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Phase of biparticle localized states for the Cooper problem in two-dimensional disordered systems
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The Cooper problem is studied numerically for the Anderson model with disorder in two dimensions. It is
shown that the attractive Hubbard interaction creates a phase of biparticle localized states in the regime where
noninteracting states are delocalized. This phase cannot be obtained in the mean-field approximation and the
pair coupling energy is strongly enhanced in this regime. The effects of magnetic field are studied and it is
shown that under certain conditions they lead to delocalization.
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[. INTRODUCTION states with a qualitatively correct coupling energy and corre-
lation length. Without disorder the Cooper problem can be
Recently a great deal of attention has been paid to invessolved exactly. However in the presence of disorder the situ-
tigation of the superconductor-insulator transiti®IT) in ation becomes more complicated even for only two interact-
systems with disorder. Various approaches are used to studlyg particles (TIP). Indeed, for relatively strong disorder
this problem including analytical theoretical methddsn-  even the matrix elements of interaction between noninteract-
tensive numerical simulations of many-body quantum sysing eigenstates cannot be obtained analytically and due to
tems with quantum Monte Carlo methotias well as mean  that the problem should be studied numerically. The first
field numerical simulation3.” These theoretical studies are numerical studies of the Cooper problem in the presence of
stimulated by challenging experiments on the SIT in disorjsorder were done in Ref. 17 for two particles with attrac-
dered film&* and highT, superconductor*! The results  tive Hubbard interaction in the three-dimensional Anderson
obtained in Ref. 10 show an interesting correlation betweem,qde|. These studies showed that the interaction can lead to
the optimal doping and the Anderson transition in the norma|qajization of pairs in the noninteracting metallic phase.
phase obtained by application of a strong pulsed magnetigys resyit is qualitatively different from the mean-field so-
field. Even if the experiment3™ are done with three-  ion o e Cooper problem in the presence of disorder

O e oD et el Cooper ansat unich gves delocalizd pars or e same
P y arameters. This shows that the nondiagonal interaction-

should play an important role. Due to that, it is relevant to.F:1d ced matrix elements plav an important role and lead to
study the SIT in two-dimensional disordered systems. In thénau play P

case of weak disorder the Anderson thedfetiguarantees new physicgl eﬂ"ects, which are not captured by the mean-
that the superconductivity is not affected by disorder. How-€!d @pproximation.
ever it is not obvious if the theorem is still valid in the !N this paper we study the Cooper problem on a two-
presence of relatively strong disorder. It is quite possible thaflimensional lattice with disorder described by the Anderson
in this regime the interplay of disorder and interaction canmodel. Our numerical studies show that near the Fermi level
lead to the appearance of new physical effects. The theoretbe attractive Hubbard interaction between two particles cre-
ical investigation of this regime is however rather difficult. ates localized pairs in the regime where noninteracting eigen-
The existing analytical methods are not well adapted to thétates are well delocalize@xtendedl The coupling energy
regime of strong interaction and disorder. At the same timedf these pairs is much larger than the coupling energy given
the numerical studies also meet with serious difficulties. Inby the mean-field solutiofCooper ansajz Therefore ener-
deed the direct diagonalization methods are restricted to relayetically it is more favorable to have an insulator with local-
tively small system size since the Hilbert space grows expoized pairs instead of usual weakly coupled delocalized Coo-
nentially with the number of particléé:® The quantum per pairs. This result indicates the appearance of a new phase
Monte Carlo methods are not so sensitive to a huge size aif biparticle localized state@BLS phasg, which appears in
the Hilbert space but still they are restricted to systems othe regime when noninteracting states are exter(destal-
quite moderate siz€for example lattices of 88 sites in  lic). It is in a qualitative agreement with the quantum Monte
Ref. 4. Carlo studies obtained recently in Toulod8eThis BLS

In view of the above numerical difficulties it is natural to phase is qualitatively different from the BCS solution, which
develop the approach introduced by Codpand to study corresponds to weakly coupled delocalized pairs.
the problem of two particles with attractive interaction near The paper is organized as follows. The properties of the
the frozen Fermi sea in the presence of disorder. Even if thBLS phase without magnetic field are discussed in Sec. Il.
original Cooper problem of two particles without disorder The effects of perpendicular magnetic field on the ground-
does not reproduce exactly the BCS theory of the many-bodgtate properties in the presence of interaction and disorder
problem it nevertheless captures the essential physical propse analyzed in Sec. Ill. The discussion of the results is pre-
erties of the system and gives the appearance of couplesknted in the last section.
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Il. GROUND-STATE PROPERTIES WITHOUT MAGNETIC ties of excited states while here we will investigate only the
FIELD properties of the ground state in the case of an attractive

To study the Cooper problem of two interacting partiClesinteraction. We also note that the attractive case in one di-

in the presence of disorder we use the two-dimensiona’lﬂenSion was discussed in Re_fs: 22 and 23.
Anderson model. In this model the one-particle eigenstates To determine the characteristics of the ground state of the

are determined by the Hamiltonian gengrglized Coopgr problei®) we solve n.umerically the
Schralinger equation. After that we rewrite the obtained
ground state in the original lattice basis with the help of the
Hi= En: Enln) (n| +V<n§%> In) {ml, 1 relation between the lattice basis and one-particle eigenstates
' IN)==Rnml ém)- As a result of this procedure we obtain
wheren and m are index vectors on the two-dimensional the two-particle probability distributionF(n;,n;) from
square lattice with periodic boundary conditions,is the  which we extract the one-particle probabilityf(n)
nearest-neighbor hopping term, and the random on-site ener=X, F(n;,n;) and the probability of interparticle distance
giesE, are homogeneously distributed in the energy mtervalfd(r):gnZF(anlnz) with r=n;—n,.
[ —WI/2,W/2], whereW is the disorder strength. This one-

. ) . . Typical examples of such probability distributions are pre-
particle model has been extensively studied by different AUz niad in Fig. 1. Without interaction, at given disorder

thors_, see fOIf example Ref.. 19. For the.two-partllcle prOblgnﬁétrengthW: 2V and W=5V both particles are delocalized
on this two-dimensional lattice we consider on-site attractive

. : . on the lattice of given sizé& =40. In the presence of inter-
Hubpard |nteract|_on be_:tween _partlcles of st_rerigtho. we .action U= -2V the ground state remains delocalized for
consider the particles in the singlet state with zero total spin

. I . W=2V and the probability distribution is rather similar to
so that the spatial wave function is symmetric with respect tc%he case ot) =0 [compare Figs. (&) and 1c)]. On the con-
particle permutatiofinteraction is absent in the triplet state P gs. ’

To investigate the effects of interaction between particlestrary forw= SV, interaction completely changes the ground-
state properties leading to a clear localization of both par-

near the Fermi level we generalize the Cooper approach f .
the case with disorder. To do that we rewrite the TIP HamiI?“CIeS near_eagh othe[lcom_pare Figs. () and 1e)]. The
wave function is localized in a rather compact way and the

tonian in the basis of one-particle eigenstates of the HaLm”finite size of the lattice definitely does not affect this local-
tonian (1). In this basis the Schdinger equation for TIP . . €ly € X
reads ization. Figure 1f) shows that in this localized state the par-

ticles remain correlated close to each other. This biparticle
localized ground state is obtained by exact diagonalization of
(Eml+ Emz)Xml,m2+ U z le,mz,m;,mng;,mg Eq. (2) where all nqndiagonal intera.ctipn—indu.ced matrix el-
m],m} ements are taken into account. It is interesting to compare
this solution with the mean-field approximati¢@ooper an-
=EXm, m,- (2)  sata in which only diagonal terms are taken into account.
Within the Cooper ansatz the particles occupy the same non-
HereE,, are the one-particle eigenenergies corresponding tghteracting orbitals and only matrix elemer@, m m m’
the one-particle eigenstatpg,) andym, m, are the Compo-  yjth m,=m, and m]=mj, are kept in Eq(2). The aréhnzd
nents of the TIP eigenstate in the noninteracting eigenbasistate obtained from the Cooper ansatz is shown in Figg. 1
| m,sPm,). The matrix elements) Qm, m, m/,m, give the and ¥h) and is clearly delocalized contrarily to the strongly
interaction-induced transitions between noninteractive eigerlocalized ground state obtained from exact diagonalization of
states| ¢, bm,) and|dpy, dmy). These matrix elements are Eq. (2) and shown in Figs. () and 1f). In fact the ground
. . . . . state from the Cooper ansatz is closer to the delocalized non-
obtained by rewriting the Hubbard interaction in the nonin-; . ) S )
teractive eigenbasis of modél). In the analogy with the interacting eigenstate in Fig(ld) than to the real eigenstate

original Cooper probleff the summation in Eq2) is done in Fig. 1(e) in the presence of interaction. The results of Fig.

over the states above the Fermi level with eigenenergie% definitely show that the attractive interaction leads to lo-

. , : . Calization of pairs in the regime when noninteracting states
Emi 2> Er with m ,>0. The Fermi energf.~0 is deter- are delocalized. This localization is not captured by the Coo-

mined by a fixed filling factor=3. To keep the similarity per ansatz, which neglects nondiagonal matrix elements and
with the Cooper problem we restrict the summationne,,  due to that misses the essential physical effect.

by the condition X m;+m,<M. In this way the cutoff with In order to study the ground-state properties of our model
M unperturbed orbitals introduces an effective phonon frein a more quantitative way it is convenient to compute the
quency wp*M/L?=1/a wherelL is the linear system size. inverse participation ratio (IPR) ¢ defined as &1
When varyingL we keepa fixed so that the phonon fre- =(=,f?(n)) where the brackets mark the averaging aNgr
guency is independent of system size. All the data in thidisorder realization&ypically Np=100). Physically¢ gives
work are obtained withw= 15 but we also checked that the the number of lattice sites occupied by one patrticle in the TIP
results are not sensitive to the changeaofWe note that a ground state. The dependence of the IPRBn the disorder
similar TIP model was considered for the problem of twostrengthW is shown in Fig. 2 for different strengths of inter-
repulsive quasiparticles near the Fermi level in Refs. 20 andction U and different system sizels. In the absence of
21. However, there the studies mainly addressed the propeinteraction, for finite system sizes used in our numerical
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FIG. 2. Dependence of the inverse participation ratiof the
TIP ground state on the disordéf/V. The full lines with full sym-
bols correspond to an interaction strendgih= —4V, the dashed
ones with open symbols td = -2V, and the dot-dashed ones to
U=0V (+,X,*). Different symbols correspond to different
linear sizes of the lattic&.=20 (O,+), L=30 (d,X), and
L=40 (A,*).

similar to the situation in the three-dimensional Anderson
model for which the localization of pairs was discussed in
Ref. 17. As in Ref. 17 we attribute this phenomenon to the
increase of the effective masgy of the pair (/o 1/my¢) that
leads to a decrease of the critical disorder strengh~V
«1/mgg). For strong attraction the mass is approximately
doubled so that the value #Y, is decreased by a factor of 2

FIG. 1. Ground-state probability distributions of two interacting

particles for the Cooper problem with disorder on a lattice of IinearCOm ared to the noninteracting case. The numerical data in
sizeL=40. The case&) and(b) show the one-particle probability P 9 :

distribution f(n) in the absence of interactiolJE0V) for the two and three dimensions presented here and in Ref. 17 are

disorder strengttW=2V (a) and W=5V (b). All other cases are in satisfactory agreement with this estimate. .
obtained for the Hubbard interactidhh= —2V. The casegc) and The dependence of IPR on the system sizé for W

(d) show the one-particle probabiliti(n) (c) and the interparticle =2V andW=5V is shown in Fig. 3 for different values of
distance probab|||tyfd(r) (d) for W=2V. The same probab”ities interactionU. ForL=12 the noninteracting States are de|0-
are shown in casds) and(f) for W=5V [f(n) for (e) andf 4(r) for calized. The introduction of interaction decreases signifi-
(f)]. The casegg) and (h) present the probabilities for the same cantly the IPR value and folV=5V the TIP ground state is
W=5V as in casese) and (f) however here the ground state is localized for|U|=2V. On the contrary folWW=2V the IPR
obtained in the mean-field approximation of the Cooper ansatz. Alktill grows with L for U= —2V. This behavior is qualita-
data are given for the same realization of disorder. tively similar to the numerical data obtained in Ref. 18 by
the projected quantum Monte Carlo meth@ee Fig. 3 of
simulations [ <40), the ground state is delocalized for dis- Ref. 18. According to Ref. 18 the pairs at quarter filling
order W=5V and it becomes localized faV>5V. On the  become localized dl/V~ —4 for W=5V and remain delo-
contrary in the presence of interaction the TIP ground statealized forW=2V (only sizesL <12 were accessible by this
becomes localized fow>W,~2V atU=—4V and forW  method. While the qualitative behavior is simildcompare
>W,~3V atU=—2V. Indeed forW<W, the IPR¢ starts  Fig. 3 with Fig. 3 in Ref. 18 the quantitative difference
to grow significantly with the increase of the system dize between the two sets of data is definitely present. For ex-
that corresponds to pair delocalization. The decrease of themple in our Fig. 3 aiW=5V the states become localized
W, value induced by the attractive interaction shows that thepproximately atU/V~—1.5 and not atU/V~—4 as in
attraction leads to localization of pairs inside the noninteractRef. 18. We attribute this quantitative difference to the fact
ing delocalized phase. This effect is absent in the mean-fielthat in Ref. 18 up to 74 real spin fermions were present and
approximation where the ground state remains well delocalwere treated exactlfup to statistical errojsby the quantum
ized [compare Figs. () and Xg)]. This phenomenon is Monte Carlo method. The presence of other fermions can
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FIG. 3. IPR¢ as a function of the linear side Dashed lines and FIG. 4. Dependence of the coupling enedgyon the disorder

open symbols are fow/V=2 and full lines and full symbols are strengthW for U= —2V. The linear lattice .size ‘5?29 (©) and

for W/V=5V, with U/V=0 (O), —1 (0J), —2 (diamond, and L=40 (A); data are obtained by exact diagonalization of the TIP
: emodel(solid lines, full symbols and by mean-field approximation

the filling factor i5v:% anda=L2M=2. from the Cooper ansaizashed lines, empty symbals

This indication is in agreement with the quantum Monte

renormalize the effective strength of interaction between tw . . . .
9 }arlo computations presented in Ref. 18. It is also possible

particles. Also it can change the effective strength of disorde]” . .
for fermions near the Fermi level. The comparison betwee 0 give another argument in favor of the BLS phase. Suppose
i Ehat the filling factorv is close to the critical value, at the

the two figures shows that the TIP approach captures thmobility edge of noninteracting particl€sut v>v.). Then it

qualitative physical properties of the system but quantita- . .
tively it gives different values. In a sense this situation is!> natural that all parpcles pelow the mopmty edge_ are local-
similar to the comparison between the Cooper approximatiohzed_' Then the density _Of mter_actlng pairs aboxeis pro-
and the BCS theory. portional to|v—v¢| and is relatively low fov—v¢|<wv. In

The difference between exact diagonalization of the TIF1hIS reg_|me.the pairs above? are well separated and the TIP
Hamiltonian (2) and the mean-field solution given by the approximation we dI§CUSS in this paper shou!d be rather rea-
Cooper ansatz is also clearly seen in the coupling energy nable. Of_ course in the next step the re5|du_al interaction
the pairA = E4(U=0)— E4(U). HereE, is the TIP ground- | etween pairs should be taken into acc_o719r1n this picture
state energy%n the presence of interactiénFor U=0 we it is clear that the BLS phase is energetically more favorable

haveE,(U = 0)=2Eq . The dependence df on the disorder compared to the delocalized mean-field solution.
strengthW is shown in Fig. 4 forU=—2V. In the BLS

exact diagonalization becomes significantly larger than the FIELD

value ofA given by the mean-field approximation based on ¢ is interesting to understand how the TIP properties in

delocalized states. This shows that energetically the BL$,o g| s phase are affected by a magnetic fglderpendicu-

phase is more favorable than the mean-field Bogolubov-dg,; 5 the two-dimensional lattice. In this case the one-

Gennes solutioR? The physical reason for the increasefof particle Hamiltonian takes the form

compared to the mean-field value is related to localization.

the pairs are localized and particles remains closer to each

other, which effectively increases the coupling strength be- Hy=2, Eqn) (n[+VX [T(n)+T*(n)], )

tween thenf® On the contrary foW< W, when the pairs are " "

delocalized the exact solution gives the values\ofwhich  whereT(n) andT*(n) are the translation operators from site

are close to the mean-field value. This is in agreement withy to its nearest neighbors

the Anderson theorem according to which the mean field

remains valid in the regime with weak disorder. T(n)=Ty (N|n)(n+e |+ Ty (N|n)(n+tegl. (4
The fact that for TIP the BLS phase is energetically more * Y

favorable than the mean-field solution indicates that also atieree, ande, are the unitary vectors on the two-dimensional

finite particle density the BLS phase will be more favorable.lattice and
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FIG. 6. Dependence of the inverse participating ratiof the
TIP ground state on the disord®¥/V and magnetic fluxy. The
interaction strength for the main figure $=—2V. Empty/full
% symbols correspond tg/=0/y=0.1, with different linear lattice

20 55~ 20 sizesL=20 (O) andL=40 (A). The inset shows the phase dia-
gram in the plane ofV./V and y; the full line corresponds ttJ

FIG. 5. Ground-state probability distributions of two interacting = -2V and the dashed line tdJ=-4V; the BLS phase
particles in a lattice of linear size=40, with disorder strength is atW>W,.
W=3V and interaction strengthl = —2V; the left column shows
the probability distributiorf(n) and the right one the interparticle dinger equation of the forr(2). As in the case witlB=0 we
probability distributionfy(r). The different rows present the TIP yse the probability distributionign), f4(r), and the IPR to
ground state for different values of the magnetic fluxtop row  depict the ground-state properties of the TIP problem in the

y=0, middle rowy=2/40, and bottom rowy= 5/40. presence of a magnetic field. Thus Fig. 5 represents the TIP
probability distributions for a system of linear site=40
iq , and fixed disorder and interaction strength&¥=¢3V,U=
Tty (N ex;{ ~7c rx(y)(n)A' dn ) (®  —2V). The data are shown for different magnetic-flux ratios

v=0,y=2/40, andy=>5/40. At y=0 the one-particle prob-
are the magnetic translation operators a|0ng pd’t[;(sn) ab|||ty is We” Iocali;ed by interactiorﬁfi.rst row of Flga
=(n—n+e) andl'y(n)=(n—n+g,). For convenience we However, with the increase of magnetic flgxthe localiza- '
choose the Landau’s gauge for the magnetic fidle tion is destroyed: The data of Fig. 5 suggest tha_t there exists
—n,Be,. The magnetic translation operators are then deterd critical magnetic fluxy. below which the TIP pairs remain
mined asTy =exp(2riyn,) and TMyzl with y=qB/hc.  localized (y<y., middle row of Fig. 5 and above which

Due to the periodic boundary conditions the effective topol—pa'rz behcome total]y deflocahzed/ﬁ Yo bottom rlow d(')f Fig.
ogy of the two-dimensional lattice is that of a torus with a5)' L t._e same tw_ne ory= Ye the interparticle distance
transversal and a longitudinal radiBs=R,=L. This topol- probab|I|ty' d|str|but|onfd(r) 1S Igss peqked. Hence for
ogy implies flux quantization on the lattice so thatm/L =17 the size of the pair is significantly increased.

- : . The ground-state properties can be studied in a more
th me[0,L—1]. Then the one-particle Hamiltonia o2 . .
\c,:\gn be Ee>[<plicitly]written as part ltoniaf®) quantitative way with the help of the IPR defined above.

Figure 6 represents the dependence¢éobn the disorder
strengthW for a fixed interactiol = —2V. Data are shown
lez E.n )(n|+2 (ezqfiyny|n><n+ex|+|n><n+ ey|) for different values of magnetic fluy. They clearly show
n n that the introduction of magnetic field leads to an increase of
¢ at a fixed value ofV. Thus the magnetic field enhances the
+ 2 (e~ 2™y |n+ e)(n|+|n+ ey><n|). (6) delocalization of particles foy> y.(U) andW<W,(U). On
n the contrary fory<y.(U) andW>W_(U) the variation of¢
We study now the ground state of the TIP Hamiltonianwith an lattice sizeL is weak and usually here there is a
constructed with this new one-particle Hamiltonieln (6).  small decrease of with an increase of (see Fig. 6. The
This Hamiltonian is written in the preferential basis of non-delocalization transition can be determined as the point
interacting eigenstates of E¢6), which leads to the Schvo  whereé is independent of the lattice sizerossing point An
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FIG. 7. Dependence of the inverse participation ratiof the FIG. 8. Pair coupling energy as a function of magnetic flux
TIP ground state on the magnetic flyx for two lattice sizest ~ for L=20 (®) andL =40 (triangle. The interaction and disorder
=20 (@) andL =40 (triangle. Here the interaction strength i Strengths are as in Fig. U= —2V andW=3V.
=—2V and the disorder strength W= 3V.

considered an indication that the superconductivity is signifi-
approximate phase diagram in the plaiWe, ) obtained in  cantly suppressed by magnetic field fgry.. However, a
this Wa.y is shown in the inset of F|g 6. With the increase Ofsigniﬁcant increase df_ is required to investiga‘[e the prop_
interaction the localized phase penetrates deeper in the rgrties of pairs in the delocalized regime.
gion of weak disorder. The fact that a magnetic field can
delocalize pairs inside the BLS phase is also illustrated in
Fig. 7 where the IPR is enormously increased by the mag-

netic flux. This result is in agreement with a general fact The present studies show that in the presence of disorder
known for noninteracting particles that the localizationthe attractive Hubbard interaction leads to localization of
length is increased by a magnetic fiéfdwhile the delocal-  pairs and the appearance of a phase with biparticle localized
ization induced by a magnetic field is clearly illustrated bystates that is located inside the noninteracting metallic re-
Figs. 6 and 7 it is rather difficult to determine numerically gime. This BLS phase cannot be obtained in the mean-field
the properties of pairs in the delocalized phase. In this phasgpproximation. It is shown that it can be destroyed by the
an effective pair size becomes too large to investigate nuintroduction of a magnetic field, which drives the system to
merically. The question of whether the superconductivitydelocalization. In the BLS phase the pair coupling energy is
survives or if a magnetic field drives the system to a metallionuch larger than the value obtained in the mean-field ap-
regime is difficult to answer in the frame of our numerical proximation. This indicates that the BLS phase is energeti-
approach. cally more preferable compared to the mean-field solution.
For a better understanding of both localized and delocalThe results obtained for two particlésne pai are in quali-
ized phases we studied the dependence of the pair couplingtive agreement with the recent results obtained with the
energyA on the strength of the magnetic field. In the stan-quantum Monte Carlo method in Ref. 18.
dard Cooper problem is related to the BCS gap and deter-
mines the Cooper pair sizg,;,=1/A. Figure 8 shows the
dependence oA on the magnetic field for different lattice
sizes and for the casg= —2V andW=3V, already used in It is our pleasure to thank G. Benenti and B. Srinivasan
Fig. 7. In the localized regime with<<y.~0.04 the value of for stimulating discussions. We thank the IDRIS in Orsay
A varies weakly with the growth of. In contrast, fory  and the CalMiP in Toulouse for access to their supercomput-
>, its value decreases in two to three times. This can bers.
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