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a b s t r a c t

We present a novel numerical method aimed to characterize global behaviour, in particular chaotic
diffusion, in dynamical systems. It is based on an analysis of the Poincaré recurrence statistics on
massive grids of initial data or values of parameters. We concentrate on Hamiltonian systems, featuring
the method separately for the cases of bounded and non-bounded phase spaces. The embodiments of
the method in each of the cases are specific. We compare the performances of the proposed Poincaré
recurrence method (PRM) and the custom Lyapunov exponent (LE) methods and show that they expose
the global dynamics almost identically. However, a major advantage of the new method over the
known global numerical tools, such as LE, FLI, MEGNO, and FA, is that it allows one to construct, in
some approximation, charts of local diffusion timescales. Moreover, it is algorithmically simple and
straightforward to apply.

© 2019 Elsevier B.V. All rights reserved.

0. Introduction

A number of numerical tools, such as based on computation of
Lyapunov exponents (LE), fast Lyapunov indicators (FLI), mean ex-
ponential growth number (MEGNO), and frequency analysis (FA),
have been elaborated up to now to explore dynamical systems
in global contexts (for a review, see, e.g., [1]). However, none
of the known global tools allows one to expose diffusion rates
globally. To elaborate a global numerical tool that overcomes
this difficulty is just the aim of the present study. Therefore,
we propose and develop a novel general method, based on a
massive numerical analysis of Poincaré recurrences of orbits on
fine grids of initial data or values of parameters. What makes the
new method complementary to (and often advantageous over)
other global numerical tools, such as LE, FLI, MEGNO, and FA, is
that it allows one to characterize local diffusion rates. Indeed, LE,
FLI, and MEGNO characterize local divergence of trajectories, and
FA their spectral properties. Therefore, the output of the other
methods does not have any universal relation to diffusion rates,
whereas these are just the diffusion rates that are often needed.

The paper is organized as follows. In Section 1, we briefly
review the known tools aimed to study global dynamics (LE, FLI,
MEGNO, FA). In Section 2, concentrating on Hamiltonian systems,
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we introduce a novel global numerical method, the Poincaré re-
currence method (PRM). We feature this new method separately
for the cases of bounded and non-bounded phase spaces, and
show that the embodiments of the method in each of the cases
are specific. We compare the performances of the PRM and LE
methods and show that they expose the global dynamics almost
identically, but PRM is algorithmically much simpler, and it is
straightforward to apply. In Section 3, we concentrate on the-
oretical issues of the Poincaré recurrence statistics and identify
the major advantage of the new method over the custom global
numerical tools: by providing the opportunity to construct charts
of diffusion rates, it allows one to assess the timescales of clear-
ing of chaotic domains of phase space in various physical and
astrophysical applications. Section 4 is devoted to discussion. In
Section 5, we summarize the results.

1. Numerical methods to study global dynamics

For detecting chaos in dynamical systems, variational methods
and methods of spectral analysis are mostly used. The essence
of the variational methods consists in an analysis of the time
evolution of trajectories with close initial conditions in phase
space. In the case of chaotic dynamics, the trajectories diverge
with time exponentially. A detailed analysis and a comparison
of variational methods and methods of spectral analysis can be
found in [2].
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Numerical methods to study global behaviour of dynamical
systems include, primarily, techniques based on massive com-
putations of Lyapunov exponents [3–7], fast Lyapunov indica-
tors [8], mean exponential growth number [9,10], fundamental
frequencies of motion (frequency analysis) [11,12].

A classical method to determine the rate of divergence of close
trajectories in phase space is the method based on computing the
Lyapunov exponents [13–15]. A dynamical system with N degrees
of freedom has 2N Lyapunov exponents (LE), but, in practice, only
the maximum LE is usually determined. By increasing the length
of the time interval on which the maximum LE is calculated, for
a regular orbit the value of the numerically determined finite-
time maximum LE tends to zero, and for a chaotic orbit it tends
to some positive non-zero value. To obtain the full Lyapunov
spectrum, the HQRB-method (Householder QR-Based), in partic-
ular, can be efficiently used, developed in [16]. A comparison of
various methods to compute LEs is given in [17]. Note that even
very long computations may often be insufficient to distinguish
between chaos and regular behaviour, and to reveal the authentic
LEs, because the computed LEs, are, in fact, finite-time and local
in nature; see discussion in [18].

The LE method is computationally expensive (see, e.g., a
discussion in [19]). To reduce these costs, various analogues (sur-
rogates) of the Lyapunov exponents were developed. The most
popular among them are MEGNO [9,10] and FLI [20]. The main
idea of FLI, as proposed in [20], is to track the distance between
two trajectories of the phase space that are initially close to each
other. If at some stage of the integration the distance between
the trajectories exceeds a given critical value (the threshold
criterion), the dynamics is stated to be chaotic.

The MEGNO method was proposed in [9,10]. The MEGNO pa-
rameter specifies the exponential growth factor of nearby orbits,
averaged in a particular way over a finite time interval. In the
case of a regular orbit, the value of the MEGNO parameter is ap-
proximately constant; for a chaotic orbit, the value of the MEGNO
parameter increases with the length of the segment on which the
integration is performed. MEGNO and FLI allow one to identify
chaotic domains in phase space in much less (by 2–3 orders of
magnitude) integration times, in comparison with the LE method.
However, they do not provide any accurate estimates of the
genuine Lyapunov exponents; only local approximate estimates
can be obtained.

It should be noted that various simplifications and assump-
tions in the LE surrogates may often lead to erroneous assess-
ments of the type of a trajectory. In particular, a disadvantage
of the FLI method consists in an ambiguity in the choice of the
threshold criterion for the identification of chaotic trajectories.
Using MEGNO may as well lead to ambiguous conclusions; as
shown in [2], in the case of a divided phase space, MEGNO
may characterize the regular component ambiguously. A software
package description for calculating various indicators of chaos
(including LE, FLI, and MEGNO) can be found in [21].

A major spectral method is the method of frequency analysis
(FA). Its description and theoretical justification are given in
[22–24]. For regular orbits, the fundamental frequencies are con-
stant, while for chaotic orbits they are not constantly defined,
actions and angles varying randomly. Performing the FA at sep-
arate time intervals, one can numerically determine the current
fundamental frequencies and find out whether they vary when
going from one time interval to another, i.e., determine the char-
acter of the dynamics. Examples of implementation of the FA
technique, as proposed in [22,23] in the form of a numerical
analysis of fundamental frequencies, can be found in [25,26].

In addition to the general opportunity of identification of regu-
lar and chaotic domains in phase space, FA allows one to identify
locations of resonances. However, FA is laborious; it may require

up to ∼ 30% of the computing time more than that required by
the LE method in one and the same problem [2].

In celestial mechanics, to identify chaos in orbital or rotational
motion of celestial bodies, a number of specific methods were
proposed: the maximum eccentricity method (MEM) [27,28];
methods based on massive numerical assessments of the es-
cape/encounter conditions [29,30]; the reversibility error method
(REM) [31]. However, they are not mathematically justified in any
rigorous way. Moreover, the criteria used in them for separating
trajectories into chaotic and regular ones are only approximate,
similar to the case of FLI.

2. The Poincaré recurrence method

In this section, we elaborate a general method, the Poincaré
recurrence method (PRM), to study global dynamics. The method
is based on a massive numerical analysis of Poincaré recurrences
of orbits on fine grids of initial data (or values of parameters).

2.1. Basics of the PRM

The notion of the Poincaré recurrence is of great method-
ological value due to the existence of the famous Poincaré recur-
rence theorem [32], valid in a broad class of dynamical systems,
including Hamiltonian systems on which we concentrate here.
Generally, the theorem states that for a volume-conserving con-
tinuous one-to-one mapping g , transforming a bounded domain
D of Euclidean space in itself (gD = D), in any neighbourhood U
of any point of D there exists a point x that returns to U: gnx ∈ U
at some n (see [33]). In other words, any dynamical system of
certain type (in particular, with bounded phase space) recurs
eventually, though it may take much time, to any neighbourhood
of its initial state.

Although the theorem is valid for systems with bounded
phase space, the notion of Poincaré recurrence is defined for
any dynamical system. In particular, the PR method developed in
this article can be used, with minimal modifications, in systems
with non-bounded phase space, as demonstrated further on in
Section 2.4.

In various statistical applications, the so-called recurrence
plot technique and the recurrence quantification analysis, mostly
dealing with various data series, became more and more popular
in the last decades [34,35]. The recurrence plot is defined as a
set of pairs of time instants when a dynamical system returns to
the same position in phase space. The recurrence plot technique
has been already used in celestial mechanics: in [36], the stability
of selected exoplanetary systems was globally characterized by
the Rényi entropy, which was calculated by using the recurrence
plot technique. Computations of first recurrence times were per-
formed to construct a bifurcation diagram for the standard map
in [37, figure 5].

And generally, computations of Poincaré recurrences have
been already broadly used in assessments of properties of dynam-
ical chaos in Hamiltonian systems. Various aspects of statistics of
Poincaré recurrences were numerically and analytically explored
in [38–43].

The PRM, as proposed in this article, is intended for construc-
tion of stability charts. A stability chart, in the sense used here,
is any global representation of the behaviour of any parameters,
characterizing instabilities (such parameters as LE, FLI, MEGNO, or
local diffusion rates) of a dynamical system, on a two-dimensional
plane of initial conditions or parameters of the system. To pro-
duce a stability chart by means of PRM, the Poincaré recurrences
are computed on a uniform grid in the plane of initial conditions
of two selected variables (with all other initial conditions and
the system parameters fixed), or on a uniform grid in the plane
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of two selected parameters (with all other parameters and the
initial conditions fixed). The grid is defined in such a way that
both regular and chaotic types of trajectories can be analysed on
the subject of the properties of their Poincaré recurrences in a
representative way.

The Poincaré recurrences are calculated as follows. At each
node of the defined grid, a neighbourhood of the initial point of
motion of size ε (either a sphere of radius ε or a box with size ε) is
defined in the phase space. By integrating numerically equations
of motion, a time instant Tr is fixed when the trajectory returns
to the given neighbourhood of the initial point. The integration is
over when either the first Poincaré recurrence occurs or the end
of the specified integration time interval is over (thus, no Poincaré
recurrence time is fixed). Then, the durations of the recurrences
are represented graphically on the grid; say, in a colour grade.

Note that, in the current code, we define the recurrence box
either as a direct product of small linear intervals or as a small
sphere. Of course, other possibilities exist. However, as one may
expect (and this has been readily confirmed by our test numerical
experiments), this is not the shape of the recurrence box that is
important for the final clarity of a stability diagram, but its size
first of all.

Grids with various numbers of nodes can be used. A key point
is the choice of ε at a given computation time; this issue is
discussed further on in Section 4.

To obtain a non-noisy stability chart, one should normally
choose the size of the recurrence box to be much smaller (by
orders of magnitude) than the length of the trajectory in one
recurrence. Therefore, any non-zero box-size corrections to the
computed length of a recurrence are ignored in the current ver-
sion of the codes. The middle point of the trajectory interval
inside the recurrence box [44, Figure 1] might be a better recur-
rence landmark otherwise.

In the following subsections, PRM is featured separately for
the cases of bounded and non-bounded phase spaces, because
the embodiments of the PRM in each of the cases are specific. To
assess the performance of the PRM, we simultaneously use the
traditional LE method, and compare the results.

2.2. The Poincaré recurrence method: the case of bounded phase
space

In the case of bounded phase space, the Poincaré recurrences
are counted with respect to a neighbourhood of a starting point
in the phase space. We take the Hénon–Heiles system [45] as a
paradigm for demonstrating the opportunities of PRM in this case.
It is in this problem that for the first time a chaotic behaviour was
detected in Hamiltonian mechanics [45]. The Hamiltonian of the
Hénon–Heiles problem is given by

H =
1
2
(p21 + p22 + q21 + q22) + q21q2 −

1
3
q32 , (1)

where q1, q2 are the canonical coordinates, and p1, p2 are the
conjugate canonical momenta.

Poincaré sections of the system’s phase space were constructed
and domains of the chaotic motion were identified, using numer-
ical integration, in [45]. With increasing the energy, the chaotic
domains grow in size, and at the energy value E ≡ H = 1/6, prac-
tically all of phase space of the possible motion is chaotic [4,45].
Note that the Hénon–Heiles problem was demonstrated [20] to be
an example of the effectiveness of the FLI method, in comparison
with FA, in detecting a chaotic behaviour.

Using a PRM_HH code, described below, we compute the
Poincaré recurrences for a set of initial data defined on a uniform
grid in the plane (p2, q2); the section is defined at q1 = 0, and
p1 are calculated by Eq. (1) at E = 0.1. As shown in [4], at

E = 0.1 the chaotic domain takes ≈ 20% of the whole phase
space. Therefore, both regular and chaotic types of trajectories
can be analysed on the subject of the properties of their Poincaré
recurrences in a representative way.

The code, in accord with the general algorithm described
above, is organized as follows. At each node of the grid of initial
values (pi0, qi0), i = 1, 2, a sphere of radius ε is defined in the
phase space. By integrating numerically the equations of motion
specified by Hamiltonian (1), the time instant Tr of recurrence is
fixed when the trajectory returns to the given neighbourhood of
the initial point, i.e., when

∑
i=1,2[(pi − pi0)2 + (qi − qi0)2] ≤ ε2,

where pi, qi are the current values of the canonical variables.
Note that we have also tried ‘‘box’’ (brick-like) neighbour-

hoods, of the same volume, in this problem. No effect on the final
results has been observed, as expected. (The box neighbourhoods
are also alternatively used in the next problem, considered in
Section 2.4.)

We use grids with various numbers of nodes: 100 × 100,
300 × 300 and 500 × 500. The intervals for the initial p2 and
q2 are defined as p2 ∈ [−0.5, 0.5], q2 ∈ [−0.4, 0.6]. For a given
energy value, all the trajectories in the bounded phase space of
Hamiltonian (1) are intersected by the defined subset of the (p2,
q2) plane.

At E = 0.08, the fraction of chaos in the phase space is small
[4], and taking ε = 10−2 provides the Poincaré recurrence times
Tr ≤ 103 for 99% of the studied trajectories. On decreasing ε to
10−3, one has Tr ≤ 3 × 104 for 99% of the studied trajectories. If
one takes ε = 10−4, then the integration time interval t = 105

turns out to be too small to obtain any informative statistics on
the distribution of the Poincaré recurrences. For example, on the
initial data grid 100 × 100 the Poincaré recurrence times are fixed
for only 1% of the studied trajectories. Therefore, to obtain the
results presented below, we have set ε = 10−3 and t = 105.

In addition to computing the Poincaré recurrences, the Lya-
punov times have been computed also, on the same grid of the
initial conditions and on the same time interval of integration.
The Lyapunov time is defined as TL = 1/L, where L is the maxi-
mum Lyapunov exponent (in fact, the maximum finite-time local
Lyapunov exponent). The calculation of the Lyapunov exponents
(finite-time local LE) in the Hénon–Heiles problem was carried
out using the HQRB method in [16,19]; for more details, see [4].

Fig. 1 shows the (p2, q2) diagrams with the Poincaré recurrence
and Lyapunov times indicated in a colour grade. The diagrams
allow one to judge on the structure of the phase space of the
Hénon–Heiles system. The Poincaré recurrence and Lyapunov
times are calculated on a 500 × 500 grid with ≈ 150 000 nodes
inside the bounded phase space. In Fig. 1a, the Poincaré recur-
rence times Tr ≤ 100 (blue colour) correspond to the trajectories
passing through the centres of various resonances or close to
them. The Poincaré recurrence times 102 < Tr ≤ 2 × 104 (green
colour) correspond to the librational trajectories far from centres
of resonances. The Poincaré recurrence times 2 × 104 < Tr ≤

5 × 104 (light red colour) correspond to the regular trajectories
located far from the resonances, and also probably to weakly
chaotic trajectories. The ring-like red areas all correspond to
chaotic trajectories; they have Tr > 105.

To separate the trajectories into regular and chaotic ones,
the method proposed in [3] is used. Its essence consists in the
analysis of the modal structure of the differential distribution of
the values of the computed Lyapunov exponents (in fact, finite-
time local Lyapunov exponents) computed on a grid of initial data
or values of parameters. Generally, the distribution has two peaks,
one fixed and one moving when the computation time is in-
creased. The fixed one corresponds to the chaotic trajectories. On
the contrary, the peak corresponding to the regular trajectories
moves along the horizontal axis towards smaller computed finite-
time LE values (towards larger values of the Lyapunov times).
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Fig. 1. (a) The Poincaré recurrence chart for the Hénon–Heiles system, in the
(p2 , q2) plane, at E = 0.1. Red colour corresponds to Tr > 105 . (b) The Lyapunov
time chart for the same system. Red colour corresponds to TL < 100. In the
both cases (a) and (b), the integration time Tint = 105 . (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Identifying the centre of the gap between the peaks, one ob-
tains a numerical criterion for separating the regular and chaotic
trajectories.

In Fig. 1b, the Lyapunov times TL < 100 (red colour) corre-
spond to the chaotic trajectories. Most of the regular trajectories
have TL > 104 (blue colour). The trajectories with 103 < TL < 104

(green colour) are also probably regular, but they are located close
to separatrices of resonances. Note the good structural agreement
between Fig. 1a and b, regarding the locations and sizes of the
areas with the same character of dynamics.

Fig. 2 shows the normalized integral distribution of the
Poincaré recurrence times. The distribution subdivides into two
parts: Tr ∈ [0, 104

] and Tr ∈ [2 × 104, 8 × 104
]. The first part

is naturally fitted by the exponential function F ∝ exp(−αTr),
where α = 1.5 × 10−4 (green dashed curve), and the second
part is naturally fitted by the power-law function F ∝ Tr−β ,
where β = 2.09 (blue dashed straight line). In the both cases,
the correlation coefficient for the fitting function is R = 0.99.

2.3. Implementation of the PRM_HH problem

The algorithm for calculating the Poincaré recurrence times
for the considered system with a bounded phase space (namely,

Fig. 2. The integral distribution of the Poincaré recurrence times in the Hénon–
Heiles system (the solid curve). The dashed curves represent fitting functions as
explained in the text. The parameters and initial data are the same as in Fig. 1.
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

the Hénon–Heiles system) is implemented in the PRM_HH code,
written in Fortran 90.1 The total length of the code is only 180
lines (excluding the integrator).

To integrate the equations of motion, the Dormand–Prince
integrator DOP853 [46], realizing the 8th order Runge–Kutta
method with an automatic time step size control, is used. The
maximum value of the time step size is set to 10−5, and the local
error tolerance to 10−12.

The programme consists of the main part (PRM_HH) and a
subroutine (calc_rec_time). In the calc_rec_time, the DOP853 in-
tegrator is invoked, including subroutines fcn (where the equa-
tions of motion are defined) and solout (where the recurrence
condition is checked after each integration step). Thus, in the
PRM_HH main program loop, the subroutine calc_rec_time (t,
t_end, y) is called, where y contains initial data for the integration.

INPUT. The parameters and initial conditions for the integration
(the energy value, the initial data grid and the radius of the
neighbourhood of the initial point where the recurrence is fixed)
are set directly in the PRM_HH program body. They are given by:

• H: the energy of the system; in the given problem, it takes
values within [0, 1/6].

• EPS: the radius of the neighbourhood (in which the Poincaré
recurrence is fixed) of a point in the phase space.

• T = 0 and T_END specify the integration time interval.
• Q_2_INIT, Q_2_END, P_2_INIT, and P_2_END define the bor-

ders of a uniform grid of initial data in the plane (p2, q2).
• N_GRID: the number of steps along the axes p2 and q2.

OUTPUT. The output of the programme PRM_HH is directed to the
file rec_time.dat. The first and second columns in the file contain
the initial conditions in the plane (p2, q2). The third column
contains the recurrence time rec_time. If the integration time
is too short to determine the recurrence time, the value of the

1 The code is available at https://doi.org/10.5281/zenodo.3228905.

https://doi.org/10.5281/zenodo.3228905
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upper limit of the integration time plus one is written to the third
column.

Thus, at the end of the simulation, the PRM_HH code gives
Np2 × Nq2 = N_GRID × N_GRID Poincaré recurrence time values.

2.4. The Poincaré recurrence method: the case of non-bounded phase
space

In the case of non-bounded phase space, the Poincaré recur-
rences are defined with respect to a neighbourhood of a starting
point in the phase space and with respect to the ‘‘escape’’ sep-
aratrix (e.g., parabolic separatrix in the hierarchical restricted
three-body problem).

Let us consider, as a representative paradigm, the circumbi-
nary dynamics of a passively gravitating particle in the framework
of the restricted planar three-body problem. The mass parameter
is defined as µ = m2/(m1 + m2), where m1 ≥ m2 are the masses
of the primaries. The simulation is made in the synodic reference
frame. The Hamiltonian of the problem is given by

H =
1
2

(
P2
X + P2

Y

)
+ YPX − PYX − V (X, Y ), (2)

where X , Y are the Cartesian barycentric coordinates of a pas-
sively gravitating tertiary and PX , PY are their conjugate momenta,
V (X, Y ) is the gravitational potential (see, e.g., [1,47]):

V (X, Y ) =
1 − µ

R1
+

µ

R2
, (3)

where R1 =
[
(X − µ)2 + Y 2

]1/2
and R2 =

[
(X + (1 − µ))2

+Y 2
]1/2.

We use the integration code with the Levi-Civita regular-
ization (see [48,49] for the equations). The number of the ter-
tiary’s orbital revolutions serves to measure the first recurrence
times.

To assess the PRM performance, we use two methods in par-
allel: the PRM and LE methods. The PRM method is implemented
in the PRM_3B code. The computation of orbits is based on a
previous code used to compute phase space fractal structure of
the dynamics governed by Hamiltonian (2) [50]. The integrator
used is the DOP853 integrator [46], the same as described above
in Section 2.3.

In the PRM, the first recurrence is fixed when the following
conditions start to be satisfied:

X ∈ X0±∆X, Y ∈ Y0±∆Y , PX ∈ PX0 ±∆PX , PY ∈ PY0 ±∆PY ,

(4)

where X0, Y0, PX0 , PY0 are the initial conditions in the synodic
reference frame, and ∆X = ∆Y = ∆PX = ∆PY = 10−3. Thus,
here the ε neighbourhood is defined as a box, instead of a sphere
used above in the Hénon–Heiles problem (Section 2.3).

We compute the dynamics on 201 × 201 grid nodes in the
plane ‘‘pericentric distance – eccentricity’’ (q–e) of the initial
conditions for the tertiary. The PRM_3B code gives 201 × 201 =

40401 values of the number of the orbital revolutions of the
tertiary before the first recurrence.

The LE code computes the LE global charts. To compute the
maximum Lyapunov exponent (in fact, the maximum finite-time
local Lyapunov exponent), the code integrates the variational
equations, simultaneously with the equations of motion. The code
gives 201 × 201 = 40401 values of the maximum Lyapunov
exponent (the maximum finite-time local LE) after T = 105

orbital revolutions of the binary.
A comparison of the stability diagrams computed using the LE

and PRM is presented in Fig. 3. The choice of the (q, e) (‘‘pericen-
tric distance – eccentricity’’) plane is justified by the dynamical

Fig. 3. (a) The Poincaré recurrence chart in the (q, e) (‘‘pericentric distance –
eccentricity’’) plane in the planar restricted three-body problem at µ = 0.1. Nr
is the number of the tertiary’s orbital revolutions before the recurrence. The
integration time Tint = 106 . Black colour corresponds to the orbits without
recurrences within the integration time Tint . (b) The Lyapunov time chart for
the same system.

nature of the problem; this choice is quite usual in problems
concerning the circumbinary motion in celestial–mechanical sys-
tems [5]. The emergence of the ‘‘teeth’’ at the order/chaos bound-
ary is due to the fractal resonant structure of the border; the most
prominent teeth are formed by the overlap of subresonances of
integer and half-integer mean motion resonances between the
particle and the central gravitating binary (see [5]). A close agree-
ment between the outcomes of application of the two methods is
apparent.

2.5. Implementation of the PRM_3B problem

The algorithm for calculating the Poincaré recurrence times
for a particular case of the unbounded phase space (namely, the
restricted three-body problem) is implemented in the PRM_3B
programme written in Fortran 90.2 The code length is 600 lines
(excluding the integrator).

Typically, the code makes a loop over Ne initial values of the
eccentricity e for a fixed initial pericentric distance q. A Python
code generates Nq executables with different q.

2 The code is available at https://doi.org/10.5281/zenodo.3228905.

https://doi.org/10.5281/zenodo.3228905
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The Levi-Civita regularization is employed to treat close en-
counters of the bodies. For each integration step, the regular-
ization code invokes three changes of the reference frame. It
takes 150 lines. To integrate the equations of motion, the DOP853
integrator is used, the same as described above in Section 2.3.

INPUT. Several parameters are initially allocated to the PRM_3B
code:

• N: the number of the computed particle trajectories.
• MU: the mass parameter.
• RMAX: the maximum size (radius) of the orbits. If a particle

were going beyond this limit, it is regarded to have been
ejected from the system.

• RMIN1: the minimum radius around the mass m1. If a parti-
cle were going below this limit, we assume a collision with
m1.

• RMIN2: the same parameter as above, but for m2.
• TMAX: the maximum time of simulation (counted in the

binary’s orbital revolutions).
• TAU: the maximum allowed integration step size.
• EPS: the precision of the integration.
• EXMIN: the minimum initial eccentricity.
• EXMAX: the maximum initial eccentricity.

OUTPUT. At the end of the simulation, the PRM_3B code gives Nr
values of the number of the tertiary’s orbital revolutions before
the first recurrence. The process is repeated Nq times on different
computer cores.

3. Poincaré recurrence statistics and diffusion rates

The average time of recurrence (to one and the same subset of
phase space) can be roughly related in many cases (in particular,
in the case of the standard map [51], describing an infinite set
of interacting resonances) to the diffusion rate by the following
formula

τ ∼
(∆y)2

Dy
(5)

[38, pp. 11–12], where τ is the mean recurrence time, ∆y is the
characteristic distance in an appropriate variable, Dy is the diffu-
sion rate in this variable. In many-dimensional systems, a charac-
teristic recurrence time can be roughly estimated by identifying
the ‘‘slowest’’ (that exhibiting the slowest variation) variable in
the system and, by applying Eq. (5) for motion in this variable,
assessing τ .

Therefore, the average return time can be set to be equal
to the average diffusion time. Formula (5) can be appropriate,
as a simple but effective basic relation, in many applications.
As soon as PRM allows one to construct charts of the diffusion
timescales or rates, one can introduce a kind of the ‘‘dynamical
temperature’’ [52] to characterize the global dynamical behaviour
of any system under study.

The character of the distribution of Poincaré recurrences at
large timescales is determined by the stickiness effect; generally,
the decay is algebraic [38–40]. Starting with the pioneering work
by Chirikov and Shepelyansky [38], the algebraic decay in the
recurrence statistics in Hamiltonian systems with divided phase
space was considered, in particular, in [38–43]. Chirikov [41],
using his resonant theory of critical phenomena in Hamilto-
nian dynamics, predicted the critical exponent α in the integral
recurrence distribution

F (Tr) ∝ T−α
r (6)

to be equal to 3/2. (The integral distribution function F (Tr) is
defined as the fraction of the recurrences that have the duration
greater than Tr.)

In massive numerical simulations of dynamics of various
Hamiltonian systems, the algebraic decay was explored in [43].
System-dependent power-law exponents were revealed; how-
ever, the ‘‘universal’’ average exponent turned out to be well-
defined: α = 1.57±0.03 [43]. This is quite close to the theoretical
3/2 value cited above. In celestial mechanics, the algebraic decay
was revealed in numerical experiments on chaotic asteroidal
dynamics [53,54]. It was found that the tail of the integral distri-
bution of the time intervals Tr between jumps of the eccentricity
of asteroids in the vicinity of the 3/1 mean-motion resonance
with Jupiter is algebraic:

F ∝ T−α
r , (7)

where α ≈ 1.5–1.7.
Local properties of chaotic diffusion in Hamiltonian systems

were studied in [55]; the statistics of exit times from high-order
resonances were explored in [56]. In the both studies, the results
are in agreement with the Greene–MacKay theory [57,58] of
the critical golden curve. The longest Poincaré recurrences were
obtained in [59]. As in [43], it was concluded that the longest
recurrences originate from non-golden islands.

Thus, the power-law statistical relations between TL and Tr
are expected to emerge on long timescales, when sticking of
trajectories to chaos borders starts to dominate in the statistics
(see discussion in [60]; also see figure 6 in [61], or figures 1 and
2 in [60]). The relationship between the recurrence times Tr and
the Lyapunov times TL in systems with the stickiness effect is
generally quadratic [60,62]. Note that the long-term recurrence
distributions, as well as relationships between Tr and TL, in sys-
tems with non-bounded phase space where escapes are possible,
can have various power-law indices, though their algebraic form
is sustained [62].

In the current study, we have used relatively short computa-
tion times — short enough to fix most of the first recurrences on
a given grid. On much longer timescales, when sticking phenom-
ena come into play and recurrence statistics can be potentially
gathered for each node on the grid, comparisons between PRM
and LE charts, made in parallel, can be employed to establish
and massively study statistical TL–Tr relationships; that is why
any application of the LE and PRM methods in parallel can be of
particular interest.

In Fig. 4, correlation plots ‘‘TL–Tr’’ (Lyapunov time–recurrence
time) for the both systems considered in this article are pre-
sented. They have been constructed for the same data that were
computed to construct the PR charts, in such a way: for a tra-
jectory starting at a point in a PR chart, TL is fixed at the time
Tr when the first recurrence is fixed; the set of (TL, Tr) points
over all initial data forms the correlation plot. In fact, the both
‘‘TL–Tr’’ plots show no correlation (only broad scatter, apart from
the vertical pile-ups corresponding to regular trajectories), but
one should not expect any straightforward correlation between
TL and Tr here, as soon as they are restricted by a relatively small
time limit of the computation. Besides, as discussed above, the
nature of emerging correlations, if any, can be rather diverse
and non-rigorous; see also [63,64]. Therefore, PR charts have an
independent value, in this sense: they cannot be reproduced by
any transformation of LE data.

As soon as relatively small time limits are set for the computa-
tion of PR charts, sticking phenomena are relatively unimportant.
Besides, the measure of the critical component (where the stick-
ing occurs) of the phase space is also usually small (see [41]);
therefore, it does not affect the quality of PR charts.
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Fig. 4. The relationships between the Lyapunov and Poincaré recurrence times in the considered systems: the Hénon–Heiles system (a) and the three-body problem
(b).

4. Discussion

The assumption on the Euclidean metric to define the neigh-
bourhood where recurrences are fixed has been made throughout
the article, but other possibilities exist and they can be studied in
the course of the further development of the method.

Note that for the angle variables, the interval of variation
(normally 2π ), in the current algorithm version is divided in the
same proportion as the intervals of variation of the momentum
variables with respect to the approximate size of the (bounded)
phase space in the momentum variables.

A key point in the both considered cases of bounded and un-
bounded phase spaces is the choice of the size ε of the
‘‘recurrence-fixing sphere’’ (i.e., the neighbourhood of the initial
point, where the recurrences are fixed) at a given computation
time; or, alternatively, a lower time limit for the computation
time, given the size ε.

For a bounded phase space, the lower time limit can be
roughly estimated assuming the approximate ergodicity of the
chaotic motion (excluding the critical component, which has
low measure, as noted above): ∆t/tcomp ≈ ∆V/Vs ∼ εn/Vs,
where ∆t is the time of residence of the trajectory in a point’s
neighbourhood where recurrences are fixed, tcomp is the time of
computation, Vs is the full volume of the phase space, ∆V ∼ εn

is the volume of the ε-box where recurrences are fixed, and n is
the dimension of the phase space. Therefore, the minimum com-
putation time, allowing for at least a single expected recurrence,
is ∼ Vs/ε

n, in time steps of integration (assuming the step is
constant).

However, in practice, an appropriate time of computation
is easily evaluated empirically, by trying its higher and higher
values until the PR chart becomes noiseless.

Alternatively, an effective ε can be easily evaluated by fine-
tuning the needed resolution of a dynamical chart of a system
under study. The algorithm is as follows: at first the size of the
recurrence-fixing sphere or box is chosen corresponding to the
desired resolution of a constructed stability diagram or phase
portrait; then, the computations are performed on a timescale of
at least one magnitude greater than the duration of the first-fixed
(over all the grid) recurrence. If this timescale cannot be achieved
using available computer resources, the desired resolution should
be decreased.

The novel PRM and the custom LE method can be used in
concert, so that to utilize the best properties of both; when the
computation time is long enough for the sticking phenomenon to
come into play, such an approach would allow one to use statisti-
cal relationships between the Lyapunov and diffusion timescales,

when making predictions for the long-term qualitative dynamical
behaviour.

It should be underlined that the global charts of the massively
computed Poincaré recurrence times provide direct global rep-
resentations of spatial distributions of the local diffusion times.
The charts constructed in the quantities inverse to the recurrence
times provide massive measures of the local diffusion rates, thus
giving the picture of the global behaviour of the dynamical tem-
perature (defined analogously as in [52]) of any system under
study.

Finally, note that for all examples provided in this article,
the integrator time step upper limit (set to 10−5 for PRM_HH
and 2π × 10−3 for PRM_3B) is small enough so that there is
no need, as established empirically, for any step diminishing
whenever the trajectory approaches a desired neighbourhood.
Besides, in our computations, the local error tolerance of the
Dormand–Prince integrator was set to 10−12 for PRM_HH (and
10−10 for PRM_3B), thus smaller than the chosen ε values by
many orders of magnitude, therefore, the integrator accuracy was
by far sufficient. Due to the essential sensitivity of the chaotic
motion to the initial conditions, nearby initial conditions may give
rather different PR times. However, on fine enough grids of initial
data, the corresponding ‘‘noise’’ in the PR charts is suppressed,
due to the statistical averaging of the effect.

In this article, we have concentrated on the Hamiltonian sys-
tems. Extensions of the method to the realm of dissipative sys-
tems might be warranted; we leave this promising possibility
for a future work. Note also that the PRM can be developed
further on to incorporate calculations of second and consecutive
recurrences. This may favour to suppress any ‘‘noisy’’ appearances
in PRM diagrams. This opportunity is also left for a future analysis.

5. Conclusions

We have shown that the novel PRM and custom LE meth-
ods expose the global dynamics almost identically, but the PRM
allows one to construct, in some approximation, charts of diffu-
sion rates. This ability reveals the major advantage of the novel
method over the custom global numerical tools (LE, FLI, MEGNO,
FA). Moreover, it is algorithmically simple and straightforward to
apply.
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