-range interactions will try t
force the vortex system to take only incompressible confi
rations. For the purposes of this paper, we assume tha
pinning centers are strong enough to overcome the vo
3-3
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repulsion over the length scales relevant to experime
Thus, we are considering the limit of strong pinning. W
have checked that the case with a random distribution
vortices is qualitatively the same as for the case where
vortex positions are allowed to vary with a radius of a fe
unit cells around a regular lattice position.

The m-superfluid wave vector distribution is complete
determined by the configuration of them vortices, as can be
seen from Eq.~8! and is independent of the pairing symm
try. Since we are taking the London limit, where the vort
core size is negligible, we neglect any possible differ
symmetry contributions from inside the vortex core24 and the
chiral supercurrents simply reflect the circulation of the
perfluid density around the vortex.

In order to compute efficiently them-superfluid wave vec-
tor we use the translational symmetry introduced by the
riodic repetition of theL3L supercells and then we are ab
to use the Fourier series representation of expression~8!,
e.g.,

ks
m~r !5

2ip

~Ld!2 (
QÞ0

Q3z

Q2 (
i 51

Nm

eiQ•(r2r i
m), ~9!

whereQ5(2p/Ld)(n1 ,n2) with n1 ,n2PZ. We remark that
the sum over vortex positions runs now only over them-type
vortices within a supercell and not, as in Eq.~8!, over the
infinite number of m-type vortices present in the two
dimensional system. The price to pay for this procedure
the preceding infinite sum over the reciprocal vectorsQ. We
truncate this latter sum when the convergence of each c
ponents ofks

m(r ) in each lattice pointr is attained.
Figures 1 and 2 show examples of distributions of

conventional superfluid wave vector which is half the sum
the two types of superfluid wave vector,

FIG. 1. ~Color online! Vector field plot showing the profile o
the conventional superfluid wave vectorks5

1
2 (ks

A1ks
B) for a regu-

lar vortex lattice and forB51/144.
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A~r !1ks
B~r !

2
5

1

2
“f2
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c
A. ~10!

In Fig. 1 we show the profile of the supercurrent velocities
the lattice case. The unit cell has two vortices, one of e
type A and B. In Fig. 2 we show the supercurrents for a
arbitrary configuration of the vortices. For example, the
324 lattice shown in Fig. 2 can illustrate a disordered sup
cell corresponding to a magnetic fieldB51/144 with two
A-type vortices and twoB-type vortices. As it should be, th
labeling of theA- and theB-type vortices is completely ar
bitrary. The intensities of the supervelocities for the regu
and the disordered vortex lattice peak around each vo
and decrease rapidly outside the vicinity of the vortex c
(;5d).

III. DISORDERED s-WAVE SUPERCONDUCTORS

For the conventionals-wave case the operator characte
izing the symmetry of the order parameter is constantĥd

5 1
4 , and the off-diagonal terms of the Hamiltonian~6! are

then considerably simplified

H85S 2t(
d

eiV d
A(r )ŝd2eF D0

D0 t(
d

e2 iV d
B(r )ŝd1eF

D .

~11!

The s-wave Hamiltonian~11! describes coupled particle
and holes evolving each in an effective magnetic field co
posed by the external magnetic field and the counterac
field of f0 flux carrying vortices. The effective magnet
fields are characterized by the Peierls phase factorsVd

m5A,B .
Independently of the system being disordered or not, the t

FIG. 2. ~Color online! Vector field plot showing the profile of
the conventional superfluid wave vectorks5

1
2 (ks

A1ks
B) for a ran-

dom configuration of vortices and forB51/144.
3-4
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of the quasiparticles spectrum (e@D0) are expected to be
described by quantized Landau levels.

In Fig. 3 we show the density of states for a fieldB
51/18 in the case of no disorder. The gap is clearly see
low energies characteristic ofs-wave symmetry. The state
inside the gap~for ueu,t in Fig. 3! are the typical Caroli—de
Gennes—Matricon bound states.14 At higher energies the
Landau levels are clearly visible.

In Fig. 4 we show the effects of disorder for the sameB
field in a lattice of 18318 sites (18 vortices!. The gap is
filled by the disorder. The reader should observe here
our disorder is in certain sense ‘‘infinite’’ since we pla
vortex positions completely at random. Thus, it appears
such full randomness in vortex positions, generated by str
pinning, suffices to close the gap in the single-particle d
sity of states. In contrast, the Landau-level quantizat
structure clearly persists at high excitation energies. In g
eral the increase of the magnetic field modifies the curva

FIG. 3. Quasiparticle density of states for thes-wave symmetry
and for a regular lattice of vortices~no disorder!. The magnetic field
is B51/18, the magnetic unit cell contains two vortices piercing
area of 636. The parameters arem522.2t andD05t.

FIG. 4. Quasiparticle density of states for thes-wave symmetry
and for a disordered lattice of vortices. The magnetic field isB
51/18 and the linear system size isL518. The parameters arem
522.2t andD05t.
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of the quasiparticle density of states for the low energies.
it is shown in Fig. 5 the density of states seems to be
scribed by the power-law formula

r~e!;ea. ~12!

In Fig. 6 we fit the magnetic-field dependence of the exp
nenta. This exponent obeys the following law:

a.c,2d, ~13!

where ,51/AB is the mean intervortex spacing andd is
found close to 1. In the cases of a strong magnetic field
density of vortices is high and strictly we are in a regim
where the size of the vortex cores cannot be neglected
this regime the Landau-level structure at high energies
clear and it extends to low energies superimposed by
effects of disorder. The lower limit for this high magneti
field regime is the valueB.0.16 for whicha50 in Fig. 6.

IV. DISORDERED d-WAVE SUPERCONDUCTORS

For the unconventionald-wave case the operatorĥd takes
the form ĥd5(21)dyŝd , we recall thatŝd acts on spatial
dependent functions asŝdu(r )5u(r1d) and thatd56x,
6y characterizes unit displacements~hops! on the lattice.
With these definitions thed-wave Hamiltonian can be de
rived from the Hamiltonian~6! and reads

FIG. 5. Quasiparticle density of states (s-wave! for different
magnetic fieldsB52/200 (n), B54/200 (j), B57/200 (h), B
511/200 (d), and B520/200 (s) in units of hc/(2ed2). The
linear system size isL520 and the parameters arem522.2t, D0

5t. For clarity the different curves are vertically shifted.
3-5



rn

-

b

te
e
u
loc
r t
-

de
a

n
t

the
t the
it
-

he
. In
in

in
s be-

rel-

s at
ral
rel-

ice
y of
ero
ec-

size

ic
of

ith
of
ies
netic
en-
the
ity

e
f

e

J. LAGES, P. D. SACRAMENTO, AND Z. TESˇANOVIĆ PHYSICAL REVIEW B 69, 094503 ~2004!
H85S 2t(
d

eiV d
A(r )ŝd2eF D0(

d
eiAd(r )1 ipdyŝd

D0(
d

e2 iAd(r )2 ipdyŝd t(
d

e2 iV d
B(r )ŝd1eF

D ,

~14!

where the phase factorAd(r ) has the form

Ad~r !5
1

2Er

r1d

~“fA2“fB!•dl5
1

2Er

r1d

~ks
A2ks

B!•dl.

~15!

In the Hamiltonian~14! and in Eq.~15! the vector

as5
1
2 ~ks

A2ks
B! ~16!

acts as an internal gauge field independent of the exte
magnetic field.3,16 The associated internal magnetic fieldb
5“3as consists of oppositeA-B spikes fluxes each carry
ing one half of the magnetic quantum fluxf0, centered in
the vortex cores and vanishing on average since the num
of A- andB-type vortices are the same.

A. Differences from the regular vortex lattice case

The situation where the vortices are regularly distribu
in a lattice was treated before.3,16 Since the average effectiv
magnetic field vanishes it is possible to solve the BdG eq
tions using a standard Bloch basis—the supercurrent ve
ties are periodic in space and there is no need to conside
magnetic Brillouin zone. Taking the continuum limit and lin
earizing the spectrum around each node effectively
couples the nodes. It was shown that the low-energy qu
particles are then naturally described as Bloch waves3 and
not Dirac-Landau levels as previously proposed.1,2 However,
it was found that in the linearized problem different assig
ments of theA and B vortices lead to somewhat differen
spectra, which was unexpected.16 It was found that defining

FIG. 6. Magnetic-field dependence of the exponenta extracted
from the power-law fitr(e);ea of the data presented in Fig. 5. Th
symbols (n), (j), (h), (d), and (s) denote the same values o
B as in Fig. 5; the symbols (1) denote others values ofB not
presented in Fig. 5.
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theory on the lattice regularized this problem and indeed
system has a manifest internal gauge symmetry such tha
spectrum is independent of theA-B vortex assignments, as
should be. Moreover, the lattice formulation explicitly in
volves internodal contributions which are important for t
properties of the density of states in the disordered case
the vortex lattice case, however, it was found that only
special commensurate cases~for the square lattice! the inclu-
sion of the internodal contributions is relevant since only
such cases a gap develops due to the interference term
tween the various nodes, estimated to be of the order ofAB.
In a general incommensurate case the interference is not
evant leading to qualitatively similar spectra. In thed-wave
case the spectrum is gapless with a linear density of state
low energy.16 One would therefore expect that in a gene
disordered vortex case internodal scattering might not be
evant ~particularly for high Dirac cone anisotropyaD
5vF /vD5t/D0@1).

In Fig. 7 we compare the densities of states for the latt
case and a case with disorder. At weak fields the densit
states is small at low energies having a dip close to z
energy. We have checked for finite-size effects on the sp
trum. For system sizes larger than 16316 the density of
states at not very low energies converges and the finite-
dependence is negligible.

B. Isotropic case

In this section we will focus our attention on the isotrop
caseaD51 in order to extract the general dependencies
the quasiparticle density of states in the magnetic fieldB.

In Fig. 8 we show the density of states for a system w
size 20320 and for various magnetic fields. The density
states at small energies is finite up to quite small energ
where there is a dip to a value that decreases as the mag
field decreases. Only for quite small magnetic fields the d
sity of states approaches zero at the origin. Neglecting
narrow region close to the origin we have fitted the dens
of states using the power law

FIG. 7. ~Color online! Quasiparticle density of states for th
d-wave case without~dashed line! and with disorder~solid line!.
The intensity of the magnetic field isB51/121, D50.5t, m
522.2t, and the linear system size isL522.
3-6
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r~e!5r01bueua. ~17!

In the inset of Fig. 8 we show the fits for the various valu
of the magnetic field. Reasonable fits are obtained takina
;2 and we obtain thatr0;B1/2. The various system sizes fi
in the same universal curve indicating that the finite-s
effects are negligible. Note that in the lattice case the den
of states at low energies is linear3,16,25,26@this result differs
from the behavior obtained by others for ad-wave supercon-
ductor with no disorder,4,27 wherer(e;0);B1/2]. The finite
density of states at zero energy is therefore a consequen
finite disorder.

In Fig. 9 we focus on the narrow region close toe50 for
the same set of parameters considered in Fig. 8. Excep
the lowest field caseB51/200 the density of states seems
be finite at zero energy. Here the field densityB51/200 cor-
responds to the particular case where only two vorti
pierced the 20320 disordered supercell. As shown in Ref.
in this case the spectrum is usually gapped and therefore
density of states vanishes at zero energy. Performing a fit
in Eq. ~17! we obtain an exponent which is now close to
In this regimer0dip also scales withAB and the slope scale
linearly with B. In this low-energy regime the finite-size e
fects are still noticeable but the dependence on the magn
field is common to the various system sizes. At these
energies the density of states for the various system s
appears to be of the following approximate form:

r~e!;
1

vH

1

l 2
FS e

vH

d2

l 2 D , ~18!

FIG. 8. Quasiparticle density of states for thed-wave case and
for different magnetic fieldsB51/200 (m), B53/200 (n), B
55/200 (j), B57/200 (h), B59/200 (d), B511/200 (s), B
520/200 (l), and B525/200 (L) in units of hc/(2ed2). The
linear system size isL520 and the parameters arem522.2t, D0

5t. The inset shows the fits of the density of states~solid lines!
inside the presented energy interval. For clarity not all the fits
shown.
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wherevH;ADB and F is a universal function. In the lef
panel of Fig. 9 we showr(e) for various fields while in the
right panel we illustrate the near scaling at low energies c
sistent withF(x);c11c2x at smallx. Note thatb(B→0)
appears to be small but finite, consistent with a crossove
a ‘‘Dirac node’’ scalingr(e);(1/vH)(1/l 2)F(e/vH) at very
low fields.

e

FIG. 9. Low-energy quasiparticle density of statesr(e) for the
d-wave case and for different magnetic fieldsB51/200 (m), B
53/200 (n), B55/200 (j), B57/200 (h), B59/200 (d), B
511/200 (s), B520/200 (l), and B525/200 (L) in unit of
hc/(2ed2). For each data sets the linear system size isL520, the
same as in Fig. 8. In the left panel the solid lines are linear fits
the dip region belowe50.02t of the typer(e)5r0dip1bueu. In the
right panel we present the near scaling at low energies~see text!.

FIG. 10. Quasiparticle density of states for thed-wave case for
different values of the anisotropy parameter:aD51 (s), aD52
(d), aD53 (h), aD54 (j), andaD55 (¹). The magnetic-field
intensity is B51/100. The linear system size isL520 and the
chemical potential ism522.2t.
3-7
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FIG. 11. Fits of the data presented in Fig. 1
Upper left panel: quasiparticle density of stat
presented in Fig. 10~the same symbols are used!
as a function of the rescaled energye/D0. Solid
lines are fits of the power-law typer(e)5r0

1G(e/D0)a. In the other panel solid lines ar
linear fits. Upper right panel: zero-energy quas
particle density of statesr0 as a function ofAaD.
Lower left panel: Power-law exponenta as a
function of 1/AaD. Lower right panel: Paramete
G of the power law as a function of 1/aD .
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C. Anisotropic case

We investigate now the dependence of the quasipar
density of state on the value of the Dirac anisotropy ra
aD . Such a study is interesting in order to compare o
results with experiments; indeed for high-Tc superconductors
such as YBa2Cu3O7 and Bi2Sr2CaCu2O8 the Dirac anisot-
ropy ratios are,17,28 respectively,aD.14 andaD.19.

In the lattice case a high anisotropy increases the den
of states at low energies and leads to lines
quasinodes.3,16,25At high anisotropy (D0!t) the nodes are
very narrow and a one-dimensional-like character
evidenced.

As shown in Fig. 10, the low-energy quasiparticle dens
of states at constant field is filled when the anisotropy
rameteraD is increased. There is a narrow linear regi
close to the origin that decreases asaD increases. Figure 11
shows the power-law fits of the data presented in Fig.
neglecting a very narrow region of width;0.025t around
e50. It turns out that the low-energy quasiparticle density
states has the form

r~e!;r01GS e

D0
D a

~19!

with zero-energy density of states

r0;A t

D0
, ~20!

the exponent

a.11AD0

t
, ~21!
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and the parameter

G;
D0

t
. ~22!

The dependence of the exponent is interesting since in
isotropic case we retrievea52 and with increasing anisot

FIG. 12. Inverse participation ratioj as a function of the qua-
siparticle energye for B51/25 and for different linear system size
L510 (s), L520 (l), and L530 (n). Inset: scaling of the
inverse participation ratio with 1/L2 for states in the close vicinity
of the Fermi surfaceueu<0.05t (j0 , j) and for states with energy
ueu.t (j1.0, d).
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FIG. 13. ~Color online! Upper left panel: Density plot of the quasiparticle local density of statesr(r ,e) for e.0. Lower left panel:
Density plot of the quasiparticle local density of statesr(r ,e) for e.t. Upper right panel: Vector field plot showing the profile of the intern
gauge fieldas5

1
2 (ks

A2ks
B). Lower right panel: Vector field plot showing the profile of the conventional superfluid wave vectorks5

1
2 (ks

A

1ks
B). All the panels correspond to the same configuration of the vortex pinning and to the same magnetic fieldB51/144.
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ropy the exponent decreases to 1~see lower left panel of Fig
11! characteristic of the Dirac nodes. Ate.0 and for a high
Dirac anisotropy ratio the quasiparticle density of states fl
tens since the coefficientG in Eq. ~19! decreases withD0.

The typical values of the anisotropy parameter in op
mally doped cuprates are considerably larger than unity
stated above. In underdoped systems the anisotropy d
rapidly with doping and it is unlikely that settingaD51 is
unrealistic in any qualitative sense. However, the anisotr
affects the values of the parameters and in particular
value of the exponent of the density of states, as show
Fig. 11. In Fig. 10 we have limited the results to a value
the anisotropy of the order of five since for large anisotrop
09450
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the value of the order parameter is getting small and of
order of the Landau-level spacing, which means that the d
sity of states oscillates significantly at low energies. Ho
ever the behavior with the anisotropy is well controlled,
evidenced by the scaling of the critical exponenta with the
inverse square root of the anisotropy, since it extrapola
very well to the Dirac limit in the limit of very large anisot
ropy.

D. Spatial structure of the low-lying quasiparticle states

As discussed above, the nature of the low-lying state
an important issue in the presence of disorder. A stand
3-9
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FIG. 14. ~Color online! Quasiparticle local
density of statesr(r ,e) for the d-wave case at
different lattice sites r5(11,11), (12,12),
(13,13), (14,14), (15,15), (16,16) around a vo
tex positionr v5(13.5,13.5) belonging to a regu
lar vortex lattice. The magnetic field isB
51/144. The other parameters areD05t and m
522.2t.
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way to analyze the nature of the states is to study the inv
participation ratio~IPR!. The IPR is defined in the usual wa
as

j~e!5

K (
n,r

~ uun~r !u41uvn~r !u4!d~e2En!L
K (

n,r
~ uun~r !u21uvn~r !u2!d~e2En!L 2 . ~23!

The brackets denote the averaging over disorder config
tions. The IPRj is a direct measure of the spatial extent
quasiparticle wave functions. It scales as 1/L2 for fully ex-
tended states and is constant for localized states with lo
ization length,c,L.

Figure 12 presents the IPRj as a function of the quasi
particle energye and for different system sizesL. All the
states are well extended, since there is no size depend
for the quantityL2j(e), except those in the close vicinity o
the Fermi surface (ueu,0.5t). In the inset of Fig. 12 we
present the scaling of the IPRj with 1/L2. We consider an
average over states at the Fermi surface withueu,0.05t (j0
in the inset! and an average over states withe.t (j1.0 in the
inset!. The states close toe5t are clearly extended since th
scaling with 1/L2 is quite accurate. The nature of the sta
close toe50 is somewhat less clear. From Fig. 12 we s
that the quasiparticle states close toe50 deviate from the
strict 1/L2 scaling law~see the weak intercept ofj0 in the
inset of Fig. 12!, however our results show an obvious si
dependence forj0 and do not show a saturation ofj0 with
the linear system sizeL. This latter fact indicates, using th
hypothesis of an eventual localization of these low-lyi
states, that we are still far from the thermodynamic limit w
the linear system sizes we can currently attain within
model.

To gain further insight into the nature of the low-lyin
states we show in Fig. 13 the LDOS for the states close
e50 and those close toe5t. At low energies the LDOS
defined by
09450
se

a-
f
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to

r~r ,e!5(
n

~ uun~r !u21uvn~r !u2!d~e2En! ~24!

is strongly peaked near the vortex cores~upper left panel of
Fig. 13!. At higher energies (e.1) the LDOS is much more
homogeneously spread over the system indicative of
tended states; the values of the LDOS over the lattice
approximatively constant and slightly fluctuate around
expected value for extended states 1/L2.0.0017~lower left
panel of Fig. 13!.

The right side panels of Fig. 13 show the profiles of t
internal gauge fieldas ~upper panel! and of the conventiona
superfluid wave vectorks ~lower panel! corresponding to the
same configuration of vortex pinning as used in the com
tation of the LDOS~left side panels!. For the profile of the
superfluid wave vectorks the intensity of the supercurrents
peaked around each vortices and rapidly decreases as
inverse of the square of the distance to the vortices. T
profile of the internal gauge fieldas is more interesting. It
depicts the two types of vorticesA andB whirling in oppo-
site directions~see upper right panel of Fig. 13!. Due to this
opposite circulation aroundA- andB-type vortices, the inter-
action between anA- and aB-type vortex produces signifi
cant field currents between the vortices. Figure 13 show
spatial correlation between these intervortex currents and
inhomogeneity of the local density of states between the v
tices for the low-lying statese.0 ~see upper left panel o
Fig. 13!.

If we compare now the results for the LDOS with tho
for the IPR j for the low-lying states, we can argue th
following: as the participation ratioj0

21 physically counts
the number of lattice sites occupied by the quasipart
wave functionC(r ), and as the low-energy states are main
located around the vortices, the participation ratioj0

21

should scale for a fixed magnetic field as the number
vortices in a supercellj0

21;Nf;BL2. This argument ex-
plains the fact thatj0 in the inset of Fig. 12 seems to follow
the 1/L2 without saturation, the weak intercept being th
3-10
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FIG. 15. ~Color online! Quasiparticle local
density of statesr(r ,e) for the d-wave case at
different lattice sitesr5(3,14), (4,15), (5,16),
(6,17), (7,18), (8,19) around a vortex positio
r v5(5.5,16.5) belonging to a disordered vorte
lattice. The magnetic field isB51/144 and we
use the 24324 disordered supercell used in Fig
13. The other parameters areD05t and m5
22.2t.
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negligible. The low-lying quasiparticle states appear then
be delocalized although strongly peaked around the vo
cores.

We present now a spatial scanning of the LDOS in
vicinity of a vortex core for the case of a regular vort
lattice~Fig. 14! and for the case of a disordered vortex latti
~Fig. 15!. For both cases the LDOS away from the vort
core are qualitatively the same and are comparable to th
a d-wave superconductor in a zero magnetic field. Also
both cases the low-lying states are predominant in the c
vicinity of the vortex core but their respective spectra a
different. For the regular vortex lattice case~Fig. 14! we
resolve a double-peak structure around the vortex core.
result is in qualitative agreement with the double peak
conductance observed in YBa2Cu3O72d by scanning tunnel-
ing microscopy.29 For the disordered vortex case~Fig. 15!
zero-energy peaks appear in the close vicinity of the vor
core~closest neighbor sites! and rapidly disappear~typically
over 3d) when moving away from the vortex core. We no
also that close to the vortex cores the coherence peaks
sappear in both the regular and the disordered cases.

V. CONCLUSION

In summary, we have calculated the density of states
disordered superconductor in a pinned fully random vor
array. Both the disorder and the magnetic field fill the dens
of states at low energies. In thes-wave case the density o
states behaves as a power law with an exponent that s
with 1/AB. In general we find a finite density of states
zero energy for thed-wave case except in the limit of ver
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small magnetic fields. The density of states deviates from
zero-energy value by a power law. The zero-energy den
of states scales with the inverse of the magnetic length (AB).
In thed-wave case the Dirac anisotropy further increases
weight of the density of states at low energies. Also it affe
the exponent of the power law. In the isotropic case the
ponent is 1 at very low energies and around 2 neglecting
narrow region. In the linear regime the density of states is
the form of a scaling function of the energy and the magne
field. As the anisotropy increases this narrow regime shri
considerably and, neglecting this region, the exponent of
density of states interpolates to 1 which is the Dirac lim
This limit is also obtained in the zero-field limit in the iso
tropic case. Except for the zero-energy finite value the
ergy dependence of the density of states in the case
disorder is similar to the lattice case. This suggests that
vortex disorder does not dramatically affect the density
states at low energies. An analysis of the IPR and the LD
shows that the lowest-lying states are delocalized, e
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length.
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