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Phase of biparticle localized states for the Cooper problem in two-dimensional disordered system

J. Lages and D. L. Shepelyansky*
Laboratoire de Physique Quantique, UMR 5626 du CNRS, Universite´ Paul Sabatier, F-31062 Toulouse Cedex 4, France

~Received 11 April 2001; published 31 July 2001!

The Cooper problem is studied numerically for the Anderson model with disorder in two dimensions. It is
shown that the attractive Hubbard interaction creates a phase of biparticle localized states in the regime where
noninteracting states are delocalized. This phase cannot be obtained in the mean-field approximation and the
pair coupling energy is strongly enhanced in this regime. The effects of magnetic field are studied and it is
shown that under certain conditions they lead to delocalization.
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I. INTRODUCTION

Recently a great deal of attention has been paid to inv
tigation of the superconductor-insulator transition~SIT! in
systems with disorder. Various approaches are used to s
this problem including analytical theoretical methods,1,2 in-
tensive numerical simulations of many-body quantum s
tems with quantum Monte Carlo methods,3,4 as well as mean
field numerical simulations.5–7 These theoretical studies a
stimulated by challenging experiments on the SIT in dis
dered films8,9 and high-Tc superconductors.10,11 The results
obtained in Ref. 10 show an interesting correlation betw
the optimal doping and the Anderson transition in the norm
phase obtained by application of a strong pulsed magn
field. Even if the experiments10,11 are done with three-
dimensional crystals the coupling between two-dimensio
planes is relatively weak and the two-dimensional effe
should play an important role. Due to that, it is relevant
study the SIT in two-dimensional disordered systems. In
case of weak disorder the Anderson theorem12,13 guarantees
that the superconductivity is not affected by disorder. Ho
ever it is not obvious if the theorem is still valid in th
presence of relatively strong disorder. It is quite possible t
in this regime the interplay of disorder and interaction c
lead to the appearance of new physical effects. The theo
ical investigation of this regime is however rather difficu
The existing analytical methods are not well adapted to
regime of strong interaction and disorder. At the same ti
the numerical studies also meet with serious difficulties.
deed the direct diagonalization methods are restricted to r
tively small system size since the Hilbert space grows ex
nentially with the number of particles.14,15 The quantum
Monte Carlo methods are not so sensitive to a huge siz
the Hilbert space but still they are restricted to systems
quite moderate size~for example lattices of 838 sites in
Ref. 4!.

In view of the above numerical difficulties it is natural
develop the approach introduced by Cooper16 and to study
the problem of two particles with attractive interaction ne
the frozen Fermi sea in the presence of disorder. Even if
original Cooper problem of two particles without disord
does not reproduce exactly the BCS theory of the many-b
problem it nevertheless captures the essential physical p
erties of the system and gives the appearance of cou
0163-1829/2001/64~9!/094502~7!/$20.00 64 0945
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states with a qualitatively correct coupling energy and cor
lation length. Without disorder the Cooper problem can
solved exactly. However in the presence of disorder the s
ation becomes more complicated even for only two intera
ing particles ~TIP!. Indeed, for relatively strong disorde
even the matrix elements of interaction between noninter
ing eigenstates cannot be obtained analytically and du
that the problem should be studied numerically. The fi
numerical studies of the Cooper problem in the presenc
disorder were done in Ref. 17 for two particles with attra
tive Hubbard interaction in the three-dimensional Anders
model. These studies showed that the interaction can lea
localization of pairs in the noninteracting metallic phas
This result is qualitatively different from the mean-field s
lution of the Cooper problem in the presence of disord
~Cooper ansatz!, which gives delocalized pairs for the sam
parameters. This shows that the nondiagonal interact
induced matrix elements play an important role and lead
new physical effects, which are not captured by the me
field approximation.

In this paper we study the Cooper problem on a tw
dimensional lattice with disorder described by the Anders
model. Our numerical studies show that near the Fermi le
the attractive Hubbard interaction between two particles c
ates localized pairs in the regime where noninteracting eig
states are well delocalized~extended!. The coupling energy
of these pairs is much larger than the coupling energy gi
by the mean-field solution~Cooper ansatz!. Therefore ener-
getically it is more favorable to have an insulator with loca
ized pairs instead of usual weakly coupled delocalized C
per pairs. This result indicates the appearance of a new p
of biparticle localized states~BLS phase!, which appears in
the regime when noninteracting states are extended~metal-
lic!. It is in a qualitative agreement with the quantum Mon
Carlo studies obtained recently in Toulouse.18 This BLS
phase is qualitatively different from the BCS solution, whi
corresponds to weakly coupled delocalized pairs.

The paper is organized as follows. The properties of
BLS phase without magnetic field are discussed in Sec
The effects of perpendicular magnetic field on the grou
state properties in the presence of interaction and diso
are analyzed in Sec. III. The discussion of the results is p
sented in the last section.
©2001 The American Physical Society02-1
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II. GROUND-STATE PROPERTIES WITHOUT MAGNETIC
FIELD

To study the Cooper problem of two interacting partic
in the presence of disorder we use the two-dimensio
Anderson model. In this model the one-particle eigensta
are determined by the Hamiltonian

H15(
n

Enun& ^nu1V (
^n,m&

un& ^mu, ~1!

where n and m are index vectors on the two-dimension
square lattice with periodic boundary conditions,V is the
nearest-neighbor hopping term, and the random on-site e
giesEn are homogeneously distributed in the energy inter
@2W/2,W/2#, whereW is the disorder strength. This one
particle model has been extensively studied by different
thors, see for example Ref. 19. For the two-particle probl
on this two-dimensional lattice we consider on-site attract
Hubbard interaction between particles of strengthU,0. We
consider the particles in the singlet state with zero total s
so that the spatial wave function is symmetric with respec
particle permutation~interaction is absent in the triplet state!.

To investigate the effects of interaction between partic
near the Fermi level we generalize the Cooper approach
the case with disorder. To do that we rewrite the TIP Ham
tonian in the basis of one-particle eigenstates of the Ha
tonian ~1!. In this basis the Schro¨dinger equation for TIP
reads

~Em1
1Em2

!xm1 ,m2
1U (

m18 ,m28
Qm1 ,m2 ,m

18 ,m
28
xm

18 ,m
28

5Exm1 ,m2
. ~2!

HereEm are the one-particle eigenenergies correspondin
the one-particle eigenstatesufm& andxm1 ,m2

are the compo-
nents of the TIP eigenstate in the noninteracting eigenb
ufm1

,fm2
&. The matrix elementsUQm1 ,m2 ,m

18 ,m
28

give the

interaction-induced transitions between noninteractive eig
statesufm1

,fm2
& and ufm

18
,fm

28
&. These matrix elements ar

obtained by rewriting the Hubbard interaction in the non
teractive eigenbasis of model~1!. In the analogy with the
original Cooper problem16 the summation in Eq.~2! is done
over the states above the Fermi level with eigenener
Em

1,28 .EF with m1,28 .0. The Fermi energyEF'0 is deter-

mined by a fixed filling factorn5 1
2 . To keep the similarity

with the Cooper problem we restrict the summation onm1,28
by the condition 1,m181m28<M . In this way the cutoff with
M unperturbed orbitals introduces an effective phonon
quencyvD}M /L251/a whereL is the linear system size
When varyingL we keepa fixed so that the phonon fre
quency is independent of system size. All the data in t
work are obtained witha515 but we also checked that th
results are not sensitive to the change ofa. We note that a
similar TIP model was considered for the problem of tw
repulsive quasiparticles near the Fermi level in Refs. 20
21. However, there the studies mainly addressed the pro
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ties of excited states while here we will investigate only t
properties of the ground state in the case of an attrac
interaction. We also note that the attractive case in one
mension was discussed in Refs. 22 and 23.

To determine the characteristics of the ground state of
generalized Cooper problem~2! we solve numerically the
Schrödinger equation. After that we rewrite the obtaine
ground state in the original lattice basis with the help of t
relation between the lattice basis and one-particle eigens
un&5(mRn,mufm&. As a result of this procedure we obta
the two-particle probability distributionF(n1 ,n2) from
which we extract the one-particle probabilityf (n)
5(n2

F(n1 ,n2) and the probability of interparticle distanc

f d(r )5(n2
F(r1n2 ,n2) with r5n12n2.

Typical examples of such probability distributions are p
sented in Fig. 1. Without interaction, at given disord
strengthW52V and W55V both particles are delocalize
on the lattice of given sizeL540. In the presence of inter
action U522V the ground state remains delocalized f
W52V and the probability distribution is rather similar t
the case ofU50 @compare Figs. 1~a! and 1~c!#. On the con-
trary for W55V, interaction completely changes the groun
state properties leading to a clear localization of both p
ticles near each other@compare Figs. 1~b! and 1~e!#. The
wave function is localized in a rather compact way and
finite size of the lattice definitely does not affect this loca
ization. Figure 1~f! shows that in this localized state the pa
ticles remain correlated close to each other. This bipart
localized ground state is obtained by exact diagonalization
Eq. ~2! where all nondiagonal interaction-induced matrix e
ements are taken into account. It is interesting to comp
this solution with the mean-field approximation~Cooper an-
satz! in which only diagonal terms are taken into accou
Within the Cooper ansatz the particles occupy the same n
interacting orbitals and only matrix elementsQm1,m2,m

18,m
28

with m15m2 and m185m28 are kept in Eq.~2!. The ground
state obtained from the Cooper ansatz is shown in Figs.~g!
and 1~h! and is clearly delocalized contrarily to the strong
localized ground state obtained from exact diagonalization
Eq. ~2! and shown in Figs. 1~e! and 1~f!. In fact the ground
state from the Cooper ansatz is closer to the delocalized n
interacting eigenstate in Fig. 1~b! than to the real eigenstat
in Fig. 1~e! in the presence of interaction. The results of F
1 definitely show that the attractive interaction leads to
calization of pairs in the regime when noninteracting sta
are delocalized. This localization is not captured by the C
per ansatz, which neglects nondiagonal matrix elements
due to that misses the essential physical effect.

In order to study the ground-state properties of our mo
in a more quantitative way it is convenient to compute t
inverse participation ratio ~IPR! j defined as j21

5^(nf 2(n)& where the brackets mark the averaging overND
disorder realizations~typically ND5100). Physically,j gives
the number of lattice sites occupied by one particle in the T
ground state. The dependence of the IPRj on the disorder
strengthW is shown in Fig. 2 for different strengths of inte
action U and different system sizesL. In the absence of
interaction, for finite system sizes used in our numeri
2-2
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PHASE OF BIPARTICLE LOCALIZED STATES FOR . . . PHYSICAL REVIEW B 64 094502
simulations (L<40), the ground state is delocalized for di
order W<5V and it becomes localized forW.5V. On the
contrary in the presence of interaction the TIP ground s
becomes localized forW.Wc'2V at U524V and forW
.Wc'3V at U522V. Indeed forW,Wc the IPRj starts
to grow significantly with the increase of the system sizeL
that corresponds to pair delocalization. The decrease of
Wc value induced by the attractive interaction shows that
attraction leads to localization of pairs inside the nonintera
ing delocalized phase. This effect is absent in the mean-fi
approximation where the ground state remains well delo
ized @compare Figs. 1~e! and 1~g!#. This phenomenon is

FIG. 1. Ground-state probability distributions of two interacti
particles for the Cooper problem with disorder on a lattice of lin
sizeL540. The cases~a! and~b! show the one-particle probability
distribution f (n) in the absence of interaction (U50V) for the
disorder strengthW52V ~a! and W55V ~b!. All other cases are
obtained for the Hubbard interactionU522V. The cases~c! and
~d! show the one-particle probabilityf (n) ~c! and the interparticle
distance probabilityf d(r ) ~d! for W52V. The same probabilities
are shown in cases~e! and~f! for W55V @f (n) for ~e! and f d(r ) for
~f!#. The cases~g! and ~h! present the probabilities for the sam
W55V as in cases~e! and ~f! however here the ground state
obtained in the mean-field approximation of the Cooper ansatz
data are given for the same realization of disorder.
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similar to the situation in the three-dimensional Anders
model for which the localization of pairs was discussed
Ref. 17. As in Ref. 17 we attribute this phenomenon to
increase of the effective massmeff of the pair (V}1/meff) that
leads to a decrease of the critical disorder strength (Wc;V
}1/meff). For strong attraction the mass is approximate
doubled so that the value ofWc is decreased by a factor of
compared to the noninteracting case. The numerical dat
two and three dimensions presented here and in Ref. 17
in satisfactory agreement with this estimate.

The dependence of IPRj on the system sizeL for W
52V andW55V is shown in Fig. 3 for different values o
interactionU. For L<12 the noninteracting states are del
calized. The introduction of interaction decreases sign
cantly the IPR value and forW55V the TIP ground state is
localized foruUu>2V. On the contrary forW52V the IPR
still grows with L for U522V. This behavior is qualita-
tively similar to the numerical data obtained in Ref. 18
the projected quantum Monte Carlo method~see Fig. 3 of
Ref. 18!. According to Ref. 18 the pairs at quarter fillin
become localized atU/V'24 for W55V and remain delo-
calized forW52V ~only sizesL<12 were accessible by thi
method!. While the qualitative behavior is similar~compare
Fig. 3 with Fig. 3 in Ref. 18! the quantitative difference
between the two sets of data is definitely present. For
ample in our Fig. 3 atW55V the states become localize
approximately atU/V'21.5 and not atU/V'24 as in
Ref. 18. We attribute this quantitative difference to the fa
that in Ref. 18 up to 74 real spin fermions were present a
were treated exactly~up to statistical errors! by the quantum
Monte Carlo method. The presence of other fermions

r

ll

FIG. 2. Dependence of the inverse participation ratioj of the
TIP ground state on the disorderW/V. The full lines with full sym-
bols correspond to an interaction strengthU524V, the dashed
ones with open symbols toU522V, and the dot-dashed ones t
U50V (1,3,*). Dif ferent symbols correspond to differen
linear sizes of the latticeL520 (s,1), L530 (h,3), and
L540 (n,*).
2-3
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J. LAGES AND D. L. SHEPELYANSKY PHYSICAL REVIEW B64 094502
renormalize the effective strength of interaction between
particles. Also it can change the effective strength of disor
for fermions near the Fermi level. The comparison betwe
the two figures shows that the TIP approach captures
qualitative physical properties of the system but quant
tively it gives different values. In a sense this situation
similar to the comparison between the Cooper approxima
and the BCS theory.

The difference between exact diagonalization of the T
Hamiltonian ~2! and the mean-field solution given by th
Cooper ansatz is also clearly seen in the coupling energ
the pairD5Eg(U50)2Eg(U). HereEg is the TIP ground-
state energy in the presence of interactionU. For U50 we
haveEg(U50)52EF . The dependence ofD on the disorder
strengthW is shown in Fig. 4 forU522V. In the BLS
phase atW.Wc'3V the coupling energyD obtained from
exact diagonalization becomes significantly larger than
value ofD given by the mean-field approximation based
delocalized states. This shows that energetically the B
phase is more favorable than the mean-field Bogolubov
Gennes solution.24 The physical reason for the increase ofD
compared to the mean-field value is related to localizati
the pairs are localized and particles remains closer to e
other, which effectively increases the coupling strength
tween them.25 On the contrary forW,Wc when the pairs are
delocalized the exact solution gives the values ofD, which
are close to the mean-field value. This is in agreement w
the Anderson theorem according to which the mean fi
remains valid in the regime with weak disorder.

The fact that for TIP the BLS phase is energetically mo
favorable than the mean-field solution indicates that also
finite particle density the BLS phase will be more favorab

FIG. 3. IPRj as a function of the linear sizeL. Dashed lines and
open symbols are forW/V52 and full lines and full symbols are
for W/V55V, with U/V50 (s), 21 (h), 22 ~diamond!, and
24 (n). The average is done over 100 disorder realizations. H
the filling factor isn5

1
4 anda5L2/M52.
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This indication is in agreement with the quantum Mon
Carlo computations presented in Ref. 18. It is also poss
to give another argument in favor of the BLS phase. Supp
that the filling factorn is close to the critical valuenc at the
mobility edge of noninteracting particles~but n.nc). Then it
is natural that all particles below the mobility edge are loc
ized. Then the density of interacting pairs abovenc is pro-
portional toun2ncu and is relatively low forun2ncu!n. In
this regime the pairs abovenc are well separated and the TI
approximation we discuss in this paper should be rather
sonable. Of course in the next step the residual interac
between pairs should be taken into account.26 In this picture
it is clear that the BLS phase is energetically more favora
compared to the delocalized mean-field solution.

III. GROUND-STATE PROPERTIES WITH MAGNETIC
FIELD

It is interesting to understand how the TIP properties
the BLS phase are affected by a magnetic fieldB perpendicu-
lar to the two-dimensional lattice. In this case the on
particle Hamiltonian takes the form

H15(
n

Enun& ^nu1V(
n

@T~n!1T* ~n!#, ~3!

whereT(n) andT* (n) are the translation operators from si
n to its nearest neighbors

T~n!5TMx
~n!un&^n1exu1TMy

~n!un&^n1eyu. ~4!

Hereex andey are the unitary vectors on the two-dimension
lattice and

e,

FIG. 4. Dependence of the coupling energyD on the disorder
strengthW for U522V. The linear lattice size isL520 (s) and
L540 (n); data are obtained by exact diagonalization of the T
model ~solid lines, full symbols! and by mean-field approximation
from the Cooper ansatz~dashed lines, empty symbols!.
2-4
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PHASE OF BIPARTICLE LOCALIZED STATES FOR . . . PHYSICAL REVIEW B 64 094502
TMx(y)
~n!5expS 2

iq

\cEGx(y)(n)
A•dn8D ~5!

are the magnetic translation operators along pathsGx(n)
5(n→n1ex) andGy(n)5(n→n1ey). For convenience we
choose the Landau’s gauge for the magnetic fieldA5
2nyBex . The magnetic translation operators are then de
mined asTMx

5exp(2pigny) and TMy
51 with g5qB/hc.

Due to the periodic boundary conditions the effective top
ogy of the two-dimensional lattice is that of a torus with
transversal and a longitudinal radiusRt5Rl5L. This topol-
ogy implies flux quantization on the lattice so thatg5m/L
with mP@0,L21#. Then the one-particle Hamiltonian~3!
can be explicitly written as

H15(
n

Enun &^nu1(
n

~e2p ignyun&^n1exu1un&^n1eyu!

1(
n

~e22p ignyun1ex&^nu1un1ey&^nu!. ~6!

We study now the ground state of the TIP Hamiltoni
constructed with this new one-particle HamiltonianH1 ~6!.
This Hamiltonian is written in the preferential basis of no
interacting eigenstates of Eq.~6!, which leads to the Schro¨-

FIG. 5. Ground-state probability distributions of two interacti
particles in a lattice of linear sizeL540, with disorder strength
W53V and interaction strengthU522V; the left column shows
the probability distributionf (n) and the right one the interparticl
probability distribution f d(r ). The different rows present the TI
ground state for different values of the magnetic fluxg: top row
g50, middle rowg52/40, and bottom rowg55/40.
09450
r-
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dinger equation of the form~2!. As in the case withB50 we
use the probability distributionsf (n), f d(r ), and the IPRj to
depict the ground-state properties of the TIP problem in
presence of a magnetic field. Thus Fig. 5 represents the
probability distributions for a system of linear sizeL540
and fixed disorder and interaction strengths (W53V,U5
22V). The data are shown for different magnetic-flux rati
g50,g52/40, andg55/40. At g50 the one-particle prob-
ability is well localized by interaction~first row of Fig. 5!.
However, with the increase of magnetic fluxg the localiza-
tion is destroyed. The data of Fig. 5 suggest that there ex
a critical magnetic fluxgc below which the TIP pairs remain
localized (g,gc , middle row of Fig. 5! and above which
pairs become totally delocalized (g.gc , bottom row of Fig.
5!. At the same time forg.gc the interparticle distance
probability distribution f d(r ) is less peaked. Hence forg
.gc the size of the pair is significantly increased.

The ground-state properties can be studied in a m
quantitative way with the help of the IPRj defined above.
Figure 6 represents the dependence ofj on the disorder
strengthW for a fixed interactionU522V. Data are shown
for different values of magnetic fluxg. They clearly show
that the introduction of magnetic field leads to an increase
j at a fixed value ofW. Thus the magnetic field enhances t
delocalization of particles forg.gc(U) andW,Wc(U). On
the contrary forg,gc(U) andW.Wc(U) the variation ofj
with an lattice sizeL is weak and usually here there is
small decrease ofj with an increase ofL ~see Fig. 6!. The
delocalization transition can be determined as the po
wherej is independent of the lattice size~crossing point!. An

FIG. 6. Dependence of the inverse participating ratioj of the
TIP ground state on the disorderW/V and magnetic fluxg. The
interaction strength for the main figure isU522V. Empty/full
symbols correspond tog50/g50.1, with different linear lattice
sizesL520 (s) and L540 (n). The inset shows the phase dia
gram in the plane ofWc /V and g; the full line corresponds toU
522V and the dashed line toU524V; the BLS phase
is at W.Wc .
2-5
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J. LAGES AND D. L. SHEPELYANSKY PHYSICAL REVIEW B64 094502
approximate phase diagram in the plane (W,g) obtained in
this way is shown in the inset of Fig. 6. With the increase
interaction the localized phase penetrates deeper in th
gion of weak disorder. The fact that a magnetic field c
delocalize pairs inside the BLS phase is also illustrated
Fig. 7 where the IPRj is enormously increased by the ma
netic flux. This result is in agreement with a general f
known for noninteracting particles that the localizati
length is increased by a magnetic field.19 While the delocal-
ization induced by a magnetic field is clearly illustrated
Figs. 6 and 7 it is rather difficult to determine numerica
the properties of pairs in the delocalized phase. In this ph
an effective pair size becomes too large to investigate
merically. The question of whether the superconductiv
survives or if a magnetic field drives the system to a meta
regime is difficult to answer in the frame of our numeric
approach.

For a better understanding of both localized and delo
ized phases we studied the dependence of the pair cou
energyD on the strength of the magnetic field. In the sta
dard Cooper problemD is related to the BCS gap and dete
mines the Cooper pair sizel pair}1/D. Figure 8 shows the
dependence ofD on the magnetic field for different lattic
sizes and for the caseU522V andW53V, already used in
Fig. 7. In the localized regime withg,gc'0.04 the value of
D varies weakly with the growth ofL. In contrast, forg
.gc its value decreases in two to three times. This can

FIG. 7. Dependence of the inverse participation ratioj of the
TIP ground state on the magnetic fluxg for two lattice sizesL
520 (d) andL540 ~triangle!. Here the interaction strength isU
522V and the disorder strength isW53V.
09450
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considered an indication that the superconductivity is sign
cantly suppressed by magnetic field forg.gc . However, a
significant increase ofL is required to investigate the prop
erties of pairs in the delocalized regime.

IV. CONCLUSION

The present studies show that in the presence of diso
the attractive Hubbard interaction leads to localization
pairs and the appearance of a phase with biparticle local
states that is located inside the noninteracting metallic
gime. This BLS phase cannot be obtained in the mean-fi
approximation. It is shown that it can be destroyed by
introduction of a magnetic field, which drives the system
delocalization. In the BLS phase the pair coupling energ
much larger than the value obtained in the mean-field
proximation. This indicates that the BLS phase is energ
cally more preferable compared to the mean-field soluti
The results obtained for two particles~one pair! are in quali-
tative agreement with the recent results obtained with
quantum Monte Carlo method in Ref. 18.
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FIG. 8. Pair coupling energyD as a function of magnetic fluxg
for L520 (d) and L540 ~triangle!. The interaction and disorde
strengths are as in Fig. 7:U522V andW53V.
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