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ABSTRACT We consider the network of 5 416 537 articles of English Wikipedia extracted in 2017.
Using the recent reduced Google matrix (REGOMAX) method we construct the reduced network of 230
articles (nodes) of infectious diseases and 195 articles of world countries. This method generates the reduced
directed network between all 425 nodes taking into account all direct and indirect links with pathways via the
huge global network. PageRank and CheiRank algorithms are used to determine the most influential diseases
with the top PageRank diseases being Tuberculosis, HIV/AIDS and Malaria. From the reduced Google
matrix we determine the sensitivity of world countries to specific diseases integrating their influence over
all their history including the times of ancient Egyptian mummies. The obtained results are compared with
the World Health Organization (WHO) data demonstrating that the Wikipedia network analysis provides
reliable results with up to about 80 percent overlap between WHO and REGOMAX analyses.

INDEX TERMS Infectious diseases, Wikipedia, Markov processes, Ranking (statistics), Complex net-
works, Data mining.

I. INTRODUCTION

INFECTIOUS diseases account for about 1 in 4 deaths
worldwide, including approximately two-thirds of all

deaths among children younger than age 5 [1]. Thus the
understanding of the world influence of infectious diseases
is an important challenge. Here we apply the mathematical
statistical methods originated from computer and network
sciences using the PageRank and other Google matrix algo-
rithms, developed at the early stage of search engines devel-
opment [2], [3], and used since to analyze various complex
networks (see e.g. [4] for a review and references therein).
These methods are applied to English Wikipedia edition
which is considered as a directed network generated by
hyperlinks (citations) between articles (nodes). Nowadays,
the free online encyclopedia supersedes old ones such as
Encyclopaedia britannica [5] in volume and in quality of ar-
ticles devoted to scientific topics [6]. For instance, Wikipedia
articles devoted to biomolecules are actively maintained by
scholars of the domain [7], [8]. The academic analysis of
information contained by Wikipedia finds more and more
applications as reviewed in [9], [10].

The Google matrix analysis, associated to the PageRank

algorithm, initially invented by Brin and Page to efficiently
rank pages of the World Wide Web [2], allows to probe
the network of Wikipedia articles in order to measure the
influence of every articles. The efficiency of this approach
for Wikipedia networks has been demonstrated by ranking
historical figures on a scale of 35 centuries of human history
and by ranking world universities [11]–[15]. This approach
produced also reliable results for the world trade during last
50 years reported by the UN COMTRADE database and
other directed networks [16].

Recently, the reduced Google matrix method (REGO-
MAX) has been proposed using parallels with quantum scat-
tering in nuclear physics, mesoscopic physics, and quantum
chaos [17], [18]. This method allows to infer hidden inter-
actions between a set of nr nodes selected from a huge
network taking into account all indirect pathways between
these nr nodes via the huge remaining part of the network.
The efficient applications of this approach to the global
biological molecular networks and their signaling pathways
are demonstrated in [19]. In this case, the nodes of the
complex network are the thousands of considered proteins,
the links are the causal relations between proteins, and the nr
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nodes are e.g. proteins involved in a given signaling pathway.
In addition to direct links (causal relations) among the nr
proteins obtained from literature, the REGOMAX method
allows to find possible indirect interactions between the nr
proteins due to the embedding of the subnetwork of these
nr proteins into the global complex network of proteins.
Also, the efficiency of REGOMAX has been demonstrated
for the analyses of world terror networks [20], of geopolitical
relations between countries [21], and of influence between
world painters [22] from Wikipedia networks.

In this work we use REGOMAX method to investigate the
world influence and importance of infectious diseases con-
structing the reduced Google matrix from English Wikipedia
network with all infectious diseases and world countries
listed there. This is an additional approach to the models of
epidemic spreading on complex networks (see [23] for a sur-
vey and references therein) or to the estimates of infectious
disease prevalence using Wikipedia usage [24].

The paper is constructed as follows: the data sets and
methods are described in Section II, Results and Discussion
are presented in Section III and Conclusions are given in
Section IV; Appendix contains Tables 1, 2, 3, 4, 5; additional
data are presented at [25].

II. DESCRIPTION OF DATA SETS AND METHODS
A. ENGLISH WIKIPEDIA EDITION NETWORK
We consider the network of articles extracted in May 2017
from the English language edition of Wikipedia. This com-
plex network, available at [26] and already used in previous
studies [13], [20]–[22], contains N = 5416 537 articles
(nodes) connected through nl = 122 232 932 hyperlinks.
From this data set we extract the nd = 230 articles devoted to
infectious diseases (see Tab. 1, Tab. 2) and the nc = 195 arti-
cles devoted to countries (sovereign states, see Tab. 3). Both
the list of infectious diseases and the list of sovereign states of
2017 are taken from Wikipedia [27], [28]. Thus the size of the
reduced Google matrix is nr = nd + nc = 425. This subset
of nr articles is embedded in the global Wikipedia network
with N nodes. All data sets are available at [25].

B. GOOGLE MATRIX CONSTRUCTION
The construction of Google matrix G is described in detail in
[2], [3], [16]. In short, the Google matrix G is constructed
from the adjacency matrix Aij with elements 1 if article
(node) j points to article (node) i and zero otherwise. The
Google matrix elements take the standard form Gij =
αSij + (1 − α)/N [2], [3], [16], where S is the matrix
of Markov transitions with elements Sij = Aij/kout(j).
Here kout(j) =

∑N
i=1Aij 6= 0 is the out-degree of node

j (number of outgoing links) and Sij = 1/N if j has no
outgoing links (dangling node). The parameter 0 < α < 1 is
the damping factor. For a random surfer, jumping from one
node to another, it determines the probability (1−α) to jump
to any node; below we use the standard value α = 0.85 [3].

The right eigenvector of G satisfies the equation GP =
λP with the unit eigenvalue λ = 1. It gives the PageRank

probabilities P (j) to find a random surfer on a node j and has
positive elements (

∑
j P (j) = 1). All nodes can be ordered

by decreasing probability P numbered by PageRank index
K = 1, 2, ...N with a maximal probability at K = 1 and
minimal at K = N . The numerical computation of P (j) is
efficiently done with the PageRank algorithm described in
[2], [3].

It is also useful to consider the network with inverted
direction of links. After inversion the Google matrix G∗ is
constructed within the same procedure with G∗P ∗ = P ∗.
This matrix has its own PageRank vector P ∗(j) called
CheiRank [29] (see also [11], [16]). Its probability values can
be again ordered in a decreasing order with CheiRank index
K∗ with highest P ∗ at K∗ = 1 and smallest at K∗ = N .

PageRank algorithm measures the influence of nodes, i.e.
more a node is pointed by influential nodes, more it is
influential. Conversely, CheiRank algorithm measures the
communicative ability of nodes, i.e. more a node points
towards communicative nodes, more it is communicative. On
average, the high values of P (P ∗) correspond to nodes with
many ingoing (outgoing) links [16].

C. REDUCED GOOGLE MATRIX ANALYSIS
Reduced Google matrix is constructed for a selected subset
of nodes (articles) following the method described in [17]–
[19]. It is based on concepts of scattering theory used in
different fields including mesoscopic and nuclear physics,
and quantum chaos (see Refs. in [17]). It captures in a nr-
by-nr Perron-Frobenius matrix the full contribution of direct
and indirect interactions happening in the full Google matrix
between the nr nodes of interest. Also the PageRank prob-
abilities of selected nr nodes are the same as for the global
network with N nodes, up to a constant multiplicative factor
taking into account that the sum of PageRank probabilities
over nr nodes is unity. The elements of reduced matrix
GR(i, j) can be interpreted as the probability for a random
surfer starting at web-page j to arrive in web-page i using
direct and indirect interactions. Indirect interactions refer to
paths composed in part of web-pages different from the nr
ones of interest. The intermediate computation steps of GR

offer a decomposition of GR into matrices that clearly distin-
guish direct from indirect interactions:GR = Grr+Gpr+Gqr

[17]. Here Grr is given by the direct links between selected
nr nodes in the global G matrix with n nodes. In fact, Gpr is
rather close to the matrix in which each column is given by
the PageRank vector Pr, ensuring that PageRank probabili-
ties of GR are the same as for G (up to a constant multiplier).
Thus Gpr doesn’t provide much information about direct
and indirect links between selected nodes. The component
playing an interesting role is Gqr, which takes into account
all indirect links between selected nodes appearing due to
multiple paths via the global network nodes N (see [17]).
The matrix Gqr = Gqrd + Gqrnd has diagonal (Gqrd) and
non-diagonal (Gqrnd) parts. Thus Gqrnd describes indirect
interactions between nodes. The explicit formulas as well as
the mathematical and numerical computation methods of all
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FIGURE 1. Subnetwork of the 425 articles devoted to countries and infectious
diseases in 2017 English Wikipedia. The bulk of the other Wikipedia articles is
not shown. Articles devoted to countries are presented by empty nodes with
country codes (see Tab. 3). Articles devoted to infectious diseases are
presented by colored nodes with the following color code: bacterial diseases
(red), viral diseases (green), parasitic diseases (yellow), fungal diseases
(cyan), prionic diseases (blue), diseases with multiple origins (magenta), and
other kind of diseases (brown) (see Tab. 1. Tab. 2). Network drawn with
Cytoscape [30].

three components of GR are given in [17]–[19], [22].
After obtaining the matrix GR and its components we can

analyze the PageRank sensitivity in respect to specific links
between nr nodes. To measure the sensitivity of a country c
to a disease d we change the matrix element GR(d→ c) by a
factor (1+δ) with δ � 1, we renormalize to unity the sum of
the column elements associated with disease d, and we com-
pute the logarithmic derivative of PageRank probability P (c)
associated to country c: D(d→ c, c) = d lnP (c)/dδ (diago-
nal sensitivity). It is also possible to consider the nondiagonal
(or indirect) sensitivity D(d → c, c′) = d lnP (c′)/dδ when
the variation is done for the link from d to c and the derivative
of PageRank probability is computed for another country c′.
This approach was already used in [20], [21] showing its
efficiency.

III. RESULTS AND DISCUSSION
All calculations have been performed using FORTRAN
codes compiled and ran on a computer with Intel Xeon
processor E5-2630 v4 25M Cache, 2.20 GHz, with 64GB
RDRAM. Unless otherwise stated figures have been prepared
using gnuplot.

A. NETWORK OF DIRECT LINKS
For the reduced Google matrix analysis we have nr = 425
selected nodes of countries (195) and infectious diseases
(230). The diseases are attributed to 7 groups correspond-
ing to the standard disease types as it is given in Tab. 1,
Tab. 2. These nr nodes constitute a subnetwork embedded
in the huge global English Wikipedia network with more
than 5 million nodes. This subnetwork is shown in Fig. 1
which has been generated with Cytoscape software [30]. In
Fig. 1 black arrow links represent the nonzero elements of
adjacency matrix between the selected nr nodes. The image

FIGURE 2. Adjacency matrix of the subnetwork of the 425 articles devoted to
countries and infectious diseases in 2017 English Wikipedia. White (black)
pixels represent existing (absent) links. In horizontal and vertical axis the
articles are ordered by continent for countries (AM for Americas, EU for
Europe, AS for Asia, AF for Africa, and OC for Oceania) and by disease type
for diseases (BA for bacterial, VI for viral, PA for parasitic, FU for fungal, MU for
multiple type, PR for prionic, and OT for other type). Inside each block of
continent and disease type the articles are ordered according to PageRank
algorithm (see Tabs. 1 and 3). From top left to bottom right: block diagonal
elements corresponding to intra-continent links are delimited by light gray
squares. Also block diagonal elements corresponding to intra-disease type
links are delimited by squares with color contour. Off diagonal blocks indicates
links between diseases of different type, links between countries of different
continent, or links between diseases and countries.

of this adjacency matrix is shown in Fig. 2 where white
pixels depicted a link between two nodes. In this picture,
nodes are ordered with respect to the PageRank order in each
subgroup: American countries, European countries, Asian
countries, African countries, Oceanian countries, bacterial
diseases, viral disease, parasitic diseases, fungal diseases,
multiple origins diseases, prionic diseases and other kind of
disease origins. There are visibly more links inside subgroups
but links between groups are also significant. Fig. 1 gives us
the global view of network of direct links, shown in Fig. 2,
corresponding to the component Grr of the reduced Google
matrix. We see that countries are located in the central part
of the network of Fig. 1 since they have many ingoing links.
While it is useful to have such a global view it is clear that
it does not take into account the indirect links appearing
between nr nodes due to pathways via the complementary
network part with a huge number of nodes N − nr ' N .
The indirect links emerging between nr from this indirect
pathways are analyzed in the frame of REGOMAX method
below.
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FIGURE 3. Density of articles of English Wikipedia 2017 on PageRank K –
CheiRank K∗ plane. Data are averaged over a 100× 100 grid spanning the
(log10K, log10K

∗) ∈ [0, log10N ]× [0, log10N ] domain. Density of
articles ranges from very low density (purple tiles) to very high density (bright
yellow tiles). The cells without articles are represented by black tiles. The
superimposed white (colored) circles give the positions of countries (infectious
diseases) listed in Tab. 3 (Tab. 1). The color code for infectious diseases is the
same as in Fig. 1.

B. PAGERANK AND CHEIRANK OF THE REDUCED
NETWORK NODES
At first we compute the PageRank and CheiRank proba-
bilities for the global network with N nodes attributing to
each node PageRank and CheiRank indexes K and K∗. For
selected nr nodes the results of PageRank are shown in
Tab. 2. As usual (see [11], [16]), the countries are taking
the top PageRank positions with US, France, Germany, etc
at K = 1, 2, 3, etc as shown in Tab. 3. In the list of nr
nodes the infectious diseases start to appear from K = 106
with Tuberculosis (Tab. 2). If we consider only infectious
diseases ordered by their disease PageRank index Kd then
we obtain at the top Tuberculosis, HIV/AIDS, Malaria, Pneu-
monia, Smallpox at first positions with Kd = 1, 2, 3, 4, 5
(see Tab. 2). It is clear that PageRank order gives at the
top positions severe infectious diseases which are (were for
Smallpox) very broadly spread worldwide.

In Fig. 3 we show the location of selected nr nodes on the
global (K,K∗) plane of density of Wikipedia articles (see
details of this representation in [11], [16]). Here the positions
of countries are shown by white circles and diseases by color
circles. The countries are taking the top positions since they
have many ingoing links from variety of other articles. The
infectious diseases are located on higher values of K,K∗

even if some diseases are overlapping with the end list of
countries (see Tab. 2).

All nr = 425 selected articles can be ordered by their
local PageRank and CheiRank indexes Kr and Kr

∗ which
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FIGURE 4. Distribution of the articles devoted to infectious diseases (colored
circles) and to countries (white circles) in the PageRank Kr – CheiRank K∗

r

plane. The color code for infectious diseases is the same as in Fig. 1.

range from 1 to nr = 425. Their distribution in the local
PageRank-CheiRank plane is shown in Fig. 4. As discussed
previously, countries are at the top Kr,Kr

∗ positions. The
names of top PageRank diseases are marked on the figure.
The most communicative articles of infectious diseases are
those with top Kr

∗ positions. Thus the top CheiRank disease
is Burkholderia due to many outgoing links present in this
article. The next ones are Malaria and HIV/AIDS.

C. REDUCED GOOGLE MATRIX

To study further the selected subset of 425 nodes we use the
reduced Google matrix approach and compute numerically
GR and its three components Gpr, Grr, Gqr. It is convenient
to characterize each component by its weight defined as
the sum of all elements divided by the matrix size nr. By
definition we have the weight WR = 1 for GR and we obtain
weights Wpr = 0.91021, Wrr = 0.04715, Wqr = 0.04264
(with nondiagonal weight Wqrnd = 0.02667) respectively
for Gpr, Grr, Gqr (Gqrnd). The weight of Gpr is significantly
larger than others but this matrix is close to the matrix
composed from equal columns where the column is the
PageRank vector (see also discussions in [18]–[20]). Due to
this reason the componentsGrr andGqr provide an important
information about interactions of nodes. Since the weights
of these two components are approximately equal we see
that the direct and indirect (hidden) links have a comparable
contribution.

As an illustration we show in Fig. 5 a close up on African
countries and viral diseases sectors of the full nr×nr reduced
Google matrix GR is shown (there are 55 African countries
and 60 viral diseases shown in fig5). Detailed presentations
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FIGURE 5. Reduced Google matrix GR (top left panel) and three of its
components, Gqrnd (top right panel), Grr (bottom left panel), and
Grr +Gqrnd, associated to the subnetwork of articles (bottom right) devoted
to countries and infectious diseases in 2017 English Wikipedia. For the sake of
clarity, here we show only matrix entries corresponding to the subset of
articles devoted to African countries and viral diseases (see [25] for the full
subnetwork constituted by the nr = 425 articles devoted to all countries and
all infectious diseases). Here lines and columns corresponding to African
countries (viral diseases) are ordered as in Tab. 3 (Tab. 1). Horizontal and
vertical tics on close-ups are placed every 10 entries.

of the GR matrix components for the complete subset of
nr = 425 countries and infectious diseases are given in [25].
In Fig. 5, GR and its components are composed of diagonal
blocks corresponding to country → country and disease →
disease effective links, and off-diagonal blocks correspond-
ing to disease → country (upper off-diagonal block) and
country→ disease (lower off-diagonal block) effective links.

D. FRIENDSHIP NETWORK OF NODES
We use the matrix of direct and indirect transition Grr +Gqr

to determine the proximity relations between 230 nodes
corresponding to diseases and to all nr = 425 nodes of
diseases and countries. We call this the friendship networks
being shown in Fig. 6. For each of 7 disease groups (see
Tab. 2) we take a group leader as a disease with highest
PageRank probability inside the group. Then on each step
(level) we take 2 best friends define them as those nodes to
which a leader has two highest transition matrix elements of
Grr+Gqr. This gives us the second level of nodes below the 7
leaders. After that we generate the third level keeping again
two better friends of the nodes of second level (those with
highest transition probabilities). This algorithm is repeated
until no new friends are found and the algorithm stops. In
this way we obtain the network of 17 infectious diseases
shown in the top panel of Fig. 6. The full arrows show the
proximity links between disease nodes. The red arrows mark
links with dominant contribution of Gqr indirect transitions
while the black ones mark the links with dominance of Grr

FIGURE 6. Infectious diseases friendship network. Top panel: we consider the
set of top PageRank infectious disease for each of the seven type of infectious
diseases, i.e., tuberculosis for bacterial type, HIV/AIDS for virus type, malaria
for parasitic type, candidiasis for fungal type, pneumonia for multiple type,
Creutzfeldt–Jakob for prionic type, and Desmodesmus for other type (see
Tab. 1). From each one of these top PageRank diseases (placed along the
main grey circle) we determine the two best linked diseases in Grr +Gqr,
e.g., from tuberculosis the two best linked diseases are leprosy and HIV/AIDS.
If not already present in the reduced network, we add these best linked
diseases along secondary circles centered on the previous diseases. Then
from each one of the new added diseases we determine the two best linked
diseases, and so on. At the fourth iterations of this process no new diseases
can be added. The arrows represent the links between diseases (1st iteration:
plain line; 2nd iteration: dashed line; 3rd iteration: dashed–dotted line; 4th
iteration: dotted line). Black arrows correspond to links existing in the
adjacency matrix, red arrows are purely hidden links absent from adjacency
matrix but present in Gqr component of the reduced Google matrix GR. The
color code for infectious diseases is the same as in Fig. 1. Bottom panel: same
reduced network as in the top panel but at each iteration also the best linked
countries are determined. At each iteration no new links are determined from
the newly added countries. Countries are represented by ring shape nodes
with red color for countries from Americas, gold for African countries, cyan for
Asian countries, blue for European countries, and orange for Oceanian
countries. Network drawn with Cytoscape [30].
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direct transitions. Full arrows are for transitions from group
leaders to nodes of second level, etc (see Fig. 6 caption for
details). The obtained network is drawn with the Cytoscape
software [30].

In Fig. 6 top panel, four of the leader diseases are well
connected; nodes corresponding to Tuberculosis (bacterial
disease), HIV/AIDS (viral disease), Malaria (parasitic dis-
ease), Pneumonia (multiple origin disease) have 6 or more
degrees. Nodes of Creutzfeldt-Jakob disease (prion disease)
and of Desmodesmus (other origin disease) are more isolated.
Focusing on first level friendship links (solid arrows), we
retrieve several well known interactions between infectious
diseases such as:

• the Tuberculosis–HIV/AIDS syndemic (see e.g. [31],
[32]) which is here represented by a closed loop be-
tween the two diseases,

• the interaction between HIV/AIDS and Syphilis (see
e.g. [33]) which is a typical example of syndemic be-
tween AIDS and sexually transmitted diseases,

• the Candidiasis interaction with HIV/AIDS, since the
former is a very common opportunistic fungal infection
for patients with HIV/AIDS (see e.g. [34]), and the
Candidiasis interaction with Sepsis1 since e.g. invasive
Candidiasis which in some rare cases can lead to fulmi-
nant sepsis with an associated mortality exceeding 70%
(see e.g. [35]),

• the Pneumonia to Sepsis interaction or the Malaria to
Sepsis interaction, the first interaction reflects the fact
that Sepsis is one of the possible complications of Pneu-
monia, the second interaction reflects that symptoms of
Malaria resemble to those of Sepsis [36],

• the closed loop interaction between Tuberculosis and
Leprosy reflecting that these two diseases are caused by
two different species of mycobacteria (see e.g. [37]),

• the relation between Pneumonia and Tuberculosis, two
severe pulmonary diseases (see e.g. [38]),

• the Creutzfeldt–Jakob disease pointing to Pneumonia
since patient infected by this prion disease develop a
fatal Pneumonia due to impaired coughing reflexes (see
e.g. [39]),

• the closed loop interaction between Kuru and
Creutzfeldt–Jakob diseases since these two diseases
are representatives of transmissible spongiform en-
cephalopathies (see e.g. [40]).

Taking into account also the other 2nd to 4th friendship
levels, peculiar features appear such as:

• the cluster of bacterial diseases Tuberculosis–Leprosy–
Syphilis; since there were a confusion between Leprosy
and Syphilis in diagnosis before XXth century (see e.g.
[41], [42]), and false positives can occur with Tubercu-
losis for patients with Syphilis (see e.g. [43]),

• the mosquito diseases cluster grouping Malaria, Yellow
fever, Dengue fever and West Nile fever,

1Even if most of the Sepsis are bacterial, it can also be fungal or viral

• the Meningitis–Sepsis closed loop since the Sepsis is
usually developed at early stage by patient with Menin-
gitis (see e.g. [44]).

Red arrows in Fig. 6 indicate pure indirect links between in-
fectious diseases: Desmodesmus and Malaria are both water-
borne diseases (see e.g. [45]), Desmodesmus and HIV/AIDS
are related by a Wikipedia page devoted to immunocompe-
tence (see e.g. [46]), and Kuru in Papua New Guinea Foré
language possibly means to shiver from cold (see e.g. [47]).

From the above analysis we observe that the wiring be-
tween infectious diseases is meaningful guaranteeing that
information encoded in the reduced Google matrix GR, and
more precisely in its Grr + Gqr component, is reliable, and
can be used to infer possible relations between infectious
diseases and any other subjects contained in Wikipedia such
as e.g. countries, drugs, proteins, etc.

In the bottom panel of Fig. 6 we analyze the proximity
between diseases of top panel with the world countries. Thus
we add the two better “friend” countries being those to
which a given disease has most strong matrix elements in
Grr + Gqr (there is no next iterations for country nodes).
The friend countries (or proximity countries) are Egypt and
Swaziland for Tuberculosis; Cameroon and Cote d’Ivoire
for HIV/AIVS; Peru and Thailand for Malaria; Liberia and
Uganda for Pneumonia; United Kingdom (UK)2 and Papua
New Guinea for Creutzfeldt-Jakob disease and others. These
strong links from an infectious disease to a given country
well correspond to known events involving a disease and a
country, like e.g. UK and Creutzfeldt-Jakob disease. We will
see this in a more direct way using the sensitivity analysis
presented in the next subsection.

E. WORLD COUNTRY SENSITIVITY TO INFECTIOUS
DISEASES
We also perform analysis of the sensitivity D(d → c, c′)
of country node c′ to the variation of the link d → c,
where d denotes a disease node and c a country node.
The diagonal sensitivity D(d → c, c) of world countries
to Tuberculosis and HIV/AIDS are shown in Fig. 7. The
most sensitive countries to Tuberculosis are Swaziland (SZ),
Egypt (EG) and New Zealand (NZ). Indeed, in 2007 SZ had
the highest estimated incidence rate of Tuberculosis as it
is described in the corresponding Wikipedia article. Egypt
also appears in this article since tubercular decay has been
found in the spine of Egyptian mummy kept in the British
Museum. NZ is present in this article since this country had
a relatively successful effort to eradicate bovine tuberculosis.
Thus Tuberculosis has direct links to these three countries
(in agreement with two close country friends shown in the
network of Fig. 6) that results in their high sensitivity to
this disease. Of course, the origins of this sensitivity are
different for SZ, EG, NZ. Thus Wikipedia network integrates
all historical events related to Tuberculosis including ancient
Egyptian mummy and recent years of high incidence rate

2Noted GB in Fig. 6 and Tab. 3.
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FIGURE 7. Country PageRank sensitivity to the variation of the reduced
Google matrix HIV→country link (upper panel) and to the variation of the
reduced Google matrix Tuberculosis→country link (bottom panel). The color
categories are obtained using the Jenks natural breaks classification method
[48]. We use the blank world map svg file available at [49].

in SZ. It can be discussed how important are these rather
different types of links between disease and counties. Of
course, a simplified network view cannot take into account
all richness of historical events and describe them by a few
number of links. However this approach provides a reliable
global view of the interactions and dependencies between a
disease and world countries.

The sensitivity of countries to HIV/AIDS is shown in
the top panel of Fig. 7. The most sensitive countries are
Botswana (BW), Senegal (SN) and Cote d’Ivoire (CI). This
happens since HIV/AIDS article directly points that esti-
mated life expectancy in BW dropped from 65 to 35 years
in 2006; SN and CI appears since the closest relative of HIV-
2 exists in monkey living in coastal West Africa from SN
to CI. The friendship network in Fig. 6 indeed marks the
countries close to HIV/AIDS as CI and Cameroon (CM). The
sensitivity map in Fig. 7 also shows that CM has high sensi-
tivity to HIV/AIDS since HIV-1 appears to have originated in
southern Cameroon.

The case of two diseases considered in Fig. 7 demonstrates
that the REGOMAX approach is able to reliably determine
the sensitivity of world countries to infectious diseases taking
into account their relations on a scale of about 3 thousands of
years.
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FIGURE 8. Country PageRank sensitivity to the variation of the reduced
Google matrix HIV→ USA link (top panel) and to the variation of the reduced
Google matrix HIV→ Cameroon link (bottom panel). The color categories are
obtained using the Jenks natural breaks classification method [48]. We use the
blank world map svg file available at [49].

A part of the sensitivity relations between diseases and
countries can be visible from the friendship network as those
in the bottom panel of Fig. 6. However, the REGOMAX
approach can handle also indirect sensitivity D(d → c, c′)
which is rather hard to be directly extracted from the friend-
ship network. The examples of indirect sensitivity are shown
in Fig. 8. Thus the variation of link from HIV/AIDS to
Cameroon (CM) (Fig. 8 bottom panel) mainly affects Equa-
torial Guinea (GQ), Central African Republic (CF) and Chad
(TD). The variation of link HIV/AIDS to USA (Fig. 8 top
panel) produces the strongest sensitivity for Federal States
of Micronesia (FM), Marshall Islands (MH) and Rwanda
(RW). These countries are not present in the Wikipedia
article HIV/AIDS and the obtained sensitivity emerges from
a complex network interconnections between HIV/AIDS,
USA (or Cameroon) to these countries. Thus the REGOMAX
analysis allows to recover all network complexity of direct
and indirect interactions between nodes.

F. COMPARISON OF REGOMAX AND WHO RESULTS

It is important to compare the results of REGOMAX analysis
with those of World Health Organization (WHO) or other
sources on number of infected people. With this aim we
extract from WHO reports [38] the number of Tuberculosis
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and the diseases ranking based on the estimated number of deaths during the
year 2010 (Tab. 6). Here, jc is the number of common countries in the top j of
the two rankings. The estimated numbers of deaths caused by each disease
during the year 2010 are extracted from [50].
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FIGURE 11. Maps of the maximal sensitivity of diseases. Each country is
colored according to the disease giving the maximal sensitivity: Tuberculosis
(blue), HIV/AIDS (red), Malaria (cyan), Diarrheal diseases (magenta), Dengue,
Meningitis, Hepatitis. Top panel shows the maximal sensitivity for the 7
diseases, and bottom panel for 6 of these diseases (Tuberculosis is not taken
into account). Gray color indicates countries for which the maximal sensitivity
to these diseases is less than 1/8 (1/4) of the greatest maximal sensitivity for
any country. Note that Dengue, Meningitis and Hepatitis never gives the
maximal sensitivity for any country. We use the blank world map svg file
available at [49].

incidences per 100000 population of a given country in 2016,
and the number of new HIV/AIDS infections per 1000 unin-
fected population in 2017. The ranking of countries by the
number of incidences is presented in Tab. 4 for Tuberculosis
and the ranking of countries by new infections is presented
in Tab. 5 for HIV/AIDS. We also analyze Global Burden of
Disease (GBD) Study data [50] for the estimated number of
deaths caused by each disease in 2010. The resulting ranking
of diseases is given in Tab. 6.

We compare these official WHO ranking results with those
obtained from REGOMAX analysis. Thus we determine the
ranking of countries by their sensitivity to Tuberculosis and
to HIV/AIDS for top 100 countries (these ranking lists are
given in [25]). The overlap η(j) of these REGOMAX rank-
ings with those of WHO from Tab. 4 and Tab. 5 are shown
in Fig. 9. We obtain the overlap of 50% for Tuberculosis
and 79% for HIV/AIDS for the top 100 countries. These
numbers are comparable with overlaps obtained for top 100
historical figures found from Wikipedia and historical analy-
sis (see [12]) and for top 100 world universities determined
by Wikipedia and Shanghai ranking (see [13], [15]).

Another comparison is presented in Fig. 10. Here we take
the infectious diseases ordered by their PageRank index and
compare them with the ranking list of diseases ordered by
the estimated number of deaths caused by them in 2010 (see
Tab. 6). The obtained overlap is shown in Fig. 10 with an
overall of 100% for top 4 deadliest diseases (which from
Tab. 6 are 1 HIV/AIDS, 2 Pneumonia, 3 Tuberculosis, 4
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Malaria) and 46% for the whole list of 34 considered dis-
eases. In addition the REGOMAX analysis allows to deter-
mine the world map of countries with the highest sensitivity
to the top list of 7 diseases. Such maps are shown in Fig. 11.
We see the world dominance of Tuberculosis (top panel)
while after it (or in its absence) we find the world dominance
of HIV/AIDS (bottom panel). The geographical influence of
Malaria and Diarrheal diseases are also well visible.

Thus the performed comparison with WHO data shows
that the Google matrix analysis of Wikipedia network pro-
vides us a reliable information about world importance and
influence of infectious diseases.

G. DISCUSSION
Reduced networks of infectious diseases, as displayed in
Fig. 6, allow to efficiently summarize main direct and indirect
(hidden) interactions between diseases and between diseases
and countries. This method could be applied to e.g. rare dis-
eases to possibly infer relations between them; in comparison
with infectious diseases, we would expect many hidden links
as rare diseases form a less coherent and less studied group
of diseases. We can imagine many other applications such
as e.g. the representation of the interactions between cancers
and drugs.

According to Global Burden of Disease organization [50]
raw data extracted all around the world from vital registra-
tions, censuses, hospitals, police records, etc, is generally
incomplete and only estimations and trends can be obtained
by applying statistical models, such as e.g. CODEm to esti-
mate worldwide causes of death [51]. Conversely, Wikipedia
forms an open coherent knowledge database, from which we
can determine the global influence of infectious diseases. We
believe that our reduced Google matrix method applied to
worldwide causes of deaths could constitute a complemen-
tary method to those usually used in GBD Study [50].

The REGOMAX method could be applied to periodically
taken snapshots of Wikipedia networks in order to determine
over a time window global sensitivities to infectious diseases.
Although possibly interesting information could result from
such study, it is not clear it could allow estimation of near
real time prevalence as it is the case for methods based on
Wikipedia usage [24]; indeed editing latency could be too
slow to consider editors activity as a probe of infection peaks.

IV. CONCLUSIONS
In this work we presented the reduced Google matrix (or
REGOMAX) analysis of world influence of infectious dis-
eases from the English Wikipedia network of 2017. This
method allows to take into account all direct and indirect
links between the selected nodes of countries and diseases.
The importance of diseases is determined by their PageRank
probabilities. The REGOMAX analysis allows to establish
the network of proximity (friendship) relations between the
diseases and countries. The sensitivity of world countries to a
specific disease is determined as well as the influence of link
variation between a disease and a country on other countries.

The comparison with the WHO data confirms the reliability
of REGOMAX results applied to Wikipedia network.
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TABLE 1. List of infectious diseases ordered by type (82 of bacterial type, 60 of viral type, 52 of parasitic type, 24 of fungal type, 6 of multiple types, and 2 of other
types) then by PageRank of the corresponding article in English edition of Wikipedia [26]. The nd = 230 elements of this list have been extracted from the list of
infectious diseases article in 2017 English Wikipedia [25], [27].

Infectious diseases
Bacterial type Bacterial type (Cont.) Viral type (Cont.) Parasitic type (Cont.)
1 Tuberculosis 61 Prevotella 38 CCHFe 37 Anaplasmosis
2 Cholera 62 Ehrlichiosis 39 Caliciviridae 38 Baylisascaris
3 Typhoid fever 63 Vibrio vulnificus 40 PMLf 39 Fasciolopsiasis
4 Syphilis 64 Actinomycosis 41 Rift Valley fever 40 Head lice infestation
5 Bubonic plague 65 Ureaplasma urealyticum 42 Lassa fever 41 Angiostrongyliasis
6 Leprosy 66 Melioidosis 43 Astrovirus 42 Isosporiasis
7 Sepsis 67 Granuloma inguinale 44 Fifth disease 43 Diphyllobothriasis
8 Meningitis 68 Buruli ulcer 45 VEEg 44 Cyclosporiasis
9 Plague (disease) 69 Yersinia pseudotuberculosis 46 Molluscum contagiosum 45 Balantidiasis

10 Typhus 70 Kingella kingae 47 MERSh 46 Blastocystosis
11 Diphtheria 71 H. granulocytic anaplasmosis 48 Monkeypox 47 Dientamoebiasis
12 Anthrax 72 Pneumococcal inf. 49 Hand, foot, and mouth disease 48 Gnathostomiasis
13 Helicobacter pylori 73 Nocardiosis 50 Bolivian hemorrhagic fever 49 Capillariasis
14 Lyme disease 74 Bartonellosis 51 H. metapneumovirus 50 Metagonimiasis
15 Staphylococcus 75 Group B streptococcal inf. 52 HFRSi 51 Pediculosis corporis
16 Haemophilus influenzae 76 Pasteurellosis 53 LCMj 52 Free-living Amoebozoa inf.
17 Tetanus 77 Carrion’s disease 54 BK virus fungal type
18 Gonorrhea 78 Yersiniosis 55 Colorado tick fever 1 Candidiasis
19 Pertussis 79 Mycoplasma pneumonia 56 Argentine hemorrhagic fever 2 Histoplasmosis
20 Botulism 80 HMEa 57 Heartland virus 3 Athlete’s foot
21 Chlamydia inf. 81 Ehrlichiosis ewingii inf. 58 Venezuelan hemorrhagic fever 4 Coccidioidomycosis
22 Rickettsia 82 A. haemolyticumb 59 Brazilian hemorrhagic fever 5 Chytridiomycosis
23 Brucellosis Viral type 60 H. bocavirus 6 Pneumocystis pneumonia
24 Leptospirosis 1 HIV/AIDS Parasitic type 7 Cryptococcosis
25 Pelvic inflammatory disease 2 Smallpox 1 Malaria 8 Onychomycosis
26 Cellulitis 3 Influenza 2 Schistosomiasis 9 Aspergillosis
27 Legionnaires’ disease 4 Measles 3 African trypanosomiasis 10 Tinea versicolor
28 Clostridium difficile inf. 5 Yellow fever 4 Toxoplasmosis 11 Tinea cruris
29 Rocky Mountain spotted fever 6 Poliomyelitis 5 Onchocerciasis 12 Paracoccidioidomycosis
30 Enterococcus 7 SARSc 6 Scabies 13 Tinea corporis
31 Bacterial vaginosis 8 Hepatitis C 7 Chagas disease 14 Blastomycosis
32 Bacterial pneumonia 9 Hepatitis B 8 Filariasis 15 Zygomycosis
33 Epidemic typhus 10 Ebola virus disease 9 Hookworm inf. 16 Tinea capitis
34 Trachoma 11 Common cold 10 Leishmaniasis 17 Tinea manuum
35 Salmonellosis 12 Rabies 11 Trichinosis 18 Sporotrichosis
36 Tularemia 13 Dengue fever 12 Giardiasis 19 Tinea barbae
37 Kawasaki disease 14 Chickenpox 13 Amoebiasis 20 Tinea nigra
38 Bacteroides 15 H. papillomavirus inf. 14 Trichomoniasis 21 Chromoblastomycosis
39 Acinetobacter 16 West Nile fever 15 Cryptosporidiosis 22 White piedra
40 Chlamydophila pneumoniae 17 Herpes simplex 16 Myiasis 23 Black piedra
41 Q fever 18 Rubella 17 Dracunculiasis 24 Geotrichosis
42 Shigellosis 19 Hepatitis A 18 Lymphatic filariasis Multiple types
43 Gas gangrene 20 Cytomegalovirus 19 Echinococcosis 1 Pneumonia
44 Bacillus cereus 21 Mumps 20 Cysticercosis 2 Foodborne illness
45 Group A streptococcal inf. 22 Infectious mononucleosis 21 Babesiosis 3 Hemolytic-uremic syndrome
46 Meningococcal disease 23 Shingles 22 Pinworm inf. 4 Keratitis
47 Burkholderia 24 Norovirus 23 Ascariasis 5 Neonatal conjunctivitis
48 Relapsing fever 25 Rotavirus 24 Strongyloidiasis 6 Mycetoma
49 Glanders 26 Hantavirus 25 Toxocariasis Prionic type
50 Psittacosis 27 H. respiratory syncytial virus 26 Anisakis 1 Creutzfeldt–Jakob disease
51 Listeriosis 28 Marburg virus 27 Fasciolosis 2 Kuru (disease)
52 Rickettsialpox 29 Rhinovirus 28 Paragonimiasis 3 Fatal familial insomnia
53 Campylobacteriosis 30 Enterovirus 29 Cutaneous larva migrans 4 GSSk

54 Naegleriasis 31 Chikungunya 30 Trichuriasis Other types
55 Murine typhus 32 Hepatitis D 31 Hymenolepiasis 1 Desmodesmus
56 Fusobacterium 33 Viral pneumonia 32 Clonorchiasis 2 Rhinosporidiosis
57 Chancroid 34 Hepatitis E 33 Pediculosis pubis
58 Cat-scratch disease 35 SSPEd 34 Microsporidiosis
59 Staphylococcal inf. 36 Roseola 35 Opisthorchiasis
60 Vibrio parahaemolyticus 37 H. parainfluenza viruses 36 Taeniasis
Abbreviations H. and inf. stand for Human and infection. aHME: Human monocytotropic ehrlichiosis. bA. haemolyticum: Arcanobacterium haemolyticum. cSARS: Severe acute respiratory syndrome. dSSPE: Subacute
sclerosing panencephalitis. eCCHF: Crimean–Congo hemorrhagic fever. f PML: Progressive multifocal leukoencephalopathy. gVEE: Venezuelan equine encephalitis virus. hMERS: Middle East respiratory syndrome.
iHFRS: Hantavirus hemorrhagic fever with renal syndrome. jLCM: Lymphocytic choriomeningitis. kGSS: Gerstmann–Sträussler–Scheinker syndrome.
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TABLE 2. Ranking of infectious diseases and countries in English Wikipedia 2017 according to PageRank algorithm. The color code distinguishes type of
infectious diseases: bacterial, viral, parasitic, fungal, prionic, multiple origin, and other origin.

Rank Disease or country Rank Disease or country Rank Disease or country Rank Disease or country
1 United States 228 Haemophilus influenzae 294 Cysticercosis 360 Bolivian hemorrhagic fever

. . . 229 Tetanus 295 Babesiosis 361 Blastomycosis
105 Sudan 230 H. papillomavirus inf. 296 Bacteroides 362 Cutaneous larva migrans
106 Tuberculosis 231 West Nile fever 297 Pneumocystis pneumonia 363 H. metapneumovirus
107 Uganda 232 Schistosomiasis 298 Viral pneumonia 364 Zygomycosis

. . . 233 Herpes simplex 299 Cryptococcosis 365 Trichuriasis
114 Somalia 234 Gonorrhea 300 Hepatitis E 366 Granuloma inguinale
115 HIV/AIDS 235 Pertussis 301 Acinetobacter 367 Hymenolepiasis
116 Ivory Coast 236 African trypanosomiasis 302 Chlamydophila pneumoniae 368 Clonorchiasis

. . . 237 Rubella 303 Q fever 369 HFRSg

128 Fiji 238 Hepatitis A 304 Pinworm inf. 370 Buruli ulcer
129 Malaria 239 Cytomegalovirus 305 Shigellosis 371 LCMh

130 Mali 240 Botulism 306 Gas gangrene 372 Yersinia pseudotuberculosis
. . . 241 Mumps 307 Bacillus cereus 373 Pediculosis pubis

140 Oman 242 Creutzfeldt–Jakob disease 308 Kuru (disease) 374 BK virus
141 Pneumonia 243 Toxoplasmosis 309 SSPEb 375 GSSi

142 Smallpox 244 Candidiasis 310 Group A streptococcal inf. 376 Kingella kingae
143 Suriname 245 Chlamydia inf. 311 Roseola 377 H. granulocytic anaplasmosis

. . . 246 Rickettsia 312 Meningococcal disease 378 Microsporidiosis
162 Malawi 247 Infectious mononucleosis 313 H. parainfluenza viruses 379 Pneumococcal inf.
163 Cholera 248 Onchocerciasis 314 Burkholderia 380 Opisthorchiasis
164 Togo 249 Scabies 315 Onychomycosis 381 Nocardiosis

. . . 250 Brucellosis 316 Aspergillosis 382 Taeniasis
185 San Marino 251 Chagas disease 317 CCHFc 383 Bartonellosis
186 Influenza 252 Shingles 318 Relapsing fever 384 Anaplasmosis
187 Saint Lucia 253 Filariasis 319 Ascariasis 385 Tinea capitis
188 Measles 254 Hookworm inf. 320 Strongyloidiasis 386 Colorado tick fever
189 Palau 255 Leishmaniasis 321 Glanders 387 Baylisascaris
190 Typhoid fever 256 Leptospirosis 322 Psittacosis 388 Fasciolopsiasis
191 Marshall Islands 257 Pelvic inflammatory disease 323 Listeriosis 389 Group B streptococcal inf.
192 Equatorial Guinea 258 Norovirus 324 Caliciviridae 390 Pasteurellosis
193 Dominica 259 Cellulitis 325 PMLd 391 Head lice infestation
194 Guinea-Bissau 260 Trichinosis 326 Rickettsialpox 392 Angiostrongyliasis
195 Syphilis 261 Rotavirus 327 Tinea versicolor 393 Isosporiasis
196 Comoros 262 Hantavirus 328 Campylobacteriosis 394 Argentine hemorrhagic fever
197 Djibouti 263 Legionnaires’ disease 329 Naegleriasis 395 Diphyllobothriasis
198 Yellow fever 264 Histoplasmosis 330 Murine typhus 396 Heartland virus
199 Bubonic plague 265 Clostridium difficile inf. 331 Tinea cruris 397 Cyclosporiasis
200 Fed. States of Micronesia 266 Rocky Mountain spotted fever 332 Fusobacterium 398 Carrion’s disease
201 Poliomyelitis 267 Enterococcus 333 Rift Valley fever 399 Balantidiasis
202 Tuvalu 268 Bacterial vaginosis 334 Lassa fever 400 Tinea manuum
203 Leprosy 269 Giardiasis 335 Chancroid 401 Sporotrichosis
204 Sepsis 270 Bacterial pneumonia 336 Cat-scratch disease 402 Venezuelan hemorrhagic fever
205 Nauru 271 Amoebiasis 337 Neonatal conjunctivitis 403 Blastocystosis
206 St. Vincent & Grenadines 272 H. respiratory syncytial virus 338 Toxocariasis 404 Tinea barbae
207 Meningitis 273 Athlete’s foot 339 Astrovirus 405 Yersiniosis
208 Kiribati 274 Trichomoniasis 340 Fifth disease 406 Tinea nigra
209 Plague (disease) 275 Epidemic typhus 341 Staphylococcal inf. 407 Chromoblastomycosis
210 Saint Kitts and Nevis 276 Hemolytic-uremic syndrome 342 Vibrio parahaemolyticus 408 Dientamoebiasis
211 Typhus 277 Marburg virus 343 Prevotella 409 Brazilian hemorrhagic fever
212 Antigua and Barbuda 278 Trachoma 344 Fatal familial insomnia 410 Gnathostomiasis
213 São Tomé & Príncipe 279 Rhinovirus 345 Anisakis 411 Mycoplasma pneumonia
214 Diphtheria 280 Salmonellosis 346 Ehrlichiosis 412 Capillariasis
215 SARSa 281 Coccidioidomycosis 347 VEEe 413 White piedra
216 Anthrax 282 Cryptosporidiosis 348 Molluscum contagiosum 414 HMEj

217 Hepatitis C 283 Myiasis 349 MERSf 415 Metagonimiasis
218 Foodborne illness 284 Enterovirus 350 Monkeypox 416 Pediculosis corporis
219 Hepatitis B 285 Chytridiomycosis 351 Fasciolosis 417 Black piedra
220 Ebola virus disease 286 Tularemia 352 Paracoccidioidomycosis 418 H. bocavirus
221 Common cold 287 Kawasaki disease 353 Hand, foot, and mouth disease 419 Ehrlichiosis ewingii inf.
222 Rabies 288 Chikungunya 354 Vibrio vulnificus 420 Desmodesmus
223 Dengue fever 289 Hepatitis D 355 Actinomycosis 421 Rhinosporidiosis
224 Helicobacter pylori 290 Dracunculiasis 356 Ureaplasma urealyticum 422 Free-living Amoebozoa inf.
225 Lyme disease 291 Keratitis 357 Tinea corporis 423 Geotrichosis
226 Chickenpox 292 Lymphatic filariasis 358 Melioidosis 424 A. haemolyticumk

227 Staphylococcus 293 Echinococcosis 359 Paragonimiasis 425 Mycetoma
Abbreviations H. and inf. stand for Human and infection. aSARS: Severe acute respiratory syndrome. bSSPE: Subacute sclerosing panencephalitis. cCCHF: Crimean–Congo hemorrhagic fever. dPML: Progressive multifocal leukoencephalopathy.
eVEE: Venezuelan equine encephalitis virus. f MERS: Middle East respiratory syndrome. gHFRS: Hantavirus hemorrhagic fever with renal syndrome. hLCM: Lymphocytic choriomeningitis. iGSS: Gerstmann–Sträussler–Scheinker syndrome.
jHME: Human monocytotropic ehrlichiosis. kA. haemolyticum: Arcanobacterium haemolyticum.

12 VOLUME 4, 2016



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2899339, IEEE Access

G.Rollin et al.: World influence of infectious diseases

TABLE 3. List of countries ordered by PageRank of the corresponding article in English Wikipedia 2017. Here the countries correspond to the nc = 195 sovereign
states listed in [28]. The country code (CC) is given for each country.

Rank Country CC Rank Country CC Rank Country CC
1 United States US 66 Morocco MA 131 Kyrgyzstan KG
2 France FR 67 Cuba CU 132 Guyana GY
3 Germany DE 68 Algeria DZ 133 Trinidad and Tobago TT
4 United Kingdom GB 69 Bosnia and Herzegovina BA 134 Mauritius MU
5 Iran IR 70 Ecuador EC 135 Tajikistan TJ
6 India IN 71 Saudi Arabia SA 136 Monaco MC
7 Canada CA 72 Lithuania LT 137 Oman OM
8 Australia AU 73 Iceland IS 138 Suriname SR
9 China CN 74 Bolivia BO 139 Liberia LR

10 Italy IT 75 Tanzania TZ 140 Solomon Islands SB
11 Japan JP 76 Ethiopia ET 141 Sierra Leone SL
12 Russia RU 77 Democratic Republic of the Congo CD 142 Bhutan BT
13 Brazil BR 78 Madagascar MG 143 The Bahamas BS
14 Spain ES 79 Armenia AM 144 Vatican City VA
15 Netherlands NL 80 Lebanon LB 145 Bahrain BH
16 Poland PL 81 Cyprus CY 146 Barbados BB
17 Sweden SE 82 Kazakhstan KZ 147 Botswana BW
18 Mexico MX 83 Georgia (country) GE 148 Rwanda RW
19 Turkey TR 84 Latvia LV 149 Turkmenistan TM
20 Romania RO 85 Panama PA 150 Benin BJ
21 New Zealand NZ 86 Belarus BY 151 Niger NE
22 South Africa ZA 87 Albania AL 152 Gabon GA
23 Norway NO 88 Papua New Guinea PG 153 Brunei BN
24 Switzerland CH 89 Luxembourg LU 154 Belize BZ
25 Philippines PH 90 Ghana GH 155 Guinea GN
26 Austria AT 91 United Arab Emirates AE 156 Chad TD
27 Belgium BE 92 Uruguay UY 157 Malawi MW
28 Pakistan PK 93 North Korea KP 158 Togo TG
29 Argentina AR 94 Yemen YE 159 Liechtenstein LI
30 Indonesia ID 95 Costa Rica CR 160 Samoa WS
31 Greece GR 96 Malta MT 161 Burundi BI
32 Denmark DK 97 Tunisia TN 162 South Sudan SS
33 South Korea KR 98 Jamaica JM 163 Republic of the Congo CG
34 Israel IL 99 Zimbabwe ZW 164 East Timor TL
35 Hungary HU 100 Cambodia KH 165 Cape Verde CV
36 Finland FI 101 Cameroon CM 166 Eritrea ER
37 Egypt EG 102 Mongolia MN 167 Mauritania MR
38 Portugal PT 103 Burkina Faso BF 168 Central African Republic CF
39 Ukraine UA 104 Jordan JO 169 Maldives MV
40 Sri Lanka LK 105 Sudan SD 170 Tonga TO
41 Czech Republic CZ 106 Uganda UG 171 Andorra AD
42 Malaysia MY 107 Republic of Macedonia MK 172 Vanuatu VU
43 Peru PE 108 Guatemala GT 173 State of Palestine PS
44 Thailand TH 109 Libya LY 174 Lesotho LS
45 Colombia CO 110 Dominican Republic DO 175 The Gambia GM
46 Bulgaria BG 111 Haiti HT 176 Swaziland SZ
47 Chile CL 112 Moldova MD 177 Seychelles SC
48 Republic of Ireland IE 113 Somalia SO 178 Grenada GD
49 Singapore SG 114 Ivory Coast CI 179 San Marino SM
50 Serbia RS 115 Namibia NA 180 Saint Lucia LC
51 Azerbaijan AZ 116 Paraguay PY 181 Palau PW
52 Vietnam VN 117 Angola AO 182 Marshall Islands MH
53 Nepal NP 118 Uzbekistan UZ 183 Equatorial Guinea GQ
54 Estonia EE 119 Montenegro ME 184 Dominica DM
55 Croatia HR 120 Kuwait KW 185 Guinea-Bissau GW
56 Nigeria NG 121 Laos LA 186 Comoros KM
57 Afghanistan AF 122 Mozambique MZ 187 Djibouti DJ
58 Iraq IQ 123 Nicaragua NI 188 Federated States of Micronesia FM
59 Bangladesh BD 124 Qatar QA 189 Tuvalu TV
60 Syria SY 125 Senegal SN 190 Nauru NR
61 Myanmar MM 126 Fiji FJ 191 Saint Vincent and the Grenadines VC
62 Kenya KE 127 Mali ML 192 Kiribati KI
63 Slovakia SK 128 Honduras HN 193 Saint Kitts and Nevis KN
64 Venezuela VE 129 Zambia ZM 194 Antigua and Barbuda AG
65 Slovenia SI 130 El Salvador SV 195 São Tomé and Príncipe ST
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TABLE 4. List of countries ordered by Tuberculosis incidences in 2016 (per 100000 population per year; taken from World Health Organization [38])

Rank Country Incidence Rank Country Incidence Rank Country Incidence
1 South Africa 781.0 65 Mauritania 102.0 129 Portugal 20.0
2 Lesotho 724.0 66 Moldova 101.0 130 Serbia 19.0
3 Kiribati 566.0 67 São Tomé and Príncipe 99.0 131 Turkey 18.0
4 Philippines 554.0 68 Niger 93.0 132 Trinidad and Tobago 18.0
5 Mozambique 551.0 69 Guyana 93.0 133 Poland 18.0
6 North Korea 513.0 70 Malaysia 92.0 134 Montenegro 16.0
7 East Timor 498.0 71 Georgia (country) 92.0 135 Japan 16.0
8 Gabon 485.0 72 Ukraine 87.0 136 Estonia 16.0
9 Namibia 446.0 73 Tajikistan 85.0 137 Chile 16.0

10 Papua New Guinea 432.0 74 Solomon Islands 84.0 138 Albania 16.0
11 Marshall Islands 422.0 75 Sudan 82.0 139 Seychelles 15.0
12 Central African Republic 407.0 76 South Korea 77.0 140 Iran 14.0
13 Swaziland 398.0 77 Uzbekistan 76.0 141 Egypt 14.0
14 Indonesia 391.0 78 Romania 74.0 142 Malta 13.0
15 Republic of the Congo 378.0 79 Eritrea 74.0 143 Lebanon 12.0
16 Zambia 376.0 80 Algeria 70.0 144 Croatia 12.0
17 Guinea-Bissau 374.0 81 Kazakhstan 67.0 145 Bahrain 12.0
18 Angola 370.0 82 Russia 66.0 146 Spain 10.0
19 Myanmar 361.0 83 Brunei 66.0 147 Saudi Arabia 10.0
20 Kenya 348.0 84 Azerbaijan 66.0 148 Belgium 10.0
21 Cambodia 345.0 85 Sri Lanka 65.0 149 United Kingdom 9.9
22 Djibouti 335.0 86 China 64.0 150 Costa Rica 9.5
23 Botswana 326.0 87 Turkmenistan 60.0 151 Oman 9.0
24 Democratic Republic of the Congo 323.0 88 El Salvador 60.0 152 Hungary 8.8
25 Liberia 308.0 89 Dominican Republic 60.0 153 Tonga 8.6
26 Sierra Leone 304.0 90 Fiji 59.0 154 Sweden 8.2
27 Tanzania 287.0 91 Benin 59.0 155 Austria 8.2
28 Somalia 270.0 92 Vanuatu 56.0 156 Germany 8.1
29 Pakistan 268.0 93 Mali 56.0 157 Switzerland 7.8
30 Madagascar 237.0 94 Panama 55.0 158 Dominica 7.8
31 Bangladesh 221.0 95 Lithuania 53.0 159 Samoa 7.7
32 Nigeria 219.0 96 Belarus 52.0 160 France 7.7
33 India 211.0 97 Singapore 51.0 161 New Zealand 7.3
34 Zimbabwe 208.0 98 Burkina Faso 51.0 162 Republic of Ireland 7.1
35 Tuvalu 207.0 99 Rwanda 50.0 163 Cuba 6.9
36 Cameroon 203.0 100 Ecuador 50.0 164 Slovenia 6.5
37 Uganda 201.0 101 Maldives 49.0 165 Grenada 6.4
38 Afghanistan 189.0 102 Yemen 48.0 166 Saint Vincent and the Grenadines 6.3
39 Haiti 188.0 103 Nicaragua 48.0 167 Norway 6.1
40 Mongolia 183.0 104 Togo 46.0 168 Italy 6.1
41 Equatorial Guinea 181.0 105 Armenia 44.0 169 Denmark 6.1
42 Bhutan 178.0 106 Iraq 43.0 170 Australia 6.1
43 Federated States of Micronesia 177.0 107 Paraguay 42.0 171 Andorra 6.0
44 Ethiopia 177.0 108 Brazil 42.0 172 Slovakia 5.9
45 Guinea 176.0 109 Libya 40.0 173 Netherlands 5.9
46 Laos 175.0 110 Honduras 40.0 174 Luxembourg 5.8
47 The Gambia 174.0 111 Tunisia 38.0 175 Jordan 5.6
48 Thailand 172.0 112 Belize 38.0 176 Cyprus 5.6
49 Malawi 159.0 113 Latvia 37.0 177 Canada 5.2
50 Ghana 156.0 114 Comoros 35.0 178 Czech Republic 5.0
51 Nepal 154.0 115 Venezuela 32.0 179 Finland 4.7
52 Ivory Coast 153.0 116 Colombia 32.0 180 Jamaica 4.5
53 Chad 153.0 117 Bosnia and Herzegovina 32.0 181 Greece 4.4
54 South Sudan 146.0 118 Uruguay 29.0 182 Israel 3.5
55 Kyrgyzstan 145.0 119 Bulgaria 27.0 183 Antigua and Barbuda 3.4
56 Senegal 140.0 120 Suriname 26.0 184 United States 3.1
57 Cape Verde 137.0 121 The Bahamas 26.0 185 Iceland 2.1
58 Vietnam 133.0 122 Kuwait 24.0 186 Saint Lucia 1.9
59 Palau 123.0 123 Guatemala 24.0 187 Barbados 1.2
60 Burundi 118.0 124 Argentina 24.0 188 United Arab Emirates 0.79
61 Peru 117.0 125 Qatar 23.0 189 San Marino 0.0
62 Bolivia 114.0 126 Mexico 22.0 190 Saint Kitts and Nevis 0.0
63 Nauru 112.0 127 Mauritius 22.0 191 Monaco 0.0
64 Morocco 103.0 128 Syria 21.0
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TABLE 5. List of countries ordered by new HIV/AIDS infections in 2017 (per 1000 uninfected population; taken from World Health Organization [38])

Rank Country New infections Rank Country New infections Rank Country New infections
1 Lesotho 12.68 44 Ethiopia 0.33 87 Azerbaijan 0.1
2 Swaziland 9.37 45 Cape Verde 0.31 88 Spain 0.09
3 South Africa 5.58 46 Trinidad and Tobago 0.29 89 Peru 0.09
4 Botswana 5.52 47 Cuba 0.29 90 Niger 0.09
5 Namibia 4.37 48 Georgia (country) 0.28 91 Lithuania 0.09
6 Zambia 4.08 49 Chile 0.28 92 France 0.09
7 Mozambique 3.63 50 Dominican Republic 0.24 93 Armenia 0.09
8 Zimbabwe 3.03 51 Brazil 0.24 94 Senegal 0.08
9 Equatorial Guinea 2.71 52 Latvia 0.23 95 Albania 0.08

10 Malawi 2.29 53 Myanmar 0.22 96 Sweden 0.06
11 Central African Republic 1.8 54 Venezuela 0.21 97 Nicaragua 0.06
12 Republic of the Congo 1.65 55 Paraguay 0.2 98 Malta 0.06
13 Uganda 1.5 56 Burundi 0.2 99 Italy 0.06
14 Kenya 1.46 57 Malaysia 0.19 100 Republic of Ireland 0.06
15 Cameroon 1.39 58 Indonesia 0.19 101 Iran 0.06
16 South Sudan 1.35 59 Costa Rica 0.19 102 India 0.06
17 Nigeria 1.23 60 Burkina Faso 0.19 103 Australia 0.05
18 Tanzania 1.19 61 Madagascar 0.18 104 Yemen 0.04
19 Angola 0.94 62 Luxembourg 0.18 105 Romania 0.04
20 Gabon 0.92 63 Guatemala 0.18 106 Czech Republic 0.04
21 Sierra Leone 0.86 64 Somalia 0.17 107 Cambodia 0.04
22 Ivory Coast 0.86 65 Democratic Republic of the Congo 0.17 108 Bahrain 0.04
23 Ghana 0.78 66 Kazakhstan 0.16 109 Tunisia 0.03
24 Haiti 0.77 67 El Salvador 0.16 110 Sri Lanka 0.03
25 Guyana 0.77 68 Uruguay 0.15 111 Slovenia 0.03
26 Belize 0.75 69 Tajikistan 0.15 112 Serbia 0.03
27 Guinea-Bissau 0.72 70 Eritrea 0.15 113 Netherlands 0.03
28 Rwanda 0.7 71 Sudan 0.13 114 Nepal 0.03
29 Guinea 0.67 72 Kyrgyzstan 0.13 115 Morocco 0.03
30 Liberia 0.66 73 Argentina 0.13 116 Bulgaria 0.03
31 The Gambia 0.65 74 Vietnam 0.12 117 Afghanistan 0.03
32 Jamaica 0.63 75 Mauritania 0.12 118 Slovakia 0.02
33 Suriname 0.62 76 Fiji 0.12 119 Saudi Arabia 0.02
34 Togo 0.59 77 Ecuador 0.12 120 Qatar 0.02
35 Djibouti 0.58 78 Colombia 0.12 121 Lebanon 0.02
36 Barbados 0.58 79 Philippines 0.11 122 Kuwait 0.02
37 Ukraine 0.38 80 Montenegro 0.11 123 Egypt 0.02
38 Moldova 0.38 81 Honduras 0.11 124 Croatia 0.02
39 Papua New Guinea 0.37 82 Thailand 0.1 125 Algeria 0.02
40 Panama 0.34 83 Pakistan 0.1 126 Mongolia 0.01
41 Chad 0.34 84 Mexico 0.1 127 Jordan <0.01
42 Benin 0.34 85 Laos 0.1 128 Comoros <0.01
43 Mali 0.33 86 Bolivia 0.1 129 Bangladesh <0.01
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TABLE 6. List of infectious diseases ordered by the estimated number of worldwide deaths caused in 2010. Data are taken from Global Burden of Disease Study
2010 [50].

Rank Diseases Number of deaths per year (×103)
1 HIV/AIDS 1465.4
2 Pneumonia 1460.7
3 Tuberculosis 1196.0
4 Malaria 1169.5
5 Meningitis 422.9
6 Rotavirus 250.9
7 Typhoid fever 190.2
8 Hepatitis B 132.2
9 Measles 125.4

10 Shigellosis 122.8
11 Syphilis 113.3
12 Campylobacteriosis 109.7
13 Hepatitis A 102.8
14 Cryptosporidiosis 99.8
15 Pertussis 81.4
16 Salmonellosis 81.3
17 Tetanus 61.3
18 Cholera 58.1
19 Hepatitis E 56.6
20 Amoebiasis 55.5
21 Leishmaniasis 51.6
22 Rabies 26.4
23 Hepatitis C 16.0
24 Dengue fever 14.7
25 Schistosomiasis 11.7
26 Chagas disease 10.3
27 African trypanosomiasis 9.1
28 Chickenpox 6.8
29 Diphtheria 2.9
30 Ascariasis 2.7
31 Chlamydia infection 1.2
32 Echinococcosis 1.2
33 Cysticercosis 1.2
34 Gonorrhea 0.9
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