
Kepler map

Figure 1: Poincaré sections given by the generalized

Kepler map with several kick harmonics for the case of

Halley comet (top) and the Kepler map (1) with

corresponding  at sine kick (bottom); white

area corresponds to invariant curves (from Rollin et

al., 2015b; see details there).
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The Kepler map is a two-dimensional symplectic map

which describes the highly-eccentric circumbinary

motion of a massless (passively gravitating)

particle in the restricted three-body problem; it

also describes the microwave ionization of

hydrogen and Rydberg atoms with initial highly

excited states in the semiclassical regime. Here

 is a rescaling of the energy 

of the particle with mass ,  is the velocity of

a planet of mass  orbiting around a star with

mass ; the phase

 is given by time 

taken at the moment of the particle's passage

through perihelion, the planet's orbital period and

radius are  and ; variables with overbars

 mark the new values of variables 

after one orbital period of the particle given by the

third Kepler law (Kepler, 1619). A kick in energy

 takes place during the passage through the

perihelion, which has a minimal distance between a particle and the center of mass of binary. For the

perihelion distance , the kick is a sine function with an amplitude  which is proportional to the mass

ratio  and depends also on the perihelion distance . For  one has a generalized Kepler map with

a kick function  containing several harmonics. The generalized Kepler map describes, e.g.,

dynamics of long-period and Halley-type comets, including comet Halley, and dark matter in the Solar

System. The Kepler map applications in atomic physics of excited states are described at Microwave

ionization of hydrogen atoms. Typical examples of the Poincaré sections given by the Kepler and generalized

Kepler maps are shown in Fig.1 (see also Figs below), the orbit of comet Halley is presented in Fig.2, a

schematic image of orbit is shown in Fig.3 with all main geometric notations.
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Figure 2: Comet Halley orbit: an orthographic

projection (left panel) and an arbitrary view point

(right panel). The red curve shows three successive

orbital revolutions of comet Halley, the other near

circular orbits are for the eight planets, the yellow

bright spot gives the Sun position. (from Rollin et al.,

2015a)

Figure 3: A schematic image of orbit of third light

body (3) in the plane of rotating binary with masses 

(1) and  (2) with corresponding distance at

perihelion  (closest distance between light body and

center of mass of binary), large semi-axis , effective

planet radius  and rescaled energy , arrows show

the rotation direction.
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Map derivation and
properties

The change of the particle energy, ,

is obtained by integration of energy variation,

produced by the planet's orbital motion around the

Sun, over an unperturbed Kepler orbit with

eccentricity close to unity (in the limit over a

parabolic orbit). Such integration is similar to the

Melnikov integral appearing in the computation of

the separatrix splitting (see Chirikov, 1979). This

integration in the planar circular restricted three-

body problem gives the following amplitude for

the particle energy variation

where ,  is the perihelion distance (  is the particle orbital momentum per unit of

mass) and the variables are expressed in units with  (see Petrosky, 1986,Petrosky and Broucke,

1988,Shevchenko, 2011,Lages et al., 2017). The frequency  notes here the orbital frequency of the planet

expressed in units of its Kepler orbital frequency . In the three-body problem, in whose

framework the original Kepler map was derived, , but for the problem of microwave ionization of
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hydrogen atoms (see also Benvenuto et al., 1994,Casati et al., 1987,Casati et al., 1988) or rotating rigid bodies

(see below) these two frequencies can be different. The expression for  is given for the orbit of the particle

moving in a prograde direction (the same direction as the planet), for the case of retrograde particle's orbit the

expression is slightly different (Petrosky and Broucke, 1988). In Eq.(2) it is also assumed that , thus

there are no close encounters between the particle and the planet. In this regime  is independent of . Here,

the planet produces a high frequency perturbation on the particle motion and due to analyticity  decays

exponentially with .

The kick contribution to the energy change in Eq.(1) happens during the passage of the particle through

perihelion with a time duration being much smaller than the particle period given by the third Kepler law

(Kepler, 1619, see also WikiKepler, 2017) for the phase change in Eq.(1). The sinusoidal dependence of

energy change on the planet phase corresponds to the main time dependent dipole contribution of gravitational

interactions between the particle and the orbiting planet. The dipole term is dominant since . In

fact the problem of a central static charge (analogous to Sun) and rotating dipole (analogous to orbiting

planet), interacting with an electron moving over a Kepler orbit in highly excited atomic states, can be exactly

reduced to a problem of classical electron in a field of proton (hydrogen atom) and a circular microwave field

(Benvenuto et al., 1994). In this formulation an electron with zero orbital momentum still have an energy

change similar to that in Eq.(1) (  remains constant at ) and its evolution is described by the Kepler

map as it is shown in (Casati et al., 1987,Casati et al., 1988,Gontis and Kaulakis, 1987). We discuss mainly

the map description for the circular restricted three-body problem but the analysis performed for the

microwave ionization of hydrogen atoms shows that the Kepler map provides a good description also for the

case of elliptic orbits or elliptic microwave polarization (Casati et al., 1988, Benvenuto et al., 1996).

It is important to note that for , the first sine harmonic in the kick gives the main contribution while

other harmonics have additional exponentially small factors. In this regime  is approximately conserved for

the planar case due to conservation of the Jacobi constant and the Tisserand relation (Shevchenko, 2015).

The Kepler map can be locally reduced to the Chirikov standard map and in this way the chaos border can be

easily obtained. In order to do that in Eq.(1) the phase equation is linearized near the integer resonant values

 determined by the condition of phase change by an integer  so that the phase equation

becomes linear in rescaled energy  and the map is reduced to the Chirikov standard

map

with the chaos parameter  (and ). The integer resonances

corresponding to  are well seen in the phase space shown in Fig.1. For the standard map the

chaos becomes global at  that determines the chaos border for the Kepler map being

 (for parameters of Fig.1 this gives  in a good agreement with numerical data).

Assuming that in the global chaotic domain the phases take random uncorrelated values one finds a diffusive

growth  with a diffusion constant  (here  is expressed in number of the particle orbital

periods). This diffusion leads to the particle escape and determines a typical life time scale of the particle

inside the system  expressed in number of map iterations. The transformation to real

time can be estimated at  but more exact computations are rather involved due to presence

of stability islands, phase correlations and the particle period variation near the escape border .
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Figure 4: Contribution of the eight planets to the kick

function  in Eq.(1) for the case of comet Halley.

On each panel,  is obtained from the Melnikov

integral calculation (black curve), the red dashed curve

(the blue dotted-dashed curve) shows the Keplerian

planet contribution (the Sun dipole contribution). Here

 are the phases of the orbital

motion a planet with a period . On Jupiter and Saturn

panels the kick functions extracted by Fourier analysis

from observations and exact numerical computations

are shown by red dots taken from Chirikov and

Vecheslavov, 1989 (from Rollin et al., 2015a)

The Lyapunov exponent  for the Kepler map can

be computed numerically from the map iterations,

like for the Chirikov standard map where

 at  (see Chirikov, 1979). The

theory and numerical results are described in

Shevchenko, 2007. The computation of  is done

on a number of orbital periods being smaller than

the diffusion escape time of light body from the

binary. In the physical time one should take into

account that the orbital period increases at .

Numerically, the Lyapunov exponents are

computed until the current Lyapunov exponent

saturates at some plateau (emerging in the time

dependence of the current exponent). For the

Kepler map, the saturation is quick and takes

place usually before the particle is ejected.

Analytically, the Lyapunov exponents can be

estimated either locally (at a given energy of a test

particle, as approximated by the Chirikov standard

map), or globally (averaged over the whole

chaotic layer). For rough estimates, one may take

the averaged Lyapunov exponent for the map

(Chirikov's constant, see Shevchenko, 2007),

divide it by the particle's current orbital period

(which is just the time interval corresponding to

one iteration of the map), and thus obtain an

estimate of the local Lyapunov exponent in natural

time units (yr ).

Comet Halley dynamics

Detailed observational data exist for comet Halley

due to various historical records dating back to

year 240 B.C. (WikiHalley, 2017). Extensive numerical simulations performed by Yeomans and Kiang, 1981

determined 46 moments of time of perihelion passages of comet Halley up to year 1404 B.C. Using these 46

time moments and assuming that they are given by the Kepler map (1), with a certain kick function ,

Chirikov and Vecheslavov, 1989 determined this effective function expanding it in Fourier harmonics of

Jupiter and Saturn periodic motion. Their empirical numerical points are show in Fig.4 (top two right panels).

Even if such an approach is only approximate it demonstrates that in this Kepler map approximation the

dynamics of comet is chaotic (see Fig.1 (top)) and its life time (in a bound orbit around the Sun) is relatively

short being approximately only of the order of 10 million years. This time is obtained by averaging over many

trajectories with initial orbital elements being close to the actual ones of comet Halley. This value is larger
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Figure 5: Left panel: dependence of capture cross-

section  on DMP energy  in the continuum for the

Jupiter case, the dashed lines show dependence

; . Right panel: dependence

of rescaled captured number of DMP (per time unit) on

 for Jupiter, Saturn and a model planet with

 (solid, dashed and dot-dashed curves,

respectively)(from Lages and Shepelyansky, 2013).

than the diffusive estimate for comet Halley life time  where  is the current orbital

period of comet Halley,  and  with the maximal kick amplitude

, thus giving  (see Chirikov and Vecheslavov, 1989). As discussed

above the difference is related to phase correlations and significant increase of comet period in a vicinity of

escape border. The main contribution to the diffusion is given by Jupiter since for Saturn the maximal kick

amplitude is by a factor 6 smaller while the diffusion rate is quadratic in amplitude.

The numerical computation of , taking into account only Jupiter in a circular orbit, showed visible

deviations (see Fig.1a in Lages and Shepelyansky, 2013) from the kick function obtained in Chirikov and

Vecheslavov, 1989. It turns out that here is present also a contribution from the Sun orbiting around the

barycenter in a near circular orbit of radius . Even if  is small the Solar mass is large and this

creates a dipole kick contribution comparable with the contribution given by a planet. These two contributions

from the 8 planets and the Sun are shown in Fig.1 and described in detail in Rollin et al., 2015a. The kick

from the Sun always has a sine shape since  while a planet contribution has a more complicated shape

of  since for Comet Halley its perihelion distance is comparable or even smaller than radii of planetary

orbits (inclination of the comet orbital plane precludes close encounters). While the complete form of the kick

function, taking into account the barycenter motion of the Sun and a planet, was analyzed by different groups

(see e.g. Dvorak and Kribbel, 1990,Emelyanenko, 1992,Malyshkin and Tremaine, 1999,Zhou et al., 2000) the

analysis performed in Rollin et al., 2015a allows one to have a clear physical insight on the two type of

contributions in the kick function.

The Kepler map for Comet Halley provides

understanding of the main physical properties of

its chaotic dynamics. At the same time the map

gives only an approximate description since the

orbital momentum exhibits slow variation in time

leading to change of  as it is demonstrated in

Dvorak and Kribbel, 1990 and Rollin et al.,

2015a. The slow variation of the orbital

momentum and kick amplitude was also analyzed

for the microwave ionization of hydrogen atoms

(see Casati et al., 1988). However, the comparison

of the results of the Kepler map (in quantum

regime) with the experimental data of Koch group

shows that the map gives a good description of

experimental data for real three-dimensional

atoms (Casati et al., 1990). This comparison

supports the expectation that the Kepler map gives a good average description of the long-term cometary

dynamics in many cases. Another restriction for the map description of comet Halley evolution is related to

the evaporation of its nucleus with time (see Chirikov and Vecheslavov, 1989,WikiHalley, 2017).

In the above description of comet Halley it is considered as a mathematical light body. For real physical

comet, other effects, like evaporation during a passage through the Sun perihelion, play an important role and

it is expected that the comet will evaporate or will split in the next few tens of thousands of years (WikiHalley,

2017).
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Figure 6: Left panel: radial density  at

present time  for the Solar System

averaged over all captured DMP (normalization is

fixed by ). Right panel: volume density

 from the left panel data, the dashed line shows

slope -2, the horizontal line shows average density for

 (from Lages and Shepelyansky, 2013).

Capture of dark matter by
the Solar System

It is now well accepted that most of matter in the

Universe is composed by dark matter which has

only gravitational interaction (see e.g. Bertone et

al., 2005). The understanding of the capture

process of dark matter by the Solar System

represents a significant interest. It is assumed that

in a vicinity of the Solar System the velocity

distribution of dark matter particles (DMP) has a

Maxwell form

 with the

average module velocity . The

Galactic DMP mass density is expected to be  (see Bertone et al., 2005). The first

estimates for the DMP capture cross-section  and DMP dynamics, based on the Kepler map description, are

presented in Khriplovich and Shepelyansky, 2009 with the further detailed analysis developed in Lages and

Shepelyansky, 2013. The main effect is given by the interactions with the largest planet Jupiter. In the Kepler

map picture only DMP with energies  are captured under the condition

that  (see Fig.4, Jupiter case). The value of  is determined by the DMP parameters at infinity, where

its velocity is  and its impact parameter is , and hence  where  is the gravitational

constant. Since  this leads to the DMP capture cross-section

where the numerical coefficient is taken from the numerical simulations based on the Kepler map description

of the DMP dynamics in Jupiter case (see details in Lages and Shepelyansky, 2013). The numerical results

confirm the analytical estimate as it is shown in Fig.5. For typical capture velocities

 the capture cross-section is by 1000 times larger than the area of Jupiter orbit.

Thus the close encounters between DMP and a planet do not play significant role. This is also confirmed by a

rapid drop of  for  as shown in Fig4. An additional confirmation is given

by a numerical computation of the differential number of DMP captured per time unit

 where  is the DMP density and  is the velocity distribution

function given above. A number of DMP crossing the planet orbit area per time unit is

. The dependence , shown in Fig.5, drops quadratically for 

showing that the contribution of close encounters is small. The results obtained with the Kepler map

description are in agreement with the extensive numerical simulations of Newton dynamics of DMP in the

Sun-Jupiter system (Peter, 2009), confirming that the close encounters do not give significant contribution for

DMP capture and giving similar typical velocity for capture being  as given above.
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Figure 7: Density of captured DMP in the Solar

System at present time . Top panel: DMP surface

density  shown on left in the cross

plane  perpendicular to the Jupiter orbit (data

are averaged over ), on right in the

Jupiter plane ; only the range  around

the Sun is shown. Bottom panels: corresponding DMP

volume density  on left in the plane

, on right in the Jupiter orbit plane; only the

range  around the Sun is shown. Color grades

signify the levels of density with yellow/black for

maximum/zero density (from Lages and Shepelyansky,

2013).

Figure 8: Logarithm of DMP density enhancement

factor  shown by color and log-value-levels as

a function of  and ; two points are for

 (the Sun-Jupiter system) and

 (SMBH with  of about  of the

speed of light) (from Rollin et al., 2015b).

Chaotic dynamics of dark
matter in the Solar System

The analysis of the long term DMP dynamics on

the timescale of the Solar system age

 was performed in numerical

simulations based on the generalized Kepler map

(Lages and Shepelyansky, 2013). To determine the

number of captured DMP , in the Sun-

Jupiter system, as a function of time a constant

flow of scattered particles is modeled numerically

with energy distribution  per time

unit. The injection, capture, evolution and escape

of DMP is described by the map (1) with multiple

values of scattering parameters . The

corresponding  function is computed

numerically for each set of the scattering

parameters with the scattering DMP distribution

. The scattering and evolution

processes are followed for the whole time interval

equal to the age of the Solar system with the total

number of DMP, injected during time  in the

whole energy range  being

 and with  scattered

DMP in the Halley comet range

. The efficiency of the

map simulations allows one to consider the

number of DMP five orders of magnitude larger

than in the simulations of Newtonian dynamics in

(Peter, 2009).

The results of this Kepler map modeling (Lages

and Shepelyansky, 2013) show that at the initial

stage the scattered DMP are captured in the Solar

system and their number grows approximately

linearly with time. However, after time scale

 DMP start to escape from the Solar

System and the steady state distribution of DMP is

established. The dynamics of captured DMP is

chaotic. The average DMP density distribution at

time  is shown in Fig. 6. It is interesting to note that at intermediate distances from the Sun there is a

moderate growth of radial density  being similar to the velocity curve dependence  observed in
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galaxies (see Fig.7 and Eqs.(1),(2) in Rubin et al., 1980). Indeed, in the virial theorem

, where  is the mass inside radius . However, for the Sun-Jupiter system the

total captured DMP mass is small (see below). The distributions of surface and volume DMP densities at time

 are shown in Fig.7; note visible specific regions of high DMP density.

The total mass of captured DMP inside the radius of Neptune orbit ( ) is found to be rather small

. A typical average density inside the radius of Jupiter orbit is  with the

corresponding mass . Thus, the density of captured DMP is much smaller than the galactic

DMP density. However, it is by a factor  larger than the equilibrium DMP galactic density

 taken in the energy range  (with

) (Lages and Shepelyansky, 2013).

The main reason due to which there is no global density enhancement is related to the fact that the orbital

velocity of Jupiter is small compared to the average velocity in the case of Galactic DMP Maxwell

distribution . In such a case only a small fraction of DMP can be captured by one kick. In the case of

a supermassive black hole (SMBH) with a star orbiting around it, it is possible to have situations with 

so that about a half of DMP flow is captured by one kick. The dependence of the density enhancement factor

 on system parameters is analyzed in Rollin et al., 2015b using the generalized Kepler map simulation of

 DMP scattering in the energy range . The factor enhancement factor  is defined as the

ratio of the DMP density in a binary system at distance  to the Galactic density . The results for 

are well described by a semi-empirical formula, namely,  with ,

 shown in Fig.8. This formula shows that the DMP density can be enhanced significantly in

binary systems reaching the enhancement values . Simple considerations explaining this formula are

given in Rollin et al., 2015b.

Of course, the Kepler map description of DMP dynamics is an approximate one assuming that the orbital

momentum, and hence the perihelion distance , are conserved. But the obtained DMP density distributions

(see Figs.5,6) are averaged over all scattering angles and momentum so that the averaged distributions are

supposed to be close to those given by exact Newtonian dynamics. What is more, the Kepler map gives an

estimate of typical energies of escaping DMP being determined by the last kick with

 reaching high escape velocities  for SMBH with a star orbiting around

with parameters , , where  is the speed of light (Yu and Tremaine, 2003,Rollin et al.,

2015b). Such an ejection mechanism may play an important role in the evolution of binary black holes.

Chaotic zones around rotating small bodies

Small irregular bodies such as asteroids and cometary nuclei, with consequently complex gravity fields (see

Scheeres, 2012), quite often have bi-lobed shapes which can be equivalently modeled by either a rotating

dumbbell (i.e., a massless rigid rod of length  connecting two point masses  and ) or by a rotating

contact binary (see Fig.9). The case of a passively gravitating particle orbiting a gravitating small body is then

analogous to the above depicted case of a particle orbiting the Solar System modeled by the Sun-Jupiter

binary. The Kepler map can be applied taking into account two main differences: the masses of the lobes are

comparable, so , and the small body rotation frequency  is arbitrary and can be

very different from the Keplerian frequency . For these small bodies, most often rubble pile objects, the
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Figure 9: 25143 Itokawa asteroid modeled as a rotating

contact binary (from Lages et al., 2017)

rotation frequency  should be less than the

centrifugal disruption threshold . The rotation

of the small body modifies the test particle energy

as the particle passes at the perihelion. The

corresponding Kepler map can be written

Generalizing the work of Roy and Haddow, 2003 to the case of a binary with an arbitrary rotation frequency,

the leading terms giving the exchange of energy between the test particle and the small body are (Lages et al.,

2017)

The first (second) term of the above sum is obtained from the octupole (quadrupole) term of the small body

gravitational potential multipole expansion; analytical calculations give

and

For the study of a test particle dynamics in the vicinity of a small body (i.e., for ,  about few  (few

dumb-bell sizes) and any ), a rapid comparison shows that the second harmonic coefficient  dominates

over the coefficient  (see Lages et al., 2017). Fig.10 gives the Poincaré section  computed using the

Kepler map (5) illustrating the possible dynamics of Dactyl (https://en.wikipedia.org/wiki/243_Ida#Moon)

around 243 Ida (https://en.wikipedia.org/wiki/243_Ida) . Using the Chirikov criterion (see the Map derivation

and properties section), it is possible to estimate the chaos border location, i.e., the energy delimiting the

chaotic component around the separatrix  (see the last invariant KAM curve in red around

 in Fig.10 bottom right panel). The chaos border  can then be used to locate the critical

curve  separating, in the  plane, initial orbital elements leading to chaotic or regular trajectories.

Stability diagrams are shown in Fig.11 for the dynamics of a test particle around asteroids 243 Ida (Fig.11 left

panel) and 25143 Itokawa (https://en.wikipedia.org/wiki/25143_Itokawa) (Fig.11 right panel). The stability
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Figure 10: Poincaré section  for Dactyl's

dynamics around 243 Ida obtained by iteration of the

Kepler map (from Lages et al., 2017)

Figure 11: Stability diagram for the orbital dynamics

around Ida (left panel) and around Itokawa (right

panel): the chaotic domain is shown by the reddish

area. Chaos is determined by computing the Lyapunov

exponent  for a trajectory with initial orbital elements

. On the left panel, the black dot marks the

dynamical locus of Dactyl, the moonlet of Ida (from

Lages et al., 2017)

diagrams are obtained by computing, for each

initial condition , the largest Lyapunov

exponent  of the Kepler map (5) as described

above. In the diagrams, the initial conditions 

for orbits with high values of  are marked by red

colors and those with low  values are marked by

blue colors, according to the color bar scale given

in Fig.11.

Let us define the central chaotic zone around the

small body as the zone in  such as at any initial

eccentricity the particle’s dynamics is chaotic.

This zone can be constructed analytically from the

roots of the  function for any rotation rate .

The extent of the chaotic zone around small

bodies is shown in Fig.12 (left panel: analytical

determination using the Chirikov criterion; right

panel: numerical determination by iterating the

Kepler map (5)). The extent of the chaotic zone

around a rotating small body is more than twice

greater for rotation rate as slow as 

than for the Keplerian rotation rate .

Consequently, the relative size of the chaotic zone

is greater around a rotating small body than

around any non-bound gravitating binary system

of the same size.

Related topics

Chaotic zones around gravitating binaries:

Petrosky, 1986 used the Kepler map theory to

show that the energy width of a one-sided

chaotic band in the vicinity of the perturbed

parabolic orbit scales as the power  of the

mass parameter 

if . The particles with 

move chaotically. This equation represents the  law. Based on this concept of a chaotic layer near the

parabolic motion (playing the role of a separatrix), and using analytical expressions for the Kepler map

parameter, a strictly analytical criterion for the disintegration of a gravitating triple can be derived.

Namely, based on the Kepler map theory, a theoretical criterion was proposed in Shevchenko, 2015 to

describe a zone of chaotic orbits around a gravitationally-bound binary (double star, double black hole,

double asteroid). The circumbinary continuous chaotic zone, where all circumbinary orbits are chaotic

irrespective of their initial eccentricity, appears above a certain threshold in the mass parameter  (the
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Λ
(q, e)

(e, q)
Λ

(e, q)
Λ

Λ

q

(q)ecr ω

ω ≃ 0.1ω0
ω = ω0

2/5
Δ = = − ∝ ,Ecr ∣∣Ecr ∣∣ Ecr μ2/5

μ ≪ 1 E ∈ (−Δ , 0)Ecr
μ2/5

μ



Figure 12: Extent of the central chaotic zone around a

rotating bilobed small body (with ) as a

function of its rotation frequency . The red (blue)

area corresponds to chaotic (regular) dynamics of the

particle orbiting the small body. Left panel: the central

chaotic zone border has been obtained analytically.

Right panel: obtained by iterating the Kepler map

(from Lages et al., 2017).

Figure 13: The mass parameter - orbital period ratio

relationship for the bi-planet and circumbinary

exoplanet systems (dots). The vertical dashed

(magenta) line shows the theoretical threshold in ,

equal to . The vertical dotted (cyan) line

corresponds to  (From Shevchenko, 2015).

mass ratio of the central binary). It appears due

to overlapping of the orbital resonances

corresponding to integer ratios  between

the orbital periods of the particle and the

central binary. Inside this zone, an unlimited

chaotic diffusion of a test particle in the

eccentricity , up to unity, takes place until the

particle is ejected from the system. The value

of the mass parameter , above which such a

chaotic zone is present universally, was

estimated to be  (Shevchenko, 2015).

The observed diversity of orbital

configurations of bi-planet and circumbinary

exoplanetary systems complies with the

existence of this threshold in : thus Fig.13

shows the observed dependence between mass

parameter of the central binary  versus the

ratio of orbital periods  of the outer

planet and the central binary, the bi-planet

systems are all on the left of the vertical line

(the theoretical threshold  for the

appearance of the central chaotic zone),

whereas the circumbinary systems are on the

right. The complete lack of exosystems with

 at  is obvious. This is

consistent with the theory: at , the

central chaotic zone is formed, where the

particles with any initial eccentricity are

subject to the unlimited chaotic diffusion, until

they are ejected from the system.

Chaotic diffusion: The generalized Kepler

map finds applications to description of

chaotic diffusion in the dynamics of comets

and meteor streams (see, e.g., Emelyanenko,

1992, Zhou et al., 2000)

Sitnikov problem: The dynamics in orbits perpendicular to the plane of a binary orbit is also described by

the Kepler map (see Urminsky and Heggie, 2009)

Survival probability: The probability that a particle stay in the system without escape (particle

maintaining ) decays as  at large physical times, since the orbital period between kicks

is proportional to  and the measure of such orbits is proportional to  so that the orbits near 

play a dominant role (see Borgonovi et al., 1988). When the time is measured in the number of orbital

periods  then the decay is algebraic with . This slow decay is related to the sticking of
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μ
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trajectories near the vicinity of the stability islands and the critical invariant curves. This survival

probability is directly related to the statistics of Poincaré recurrences in symplectic maps with divided

phase space (see more details at Chirikov standard map).

Atomic physics: The applications of the Kepler map for the classical and quantum processes of

microwave ionization of Rydberg and excited hydrodgen atoms are described in Microwave ionization of

hydrogen atoms.

Historical notes

The second equation of the Kepler map is just a reformulation of the Kepler third law, published by Kepler,

1619, hence the name of the map. For the three-body problem, Sun, planet and comet, the Kepler map for the

dynamics of comets in nearly parabolic orbits was derived by (Petrosky, 1986) and was applied to describe the

long-term dynamics of the comet Halley using a generalized Kepler map by Chirikov and Vecheslavov at the

end of 1986 (Chirikov and Vecheslavov, 1989). Independently, the Kepler map was derived for the classical

and quantum evolutions of microwave electron excitation in Rydberg states in Casati et al., 1987 and for

solely classical evolution in Gontis and Kaulakis, 1987. Probably Chirikov was a reviewer of Petrosky, 1986

paper (thus he pointed out the results of Petrosky to Shepelyansky in September 1986 when he showed to him

the Kepler map description of microwave ionization of hydrogen atoms) that stimulated him to elaborate the

generalized map description of chaotic, long-term dynamics of comet Halley. The studies of Chirikov and

Vecheslavov were also stimulated by the Russian Vega mission to Venus and comet Halley in 1986

(WikiVega, 2017). The term Kepler map was coined in (Casati et al., 1987) for the problem of Microwave

ionization of hydrogen atoms. For a microwave ionization process and comet dynamics with a larger

perihelion distance ( ) the kick function has a sine form and the map was named the Kepler map, for

 the kick function contains several harmonics that appeared for the Halley comet case in (Chirikov and

Vecheslavov, 1989) corresponding to the generalized Kepler map (in some cases the term for this case is

simplified to the Kepler map). The chaos border and diffusion rate for microwave ionization of hydrogen atom

for different microwave frequencies were first obtained using the Chirikov criterion of overlapped resonances

in 1983 (Delone et al., 1983). The capture cross-section by a binary was first obtained analytically and

confirmed numerically by Heggie, 1975; and the map description of DMP capture was first developed in

Khriplovich and Shepelyansky, 2009 and Lages and Shepelyansky, 2013. The relation between the problems

of rotating dipole and quadrupole for a gravitating binary and autoionization of molecular Rydberg states was

pointed out in Benvenuto et al., 1994.
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