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Introduction
The MetaCore database (MetaCore) provides a large size network of Protein–Protein 
Interactions (PPIs). It has been shown to be useful for analysis of specific biological 
problems (see e.g. Ekins et  al. 2006; Bessarabova et  al. 2012) and finds various medi-
cal applications as e.g. the improvement of cancer prognosis (Winter et  al. 2012). At 
present, the network has N = 40,079 nodes with Nℓ = 292,904 links and an average of 
2nl = 2Nl/N ≈ 14.6 links per node. The nodes are composed mainly by proteins but 
in addition there are also other molecules and molecular clusters catalyzing the inter-
actions with proteins. This PPI network is directed and non-weighted. Its interesting 
feature is the bi-functional nature of the links leading to either the activation or the 
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inhibition of one protein by another one. In some cases, the link action is neutral or 
unknown.

In the present work, we describe the statistical properties and the Google matrix anal-
ysis (GMA) of the MetaCore network. The GMA and the related PageRank algorithm 
has been at the foundation of the Google search engine with important applications 
to the World Wide Web (WWW) analysis (Brin and Page 1998; Langville and Meyer 
2006). A variety of GMA applications to directed networks are presented in Ermann 
et al. (2015) and more specifically, the PageRank algorithm has been applied to various 
genomics networks (see e.g. Voevodski et al. 2009; Lee et al. 2011; Winter et al. 2012; Du 
et al. 2012; Li et al. 2021; Shan et al. 2021; Yang et al. 2021; Moroney et al. 2020; Stassen 
et  al. 2021; Zhang et  al. 2021). The first application of the GMA to PPI network with 
directed causal links was reported for the SIGNOR PPI network (Perfetto et al. 2016) in 
Lages et al. (2018). However, the size of the SIGNOR network is by a factor ten smaller 
than the MetaCore one and thus the GMA of SIGNOR network can be considered only 
as a test bed for more detailed studies of PPIs.

An important feature of the PPI networks is the bi-functional character of the directed 
links representing activation or inhibition actions. Usually, the directed networks have 
been considered without functionality of links (see e.g. Brin and Page 1998; Langville 
and Meyer 2006; Ermann et al. 2015). The Ising-Google matrix analysis (IGMA) (Frahm 
and Shepelyansky 2019a) extends the GMA for bi-functional links. A test application to 
the SIGNOR PPI network (Perfetto et al. 2016) can be found in Frahm and Shepelyansky 
(2020). The Ising-Google matrix analysis (IGMA) represents each node by two states ↑ 
and ↓ , like Ising spins up and down. A link is then represented by a 2× 2-matrix describ-
ing the actions of activation or inhibition (Frahm and Shepelyansky 2019a, 2020). By 
contrast with the case of links without functionality, this description leads to a doubling 
of the number of nodes NI = 2N  . In the present work, we apply the IGMA to the Meta-
Core network which provide bi-functional interactions between multiple proteins.

In addition, we also use the reduced Google matrix analysis (RGMA), developed in 
Frahm and Shepelyansky (2016), Frahm et al. (2016), to describe the effective interac-
tions between a subset of Nr ≪ N  selected nodes taking account of all the indirect path-
ways connecting each couple of these Nr nodes throughout the global PPI network. The 
efficiency of the RGMA has been demonstrated for large variety of directed networks 
including Wikipedia and the world trade network (see e.g. El Zant et al. 2018; Coquidé 
et al. 2019). The RGMA adapted to the IGMA for bi-functional links is called hereafter 
the RIGMA.

The paper is composed as follows: the data sets and the methods are described in the 
“Data sets and methods” section, the results are presented in the “Results” section and 
the discussion and the conclusion are given in the “Discussion” section.

Data sets and methods
Google matrix construction of the MetaCore network

At the first step, we start the construction of the Google matrix G of the MetaCore net-
work neglecting the bi-functional character of the links and considering unweighted 
links. Considering the adjacency matrix A, the elements Aij of which are equal to 
1 if node j points to node i and equal to 0 otherwise, the stochastic matrix S of the 
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node-to-node Markov transitions is obtained by normalizing to unity each column of 
the adjacency matrix A. For dangling nodes, ie, nodes without outgoign links, the cor-
responding column is filled with elements with value 1/N. The stochastic matrix S 
describes a Markov chain process on the network: a random surfer hops from node to 
node in accordance with the network structure and hops anywhere on the network if it 
reaches a dangling node. The elements of the Google matrix G takes then the standard 
form

where 0.5 ≤ α < 1 is the damping factor. The random surfer obeying to the stochastic 
process encoded in G explores, with a probability α , the network in accordance to the 
stochastic matrix S and hops, with a complementary probability (1− α) , to any node of 
the network. The damping factor allows the random surfer to escape from possible iso-
lated communities. Here, we use the standard value α = 0.85 (Langville and Meyer 2006; 
Ermann et al. 2015). The PageRank vector P is the right eigenvector of the Google matrix 
G corresponding to the leading eigenvalue, here � = 1 . The corresponding eigenproblem 
equation is then GP = P . According to the Perron-Frobenius theorem, the PageRank 
vector P has positive elements. The PageRank vector element P(j) gives the probability to 
find the random surfer on the node j once the Markov process has reached the station-
ary regime. Consequently, all the nodes can be ranked by decreasing PageRank probabil-
ity. We define the PageRank index K(j) giving the rank of the node j. The node j with the 
highest (lowest) PageRank probability P(j) corresponds to K (j) = 1 ( K (j) = N  ). A recur-
sive definition can be given: according to the PageRank algorithm, a node is all the more 
central that it is pointed by other central nodes. The PageRank algorithm then measures 
the influence of a node within the global network.

It is also useful to consider a network obtained by the inversion of all the directions of 
the links. For this inverted network, the corresponding Google matrix is denoted G∗ and 
the corresponding PageRank vector is called the CheiRank vector P∗ and is defined such 
as G∗P∗ = P∗ . The importance and the detailed statistical analysis of the CheiRank vec-
tor have been reported in Chepelianskii (2010) and Zhirov et al. (2010) (see also Ermann 
et al. 2015; Coquidé et al. 2019). We define also a CheiRank index K ∗(j) giving the rank 
of the node j according to its CheiRank probability P∗(j) . According to the CheiRank 
algorithm, a node is all the more central that it points toward central nodes. The CheiR-
ank algorithm then measures the diffusivity of a node within the global network.

Reduced Google matrix

The concept of the reduced Google matrix analysis was introduced in [21] and applied 
with details to Wikipedia networks in Frahm et al. (2016). The RGMA determines effec-
tive interactions between a selected subset of Nr nodes embedded in a global network 
of size N ≫ Nr . These effective interactions are determined taking into account that 
there are many indirect links between the Nr nodes via all the other Ns = N − Nr nodes 
of the network. As an example, we may have two nodes A and C which belongs to the 
selected subset of Nr nodes and which are not coupled by any direct link. However, it may 
exist a chain of links from A to B1 , then from B1 to B2,..., and then from Bm to C where 
B1, . . . ,Bm are nodes not belonging to the subset of Nr nodes. Although A and C are not 

(1)Gij = αSij + (1− α)/N
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directly connected, there is a chain of m+ 1 directed links indirectly connecting A and C. 
The RGMA allows to infer an effective weighted link between any couple of two nodes of 
the Nr subset of interest taking account of the possible direct link existing between these 
two nodes and taking account of all the possible chains of links connecting them through-
out the remaining global network of size Ns = N − Nr ≫ Nr . It is important to stress 
that rather often the network analysis is done taking only into account the direct links 
between the Nr nodes and, as a consequence, completely omitting their indirect interac-
tions via the global network. It is known that such a simplified approach produces errone-
ous results as it happened for the network of historical figures extracted from Wikipedia 
when only direct links between historical figures were taking into account and all other 
links had been omitted (Aragon et al. 2012) (see discussion at Eom et al. 2015).

It is convenient to write the Google matrix G associated to the global network as

where the label “ r ” refers to the nodes of the reduced network, ie the subset of Nr nodes, 
and “ s ” to the other Ns = N − Nr nodes which form the complementary network act-
ing as an effective “scattering network”. The reduced Google matrix GR associated to the 
subset of the Nr nodes is a Nr × Nr matrix defined as

where Pr is a Nr size vector the components of which are the normalized PageRank 
probabilities of the Nr nodes of interest, Pr(j) = P(j)/

∑Nr
i=1 P(i) . The RGMA consists in 

finding an effective Google matrix for the subset of Nr nodes keeping the relative rank-
ing between these nodes. To ensure the relation (3), the reduced Google matrix GR has 
the form Frahm and Shepelyansky (2016), Frahm et al. (2016)

As shown in Frahm and Shepelyansky (2016), Frahm et al. (2016), the reduced Google 
matrix GR can be represented as the sum of three components

Here, the first component, Grr , corresponds to the direct transitions between the 
Nr nodes; the second component, Gpr , is a matrix of rank with all the columns being 
approximately equal to the reduced PageRank vector Pr ; the third component, Gqr , 
describes all the indirect pathways passing through the global network. Thus, the com-
ponent Gqr represents the most nontrivial information related to indirect hidden tran-
sitions. We also define Gqrnd matrix which is the Gqr matrix deprived of its diagonal 
elements. The contribution of each component is characterized by their weights WR , 
Wpr , Wrr , Wqr ( Wqrnd ) respectively for GR , Gpr , Grr , Gqr ( Gqrnd ). The weight of a matrix 
is given by the sum of all the matrix elements divided by its size, here Nr (by definition 
WR = 1 ). Examples of reduced Google matrices associated to various directed networks 
are given in Lages et al. (2018), Frahm et al. (2016), Coquidé et al. (2019) and Frahm and 
Shepelyansky (2020).

(2)G =

(

Grr Grs

Gsr Gss

)

(3)GRPr = Pr

(4)GR = Grr + Grs(1− Gss)
−1Gsr.

(5)GR = Grr + Gpr + Gqr.
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Bi‑functional Ising MetaCore network

To take into account the bi-functional nature (activation and inhibition) of MetaCore 
links, we use the approach proposed in Frahm and Shepelyansky (2019a), Frahm and 
Shepelyansky (2020) with the construction of a larger network where each node is split 
into two new nodes with labels (+) and (−) . These two nodes can be viewed as two Ising-
spin components associated to the activation and the inhibition of the corresponding 
protein. To construct the doubled “Ising” network of proteins, each elements of the ini-
tial adjacency matrix is replaced by one of the following 2× 2 matrices

where σ+ applies to “activation” links, σ− to “inhibition” links, and σ0 when the nature 
of the interaction is “unknown” or “neutral”. For the rare cases of multiple interactions 
between two proteins, we use the sum of the corresponding σ-matrices which increases 
the weight of the adjacency matrix elements. Once the “Ising” adjacency matrix is 
obtained, the corresponding Google matrix is constructed in the usual way (see “Google 
matrix construction of the MetaCore network” section). The initial simple MetaCore 
network has N = 40,079 nodes and Nℓ = 292,904 links; the ratio of the number of acti-
vation/inhibition links is Nℓ+/Nℓ− = 65379/49384 ≃ 1.3 and the number of neutral 
links is Nℓn = Nℓ − Nℓ+ − Nℓ− = 178141 . The doubled Ising MetaCore network corre-
sponds to NI = 80158 nodes and NI ,ℓ = 942090 links (according to the non-zero entries 
of the used σ-matrices).

Now, the PageRank vector associated to this doubled Ising network has two components 
P+(j) and P−(j) for every node j of the simple network. Due to the particular structure 
of the σ-matrices (6), one can show analytically the exact identity, P(j) = P+(j)+ P−(j) , 
where P(j) is the PageRank of the initial single PPI network. We have numerically verified 
that the identity P(j) = P+(j)+ P−(j) holds up to the numerical precision ∼ 10−13.

As in Frahm and Shepelyansky (2019a), we characterize each node by its PageRank 
“magnetization” given by

By definition, we have −1 ≤ M(j) ≤ 1 . Nodes with positive M are mainly activated nodes 
and those with negative M are mainly inhibited nodes.

Sensitivity

The reduced Google matrix GR of bi-functional (or Ising) MetaCore network describes 
effective interactions between Nr nodes taking into account the activation or inhibition 
nature of the interactions.

Following El Zant et al. (2018), it is useful to determine the sensitivity of the PageRank 
probabilities in respect to small variation of the matrix elements of GR . The PageRank 
sensitivity of the node j with respect to a small variation of the b → a link measures 
the infinitesimal variation of the PageRank probability Pr(j) induced by an infinitesi-
mal increase of the GRab stochastic matrix transition. Otherwise stated, the PageRank 

(6)σ+ =

(

1 1
0 0

)

, σ− =

(

0 0
1 1

)

, σ0 =
1

2

(

1 1
1 1

)

(7)M(j) =
P+(j)− P−(j)

P+(j)+ P−(j)
.
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sensitivity gives the variation trend of the centrality of a given node if the weight of a 
given link is enhanced. Its definition is

where Prε(j) is the PageRank vector computed from a perturbed matrix GRε the ele-
ments of which are defined by GRε(a, b) = GR(a, b)(1+ ε)/[1+ εGR(a, b)] for the ele-
ment (a, b), GRε(c, b) = GR(c, b)/[1+ εGR(a, b)] for the other elements (c, b) in the same 
column b, and GRε(c, d) = GR(c, d) for the elements (c, d) in the other columns. The fac-
tor 1/[1+ εGR(a, b)] ensures the correct sum normalization of the modified column b.

We use here an efficient algorithm described in Frahm and Shepelyansky (2019b) to 
evaluate the derivative in (8) exactly without usage of finite differences.

As proposed in El Zant et al. (2018), we define the symmetric matrix (see Eq. 15 of El 
Zant et al. 2018)

which measures the node-j PageRank sensitivity to a weight increase of any direct link 
between nodes a and b, and furthermore the two symmetric and anti-symmetric sensi-
tivity matrices

The F+(a, b) quantity measures the total PageRank sentivity of the nodes a and b when 
the weights of the direct links between them are enhanced, and the quantity F−(a, b) 
allows to determine which of the centralities of the two nodes are the most impacted.

Results
Below, we describe various statistical properties of the MetaCore network obtained by 
the methods described above. More detailed data are available at [30].

CheiRank and PageRank of the MetaCore network

Let us sort the PageRank probabilities from the highest value to which we associate the 
K = 1 rank to the smallest value to which we associate to the K = N  rank.

The dependence P(K) of the PageRank probabilities on the PageRank index K and the 
dependence P∗(K ∗) of the CheiRank probabilities on the CheiRank index K ∗ are shown 
in Fig. 1 for the simple MetaCore network and the Ising (doubled) MetaCore network. 
The decay of the probabilities is approximately proportional to an inverse index in a 
power β ≈ 2/3 , ie P(K ) ∝ 1/K 2/3 . This exponent β is approximately the same for the 
PageRank and the CheiRank probabilities, and for both network types. The situation is 
different from the networks of WWW, Wikipedia, and Linux for which one usually have 
β ≈ 0.9 for the PageRank probabilities and β ≈ 0.6 for CheiRank probabilities (Lang-
ville and Meyer 2006; Ermann et al. 2015; Chepelianskii 2010). The similarity between 
the PageRank and the CheiRank probability distributions suggests that in PPI networks, 
at least in the MetaCore PPI network, both ingoing and outgoing links are of equal 

(8)D(b→a)(j) =
1

Pr(j)

dPrε(j)

dε

∣

∣

∣

∣

ε=0

= lim
ε→0

1

εPr(j)
[Prε(j)− Pr(j)]

(9)D(a↔b)(j) = D(b→a)(j)+ D(a→b)(j),

(10)F+(a, b) = D(a↔b)(a)+ D(a↔b)(b), F−(a, b) = D(a↔b)(a)− D(a↔b)(b).
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importance while, in the other above cited networks, ingoing links are more robust and 
stable than outgoing links which have a more random character.

Let us focus on the biological elements at the top of the PageRank and CheiRank. 
In principle, these biological elements should be at the very end of signaling pathway 
cascades or the main triggers of such cascades, respectively. The top 40 PageRank and 
CheiRank nodes of the MetaCore network are given in Tables  1  and 2 respectively. 
The top 3 PageRank positions are occupied by specific molecules actively participating 
in various reactions with proteins. The top 3 CheiRank positions are occupied by the 
transcription factor c-Myc, the generic enzyme eIF2C2 (Argonaute-2), and the generic 
binding protein IGF2BP3. In a certain sense, we can say that top PageRank nodes are 
like workers in a company, who receive many orders, while top CheiRank nodes are like 
company administrators who submit many orders to their workers (such a situation was 
discussed for a company management network (Abel and Shepelyansky 2011)).

The density distribution of nodes of the MetaCore network on the PageRank-CheiR-
ank ( K ,K ∗)-plane is shown in Fig.  2. Comparing to the case of Wikipedia networks 
(Ermann et al. 2015; Zhirov et al. 2010) the distribution is globally more symmetric in 
respect to the diagonal K = K ∗ . This reflects the fact that the decay of the PageRank 
and the CheiRank probabilities in Fig.  1 is approximately the same. However, the top 
nodes are rather different for the PageRank and CheiRank rankings that is also visible 
from Tables  1  and 2 . As an example, the top 40 PageRank and the top 40 CheiRank 
share only 7 nodes in common (Beta-catenin, p53, ESR1, STAT3, Androgen receptor, 
c-Myc, RelA) which are transcription factors with the exception of Beta-catenin which 
is a generic binding protein. As a consequence, depending on the considered biological 
process, these biological elements trigger the multiple cascades of interactions or are at 
the very end of these cascades. In contrast, there are biological elements with low K and 
high K ∗ and vice versa. For example, the phosphate compound PO3−

4  , with PageRank-
CheiRank indexes ( K = 16, K ∗ = 14888 ), is mainly a residue of biological processes and 
the passage of the Potassium ion K + from the cytosol to the extracellular region, with 

10-6

10-5

10-4

10-3

10-2

10-1

100 101 102 103 104

P,
P*

K,K*

P(K)
P*(K*)
PI(K)
P*

I(K
*)

∝ K-2/3

Fig. 1 PageRank probability P(K) ( PI(K) ) and CheiRank probability P∗(K∗) ( P∗I (K) ) are shown as a function 
of the corresponding rank indexes K and K∗ for the simple (Ising) MetaCore network. For comparison, the 
dashed gray line corresponds to the power decay P ∝ K−2/3
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Table 1 Top 40 PageRank nodes of the simple MetaCore network

These nodes are sorted by descending PageRank probabilities P(K) and consequently by ascending PageRank index K. The 
corresponding name, class and bio-localization of the node is given. The values M(K) of the PageRank magnetization (7) are 
also given. The node highlighted in bold corresponds to the twelve proteins selected for the RGMA and RIGMA analysis. 
These twelve proteins are ordered by the relative PageRank index k. Here, NA means not applicable

K P(K) [10−2] k M(K) Name Class Localization

1 0.2506 0 H+ cytosol Inorganic ion Cytosol

2 0.2376 0 Na+ cytosol Inorganic ion Cytosol

3 0.1741 −0.045970 Beta-catenin Generic binding protein Cytoplasm

4 0.1701 1 −0.028308 p53 Transcription factor Nucleus
5 0.1469 0.256018 c-Src Protein kinase Cytoplasm

6 0.1435 0.708154 mRNA intracellular RNA Intracellular

7 0.1352 0 H+ extracellular region Inorganic ion Extracellular region

8 0.1189 2 0.105603 EGFR Receptor with enzyme 
activity

Plasma membrane

9 0.1180 −0.014278 DNA DNA Nucleus

10 0.1125 3 −0.004135 ESR1 (nuclear) Transcription factor Nucleus
11 0.1125 0 K+ extracellular region Inorganic ion Extracellular region

12 0.1056 0 ADP cytoplasm Compound Cytoplasm

13 0.1023 4 0.250910 STAT3 Transcription factor Nucleus
14 0.0997 0.062046 Androgen receptor Transcription factor Nucleus

15 0.0947 0.287801 Rac1 RAS superfamily Cytoplasm

16 0.0946 0 PO3−
4

 cytoplasm Compound Cytoplasm

17 0.0940 5 0.006332 c‑Myc Transcription factor Nucleus
18 0.0919 6 0.360271 FAK1 Protein kinase Cytoplasm
19 0.0899 0.962815 cytosol K + → extracel-

lular region K +
Reaction NA

20 0.0889 7 0.003377 ESR2 (nuclear) Transcription factor Nucleus
21 0.0884 0 K+ cytosol Inorganic ion Cytosol

22 0.0849 8 0.002825 RelA (p65 NF‑kB 
subunit)

Transcription factor Nucleus

23 0.0834 9 0.004567 ARX Transcription factor Cytoplasm
24 0.0828 10 0.208984 ITGB1 Generic receptor Plasma membrane
25 0.0787 11 0.548888 SHP‑2 Protein phosphatase Cytoplasm
26 0.0776 12 0.364614 GRB2 Generic binding 

protein
Cytoplasm

27 0.0760 0.479956 PI3K reg class IA (p85) Generic binding protein Cytoplasm

28 0.0759 −0.114311 E-cadherin Generic binding protein Plasma membrane

29 0.0754 0.757892 CO2 + H 2 O → H + + 
HCO−

3

Reaction NA

30 0.0753 −0.098664 p21 Generic binding protein Nucleus

31 0.0752 0.148707 Caveolin-1 Generic binding protein Cytoplasm

32 0.0749 0.007470 Ca2+ cytosol Inorganic ion Cytosol

33 0.0744 0.381345 PI3K reg class IA (p85-
alpha)

Generic binding protein Cytoplasm

34 0.0727 −0.220751 Bcl-2 Generic binding protein Mitochondrion

35 0.0720 0 Cl  intracellular Inorganic ion Intracellular

36 0.0712 −0.208082 MDM2 Generic enzyme Nucleus

37 0.0707 −0.169004 PTEN Lipid phosphatase Cytoplasm

38 0.0702 0.391984 PPAR-gamma Transcription factor Nucleus

39 0.0698 0.031543 ACTB Generic binding protein Cytoplasm

40 0.0679 0 Acetyl-CoA intracellular Compound Intracellular
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PageRank-CheiRank indexes ( K = 19 , K ∗ = 26346 ), can be considered as the final step 
of some biological process.

Among the top 40 PageRank nodes, we select a subset of 12 nodes which are more 
directly related to proteins. These 12 nodes are represented by white stars in the Fig. 2. 

Table 2 Top 40 CheiRank nodes of the simple MetaCore network

These nodes are sorted by descending CheiRank probabilities P∗(K∗) and consequently by ascending PageRank index K∗ . 
The corresponding name, class and bio-localization of the node is given. The values M(K∗) of the PageRank magnetization 
(7) are also given. The node highlighted in bold corresponds to proteins from the subset of the twelve proteins chosen in 
Table 1 with K∗ ≤ 40 . These proteins are ordered by the relative PageRank index k∗

K∗ P
∗(K∗) [10−2] k

∗ M(K∗) Name Class Localization

1 1.1464 1 0.006332 c‑Myc Transcription factor Nucleus
2 0.8172 0.035667 eIF2C2 (Argonaute-2) Generic enzyme Cytoplasm

3 0.6722 −0.174071 IGF2BP3 Generic binding protein Cytoplasm

4 0.4890 0.680968 Ubiquitin Generic binding protein Cytoplasm

5 0.3719 0.110759 SOX9 Transcription factor Nucleus

6 0.3529 2 ‑0.028308 p53 Transcription factor Nucleus
7 0.3373 0.228978 c-Fos Transcription factor Nucleus

8 0.3276 0 CUX1 (p110) Transcription factor Nucleus

9 0.2989 −0.057557 SP1 Transcription factor Nucleus

10 0.2770 3 ‑0.004135 ESR1 (nuclear) Transcription factor Nucleus
11 0.2769 4 0.002825 RelA (p65 NF‑kB subunit) Transcription factor Nucleus
12 0.2534 −0.010911 eIF2C1 (Argonaute-1) Generic binding protein Cytoplasm

13 0.2354 0.062046 Androgen receptor Transcription factor Nucleus

14 0.2350 −0.045970 Beta-catenin Generic binding protein Cytoplasm

15 0.2330 −0.075622 BRD4 Generic binding protein Nucleus

16 0.2308 0.153950 Oct-3/4 Transcription factor Nucleus

17 0.2259 −0.001577 PUM2 Generic binding protein Cytoplasm

18 0.2239 0.188479 EZH2 Generic enzyme Nucleus

19 0.2193 0.208146 p300 Generic enzyme Nucleus

20 0.2072 −0.407833 TUG1 RNA Cytoplasm

21 0.2072 −0.118501 E2F1 Transcription factor Nucleus

22 0.2062 0 ASCC2 Generic binding protein Nucleus

23 0.2005 0 LIMR Generic receptor Plasma membrane

24 0.1903 0.148471 BRG1 Generic enzyme Nucleus

25 0.1871 5 0.250910 STAT3 Transcription factor Nucleus
26 0.1811 0.381258 RBM24 Generic binding protein Cytoplasm

27 0.1789 0.746981 SUMO-1 Generic binding protein Nucleus

28 0.1728 0.140357 c-IAP2 Generic binding protein Cytoplasm

29 0.1699 0.038221 HIF1A Transcription factor Nucleus

30 0.1677 0 Zn2+ cytosol Inorganic ion Cytosol

31 0.1623 −0.013644 CDK9 Protein kinase Cytoplasm

32 0.1587 −0.223816 MeCP2 Generic binding protein Nucleus

33 0.1533 −0.053592 ELAVL1 (HuR) Generic binding protein Nucleus

34 0.1497 0.120649 HDAC1 Generic enzyme Nucleus

35 0.1473 −0.034082 BRD7 Generic binding protein Nucleus

36 0.1452 0.131956 CREB1 Transcription factor Nucleus

37 0.1449 0 Zn2+ nucleus Inorganic ion Nucleus

38 0.1423 0.096830 SUMO-2 Generic binding protein Cytoplasm

39 0.1400 −0.051730 BRD2 Protein kinase Cytoplasm

40 0.1343 0.228824 C/EBPbeta Transcription factor Nucleus
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The list of these nodes is given in Table 1. Below, we present the RIGMA analysis of these 
12 nodes taking into account of the bi-functionality of the links (activation - inhibition).

Magnetization of nodes of the Ising MetaCore network

From the PageRank probabilities of the Ising MetaCore network, we determine the mag-
netization M(K) of each node given by (7). The dependence of the magnetization M(K) 
on the PageRank index K is shown in Fig. 3. For K ≤ 10 , only few nodes have a signif-
icant positive magnetization. In the range 10 < K ≤ 103 , some nodes have almost the 
maximal positive or negative values of the magnetization with M being close to 1 or −1 . 
Such nodes perform mainly activation or inhibition actions, respectively. For the range 
K > 103 , we see an envelope restricting the maximal or the minimal values M. At pre-
sent, we have no analytical description of this envelope. We suppose that nodes with 
high K values have a majority of outgoing links which are more fluctuating in this range 
thus giving a decrease of the maximal/minimal values of M.

Focusing on the top 40 PageRank in Fig. 3, we mainly observe that the nodes are either 
non-magnetized M ≈ 0 , or positively magnetized M � 1 . These two situations corre-
spond to biological elements which are equally activated/inhibited ( M ≈ 0 ) and mainly 
activated ( M � 0 ), respectively. Among the top 40 PageRank nodes, the non-magnet-
ized elements are mainly inorganic ions, such as H + , Na+ , K + , Ca2+ , and Cl− , which 
are involved in many elementary interactions. As non-magnetized nodes, we observe 
also very important biological molecules such as DNA and the ADP compound which 
should occupy a central place in the protein interaction network. Among positively 
magnetized nodes, we observe reactions ( M � 0.75 ), RNA ( M ≃ 0.7 ), protein kinase 

Fig. 2 Density of nodes of the MetaCore network on the PageRank-CheiRank (K , K∗)-plane. The numbers 
of the color bar are a linear function of the logarithm of the density (with maximum values corresponding 
to 1 (red); minimum non-zero and zero values of the density corresponding to 0 (blue); the distribution is 
computed for 100× 100 cells equidistant in logarithmic scale). The white stars indicate the positions of the 12 
selected nodes presented in Table 1. The white vertical and horizontal lines represent nodes with K ≤ 40 and 
K∗ ≤ 40 , respectively
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( M ≃ 0.25− 0.4 ) and phosphatase ( M ≃ 0.55 ), which respectively are known to turn on 
and turn off proteins. Let us remark that, as DNA, RNA occupies a very central role in 
the protein interaction network ( K = 6 ) but has a relatively high magnetization M ≃ 0.7 
which indicates that RNA is mainly activated at the end of major biological processes. 
The other positively magnetized nodes correspond to some transcription factors, such as 
PPAR-gamma and STAT3, generic binding proteins, such as PI3K and GRB2, members 
of RAS superfamily, such as Rac1, and generic proteins, such as ITGB1. We nevertheless 
note that among the top 40 PageRank nodes, there are some mainly inhibited proteins 
( M ≃ −0.2 ) such as the generic binding protein Bcl-2, the generic enzyme MDM2, and 
the lipid phosphatase PTEN.

We return to the magnetization properties of the selected subset of 12 nodes and the 
top 40 PageRank nodes in the next section.

RIGMA analysis of the Ising MetaCore network

We illustrate the RIGMA analysis of the Ising MetaCore network by applying it to the 
subset of the 12 nodes given in Table 1. They are selected from the top 40 PageRank list 
of Table 1 by excluding simple molecules and keeping best ranked proteins according to 
PageRank probabilities. Each of the 12 nodes of the subset are doubled into a (+) com-
ponent and a (−) component. We order these 24 nodes by ascending PageRank index K 
and alternating the (+) and the (−) components. This ordering is used to represent, in 
Fig. 4, the reduced Ising Google matrix GR and its three matrix components Grr , Gpr , and 
Gqr . The weights of these components are respectively Wrr = 0.015 , Wpr = 0.952 , and 

Fig. 3 PageRank magnetization M(j) = (P+(j)− P−(j))/(P+(j)+ P−(j)) for the Ising MetaCore network. 
Here, j is the node index and K(j) is the PageRank index of the node j in the simple Metacore network 
(without node doubling). The biological class is reported for the top 40 PageRank nodes ( K ≤ 40 , see Table 1): 
Inorganic ions (II), Generic binding protein (GBP), Transcription factor (TF), Protein kinase (PK), RNA, Receptor 
with enzyme activity (RwEA), DNA, Compound (C), RAS superfamily (RAS), Reaction (R), Generic receptor (GR), 
Protein phosphatase (PP), Generic enzyme (GE), Lipid phosphatase (LP)
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Wqr = 0.033 . As in the case of Wikipedia networks (Frahm et al. 2016), the component 
Gpr has the highest weight, but as discussed, it is rather close to a matrix with identical 
columns, each one similar to the PageRank column vector. Thus, the Gpr matrix compo-
nent does not provides more information than the standard PageRank/GMA analysis. 
We also see that the weight Wqr of the indirect links generated by long indirect pathways 
passing through the global Ising MetaCore network has approximately twice higher 
weight than the weight Wrr of direct links. Consequently, the contribution of indirect 
links are very important.

In the Grr matrix component, each element i of the jth column corresponds to the 
direct action of the protein j on the protein i. The action is either an activation (+) or 
an inhibition (–). As a consequence, the Grr matrix component simply mimics the Ising 
MetaCore network matrix adjacency (the elements of Grr with a value equal to (greater 
than) (1− α)/2N ≈ 0 correspond to values 0 (1 or 1/2) in the adjacency matrix of the 
Ising MetaCore network). It is interesting to compare the Gqr matrix elements with 
those of the Grr matrix. Each one of the Gqr matrix elements either modifies, generally 

Fig. 4 Reduced Google matrix GR and its three matrix components Gpr , Grr and Gqr associated to the subset 
of nodes presented in Table 1 and belonging to the Ising MetaCore network. The weights of the matrix 
components are Wpr = 0.952 , Wrr = 0.015 , and Wqr = 0.033 . Each colored cell corresponds to a GX ij elements 
with X standing for R , rr , pr , or qr . A GX ij matrix element is associated to the j → i link where the j index 
corresponds to proteins read on the bottom or the top axis of the panels and the i index corresponds to 
proteins read on the left axis of the panels. The + and − signs correspond to the activated and inhibited state 
of the node, respectively. The values of the color bar correspond to the ratio of the matrix element over its 
maximum value. Note that the elements of Gqr may be possibly negative. There are only few and very small 
negative values (between −2.6× 10−5 and −5.3× 10−5 ) which are not distinguishable from zero and have 
the same blue color code. Therefore, the color bar is only shown for positive values
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enhances, the weight of an existing link, for which a non zero matrix element exists in 
the Grr matrix, or, interestingly, quantifies the strength of a hidden effective interaction 
between two proteins. As an example of the enhancement of an existing direct link, we 
observe, in Fig. 4, that the known activation of FAK1 by ITGB1 is enhanced by indirect 
links, ie, by pathways passing by the elements outside the set of the twelve chosen pro-
teins. Also, we clearly observe also an enhancement of the self-activation of FAK1 and 
the appearance of its indirect self-inhibition.

Let us focus on the possible hidden interactions between the chosen set of twelve pro-
teins. For that purpose, we show, in Fig. 5 (left panel), the matrix sum Grr + Gqr

(nd−block) 
which summarizes both the information concerning the direct and hidden interactions 
between the set of twelve proteins. Here, we use the Gqr

(nd−block) matrix which is the Gqr 
matrix from which the diagonal elements (self-interaction terms) have been removed. 
In Fig. 5 (right panel), the Grr + Gqr

(nd−block) matrix elements associated to direct links 
have been masked to highlight only hidden interactions. Hence, although the ARX pro-
tein (aristaless related homeobox) is not directly connected to the other eleven proteins, 
ie, there is no direct action of the ARX protein onto the other eleven proteins and vice 
versa, it indirectly strongly inhibits the tumor suppressor protein p53. Secondarily, the 
ARX protein indirectly acts on different other proteins as it is indicated by blue shades 
on the ARX column in Fig. 5: hence, the ARX protein indirectly activates the EGFR and 
ESR1 proteins (epidermal growth factor receptor and estrogen receptor, respectively) 
and inhibits the c-Myc protein (proto-oncogene protein). Similarly, according to the Grr 
matrix component (see Fig. 4), the c-Myc protein does not act on the chosen twelve pro-
teins. But, the blues shades of the c-Myc column on the right panel of Fig. 5 gives us 
information on which proteins it indirectly contributes to activate or deactivate. Among 
strong weights of the Grr + Gqr

(nd−block) matrix sum, we observe also the SHP-2 phos-
phatase protein indirectly strongly interacts with with the ARX protein and the estrogen 

Fig. 5 Sum of the two matrix components Grr + Gqr
(nd-block) . The matrix components are the same as in 

Fig. 4 with the exception of Gqr(nd-block) which is obtained from Gqr by excluding 2× 2 diagonal blocks, each 
one of these blocks corresponding to a protein self-loop. The right panel is the same as the left panel with 
the exception of the white cells which hide the direct links j → i between the 12× 2 chosen nodes in the 
Ising MetaCore network. The values of the color bar correspond to the ratio of the matrix element over its 
maximum value



Page 14 of 18Kotelnikova et al. Applied Network Science             (2022) 7:7 

receptor protein ESR2. In return, the ESR2 protein, which directly inhibits ESR1 and 
c-Myc proteins, also indirectly activates the SHP-2 protein.

In contrast to the adjacency matrix and the Google matrix, the matrix sum 
Grr + Gqr allows to discriminate the directed links outgoing from a given protein by 
assigning different weights to them. This discrimination is possible as the RGMA and 
the RIGMA takes account of not only the direct linkage of the twelve chosen proteins 
but all the knowledge encoded in the MetaCore complex network. Moreover, possible 
hidden links between proteins, which are non directly connected in the MetaCore 
network, can be inferred from non negligible weights in Gqr . We propose to construct 
a reduced network highlighting the most important, direct and hidden, interactions 
between the twelve chosen proteins. Hence, for each protein source of the chosen 
subset, we retain, in the corresponding column of the Grr + Gqr matrix, the two most 
important weights revealing the most important protein target of the protein source. 
Here, we do not consider self-inhibition and self-activation matrix elements in the 
matrix sum Grr + Gqr . The constructed reduced network associated to the twelve cho-
sen proteins is presented in Fig. 6. We observe that it captures the above mentioned 
direct and hidden activation/inhibition actions between the considered proteins.

Fig. 6 Reduced network of the chosen twelve proteins (see Table 1). The construction procedure of this 
network is given in the main text. Arrow edges ( → ) represent activation links and dot edges  represent 
inhibition links. The arrow tips and the dots are on the side of the target nodes. The black edges represent 
direct links. The red edges represent hidden links. The color of the nodes correspond to the type of proteins: 
transcription factors (yellow), protein kinase (cyan), generic receptor (red), receptor with enzyme activity 
(green), general binding protein (orange), and protein phosphatase (violet). The border style of the node 
correspond to the location of the proteins: nucleus (solid line), cytoplasm (dashed line), and plasma 
membrane (hairy line)
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Sensitivity of the chosen subset

The PageRank sensitivity of the chosen subset of 12 proteins is obtained from the 
RIGMA and presented in Fig.  7 following the definitions given by (8)  and  (9). We 
remind that F+(a, b) gives the symmetric PageRank sensitivity of the nodes a and b 
to a variation of the link weight between them (in both directions from a to b and 
from b to a). The asymmetric PageRank sensitivity F−(a, b) determines what node is 
more sensitive to such weight variation. Thus, for F−(a, b) > 0 we obtain that node a 
is more influenced by node b and for F−(a, b) < 0 that node b is more influenced by 
node a.

In Fig. 7, the symmetric PageRank sensitivity (left panel) shows that the activation or 
the inhibition of the p53 protein affect or are affected by all the other chosen proteins. 
Indeed, the p53 protein with K = 4 occupies a very central role in the protein interac-
tions network as it contributes to the stability of the genome preventing damage biologi-
cal information to be spread (Prives and Hall 1999; Joerger and Fersht 2016; Toufektchan 
and Toledo 2018). The reddish horizontal and vertical lines on the symmetric PageR-
ank sensitivity panel (Fig. 7 left) indicate that the activation of the EGFR, STAT3, FAK1, 
SHP-2 and the GRB2 proteins are affected or affect all the other proteins of the chosen 
set. The right panel of the Fig. 7 shows the asymmetric PageRank sensitivity. We clearly 
observe that in fact it is the p53 protein which influences the activation/inhibition of the 
other proteins, and in a stronger manner the inhibition of the GRB2, SHP-2, ITGB1, and 
FAK1 proteins. In general, the inhibition of these four cited proteins is influenced by 
most of the other proteins (see greenish horizontal lines) and in return their respective 
activation influences also the other proteins (see greenish vertical lines).

Examples of magnetization of nodes

In Fig. 8, left panel, we show, in the PageRank-CheiRank (k , k∗)-plane (see Tables 1 and 2 
for the relative PageRank and CheiRank indexes k and k∗ ), the PageRank magnetization 
M of the chosen 12 proteins. These nodes have global PageRank indexes K ≤ 26 (see 

Fig. 7 PageRank sensitivity matrices F+(a, b) (left panel) and F−(a, b) (right panel) associated to the subset 
of nodes presented in Table 1 and belonging to the Ising MetaCore network. The values of the color bar 
correspond to F+(a, b)/maxa,b (F+(a, b)) (left panel) and to F−(a, b)/maxa,b |F−(a, b)| (right panel)
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Table 1). In agreement with data presented in Fig. 3, for such K values, the magnetiza-
tion is indeed mainly positive. So, these proteins are primarily activated. More precisely, 
as they belong to the top PageRank of the proteome ( K/N ≤ 0.6‰ ), these proteins 
are activated as the result of most important cascade of interactions along the causal-
ity pathways. The magnetization M is also presented in Fig. 7, right panel, but for every 
nodes with K ≤ 40 (see Table 1). Here, for these top PageRank indexes, we have both 
positive and negative magnetization values, but the majority of the nodes have a mag-
netization close to zero, as discussed in Fig. 3.

For the top 40 PageRank ( K ≤ 40 ), the top 3 most activated nodes are the K + Potas-
sium ion in cytosol ( K = 19 , M(K ) = 0.962815 ), the CO2+H2O→H++HCO−

3  reaction 
( K = 29 , M(K ) = 0.757892 ), and the intracellular mRNA ( K = 6 , M(K ) = 0.708154 ), 
and the top 3 most inhibited nodes are the generic binding protein Bcl-2 ( K = 34 , 
M(K ) = −0.220751 ), the generic enzyme MDM2 ( K = 36 , M(K ) = −0.208082 ), and 
the generic binding protein E-cadherin ( K = 28 , M(K ) = −0.114311).

Discussion
In this work, we have presented a detailed description of the statistical properties of the 
protein–protein interactions MetaCore network obtained with extensive Google matrix 
analysis. In this way, we find the proteins and molecules which are at the top PageRank 
and CheiRank positions playing thus an important role in the influence flow through the 
whole network structure. With a simple example of a subset of selected proteins (subset 
of selected nodes), we show that the reduced Google matrix analysis allows to deter-
mine the effective interactions between these proteins taking into account all the indi-
rect pathways between these proteins through the global MetaCore network, in addition 
to direct interactions between selected proteins. We stress that the approach with the 
reduced Ising Google matrix algorithm, based on Ising spin description, allows to take 
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Fig. 8 PageRank magnetization M(K) = (P+(K)− P−(K))/(P+(K)+ P−(K)) presented in the 
PageRank-CheiRank (K , K∗)-plane. Left panel: PageRank magnetization M(k) for the chosen twelve proteins 
presented in the relative indexes (k, k∗)-plane (see k adn k∗ indexes in Table 1). Right panel: PageRank 
magnetization M(K) for nodes with K ≤ 40 . Here, P±(K) is the PageRank probability of the (±) component 
of the Ising MetaCore network node associated with the K PageRank (see text). The values of the color bar 
correspond to M/max |M| with maxk≤12 |M(k)| = 0.549 (left panel) and maxK≤40 |M(K)| = 0.963 (right panel). 
On the right panel, the K∗ index is here the relative CheiRank index inside the set of the first K ≤ 40 nodes
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into account the bi-functional nature of the protein–protein interactions (activation or 
inhibition) and to determine the average action type (or magnetization) of each protein .

Here, we have presented mainly the statistical properties of the MetaCore network 
without entering into detailed analysis of related biological effects. We plan to address, 
in further studies, the biological effects obtained from the reduced Google matrix analy-
sis of the MetaCore network.
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