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Interplay of disorder and magnetic field in the superconducting vortex state
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We calculate the density of states of an inhomogeneous superconductor in a magnetic field where the
positions of vortices are distributed completely at random. We consider both the caseswd andd-wave
pairing. For both pairing symmetries either the presence of disorder or increasing the density of vortices
enhances the low-energy density of states. Insheve case the gap is filled and the density of states is a
power law at low energies. In tleewave case the density of states is finite at zero energy and it rises linearly
at very low energies in the Dirac isotropic cagg,Et/Ag=1, wheret is the hopping integral and is the
amplitude of the order parame}eFor slightly higher energies the density of states crosses over to a quadratic
behavior. As the Dirac anisotropy increasasA, decreases with respect to the hopping tettme linear region
decreases in width. Neglecting this small region the density of states interpolates between quadratic and back
to linear asap increases. The low-energy states are strongly peaked near the vortex cores.
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[. INTRODUCTION breaking creates two new classes designated spin quantum
Hall effect | and Il, due to their similarities to the usual
The interaction between the superconductor quasiparticleguantum Hall effect, corresponding to the hard and soft scat-
and the vortices induced by an external magnetic field hagering cases, respectivelylhe proposed formation of a pair-
been a subject of considerable recent intefesin the pres-  ing with a symmetry of the typd+id breaks time-inversion
ence of vortices the quasiparticles feel the combined effect afymmetr§ but up to now remains a theoretical possibility.
the external magnetic field and the spatially varying field ofOn the other hand applying an external magnetic field natu-
the chiral supercurrents. By performing a gauge transformarally breaks time-reversal invariance and therefore it is im-
tion to effectively reduce the system to the one in a zergortant to study the density of states in this case.
average magnetic field it was shothat the natural low- In general, disorder is due to the presence of impurities
energy quasiparticle modes are Bloch waves rather than thehich may either scatter the quasiparticles and/or may serve
Dirac Landau levels proposed in Refs. 1 and 2. The results axs pinning centers for the field induced vortices. The density
Ref. 3 also showed that the quasiparticles besides feeling @ states of a dirty but homogeneosisvave superconductor
Doppler shift caused by the moving supercurrétolovik  in a high magnetic field, where the quasiparticles scatter off
effect also feel a quantum “Berry-like” term due to a half- scalar impurities, was considered using a Landau-level
flux Aharonov-Bohm scattering of the quasiparticles by thebasis® For small amounts of disorder it was found that
vortices. p(€)~ €2 but when the disorder is higher than some critical
The effect of disorder on the low-energy density of statessalue a finite density of states is created at the Fermi surface.
of superconductors has also been a subject of much recelt the same regime of high magnetic fields, but with ran-
activity,® particularly in the case of-wave symmetry. Sev- domly pinned vortices and no impurities, the density of
eral conflicting predictions have appeared in the literaturestates at low energies increases significantly with respect to
which have mainly concentrated on the effect of the presencthe lattice case suggesting a finite value at zero endrgy.
of impurities. Some progress toward understanding the disReferences 11 and 12 considered the effects of random and
parity of theoretical results has been achieved realizing thadtatistically independent scalar and vector potentials on
the details of the type of disorder affect significantly thed-wave quasiparticles and it was predictethat at low en-
density of state3.Particularly in the case af-wave super- ergiesp(e)~po+ae?, where p,~BY2 The effect of ran-
conductors, in contrast to conventional gappetave super- domly pinneddiscretevortices on the spectrum ofdwave
conductors, the presence of gapless nodes is expected to afiperconductor was considered recently and a preliminary
fect the transport properties. Using a field theoreticreport was presented in Ref. 13 for the isotropic case. In this
description and linearizing the spectrum around the foumwork we study the density of states as a function of vortex
Dirac-like nodes it has been suggested that the system gensity and consider the effects of the Dirac anisotropy. We
critical. It was obtained that the density of states is of thealso study the local density of staté€DOS) and the inverse
type p(e)~|e|*, wherea is a nonuniversal exponent depen- participation ratio(IPR), and study the effect of disorder on
dent on the disorder, and that the low-energy modes are exhe localization of the low-energy states.
tended stategritical meta).® Taking into account the effects The nature of the low-energy states in the presence of a
of internodal scatteringhard scatteringit has been shown single vortex withs-wave symmetry was solved long atfb.
that an insulating state is obtained instead, where the densifjhere are localized bound states in the vortex core. The
of states still vanishes at low energy but with an exponentl-wave symmetry case led to some early controversy but it
a=1 independent of disordéThe addition of time-reversal was eventually clearly demonstrated that the low-energy
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states, even though strongly peaked near the vortex corgjith extended states rather than with localized states. This is
extend along the four nodal directions and are indeed delgprobably a consequence of finite-size effects indicating that
calized as shown by the behavior of IPRIn the vortex the system sizes considered are smaller than the localization
lattice the states are naturally also extenti&tn the clean length.
limit it is therefore expected that the external field will in-  In Sec. Il we describe the model and present the BdG
crease the low-energy density of states. The expectation thgfuations to be solved, and consider the effect of the vortices
these are delocalized is evidenced by the increase of the the?D the supercurrent profiles. In Sec. Il we study the effects
mal conductivity with field” in contrast to the reducing ef- ©f Positional disorder os-wave superconductors. In Sec. IV
fect of conventional superconductdfs. we cons@erd-wave superconductors for t'he isotropic and
The addition of impurities in zero magnetic field has been@nisotropic cases. Also we study the spatial structure of the
studied using the Bogoliubov—de GenrfBgIG) equations. It low-lying quasiparticle states. We end with the conclusions.
was found that thel-wave superconductivity is mainly de-
stroyed locally near a strong scatterer. The superfluid density Il. DESCRIPTION OF THE MODEL
is strongly suppressed near the impurities but only mildly

affected elsewherf. No evidence for localization of the The strong correlations of the highy materials are typi-

low-enerav states was found and accordinaly the superflui ally modeled using a Hubbard-like Hamiltonian for the
W 9y W 4 INgly upertiuigecirons. The superconductivity is considered using a BCS-

dens%( |s||n<:ﬁe%suppress??hbut I_f_ssltthan exp?&baln_?ﬁ di like formulation which provides good agreement with ex-
accordingly, the decrease ot the critical temperature With diSy o yental results. Even though the normal phase of these

order is much slower than the previously expected in acco materials is particularly challenging it is by now accepted

g:gcg Vg':gef)(pzrr';nn?gf;s'n;'ﬁr ;?Ssgltsc)&;_?]nedlnmo%e— that the phenomenology in the superconducting phase is rea-
u P w : v sonably well described by the BCS theory.

superconductors
The question we address in this paper is the influence of

the positional disorder of the vortices on the quasiparticle

states of either as- or ad-wave superconductor in an exter- ~ We will consider the lattice formulation of a disordered

nal magnetic field and we will not consider the scattering offd-wave superconductor in a magnetic field. We start from the

impurities. Typically, in a BCS-type superconductor, vorticesBogoliubov—de Gennes equatiori$y= ey where '(r)

and quasiparticles see different disorders, due to their differ= (u*(r),v*(r)) and where the matrix Hamiltonian is given

ent scales. Vortices are large objects and their cores, even by

high-temperature superconductors, are significantly pinned R R

only by very strong “catastrophic” disorder which is often " ( h A

A. Bogoliubov—de Gennes Hamiltonian

quite localized—a fine example is a hole punched through a 1)
lattice of YBgCu;O; (YBCO) or Bi,Sr,CaCyOg irradiated
by ions and riddled with such “columnar pins.” In contrast, with®16
no low-energy quasiparticles go through these columnar pins
but are rather scattered by more microscopic forms of disor- e —IE exp{
der. A realistic system well described by our model is there- =
fore a high quality YBCO crystal irradiated with a low den-
sity of columnar pins. and
Also, previous studies of the influence of impurities with
no magnetic field applied showed interesting low-energy A:AOE elii2)¢(r) ;lae(i/2)¢(r)- 3
densities of states but which vanishes at zero energy. Previ- )

ous studies of the influence of vortices on the density of., . o o - ouer nearest neighbods=¢-x, =y on the

states of clean syst_en(nBo 'F“F’“”“ef) reveale_d a qualltat_lve square lattice A(r) is the vector potential associated with
change due to the interactions of the quasiparticles with th(ﬁ1e uniform external magnetic fieBl=V x A, the operator

circulating supercurrents around the vortices. Furthermore, ; ) ) )
the study of independent scalar and vector random potentiaf IS defined through its action on space dependent functions,
yielded a finite density of states at zero energy. It is thereforesu(r)=u(r + ), and the operatos ; describes the symme-
interesting to separate the effect of randomly pinned vorticedy of the order parameter.
on the quasiparticles since we expect this to be the dominant The application of the uniform external magnetic fi&@d
effect in these disordered systems at low energies. generates in type-ll superconductors compensating vortices
We obtain that the low-energy states are strongly peakedach carrying one-half of the magnetic quantum flgy/2.
near the vortex locations as evidenced by the LDOS. AWe take the London limit, which is valid for low magnetic
higher energies the states have a very uniform distributiofield and over most of théd-T phase diagram in extreme
throughout the system. For these states the IPR scales gge-Il superconductors such as the cuprates, assuming that
1/L? indicative of extended states. In the case of the lowthe size of the vortex cores is negligible and placing each
energy states the same quantity does not follow this scalingortex core at the center of a plaqueftait cell). The N,
but does not saturate either. The results indicate at best\artices are distributed randomly over thex L plaquettes.
large value for the localization length but are more consistenin this limit we can take the order parameter amplitude

ie (r+é R
_%fr A(r)'d|:|55_6|: (2)
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constant everywhere in space and we can factorize the phagemponentsg,(r) and ¢g(r) which are assigned, respec-
of the order parameter as shown in E8). tively, to a set of vortices\, positioned a{r{};_;,, and a

At this stage, it is convenient to perform a singular gauge : " By :
transformation to eliminate the phase of the of“f-diagonalSet of vorticesB, positioned ar; }':1“8' The phase fields

term (3) in the matrix Hamiltonian. We consider the unitary ®»=a aré naturally defined through the equation
Franz-Téanovicgauge transformatiohl— ~*HU, wheré

ARG VXV, (r)=2mz>, S(r—rh), (5)

I
“:( 0 eiasB(r)) ) _
where the sum runs only over thetype vortices. After car-

with ¢a(r) + ¢g(r) = ¢(r). The phase fields(r) is then de- rying out the gauge transformatidd) the Hamiltonian(1)
composed at each site of the two-dimensional lattice into twaeads

-1, A ~ . ~ .
_t25 e|V§(r)sﬁ_ €r AOES e—|(5¢/2)776e|(6¢/2)
H = . (6)
Aoz e—i(5¢/2);]1(;ei(5¢/2) tE e—ivg(r)gﬁ+ €
3 3

The phase factors are given By V’g(r)zf{”kg‘-dl lengthL. As shown in Fig. 3 of Ref. 13 the scaling with the
and S¢(r)=ga(r)— ¢a(r), where AikL=mvi=aVe, system size is quite good and we do not expect noticeable
—(elc)A is the superfluid momentum vector for thesu-  finite-size effectgexcept perhaps very close to zero engrgy
percurrent. Physically, the vorticésare only visible to the In order to compute the eigenvalues and eigenvectors of
particles and the vorticeB are only visible to the holes. the Hamiltonian(6) we seek for eigensolutions in the Bloch
Each resultinge subsystem is then in an effective magneticform ¥, (r)=e '* (U}, V%) wherek is a point of the
field Brillouin zone. In the following we will label these eigenso-
lutions with the indexn=(n,k). We diagonalize then the
Hamiltoniane ™™ "+’ e'*"" for a large number of points in

the Brillouin zone and for many different realizations
(around 100 of the random vortex pinning. The results of
where each vortex carries now an effective quantum magtese computations are shown in Sec. Il for theave dis-

netic flux ¢. For the case of a regular vortex lattit¥,  ordered superconductor case and in Sec. IV forctiveave
these effective magnetic fields vanish simultaneously on avdisordered superconductor case.

erage if the magnetic unit cell contains two vortices, one of
each type. More generally, in the absence of spatial symme-

tries, as it is the case for disordered systems, these effective B. Profiles of supercurrents
magnetic fieldsB%; *® vanish if the numbers of vortices of  The ,, superfluid wave vectdk’(r) characterizes the su-

the two typesh andB are equal, i.eNo=Ng, and their sum  percyrrents induced by the vortices. This vector can be

equals to the number of elementary quantum fluxes of theaicylated for an arbitrary configuration of vortic&tke
external magnetic field penetrating the system. As the num-

ber of vorticesN, in the two-dimensional system of site

X L is proportional to the quantized magnetic flux piercing d?k  ikxz ) u
through the system, we choose to parametrize the magnetic- ké‘(r)=277f —— o 2, €T (g
field intensity by the ratio of the number of vorticel,, (2m)" KT+ A7 1=

=Na+Ng, to the number of lattice site&=N, /(L XL).

We consider here the disorder induced by the random pinHere \ is the magnetic penetration length and the sum ex-
ning of theN, vortices over the two-dimension&IXL lat-  tends over the infinite number pf-type vortex positions. We
tice. As the effective magnetic fieldg) experienced by the consider the case— o which is an excellent approximation
particles and the holes vanish on average within the gaug@ extreme type-Il systems such as high-temperature super-
transformation(4) we are allowed to use periodic boundary conductors. In this limit the repulsive interaction between
conditions on the square latticE¥W(x+nL,y)=V¥(x,y vortices is not screened and therefore the vortex distribution
+mL)="(x,y) with n,meZ]. The LXL original lattice is not strictly arbitrary—long-range interactions will try to
becomes then a magnetic supercell where the vortices aferce the vortex system to take only incompressible configu-
placed at random with a mean intervortex spacifig rations. For the purposes of this paper, we assume that the
=1/\B. The disorder in the system is then established over @inning centers are strong enough to overcome the vortex

mc
Bgﬁ=—?v><vg=8—¢022 S2(r—rh), 7)
I

094503-3



J. LAGES, P. D. SACRAMENTO, AND Z. TESNOVIC PHYSICAL REVIEW B 69, 094503 (2004

24

NI
7
7

24

N

— ———————— ——— ot et e e e : .
SRR N N RSP S T I N r 2V NV Vv y T X <Ak E gy -
22 b—AAxre—‘—\\‘VvAAA/x/r«‘—‘*“v— P73 RN N B I B I B S - /‘J
L s g . '\\\\y,A,/‘(}\ R K oy LIRS IR A T ) /
20" ¢/ > y X WY A4y / \ ,\/)/\ » WML bbreesSS T < sy vl -3
L ., ¢ L ‘L,/. ’ f A/ L b A b K{),\«\ RN R ¥ ¥ <y oy 7
B w & B/ R ARBAY , t o] 18,4,,*#/,’_\-‘ VR b n a2k
@ \ B 7 I “\ \ vaic I R J ~y B v R oy v & pd ¥TY
16 F « x n ~ LA AR B NP N, A R 614 vy /, /r'tktvrr\-yv-va:'v—v
4‘\\-»»«',{1vvsA.\\_,4fv~vv-‘ ERER \ 7EAN R R R Y NN T T T oy 4
1B s s e a4 .\\; > v v v v 1 F N v vy \;\}_)«74 re e R KR K AN A 4 g 5y 5
Y L IR R 2 A R S e R R I SRR R Y N T “ XN R KA L q g
120" ,/(, O L U O O 12F Y v v v v 88y oy ~ vl 4 4 7
S N 4<vvv.,4A....<§\vy,. "VVVWVVV‘*IV¢ B/ Tf444-,
10 » > £ « « - = A R I U N I ST \\i v — 10 Y v v v £ 8 2V 9 g :’.‘ r o4 4 4 >
-y \\x.vA,,")\ NN oW s P TR P 4.4 4 454 4
, ‘ o
s ¢y vah,‘/_,\ k\;. 8"w¢¢:X,‘_“""’*‘> AR A A v
v A ) *pr" B oA Y E vy '\ A 7 > > >TAA A 1 4 4 5, Vv
sk ‘ L IIPTIE B / LR 6t vy } 'T?‘ﬂaaaazﬂﬂq,q,‘vv_,
NN \ /f"A.‘ < 7 1 4] F vy / 27 72 7 7 72 7 944 A £ v 4
4 F <N NN Pty R oA oy R a1 v A N 722 4 7 7 v 9144 rv < < b
“\\\ﬁalﬂivybA“\—b—.ﬁlllivq ,,,)‘\;.\_; AXT 7 A A 4 1 7 914 A v << < < & o
P R G I A A A O AP AR A 2V 4 N NPT T T A 414 4 v <<€ < <
N S RN | | - .VI‘J)].J 2 U S Lo Lo Lo Lo Lo o o bocp Al g ) ] g
2 4 6 8 10 2 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24

FIG. 1. (Color online Vector field plot showing the profile of FIG. 2. (Color onling Vector field plot showing the profile of
the conventional superfluid wave vecta= 3 k&+kB) foraregu-  the conventional superfluid wave vectar=3(k5+kZ) for a ran-

lar vortex lattice and foB=1/144. dom configuration of vortices and f@&=1/144.
repulsion over the length scales relevant to experiments. k@(r)+ksB(r) 1 e
Thus, we are considering the limit of strong pinning. We Ks(r)= 2 :§V¢_ EA- (10

have checked that the case with a random distribution of

vortices is qualitatively the same as for the case where th# Fig. 1 we show the profile of the supercurrent velocities in

vortex positions are allowed to vary with a radius of a fewthe lattice case. The unit cell has two Vortices, one of each

unit cells around a regular lattice position. type A and B. In Fig. 2 we show the supercurrents for an
The Iu_superﬂuid wave vector distribution is Comp|ete|y arbitrary Configuration of the vortices. For example, the 24

determined by the Conﬁguration of thevorticesy as can be X 24 lattice shown in Flg 2 can illustrate a disordered super-

seen from Eq(8) and is independent of the pairing symme- cell corresponding to a magnetic fieRl=1/144 with two

try. Since we are taking the London limit, where the vortexA-type vortices and tw@-type vortices. As it should be, the

core size is negligible, we neglect any possible differentabeling of theA- and theB-type vortices is completely ar-

symmetry contributions from inside the vortex ctrand the bitrary. The intensities of the supervelocities for the regular
chiral supercurrents simply reflect the circulation of the su-2nd the disordered vortex lattice peak around each vortex

perfluid density around the vortex. and decrease rapidly outside the vicinity of the vortex core
In order to compute efficiently the-superfluid wave vec-  (~56).

tor we use the translational symmetry introduced by the pe-
riodic repetition of thel X L supercells and then we are able Ill. DISORDERED s'WAVE SUPERCONDUCTORS

to use the Fourier series representation of expresgan

e.g For the conventionas-wave case the operator character-

izing the symmetry of the order parameter is const&@t
=1, and the off-diagonal terms of the Hamiltonié®) are

. N . A e
KE(r) = 2im > QXz & e © then considerably simplified
(L)% d70 Q? i=1
—t> Vo5, e A
whereQ=(27/L5)(n4,n,) with ny,n,eZ. We remark that H = °
the sum over vortex positions runs now only over théype CivBa
vortices within a supercell and not, as in H§), over the Ao tEﬁ e oSyt €r
infinite number of w-type vortices present in the two- (12)
dimensional system. The price to pay for this procedure is
the preceding infinite sum over the reciprocal vec@rs\Ve The sswave Hamiltonian(11) describes coupled particles
truncate this latter sum when the convergence of each conand holes evolving each in an effective magnetic field com-
ponents ofk4(r) in each lattice point is attained. posed by the external magnetic field and the counteracting

Figures 1 and 2 show examples of distributions of thefield of ¢, flux carrying vortices. The effective magnetic
conventional superfluid wave vector which is half the sum offields are characterized by the Peierls phase fadt@?§'8.
the two types of superfluid wave vector, Independently of the system being disordered or not, the tails
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FIG. 3. Quasiparticle density of states for thevave symmetry
and for a regular lattice of vorticéso disordey. The magnetic field

is B=1/18, the magnetic unit cell contains two vortices piercing an ) ! 1 0
area of 6x6. The parameters age=—2.2 andAy=t. e/t

. . FIG. 5. Quasiparticle density of states-Wave for different
of the quasiparticles spectrunest A,) are expected to be magnetic fieldsB = 2/200 (A), B=4/200 @), B=7/200 (1), B

defc”g.e‘j gy q“a”;'zed k';a”ga“ !e"e'fs' ‘o a figq =120 @), andB=201200 () in units of he/(2es?). The
B n Fig. 3 we show the density of states for a fi linear system size ik =20 and the parameters age= —2.2t, A,
=1/18 in the case of no disorder. The gap is clearly seen aL; ror cjarity the different curves are vertically shifted.

low energies characteristic afwave symmetry. The states

inside the gaggfor || <t in Fig. 3) are the typical Caroli—de o . )

Gennes—Matricon bound statésAt higher energies the _of.the quaS|part|pIe density of states for the low energies. As

Landau levels are clearly visible. it is shown in Fig. 5 the density of states seems to be de-
In Fig. 4 we show the effects of disorder for the same Scribed by the power-law formula

field in a lattice of 1& 18 sites (18 vortices The gap is

filled by the disorder. The reader should observe here that

our disorder is in certain sense ‘“infinite” since we place p(e)~e”. (12)

vortex positions completely at random. Thus, it appears that

such full randomness in vortex positions, generated by strong, Fig. 6 we fit the magnetic-field dependence of the expo-

pinning, suffices to close the gap in the single-particle denhenta This exponent obeys the following law:
sity of states. In contrast, the Landau-level quantization ' '
structure clearly persists at high excitation energies. In gen-

eral the increase of the magnetic field modifies the curvature a~cl—d, (13)

p(e) where ¢=1/\B is the mean intervortex spacing amdis

- found close to 1. In the cases of a strong magnetic field the
density of vortices is high and strictly we are in a regime
0.4H H where the size of the vortex cores cannot be neglected. In
this regime the Landau-level structure at high energies is
clear and it extends to low energies superimposed by the
effects of disorder. The lower limit for this high magnetic-

02H field regime is the valu®=0.16 for whicha=0 in Fig. 6.

IV. DISORDERED d-WAVE SUPERCONDUCTORS

6 4 2 0 2 4 6 For the unconventional-wave case the operatay; takes
eft the form 75=(—1)%s;, we recall thats; acts on spatial
FIG. 4. Quasiparticle density of states for thwave symmetry ~ dependent functions assu(r)=u(r+ ) and thaté=*x,
and for a disordered lattice of vortices. The magnetic fiel®is *Y characterizes unit displacemeritsops on the lattice.
=1/18 and the linear system sizelis=18. The parameters age ~ With these definitions the&l-wave Hamiltonian can be de-
=—-2.2t andA,=t. rived from the Hamiltoniar(6) and reads
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FIG. 7. (Color onling Quasiparticle density of states for the
FIG. 6. Magnetic-field dependence of the exponerextracted  d-wave case withoutdashed ling and with disorder(solid line).
from the power-law fipp(€) ~ €* of the data presented in Fig. 5. The The intensity of the magnetic field i8=1/121, A=0.5, u
symbols (), (W), (O), (@), and O) denote the same values of =—2.2, and the linear system size lis=22.
B as in Fig. 5; the symbols+) denote others values d@ not

presented in Fig. 5. theory on the lattice regularized this problem and indeed the
system has a manifest internal gauge symmetry such that the
VA2 FAL)+imS spectrum is independent of tlheB vortex assignments, as it
_tE,; eos; e AOE,; eI, sﬁould be. Morepover, the lattice formulatiogrjl explicitly in-
H' = , volves internodal contributions which are important for the
A, e MdD-imog o > efiiff‘;(r)glfr € properties of the density of states in the disordered case. In
o o

the vortex lattice case, however, it was found that only in
(14 special commensurate cagéx the square lattioegthe inclu-
where the phase factotr) has the form sion of the internodal contributions is re_Ievant since only in
such cases a gap develops due to the interference terms be-
1 (r+é 1(r+é tween the various nodes, estimated to be of the ordefBof
Asr)= Ef (Va—Vp)-dl= EJ (k&—KS)-dl. In a general incommensurate case the interference is not rel-
' ' evant leading to qualitatively similar spectra. In tthevave

(15 . . ) :
case the spectrum is gapless with a linear density of states at
In the Hamiltonian(14) and in Eq.(15) the vector low energy*® One would therefore expect that in a general
disordered vortex case internodal scattering might not be rel-
as=5(k§—kg) (16)  evant (particularly for high Dirac cone anisotropyp

. . : :UF/UA:t/A0>1).
acts as an internal gauge field independent of the external In Fig. 7 we compare the densities of states for the lattice

r:anQeUCC(];Ir?L?ZtS Z?i asossc;::;tBeds '?&ernﬁhgzgggﬁ g'::d _ case and a case with disorder. At weak fields the density of
& bp P V" states is small at low energies having a dip close to zero

e o1 mpef10%. We hae checked o intesize sfects on th spec
of A- andB-type vortices are the same {ftum. For system sizes Iarger than X166 the densny_of .
' states at not very low energies converges and the finite-size
. dependence is negligible.
A. Differences from the regular vortex lattice case

The situation where the vortices are regularly distributed
in a lattice was treated befofé® Since the average effective
magnetic field vanishes it is possible to solve the BdG equa- In this section we will focus our attention on the isotropic
tions using a standard Bloch basis—the supercurrent veloctaseap=1 in order to extract the general dependencies of
ties are periodic in space and there is no need to consider tlike quasiparticle density of states in the magnetic fild
magnetic Brillouin zone. Taking the continuum limit and lin-  In Fig. 8 we show the density of states for a system with
earizing the spectrum around each node effectively desize 20<20 and for various magnetic fields. The density of
couples the nodes. It was shown that the low-energy quasstates at small energies is finite up to quite small energies
particles are then naturally described as Bloch wheesl  where there is a dip to a value that decreases as the magnetic
not Dirac-Landau levels as previously proposédHowever, field decreases. Only for quite small magnetic fields the den-
it was found that in the linearized problem different assign-sity of states approaches zero at the origin. Neglecting the
ments of theA and B vortices lead to somewhat different narrow region close to the origin we have fitted the density
spectra, which was unexpect¥dt was found that defining of states using the power law

B. Isotropic case
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FIG. 8. Quasiparticle density of states for tthevave case and eft Bms/t
for different magnetic fieldB=1/200 (A), B=3/200 (A), B o )
—5/200 @), B=7/200 (), B=9/200 (®), B=11/200 ©), B FIG. 9. Low-energy quasmartlcle de.nsﬁy of stapdg) for the
=20/200 (¢), and B=25/200 (¢) in units of hc/(2e2). The d-wave case and for different magnetic fielBs=1/200 (A), B
linear system size it =20 and the parameters aue= —2.2t, A, =3/200 (&), B=5/200 @), B=7/200 (), B=9/20_0 (.)_, B
=t. The inset shows the fits of the density of stateslid lineg :11/202 ©), B=20/200 (¢ ), and B=25/200 (¢) in unit of
inside the presented energy interval. For clarity not all the fits ard'C/(2€6°). For each data sets the linear system size<20, the
shown. same as in Fig. 8. In the left panel the solid lines are linear fits of

the dip region belove=0.02 of the typep(€) = pogipt B €|. In the
right panel we present the near scaling at low eneries text

p(€)=po+ Blel. 17
: . , : where oy~ AB and F is a universal function. In the left
In the inset of Fig. 8 we show the fits for the various values “H

S . . .~ ““panel of Fig. 9 we show(e) for various fields while in the
of the magnetic T'eld' Reas&nable fits are obtained _talmn_g right panel we illustrate the near scaling at low energies con-
~2 and we obtain thgi,~B™“. The various system sizes fit

in th . | indicating that the finite-si sistent with/(x)~c;+c,x at smallx. Note that3(B—0)
In the same universal curve indicating that the Tini e'S'Z.eappears to be small but finite, consistent with a crossover to
effects are negligible. Note that in the lattice case the densit

M » : _ 2
of states at low energies is linéaf?>?5[this result differs & “Dirac node” scalingp(e) ~(Lwy) (11%) F(eloy) at very

from the behavior obtained by others fodavave supercon- low fields.
ductor with no disordet?’ wherep(e~0)~BY?. The finite
density of states at zero energy is therefore a consequence of (€) o
finite disorder. P& 0% 03

In Fig. 9 we focus on the narrow region closeete O for 0.4k -
the same set of parameters considered in Fig. 8. Except for
the lowest field cas8=1/200 the density of states seems to
be finite at zero energy. Here the field dendty 1/200 cor-
responds to the particular case where only two vortices
pierced the 28 20 disordered supercell. As shown in Ref. 25
in this case the spectrum is usually gapped and therefore the 0.2
density of states vanishes at zero energy. Performing a fit like
in Eq. (17) we obtain an exponent which is now close to 1.
In this regimepqj, also scales with/B and the slope scales
linearly with B. In this low-energy regime the finite-size ef-
fects are still noticeable but the dependence on the magnetic 0 , 1 ; 1 .
field is common to the various system sizes. At these low 0 0.5 1 L5

. . ; , e/t
energies the density of states for the various system sizes
appears to be of the following approximate form: FIG. 10. Quasiparticle density of states for th&vave case for
different values of the anisotropy parameteg=1 (O), ap=2

1 1}_( € 52) (@), ap=3 (O), ap=4 (M), andap=>5 (V). The magnetic-field

ple)~— — (18 intensity is B=1/100. The linear system size Is=20 and the
wy |2 chemical potential igt= —2.2t.
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0.4
p(e)

0.2
Po

FIG. 11. Fits of the data presented in Fig. 10.
Upper left panel: quasiparticle density of states
presented in Fig. 1(the same symbols are uged
as a function of the rescaled energh\,. Solid
lines are fits of the power-law typg(€)=pg
+I'(e/Ag)“. In the other panel solid lines are
linear fits. Upper right panel: zero-energy quasi-
particle density of states, as a function of/ap.
Lower left panel: Power-law exponeni as a
function of 1A/ap. Lower right panel: Parameter
I' of the power law as a function of &}, .

i i i 1 1
0
0 1

%—O.Sz(AO/t)O.S %—leO/t

C. Anisotropic case

and the parameter
We investigate now the dependence of the quasiparticle

density of state on the value of the Dirac anisotropy ratio I~ ﬂ (22)

ap. Such a study is interesting in order to compare our t

results with experiments; indeed for high-superconductors . . ) .
such as YBgCu,O, and BLSr,CaCuyO; the Dirac anisot- The dependence of the exponent is interesting since in the

ropy ratios aré’?® respectivelyp~14 andap=~19. isotropic case we retrieve=2 and with increasing anisot-

In the lattice case a high anisotropy increases the density S —
of states at low energies and leads to lines of | 1

quasinoded:’®2° At high anisotropy (y<t) the nodes are ng(g) ool m & e
very narrow and a one-dimensional-like character is | [ o ¢, 7
evidenced. X //’/

As shown in Fig. 10, the low-energy quasiparticle density 0.005 = "

of states at constant field is filled when the anisotropy pa-
rameter ap is increased. There is a narrow linear region
close to the origin that decreasesas increases. Figure 11
shows the power-law fits of the data presented in Fig. 10
neglecting a very narrow region of widtk0.025 around
€=0. It turns out that the low-energy quasiparticle density of
states has the form

€ \ @
p(€)~pot+T A) 19
0
with zero-energy density of states
t
Po~ Eo’ (20) FIG. 12. Inverse participation ratié as a function of the qua-
siparticle energy for B=1/25 and for different linear system sizes
the exponent L=10 (O), L=20 (#), andL=30 (A). Inset: scaling of the
inverse participation ratio with IL? for states in the close vicinity
_ ﬂ of the Fermi surfacée|<0.0% (&,, W) and for states with energy
a=1+ , (21
t lel=t (¢10, @).
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FIG. 13. (Color online Upper left panel: Density plot of the quasiparticle local density of stafese) for e=0. Lower left panel:
Density plot of the quasiparticle local density of stagi€s, €) for e=t. Upper right panel: Vector field plot showing the profile of the internal
gauge fieldag= %(k@— kSB). Lower right panel: Vector field plot showing the profile of the conventional superfluid wave \Aeseké'(ké
+k§). All the panels correspond to the same configuration of the vortex pinning and to the same magnegie fiéld4.

ropy the exponent decreases téske lower left panel of Fig. the value of the order parameter is getting small and of the
11) characteristic of the Dirac nodes. A=0 and for a high  order of the Landau-level spacing, which means that the den-
Dirac anisotropy ratio the quasiparticle density of states flatsity of states oscillates significantly at low energies. How-
tens since the coefficiedt in Eq. (19) decreases with . ever the behavior with the anisotropy is well controlled, as
The typical values of the anisotropy parameter in opti-evidenced by the scaling of the critical exponentith the
mally doped cuprates are considerably larger than unity amverse square root of the anisotropy, since it extrapolates
stated above. In underdoped systems the anisotropy dropery well to the Dirac limit in the limit of very large anisot-
rapidly with doping and it is unlikely that settingp=1 is  ropy.
unrealistic in any qualitative sense. However, the anisotropy
affects the values of the parameters and in particular the
value of the exponent of the density of states, as shown in
Fig. 11. In Fig. 10 we have limited the results to a value of As discussed above, the nature of the low-lying states is
the anisotropy of the order of five since for large anisotropiean important issue in the presence of disorder. A standard

D. Spatial structure of the low-lying quasiparticle states
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(16)16)
(15}15)

(14]14)

(13 "

(12/12)

FIG. 14. (Color online Quasiparticle local
density of statep(r,e) for the d-wave case at
different lattice sites r=(11,11), (12,12),
(13,13), (14,14), (15,15), (16,16) around a vor-
tex positionr,=(13.5,13.5) belonging to a regu-

(a111)

Wy
il

|In|||i|||||| ‘ '|

w'

o ||I||||I|\|||||||||””‘|H

"y i" T wl\h ””" l (16,16) lar vortex lattice. The magnetic field B
i 1o Ty '| (15,15) =1/144. The other parameters akg=t and
Q. 50 ML =—-2.2t.
) 0.0
2 (57 vorie posiion
=T s
way to analyze the nature of the states is to study the inverse 5 5
participation ratioqIPR). The IPR is defined in the usual way P(r,€):§n: (Jua() "+ ]vn(N]9) 8(e—Ey) (24

as

is strongly peaked near the vortex cofapper left panel of
< (Jun(D) |4+ ]v (1] %) 8(e— En)> Fig. 13. At higher energies{=1) the LDOS 'is r.nuc'h more
_\nr homogeneously spread over the system indicative of ex-
&le)= ) ) 2. (29 tended states; the values of the LDOS over the lattice are
< s (Jun()[*+[vn(r)] )5(€_En)> approximatively constant and slightly fluctuate around the
’ expected value for extended states?H 0.0017 (lower left
panel of Fig. 13
The brackets denote the averaging over disorder configura- The right side panels of Fig. 13 show the profiles of the
tions. The IPR¢ is a direct measure of the spatial extent of internal gauge field, (upper paneland of the conventional
quasiparticle wave functions. It scales ak?for fully ex- superfluid wave vectdk, (lower panel corresponding to the
tended states and is constant for localized states with locakame configuration of vortex pinning as used in the compu-
ization length¢ <L. tation of the LDOS(left side panels For the profile of the
Figure 12 presents the IPRas a function of the quasi- superfluid wave vectdk; the intensity of the supercurrents is
particle energye and for different system sizels. All the  peaked around each vortices and rapidly decreases as the
states are well extended, since there is no size dependengferse of the square of the distance to the vortices. The
for the qu_antityng(e), except those ip the close vicinity of profile of the internal gauge fields is more interesting. It
the Fermi surfage|(s|<0.5t). In the mget of Fig. 12 we depicts the two types of vortices and B whirling in oppo-
present the scaling of the IPRwith 1/L°. We consider an  gje girectiongsee upper right panel of Fig. LDue to this
average over states at the Fermi surface Wéfk-0.03 (o pposite circulation around- andB-type vortices, the inter-
in the insef and an average over states wétit (£,in the action between aé\- and aB-type vortex produces signifi-

insey. The states close te=t are clearly extended since the cant field currents between the vortices. Figure 13 shows a

scaling with l.L is quite accurate. The nature_ of the Statesspatial correlation between these intervortex currents and the
close toe=0 is somewhat less clear. From Fig. 12 we see

ST . inhomogeneity of the local density of states between the vor-

that the quasiparticle states closeee 0 deviate from the . .
strict 1.2 scaling law(see the weak intercept @ in the t|(_:es for the low-lying stateg=0 (see upper left panel of
inset of Fig. 12, however our results show an obvious sizeF'g' 13. )
dependence fog, and do not show a saturation & with If we compare now the rgsults for the LDOS with those
the linear system size. This latter fact indicates, using the or the IPR ¢ for the low-lying states, we can argue the
hypothesis of an eventual localization of these low-lyingfollowing: as the participation rati@, = physically counts
states, that we are still far from the thermodynamic limit with the number of lattice sites occupied by the quasiparticle
the linear system sizes we can currently attain within outvave function(r), and as the low-energy states are mainly
model. located around the vortices, the participation raﬁg)l

To gain further insight into the nature of the low-lying should scale for a fixed magnetic field as the number of
states we show in Fig. 13 the LDOS for the states close twortices in a supercel§51~N¢~BL2. This argument ex-
e=0 and those close te=t. At low energies the LDOS plains the fact thag, in the inset of Fig. 12 seems to follow
defined by the 1L2 without saturation, the weak intercept being then
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sl
(7118)
(617)
.
(l15) FIG. 15. (Color onling Quasiparticle local
alia density of statep(r,e) for the d-wave case at
different lattice sitesr=(3,14), (4,15), (5,16),
(6,17), (7,18), (8,19) around a vortex position
=(5.5,16.5) belonging to a disordered vortex
lattice. The magnetic field i8=1/144 and we
— use the 24 24 disordered supercell used in Fig.
:_‘2\ 40 13. The other parameters arg,=t and pu=
) —2.2.
-
on ,16) vortex position
Q oo r,=(5.5,16.5)
Q <

negligible. The low-lying quasiparticle states appear then temall magnetic fields. The density of states deviates from the
be delocalized although strongly peaked around the vortexero-energy value by a power law. The zero-energy density
cores. of states scales with the inverse of the magnetic lengB)(

We present now a spatial scanning of the LDOS in theln the d-wave case the Dirac anisotropy further increases the
vicinity of a vortex core for the case of a regular vortex weight of the density of states at low energies. Also it affects
lattice (Fig. 14 and for the case of a disordered vortex latticethe exponent of the power law. In the isotropic case the ex-
(Fig. 195. For both cases the LDOS away from the vortexponentis 1 at very low energies and around 2 neglecting this
core are qualitatively the same and are comparable to that efarrow region. In the linear regime the density of states is of
a d-wave superconductor in a zero magnetic field. Also forthe form of a scaling function of the energy and the magnetic
both cases the low-lying states are predominant in the closkeld. As the anisotropy increases this narrow regime shrinks
vicinity of the vortex core but their respective spectra areconsiderably and, neglecting this region, the exponent of the
different. For the regular vortex lattice caggig. 149 we  density of states interpolates to 1 which is the Dirac limit.
resolve a double-peak structure around the vortex core. Thihis limit is also obtained in the zero-field limit in the iso-
result is in qualitative agreement with the double peak intropic case. Except for the zero-energy finite value the en-
conductance observed in YBau;O_ 5 by scanning tunnel-  ergy dependence of the density of states in the case with
ing microscopy’’ For the disordered vortex casEig. 19  disorder is similar to the lattice case. This suggests that the
zero-energy peaks appear in the close vicinity of the vortexortex disorder does not dramatically affect the density of
core(closest neighbor sitesnd rapidly disappedtypically  states at low energies. An analysis of the IPR and the LDOS
over 35) when moving away from the vortex core. We note shows that the lowest-lying states are delocalized, even
also that close to the vortex cores the coherence peaks dithough strongly peaked at the vortex cores. In the gapped

sappear in both the regular and the disordered cases. swave case, however, the disorder introduces states in the
gap thereby changing qualitatively the low-energy density of
V. CONCLUSION states, as in the high-field limif. We found a power-law

_ behavior with an exponent that scales with the magnetic
In summary, we have calculated the density of states of gngth.

disordered superconductor in a pinned fully random vortex
array. Both the disorder and the magnetic field fill the density
of states at low energies. In tleewave case the density of
states behaves as a power law with an exponent that scales This work was supported in part by NSF Grant No.
with 1/\/B. In general we find a finite density of states at DMR00-94981(Z.T.) and by FCT Grant No. SFRH/BPD/
zero energy for the-wave case except in the limit of very 5602/2001(J.L.).
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