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Disordered Hubbard model with attraction: The coupling energy of Cooper pairs in small clusters
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We generalize the Cooper problem to the case of many interacting particles in the vicinity of the Fermi level
in the presence of disorder. On the basis of this approach we study numerically the variation of the pair
coupling energy in small clusters as a function of disorder. We show that the Cooper pair energy is strongly
enhanced by disorder, which at the same time leads to the localization of pairs.
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[. INTRODUCTION Cooper problem has been considéfefdr the case of two
particles in a disordered potential. Here, we further develop
The superconductor-insulator transitigBIT) in disor-  this approach for the case of many interacting Cooper pairs,
dered films of metals has attracted widespread interest iwhich allows us to study the case of finite particle density.
recent years.The SIT, driven by adjusting some tuning pa-  Our numerical studies allow us to determine the depen-
rameter such as film thickness or magnetic field strength, igence of the Cooper pair coupling energy on the strength of
particularly interesting in two dimension&D), where both ~ disorder. They show that this coupling can be strongly in-
superconductivity and metallic behavior are marginal. creased by disorder, which, however, leads to localization of
In the Composite boson mode|, Cooper pairs are treated ggiirs. In the regime of weak disorder the pairs are delocal-
pointlike charge 2 bosons. In this picture, the superconduct-ized but their coupling energy is significantly reduced com-
ing state displays a quantum phase transition to an insulatingared to the localized phase.
state characterized by a quenching of the condensate of com- The paper is organized as follows: In Sec. Il we introduce
posite boson&.In this scenario, the SIT is caused by the lossthe attractive Hubbard model and discuss the numerical
of phase coherence between the pairs in different parts of th@ethod used to study the case of a finite particle density. In
sample, while the magnitude of the pairing gap remains fi-Sec. lll we determine the Cooper pair coupling enelgir-
nite. Numerical studies support this scendrio. ing gap and investigate its dependence on the strength of the
However, a few relevant experimental aspects of the Sidisorder. In Sec. IV we study the disorder-induced pair lo-
(Ref. 1) seem to be beyond the scope of the composite fercalization and compare the results with the case of noninter-
mion theory. It is therefore highly desirable to study modelsacting particles. In Sec. V we study the behavior of the su-
where the fermionic nature of charge carriers is not elimi-Perconducting order parameter, obtained from the pairing
nated from the beginning. Quantum Monte Carlo studies oforrelation function. The conclusions are presented in
the disordered attractive Hubbard model in two dimensions>ec. VI.
have supported the possibility of a disorder-driven supercon-
ductor to insulator quantum phase transitfoAt the same Il. MODEL AND NUMERICAL METHOD
time the mean-field approach within the Bogoliubov—de ) ) )
Gennes framework has shown that also space fluctuations of, We study a disordered square lattice wiffermions on
the pairing amplitude should be taken into account in ordel~ Sites. The Hamiltonian is defined by
to give a full picture of the SIP.
In _parallel a gr_owing inter_est has been de_voted to the H=—VE CLC;U+E €Ny + UE nitN;, (1)
guestion of what is the coupling energy of pairs placed in {if) i i
small superconducting grains, with the average level spacing
of the same order as the superconducting GaAlso the ~ Wherec!, (c;,) creates(destroy$ an electron at sité with
pair properties in small-size samples may be related to theBpin o, ni,=c/,c;, is the corresponding occupation number,
properties in the localized phase, where the pair motion ighe hopping termV between nearest-neighbor lattice sites
bounded inside the localization domain. characterizes the kinetic energy, the site energiase taken
In this paper we study numerically the properties of Coo-from a box distribution ovef —W/2,W/2], U measures the
per pairs in small two-dimensional clusters with disorder.strength of the Hubbard attractiord&0), and periodic
We take the Hubbard attractive interaction between fermiboundary conditions are taken in both directions. We restrict
onic particles with spin 1/2 which move in a two- our numerical investigations to the subspace @k 0 for
dimensional Anderson lattice. Following the approach intro-evenN (N/2 spins up and\/2 spins dowh and S,=1/2 for
duced by Coopel! we consider some part of the particles odd N.
below the Fermi sea as frozen, while the remaining particles, The model(1) atU=0 reduces to the one-body Anderson
in the direct vicinity of the Fermi level, can move and inter- model, giving localized states in two dimensions at the ther-
act in the presence of disorder. Recently, such a generalizedodynamic limit!®> At W=0 one gets the clean attractive
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Hubbard model, which in 2D and away from half filling
shows a finite-temperature Kosterlitz-Thouless transition to a E
superconducting state with power-law decay of the pairing
correlationg:**°

We study numerically the modél) for a finite density of
interacting quasiparticles above the frozen Fermi sea.

(i) Single-particle eigenvalues, and eigenstaterhbit-
als ¢,(i) (a=1,... L% atU=0 are obtained via numeri-
cal diagonalization of the Anderson Hamiltonian.

(ii) The Hamiltonian(1) is written in the orbital basis:

H:aza Eadj”“d““—’_ucy;yﬁ Qlpdl dbdsd,, (2

with d' =3¢ ,(i)c! and transition matrix elements

Q32=2i ba(i)bp(i) (1) o). &)

(iif) The Fermi sea is introduced by restricting the sums in
Eq. (2) to orbitals with energies above the Fermi energy FIG. 1. Dependence of thi-body pairing energyE, on the
EmF: a,B,v,6>mg. We consider a filling factorv numberN of electrons, at different disorder strengts from W
=mg/L?=1/4 (corresponding to & frozen electrons due =0 (bottom to W/V=15 (top) in steps of AW/V=1. The linear
to spin degeneragyand a finite density ol interacting qua-  System size i$ =10 and the cut off orbitaM =12. Here and in the
siparticles above the Fermi level. fqllowing figgres_,U= —4V and data are averaged ovdg=100

(iv) The Slater determinant basis, built from the single-disorder realizations.
particle Orbi,taIS‘ﬁa’ is energetically cut off by means of the 16 jymp in the pairing energy from odd to even number
condition =;_;(m;—mg) <M, with m; orbital index for the particles,
ith quasiparticle if1,>mg). Such a rule gives an effective
phonon frequencyspcM/L2. A(N)=Ep(N)—Ep(N—-1), 5)

(v) The ground state of this truncated Hamiltonian is
found via the Lanczos algorithf.

In our numerical simulations we considered upNe- 8
interacting quasiparticles in up td1=20 orbitals. We
checked that results are qualitatively similar under variatio
of the cut off orbitalM. In the following sections we present
data forU= —4V, averaged oveNg= 100 disorder realiza-
tions.

with N even, can therefore be interpreted as the energy nec-
essary to break a superconducting pair; in the ideal BCS
case, this would give the superconducting energy’gaie
note that the superconducting gap is extracted in a similar
r1Nay in experiments with single Cooper pair tunneling inside
superconducting island&:°

In Fig. 2 we show the pairing gafo(N) as a function of
the disorder strengtiV, for N=2,4,6,8. We see that, with the
exception of the first jump N=2), the other jumps are

lll. PAIRING GAP rather similar. It is clear thah grows significantly with the
In order to compute the pairing energy, we first computedisorder strengthV. We attribute this effect to the fact that at
the totalN-body pairing energy as strong disorder particles are trapped in the deepest minima of
the random potential. Therefore the pair size becomes
Ep(N)=Eg(U=0)—E4(U), (4) smaller: this enhances the interaction between coupled par-

ticles, henceA.

In Fig. 3 we show the dependence/fofon the system size
6=<L=10. Since the Debye cutoff frequency should be inde-
pendent of the system size, we keep constant the ratio
M/L?~0.2. The coupling energg becomes independent of
fhe system size at largé#/, while it is not yet saturated at
%SmallW. As the pair size is determined byAl/this means
that at smalW the size of the pair becomes comparable with
the system size.

with E4(U) the many-body ground state for an attractive
interactionU.

In Fig. 1 we show théN-body pairingE,(N) as a function
of the numberN of interacting quasiparticles above the
Fermi sea, at different disorder strengths. This figure shows
clear even-odd effect, with a much larger increase of th
pairing energy whem is even. This fact has a clear mean-
ing: for N even, it is possible to build a new pair, reducing
the ground-state energy due to the negative couplirgQ.
For _N odd, in an ideal BCS supergonductor _the Qddition_al IV. PAIR LOCALIZATION
particle cannot be paired and remains a quasiparticle excita-
tion. However, a small ground-state energy reduction is still In order to study the localization properties of the system,
present in our numerical simulations, since the unpaired pawe consider the fractiog of the sample occupied by the
ticle weakly interacts with the superconducting pairs. N-body wave functiod\Ifg>:
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FIG. 2. Pairing gapA(N)=Ep(N)—Ey(N—1) vs disorder
strengthW, with E, taken from Fig. IN=2 (star$, N=4 (circles,
N=6 (squares andN=28 (diamonds.

NZ
b= ——m, (6)
2023 pf,
lo
where
Pia:<q}g|nio|qu> (7)

is the charge density of the ground state at theisit¢ith the
definition (6), N/2L2<¢<1, the lower limit corresponding
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FIG. 3. Dependence of pairing gap[average oA (N=2) and
A(N=4)] on the disorder strengthV, at L=6 (circles, L=8
(squarel andL =10 (diamonds, keeping the raticV/L?~0.2.
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FIG. 4. Fraction of occupied sitgsas a function of the disorder
strengthW, for M/L2~0.2, U= —4V (solid symbol$ and U=0
(open symbols Main figure:N=6 particles, at.=6 (circles, L
=8 (squarel andL =10 (diamonds. Inset: constant particle den-
sity of mobile fermionsN/L?~0.06; N=4, L=8 (circles andN
=6, L=10 (squares

to pairs localized in a single site, the upper limit to complete
charge delocalization.

In Fig. 4 we show the fraction of occupied sitésas a
function of disorder, at different system sizess6=<10, for
N=6 particles and a fixed Debye frequendyl (L?>~0.2).
This figure gives a clear indication of the presence of two
regimes: at small disorder the wave function fills a large
fraction of the samplgsuperconducting regimewhile at
large disorderé decreases with the system sizéx(l/L2,
localized regimg In the inset of Fig. 4 we show the param-
eter ¢ at different system sizes=8,10 and for a constant
electronic density of mobile fermionsl/L?~0.06. The two
curves are superimposed on top of each other, suggesting the
existence of a size-independent functi&iV) in the thermo-
dynamic limit. The drop of(W) with W demonstrates that
disorder gives localization of Cooper pairs.

Finally we examine the question of to what extent the
wave function localization is a many-body effect instead of a
single-particle Anderson localization phenomenon. There-
fore in Fig. 4 we also show the parameteat U=0. Com-
parison between the interactint € —4) and the noninter-
acting U=0) case suggests that the interaction makes
localization stronger, in agreement with results for two par-
ticles in a three-dimensional random potentfal his effect
can be explained qualitatively with the following
argument:? an attractive interaction creates pairs of total
massm,, twice the electronic mass. This halves the effective
hopping termVegec 1/my,, thus doubling the ratioV/V;.

We remark that this rough argument fails in the delocalized
regime at small disorder, where the tendency seems to
be reversed. Actually, due to localization of single-
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FIG. 5. Dependence of the order parameigyon the numbeN FIG. 6. Dependence of the slopeof the order parametek
of particles, at different disorder strengtt§ from W=0 (top) to  on the disorder strengthV; « is extracted from a linear fit of
W/V =15 (bottorm) in steps ofAW/V=1. The linear system size is Ao(N) vs N, with data taken from Fig. 5.

L=10 and the cutoff orbitaM =12.

the number of pairsh ,,(N) < «N/2 (here we have taken into
particles states in 2B for a given numbeN of particles one  account thatg, in BCS theory changes smoothly witt

should get{(U=0)—0 whenL— oo, around the Fermi levé] and here we considerdd<2ng).
Here « is a parameter which determines the slopeAgf,
V. PAIR CORRELATION variation with N. The order parameter decreases when an

_ _ unpaired particle is added. In our opinion, this is due to the
The superconducting state can be characterized by th@ct that this extra electron weakly interacts with the paired

s-wave pair correlation function particles, reducing the pair correlation function.
1 In Fig. 6 we show the slope of the linear fit of the order
ps(r)=<qu| = Z AmAﬂqu), 8 parameterd ,, as a function of the numbeM of quasiparti-
Lo cles. In the superconducting regime#0 since each new

pair added to the system coherently contributes to the order
it parameter. The suppression of this quantity with disorder is
Aj=cjcy) €) evident, indicating a rather sharp crossover from a supercon-

creates a pair at sie For ans-wave superconducting state, ducting to an insulating behavior in our finite-size lattice.

Agp=\PJr=(L12L12)] (10) VI. CONCLUSIONS

: . In this paper we have investigated the localization of Coo-
IS th_e_ o4rder parameter of the superconductor-lnsulatober pairs for small clusters in a two-dimensional disordered
transition’ substrate. We have shown that the Cooper pair coupling en-

In Fig. 5 we show the dependence of the order parametet;qy gisplays an even-odd asymmetry: this parity effect sur-
Agp on the number of interacting quasiparticles above th&jyes also in the presence of disorder. The pairing gap is
Fermi sea. The order parameter is strongly suppressed krongly enhanced by disorder, which at the same time leads
disorder (see also Ref. 4 an effect which becomes more tg |ocalization of Cooper pairgapped insulator Therefor-
evident with the addition of particles. We remark thig, e,in the insulating regime, the breaking of Cooper pairs
shows an approximate linear increase with the number ofhould enhance transport. This is consistent with the resistiv-
pairs. This is quite natural if the many-body ground-statejty drop observed in experiments with an applied magnetic
wave function is in the BCS forf, built from single-  field 222% which might signal the crossover from a Cooper
particle eigenfunctions including disorder: pair insulator to an electronic insulator.

where

w1 (1+g,b%)]0), (12) ACKNOWLEDGMENTS
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