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a b s t r a c t 

We apply a generalized Kepler map theory to describe the qualitative chaotic dynamics around cometary 

nuclei, based on accessible observational data for five comets whose nuclei are well-documented to re- 

semble dumb-bells. The sizes of chaotic zones around the nuclei and the Lyapunov times of the motion 

inside these zones are estimated. In the case of Comet 1P/Halley, the circumnuclear chaotic zone seems 

to engulf an essential part of the Hill sphere, at least for orbits of moderate to high eccentricity. 
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. Introduction 

Asteroids and cometary nuclei quite often have bilobed (dumb-

ell) shapes; a spectacular example of such a shape is offered by

he recent radar imaging of the near-Earth asteroid 2014 JO25. 1 

he orbital dynamics around bodies with complex gravity fields

 Chauvineau et al., 1993; Scheeres et al., 1996; Scheeres et al.,

998; Petit et al., 1997; Scheeres, 2002; Bartczak and Breiter, 2003;

ysen et al., 2006; Olsen, 2006; Mysen and Aksnes, 2007; Feng

t al., 2017 ) and in particular around contact-binary solid bodies

 Marchis et al., 2014; Feng et al., 2016 ), was explored thoroughly

n the last two decades (see a brief review in Lages et al., 2017 ). 

Here we use a generalized Kepler map technique ( Lages et al.,

017 ) to describe the global dynamics around cometary nuclei

nown to be bilobed. We recall that the Kepler map is a two-

imensional area-preserving map describing the eccentric cir-

umbinary motion of a massless particle. The motion is described

n terms of increments in particle’s energy and orbital period

easured at its pericenter and apocenter passages. The Kepler

ap was verified to be a powerful tool to study resonant and

haotic orbital dynamics of comets, in particular Comet Halley

 Petrosky, 1986; Chirikov and Vecheslavov, 1986; 1989; Rollin et al.,

015 ). One should emphasize that here we apply this technique

o describe the orbital motion around cometary nuclei , in partic-
∗ Corresponding author. 

E-mail addresses: jose.lages@utinam.cnrs.fr (J. Lages), iis@gao.spb.ru (I.I. 

hevchenko), guillaume.rollin@utinam.cnrs.fr (G. Rollin). 
1 https://www.jpl.nasa.gov/news/news.php?feature=6817 . 
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lar around the nucleus of Comet Halley. This outlines the gen-

ral character of the technique. Also the Kepler map has been ap-

lied to very different domains, from strong microwave ionization

f excited hydrogen atoms ( Casati et al., 1988 ) and autoioniza-

ion of molecular Rydberg states ( Benvenuto et al., 1994 ) to cap-

ure of dark matter by the solar system ( Lages and Shepelyan-

ky, 2013 ) and by gravitating binaries in general ( Rollin et al.,

015 ), also to description of transfer trajectories of spacecrafts

 Ross and Scheeres, 2007 ). 

The employed Kepler map formalism allows one to straightfor-

ardly estimate the characteristics of the chaotic zones around the

ometary nuclei using simple analytical formulas, avoiding numer-

cal integrations. What is more, in contrast to numerical integra-

ions, it provides a direct physical insight in the dynamical prob-

em of circumbinary motion: one is able to directly see which res-

nances overlap or interact; which Lyapunov timescales can be ex-

ected; how the chaotic diffusion in the energy variable may pro-

eed; etc. 

In Lages et al. (2017) , the Kepler map has been generalized to

escribe the motion of a massless particle in the gravitational field

f a rotating irregularly shaped body modeled by a non-symmetric

umb-bell. This generalization was achieved by introduction of an

dditional parameter, ω, responsible for the arbitrary rate of ro-

ation of the “central binary”. Analytical expressions for the coef-

cients of the “kick function”, representing the energy increment

or the test particle per orbital revolution, were derived. 

In this article, we use the new technique introduced in

ages et al. (2017) to describe the qualitative chaotic dynamics

round bilobed cometary nuclei, based on the data for five comets

https://doi.org/10.1016/j.icarus.2017.10.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/icarus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icarus.2017.10.035&domain=pdf
mailto:jose.lages@utinam.cnrs.fr
mailto:iis@gao.spb.ru
mailto:guillaume.rollin@utinam.cnrs.fr
https://www.jpl.nasa.gov/news/news.php?feature=6817
https://doi.org/10.1016/j.icarus.2017.10.035
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Table 1 

Bilobed cometary nuclei: basic observational data. 

Comet d , km M , kg m 1 / m 2 P , h Refs. 

67P/C–G 2.62 9.982 × 10 12 3.4 12.404 Jorda et al. (2016) 

1P/Halley 7.7 2.2 × 10 14 2.6 176.4 Merényi et al. (1990) 

Stooke and Abergel (1991) 

Schleicher et al. (2015) 

8P/Tuttle 5.0 4 × 10 14 a 2.14 11.4 Harmon et al. (2010) 

19P/Borrelly 4.0 2 × 10 13 3.5 25 Lamy et al. (1998) 

Soderblom et al. (2004) 

Oberst et al. (2004) 

Buratti et al. (2004) 

Britt et al. (2004) 

103P/Hartley 1.2 2.2 × 10 11 3.3 18.2 Harmon et al. (2011) 

Thomas et al. (2013) 

Belton et al. (2013) 

a In the absence of observational data, the mean mass density of 8P/Tuttle has been as- 

sumed to be 0.5 g · cm 

−3 , equal to the mean density of 67P/C-G. 
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whose nuclei are well documented to be dumb-bells. Note that the

majority of cometary nuclei whose shapes are well documented

are in fact dumb-bells. The sizes of chaotic zones around the nu-

clei and the Lyapunov times of the motion inside these zones are

estimated. The nucleus of Comet Halley is addressed in particular;

we show that, due to its relatively slow rotation, a huge zone of

chaos is generated around this object. 

2. Bilobed cometary nuclei 

Many minor bodies in the Solar system are “potato”-shaped,

roughly resembling ellipsoids, but it is not infrequent that aster-

oids and cometary nuclei resemble dumb-bells, i.e., they are more

like dumb-bells than ellipsoids. Therefore, one can describe the

body as a dumb-bell straightforwardly. Remarkably, this is the case

for 5 comets out of 8 that have the shapes of their nuclei well-

documented ( Jorda et al., 2016 ). 

A well-known example is the nucleus of Comet

67P/Churyumov–Gerasimenko, the target of the Rosetta mis-

sion ( Jorda et al., 2016 ). Tantalizingly, Comet 1P/Halley, famous for

its well-studied chaotic orbital dynamics and which was the first

object studied within the Kepler map formalism ( Chirikov and

Vecheslavov, 1986; 1989 ), also has a dumb-bell nucleus ( Merényi

et al., 1990; Stooke and Abergel, 1991 ). Other comets with well-

documented dumb-bell nuclei are 8P/Tuttle ( Harmon et al., 2010 ),

19P/Borrelly ( Oberst et al., 2004 ), and 103P/Hartley ( Thomas et al.,

2013 ). Such peculiar appearance is explained by non-uniform

erosion of the surface of a cometary nucleus when it passes close

to the Sun ( Jewitt et al., 2003 ), or, alternatively, by “soft collisions”

of single bodies ( Rickman et al., 2015 ). Table 1 summarizes the

basic observational data about the above cited cometary nuclei: d

is the separation of the centers of mass of the lobes; m 2 / m 1 is the

ratio of masses of the lobes ( m 2 < m 1 ); M is the total mass of the

nucleus; P is the observed rotation period of the nucleus. 

Let us take the example of the nucleus of Comet

67P/Churyumov–Gerasimenko which from the observational

data presented in Jorda et al. (2016) can be described as an aggre-

gate of two merged bodies with the ratio of masses m 1 / m 2 � 3.4;

and their centers of mass are separated by d � 2.62 km. The total

mass and the rotation period of the nucleus are, respectively,

9.982 × 10 12 Kg ( Pätzold et al., 2016 ) and 12.404 h ( Jorda et al.,

2016 ). 

The Keplerian rate of rotation of a binary with masses m 1 ,

m 2 , and size d is straightforwardly calculated using the third

Kepler’s law (see, e.g., Murray and Dermott (1999) , Eq. (2.22)).

Then, it is straightforward to calculate that the rotation rate

ω of Comet 67P/Churyumov–Gerasimenko satisfies the relation
 � 0.73 ω 0 . Analogously, we have ω / ω 0 � 0.055, 0.33, 0.48, and

.04 for 1P/Halley, 8P/Tuttle, 19P/Borrelly, and 103P/Hartley. There-

ore, for the studied cometary nuclei, the rotation rate ω ranges

rom 0.055 ω 0 to 1.04 ω 0 . However note that ω > ω 0 are not gen-

rally probable, as a rubble-pile object would disintegrate at such

igh rates of rotation. 

. The dumb-bell map 

For the clarity of the subsequent presentation, let us review the

epler map techniques. 

In Petrosky (1986) and Chirikov and Vecheslavov (1986) ; 1989 ),

he classical Kepler map was introduced as a tool for description

f the chaotic motion of comets in eccentric orbits. The model

onsists in the assumption that the main perturbing effect of a

lanet is concentrated when the comet is close to the perihe-

ion of its orbit. This effect is defined by the phase of encounter

ith the planet. The Kepler map has a single parameter. Its an-

lytical formula was first derived in the restricted planar three-

ody problem framework in Petrosky (1986) and Petrosky and

roucke (1988) . In Shevchenko (2011) , it was demonstrated that

he Kepler map, including analytical formulae for its parameter,

an be derived by quite elementary methods, based on the Jacobi

ntegral formalism. Following a procedure analogous to that pre-

ented in Shevchenko (2011) , the dumb-bell map can be straight-

orwardly derived by allowing for an arbitrary rate of rotation of

he “central binary” ( Lages et al., 2017 ). 

Consider the motion of a passively gravitating particle in the

lanar restricted three-body problem “m 1 –m 2 –particle”, where the

wo masses m 1 � m 2 are connected by a massless rigid rod, thus

orming an asymmetric dumb-bell. Note that further on we con-

ider solely the case of prograde (with respect to the dumb-bell

otation) orbits of the particle; analysis of the retrograde case is

nalogous. 

We choose an inertial Cartesian coordinate system with the ori-

in at the dumb-bell’s center of mass. Unless otherwise stated

e express physical quantities is the following units: the dumb-

ell size d , i.e., the distance between centers of mass of the m 1 

nd m 2 lobes, is set to equal to unity, d = 1 ; we set the product

(m 1 + m 2 ) = 1 ; consequently the angular frequency of the Kep-

erian orbital motion of the two lobes (i.e., the motion if the two

asses m 1 and m 2 were unbound) is ω 0 = 

√ 

G(m 1 + m 2 ) /d 3 = 1 .

he motion of the particle with coordinates ( x, y ) is described by

he differential equations 

¨
 = ν

x 1 − x 

r 3 
13 

+ μ
x 2 − x 

r 3 
23 

, ÿ = ν
y 1 − y 

r 3 
13 

+ μ
y 2 − y 

r 3 
23 

, (1)



J. Lages et al. / Icarus 307 (2018) 391–399 393 

w

y

y

w  

s  

p  

r

i  

q  

e  

t  

o

 

S  

e  

(  

ω  

a  

k

�

w  

c  

c

W

a

W  

 

p  

c  

s  

c

 

w  

�  

p  

a  

V  

r  

(

φ

w  

a  

p

 

K  

m  

a  

s  

d  

t  

d  

f  

c  

t  

m  

m  

t  

(  

t  

t  

m  

t  

t  

i  

e  

r  

o  

s  

n  

s  

s

4

 

t  

t  

(  

v  

s  

k  

b  

μ
1  

φ
 

c  

m  

s  

t  

c  

l

t  

W  

a  

o

f  

I  

a  

2

E  

w  

c  

�  

d  

n  

m  

q  

s

y

x

w

λ

ith 

x 1 = −μ cos [ ω ( t − t 0 ) ] , 

 1 = −μ sin [ ω ( t − t 0 ) ] , 

x 2 = ν cos [ ω ( t − t 0 ) ] , 

 2 = ν sin [ ω ( t − t 0 ) ] , 

here ( x 1 , y 1 ) and ( x 2 , y 2 ) are the coordinates of m 1 and m 2 , re-

pectively; r i 3 = 

√ 

(x i − x ) 2 + (y i − y ) 2 is the distance between the

article and the m i mass with i = 1 , 2 ; μ = m 2 / (m 1 + m 2 ) is the

educed mass of m 2 , ν = 1 − μ is the reduced mass of m 1 ; and t 0 
s an arbitrary time fixing the phase of the dumb-bell at t = 0 . The

uantity ω is an additional parameter, with respect to the usual

quations of motion in the planar restricted three-body problem;

his parameter is responsible for the arbitrary rotation frequency

f the dumb-bell. 

From (1) and following either the methodology exposed in

hevchenko (2011) or the potential gravity based methodology

xposed in Roy and Haddow (2003) , it is possible to obtain

 Lages et al., 2017 ), for any rate of revolution of the central binary

 and any reduced mass μ, the energy gain of the particle after

 passage at the pericenter. The expression of the particle’s energy

ick function reads ( Lages et al., 2017 ) 

E ( μ, q, ω, φ) � W 1 ( μ, q, ω ) sin ( φ) + W 2 ( μ, q, ω ) sin ( 2 φ) , 

(2) 

here φ is the phase of the dumb-bell when particle is at peri-

enter, q is the pericenter distance, and where the first harmonic

oefficient reads 

 1 ( μ, q, ω ) � μν(ν − μ)2 

1 / 4 π1 / 2 ω 

5 / 2 q −1 / 4 exp 

(
−2 

3 / 2 

3 

ωq 3 / 2 
)

, 

(3) 

nd the second harmonic coefficient reads 

 2 ( μ, q, ω ) � −μν2 

15 / 4 π1 / 2 ω 

5 / 2 q 3 / 4 exp 

(
−2 

5 / 2 

3 

ωq 3 / 2 
)

. (4)

The quasi-constancy of q is an important issue considered, in

articular, by Shevchenko (2015) in the framework of the Jacobi

onstant formalism. At a � d , where a is the orbiting particle’s

emimajor axis (measured in the units of the semimajor axis of the

entral binary), the pericentric distance q is practically constant. 

In the framework of the restricted three-body problem, if one

rites down the expression for the tertiary’s energy increment

E together with the expression for the increment of perturber’s

hase angle φ between two consecutive passages of the tertiary

t the pericenter, one obtains the usual Kepler map ( Chirikov and

echeslavov, 1986; 1989; Petrosky, 1986 ). In the case of arbitrary

ate of rotation of the central binary, the map takes the form

 Lages et al., 2017 ) 

E i +1 = E i + �E ( μ, q, ω, φi ) , 

i +1 = φi + 2 πω| 2 E i +1 | −3 / 2 , 
(5) 

here E i is the particle’s energy at the i th passage at apocenter,

nd φi is the dumb-bell phase at the i th passage of the particle at

ericenter. 

Apart from the analysis of the global dynamical behavior, the

epler map can be used to reproduce individual trajectories of a

odeled dynamical system, but only to a certain extent. Generally,

 comparative analysis of any map’s performance versus a corre-

ponding direct numerical integration for an individual trajectory

oes not make sense on the time intervals much greater than the

rajectory’s Lyapunov time T L , due to the essential sensitive depen-

ence of the chaotic trajectories on the initial conditions. There-

ore, in the case of the Kepler map, such a comparison for any
haotic trajectory does not make sense at all, because, according

o Shevchenko (2007) , the Kepler map’s T L ∼ 1 in the units of the

ap iterations; thus, any chaotic trajectories computed by different

ethods, though with the same initial conditions, would substan-

ially diverge already on the timescale of several map iterations.

Of course, this divergence does not influence any comparison of

he global dynamical behaviors, which should be the same statis-

ically.) On the other hand, it is worthwhile to check the perfor-

ance of the Kepler map, versus a direct numerical integration,

aking as initial conditions those for an individual regular trajec-

ory. Our computations show that a good accordance is observed

ndeed in this case: in particular, the deviations in the orbital en-

rgy do not exceed 0.1% on the time intervals as high as 10 3 pe-

iods of the binary; what is more, they do not increase but just

scillate. One should outline that the problem of numerical preci-

ion of the Kepler map in reproducing of individual trajectories has

ot yet been studied at all (though many authors used it to study

tatistics of chaotic trajectories), to our knowledge; this issue de-

erves a thorough separate study. 

. Borders of chaos domain 

Let us estimate the size of the chaotic zone generated by

he rotating gravitating dumb-bell-shaped body, in application

o cometary nuclei. The analytical method for this estimation

 Shevchenko, 2015 ) is based on the Kepler map approach de-

eloped for gravitating non-bound binaries, such as, e.g., binary

tars. In Shevchenko (2015) , analytical expressions for the energy

ick functions �E and then estimations for chaos borders have

een obtained in the cases of: (a) highly asymmetric binaries,

� 1, giving �E ( μ, q, φ) � W ( μ, q )sin ( φ) with W (μ, q ) = W 1 (μ �
 , q, ω 0 = 1) and (b) equal mass binaries, μ = 1 / 2 , giving �E ( q,

) � W ( q )sin (2 φ) with W (q ) = W 2 (μ = 1 / 2 , q, ω 0 = 1) . 

For the five cometary nuclei, presented in Section 2 , and

onsidered as contact solid binaries, the reduced mass μ is

oderate and does not vary much from a nucleus to another,

ince μ = 1 / (1 + m 1 /m 2 ) ranges from ≈ 0.22 (for 19P/Borrely)

o ≈ 0.32 (for 8P/Tuttle) (see Table 1 ). The cometary nu-

lei rotation rate ω can be very different from the Kep-

erian angular frequency ω 0 , since ω ranges from ω �ω 0 

o ω � ω 0 (see Table 2 ). Combining (4) and (5) , one has

 1 (μ, q, ω) /W 2 (μ, q, ω) � −( ν − μ) 2 −7 / 2 q −1 exp 

(
2 3 / 2 

3 ωq 3 / 2 
)

. For

 pericenter distance greater than the dumb-bell size, q > d , we

bserve that the amplitude W 2 dominates over the amplitude W 1 

or the angular frequencies of rotation such that ω / ω 0 � ( d / q ) 3/2 .

n this regime of slow rotation, the border of chaos has been an-

lytically estimated for rotating contact solid binaries ( Lages et al.,

017 ) as 

 cr = −�E cr � −A (μν) 2 / 5 ω 

7 / 5 q 3 / 10 exp 

(
−Bωq 3 / 2 

)
, (6)

here A = 2 13 / 10 3 2 / 5 π3 / 5 K 

−2 / 5 and B = 2 7 / 2 / 15 . The width of the

haotic component around the separatrix (situated at E = 0 ) is

E cr ; the particles in the chaotic component can not dynamically

iffuse below E < E cr . Conversely, for ω / ω 0 � ( d / q ) 3/2 , W 1 domi-

ates over W 2 . For the sake of completeness, we give here an esti-

ate of the border of chaos in this regime of fast rotation. Conse-

uently, dropping the second harmonic term in (3) and using the

ubstitution E = W 1 y, φ = x, the map (6) is reducible to 

 i +1 = y i + sin x i 

 i +1 = x i + λ| y i +1 | −3 / 2 
, 

(7) 

here 

= 2 

−1 / 2 πωW 

−3 / 2 
1 

. (8) 
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Table 2 

Bilobed cometary nuclei: sizes of chaotic zones and the Lyapunov times. 

Comet ω / ω 0 R ch , km R Hill , km R ch / R Hill , % T L , h T L / P 

e � 0 e � 0.5 e � 0 e � 0.5 

67P/C–G 0.73 9 11 320 3% 3.3% 35 2.9 

1P/Halley 0.055 – 31–108 a 200 – 16–54% 230 1.3 

8P/Tuttle 0.33 25 32.5 620 4% 5.2% 28 2.5 

19P/Borrelly 0.48 16 21 300 5% 7% 66 2.6 

103P/Hartley 1.04 3.4 4.2 52 7% 8.1% 56 3.1 

a For the 1P/Halley nucleus we give the inner and outer radii of the annular chaotic zone at 

e � 0.5. 
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As the dumb-bell map (8) can be, locally in ( x, y ) phase space,

approximated by the standard map ( Chirikov, 1979; Shevchenko,

2014 ), one finds for the location of the chaos border 

y cr = 

(
3 λ

2 K G 

)2 / 5 

, (9)

where K G = 0 . 971635406 . . . ( Shevchenko, 2007 ). Using

Eqs. (4) and (9) for W 1 and λ, one obtains the half-width of

the chaotic layer around the separatrix (y = 0) 

�E cr = | E cr | = | W y cr | � A [ μν(ν − μ)] 2 / 5 ω 

7 / 5 q −1 / 10 exp 

(
−Bωq 3 / 2 

)
,

(10)

where A = 2 −1 / 2 3 2 / 5 π3 / 5 K 

−2 / 5 
G 

and B = 2 5 / 2 / 15 . The particle’s crit-

ical eccentricity e cr , following from the relation �E cr = −E cr =
1 / 2 a cr = (1 − e cr ) / 2 q, is 

e cr = 1 − 2 q �E cr , (11)

where �E cr is given by Eq. (11) . The orbits with e � e cr ( ω, q ) are

chaotic. Further on, the critical curve (12) will be superimposed on

constructed stability diagrams. 

As mentioned already in the comment to Eqs. (8) and (9) , the

Kepler map can be linearized in the energy variable so that to ap-

proximate the motion locally by the standard map. This procedure

provides powerful analytical means to estimate the local proper-

ties of the chaotic motion: local diffusion rates, local Lyapunov

timescales, proximity to resonances, etc. 

5. Dynamics around nuclei of Comets 

5.1. Stability diagrams 

Let us construct stability diagrams, using the dumb-bell map

(6) , by computing the Lyapunov exponents on a fine grid of ini-

tial conditions ( e, q ). The Lyapunov exponents are calculated by

means of iterating concurrently the dumb-bell map and its tangent

map (see the general method described in Chirikov, 1979 ). Fig. 1

presents the stability diagrams for particles orbiting cometary nu-

clei of 8P/Tuttle, 19P/Borrelly, 67P/Churyumov-Gerasimenko and

103P/Hartley whose physical parameters are given in Section 2 . For

any given initial conditions ( e, q ), the motion is regarded as chaotic

if the maximum Lyapunov exponent � is non-zero. From Fig. 1 we

see that a common peculiarity is that the border delimiting the

chaotic domain (reddish area) and the regular domain (bluish area)

is ragged. Here the most prominent teeth of instability correspond

to integer p :1 and half-integer p + 

1 
2 :1 resonances. The prominence

of the both integer and half-integer teeth at the ragged border, well

visible, e.g., in the 8P/Tuttle case, is explained by the fact that the

two lobes of the considered cometary nuclei are comparable, i.e.,

m 1 ∼ m 2 . 

On the stability diagrams ( Fig. 1 ), we superimpose the criti-

cal curves e cr ( q ) (12) computed for the dynamical regimes with

ω / ω � ( d / q ) 3/2 , using (11) as the expression for �E cr in (12) , and
0 
 / ω 0 � ( d / q ) 3/2 , using (7) as the expression for �E cr in (12) . From

ig. 1 , we clearly see that the critical curve for ω / ω 0 � ( d / q ) 3/2

dashed line) approximately describes the smoothed border of the

haotic domain at large pericenter distances q and high eccentrici-

ies e . Conversely, the critical curve for ω / ω 0 � ( d / q ) 3/2 (solid line)

pproximately describes the smoothed border of the chaotic do-

ain at lower pericenter distances and small eccentricities. These

greements testify the adequacy of the analytical approximation

or chaos border ( Section 4 ). However we note that this approxi-

ation becomes less accurate at ω � ω 0 as e.g., illustrated by the

03P/Hartley case. 

.2. Circumnuclear chaotic zone 

Let us define the central chaotic zone as the region in q where

ven the particles that start in circular orbits ( e = 0 ) move chaot-

cally. From Fig. 1 , we retrieve the known fact that, μ being sim-

lar for all the cometary nuclei, the extent of the central chaotic

one significantly increases as the rotation rate ω slows down

 Lages et al., 2017 ). As an illustration, here ( Fig. 1 ) the radius of

he central chaotic zone ranges from q � 3 d around 103P/Hartley

 ω � 1.04 ω 0 ) to q � 5 d around 8P/Tuttle ( ω � 0.33 ω 0 ). 

As the chaotic border is determined by the critical eccentricity

 cr ( q ), the solution of the equation e cr (q ) = 0 at q > 1 can be taken

s the radius of the chaotic zone around the cometary nuclei. Fig. 2

hows the extent of the central chaotic zone as a function of the

otation rate ω. 

In the 0.3 � ω / ω 0 � 1 region, which comprises the rotation

ates of 8P/Tuttle, 19P/Borrelly, 67P/Churyumov-Gerasimenko, and

03P/Hartley, we clearly see that at μ from ≈ 0.22 to ≈ 0.32

he extents of the chaotic zone are almost the same (see the

hite dashed and dash-dotted curves in Fig. 2 in the range

.3 � ω / ω 0 � 1) and are even very close to the extent of the chaotic

one in the μ = 1 / 2 symmetric case. For these 4 cometary nuclei a

eneric illustration of the central chaotic zone is given in the bot-

om right panel of Fig. 2 . 

In the 0.1 � ω / ω 0 � 0.3 region, a zone of regular orbits exists

urrounding the close vicinity of the cometary nucleus which is

onsequently insulated from an annular chaotic zone. This config-

ration is explained by the fact that the e cr ( q ) function has two

oots in the 0.1 � ω / ω 0 � 0.3 region, these two roots giving the in-

er and outer radii of the central chaotic zone as illustrated in the

ottom middle panel of Fig. 2 for a model cometary nucleus rotat-

ng with ω = 0 . 1 ω 0 and having the mass parameter μ = 1 / 2 . 

In the ω � 0.1 ω 0 region, according to the upper panel of Fig. 2 ,

he above defined central chaotic zone does not exist. This is in

ccordance with the stability diagram (see Fig. 3 , left panel) for

he particles orbiting a dumb-bell with the characteristics of the

P/Halley nucleus ( ω � 0.055 ω 0 , μ� 0.28). In Fig. 3 , left panel, a

article put initially in a circular orbit has regular dynamics if the

nitial radius does not correspond to integer or half-integer res-

nances (corresponding to the resonant teeth reaching the line

 cr = 0 in Fig. 3 , left panel). The central chaotic zone, defined as
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Fig. 1. Stability diagrams of the orbital motion around four cometary nuclei ordered by increasing ω: 8P/Tuttle (top left, ω � 0.33 ω 0 ), 19P/Borrelly (top right, ω � 0.48 ω 0 ), 

67P/Churyumov-Gerasimenko (bottom left, ω � 0.73 ω 0 ), 103P/Hartley (bottom right, ω � 1.04 ω 0 ). The chaotic domain is shown by the reddish area. Chaos is determined by 

computing the maximum Lyapunov exponent � for a trajectory with initial orbital elements ( q, e ). Number of iterations is 10 6 . The critical curve (12) is shown taking into 

account only the first harmonic term in �E (3) with amplitude W 1 (4) (dashed black line) and taking into account only the second harmonic in �E (3) with amplitude W 2 

(5) (solid black line). The vertical white dash-dotted line marks the pericenter q 0 at which W 2 = W 1 . For q < q 0 ( q > q 0 ), W 2 > W 1 ( W 2 < W 1 ). The ratio W 2 / W 1 ranges from 10.2 

at q = 4 d to 0.211 at q = 8 d for 8P/Tuttle, from 5.72 at q = 3 d to 0.0305 at q = 7 d for 19P/Borrelly, from 3.4 at q = 2 . 5 d to 0.0155 at q = 5 . 5 d for 67P/Churyumov-Gerasimenko, 

from 2.64 at q = 2 d to 0.00801 at q = 4 . 5 d for 103P/Hartley. 
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he domain in q for which any initial eccentricity implies chaos, is

bsent as illustrated for the 1P/Halley nucleus in the bottom left

anel of Fig. 2 . However for higher eccentricities the chaotic do-

ain is quite extended with e.g., a width of ∼ 10 d for e � 0.5 and

20 d for e � 0.8. 

Usually the Kepler map is used to describe the highly eccen-

ric orbital motion around a binary composed of a primary and

 secondary acting as a perturber, e.g., the chaotic dynamics of

P/Halley around the Sun and Jupiter ( Chirikov and Vecheslavov,

989; Rollin et al., 2015 ). Also the Kepler map was derived and

sed for ω a 3/2 > ω 0 d 
3/2 , where a = −1 / 2 E, to describe the molec-

lar Rydberg states with a rotating dipole core ( Casati et al., 1988;

envenuto et al., 1994 ). In these two cases of application, the or-

ital period of the tertiary is greater than the binary rotation pe-

iod, and the usually considered dynamics within the Kepler map

ramework lies above the 1:1 resonance line in Fig. 2 . According to

ig. 2 the motion of a body orbiting close to the 1P/Halley nucleus

ay take place below this resonance line. Consequently in order

e  
o check the relevance of application of the dumb-bell map (6) be-

ow the 1:1 resonance line, i.e., for ω a 3/2 < ω 0 d 
3/2 , we have nu-

erically integrated the equations of motion of a particle around

 dumb-bell with the 1P/Halley nucleus characteristics. We have

btained the corresponding stability diagram ( Fig. 3 , right panel)

hich exhibits a ragged chaotic border qualitatively similar to that

n the stability diagram ( Fig. 3 , left panel) obtained iterating the

umb-bell map (6) . Note that in these two stability diagrams, the

yapunov exponents are measured in different units. 

.3. The Lyapunov times, the chaotic zone radii, and the Hill radii 

Roughly speaking, the inverse of the Lyapunov exponent ob-

ained at initial conditions ( q, e ) by iterating the dumb-bell map

6) gives the number of iterations needed to observe the onset

f chaos. As shown in Section 4 , the dumb-bell map (6) can be

ewritten as the original Kepler map (8) for which the Lyapunov

xponent inside the around–the–separatrix chaotic component is
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Fig. 2. Extent of the central chaotic zone around a cometary nucleus as a function of the rotation rate ω. Upper panel: the red domain corresponds to the central chaotic 

zone extent for the dumb-bell symmetric case μ = 1 / 2 ; the blue domain is the domain of stable orbits. The borders of the central chaotic zone for μ� 0.22 (the mass 

parameter of 19P/Borrelly) and μ� 0.32 (the mass parameter of 8P/Tuttle) are shown by the white dashed line and the white dash-dotted line, respectively. The rotation 

rates ω of the five cometary nuclei described in Section 2 are represented by vertical white lines. Locations of the integer resonance 1:1 and the half-integer resonances 1:2 

and 2:1 are represented by red lines. Bottom panels: schematic presentations of resonances and the chaotic zones (at e = 0 ) around the nucleus of 1P/Halley (bottom left), 

a model cometary nucleus with rotation rate ω = 0 . 1 ω 0 and mass parameter μ = 0 . 5 (bottom middle), and the nucleus of 67P/Churyumov-Gerasimenko (bottom right). The 

centers of mass of the cometary nuclei are located at the centers of these panels. 
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known ( Shevchenko, 2007 ) to be equal to 

�(λ) = C K − 3 /λ, (12)

where C K � 2.2 is the Chirikov constant and λ is the adiabatic-

ity parameter of the Kepler map (8) . Here, in the case of rotating

small bodies the adiabaticity parameter reads λ = 2 1 / 2 πω| W 2 | −3 / 2 

( Lages et al., 2017 ). Even in the case of 1P/Halley, with the slow-

est rotation rate considered in this study, chaos is non-adiabatic

since the Kepler map parameter is still very high, λ ∼ ωW 

−3 / 2 
2 

∼
100 � 1 (from Lages et al. (2017) W 2 ∼ 10 −2 (dω 0 ) 

2 for ω � 0.05 ω 0 

and q > d ). Consequently the Lyapunov exponent in the chaotic do-

main is expected to be approximately �� C K � 2.2 for any set of

the physical parameters of this study as is shown by Fig. 4 , left
anel. We have verified, from Figs. 1 and 3 , left panel, that the

yapunov exponent is indeed approximately 2.2 for the chaotic or-

its around each of the five cometary nuclei (see Fig. 4 , right panel

s an illustration for the 1P/Halley case). 

The inverse of the Lyapunov exponent obtained by the direct

umerical integration of Newton’s equations gives, by the order

f magnitude, the time (in constant natural time units) needed at

iven initial conditions ( e, q ) for chaos to develop. The value of the

yapunov exponent for an orbit with initial ( e, q ) in Fig. 3 (right

anel) can be straightforwardly estimated using the corresponding

alue from Fig. 3 (left panel) divided by the corresponding mean

rbital period. 



J. Lages et al. / Icarus 307 (2018) 391–399 397 

Fig. 3. Stability diagrams of the orbital motion around 1P/Halley ( ω � 0.055, μ� 0.28) obtained (left panel) by iterating the dumb-bell map (6) and (right panel) by inte- 

grating the equations of motion of a particle around a contact-binary with 1P/Halley’s physical characteristics. The chaotic domain is shown by the reddish area. Chaos is 

determined by computing the maximum Lyapunov exponent � for a trajectory with initial orbital elements ( q, e ). The critical curve (12) is shown taking into account only 

the first harmonic term in �E (3) with amplitude W 1 (4) (dashed black line) and taking into account only the second harmonic term in �E (3) with amplitude W 2 (5) (solid 

black line). Left panel: the number of iterations of the dumb-bell map (6) is 10 6 . The Lyapunov exponent � has the physical dimension of the inverse of the number of 

iterations of the map. Right panel: the numerical integration of the equations of motion have been performed over the time duration 10 4 T 0 where T 0 = 2 π/ω 0 . The Lyapunov 

exponent � has the physical dimension of the inverse of time, and (�P) −1 expresses the Lyapunov time in the units of the rotation period P of the nucleus. 

Fig. 4. Left panel: Contour plot showing the difference, | � − C K | , between the analytical expression of the Lyapunov exponent �( μ, q, ω) (13) and the Chirikov constant 

C K � 2.2; for mass parameters μ = 0 . 1 (dashed lines), μ = 0 . 28 (mass parameter of 1P/Halley, solid lines), and μ = 0 . 5 (dot-dashed lines). Each color is associated to a value 

of | � − C K | . Right panel: We show data from the “1P/Halley” stability diagram (left panel of Fig. 3 ) but selecting only initial conditions ( e, q ) leading to a Lyapunov exponent 

2.1 < �< 2.3. 
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Table 2 summarizes the radii of the chaotic zone R ch assessed

irectly from the ( e, q ) stability diagrams for the cometary nuclei

 Figs. 1 and 3 ). Except the case of 1P/Halley, the chaotic zone radii

t e � 0 and at e � 0.5 are similar in each case. 

Let us compare these radii to the corresponding Hill radii. In

he planar circular restricted three-body problem, the Hill radius

s given by R Hill ≈ a �( M /3 M �) 1/3 where a � is the semi-major axis

f a comet’s orbit around the Sun. In the elliptic problem, a “peri-

enter scaling” for R Hill is given by R Hill ≈ q �( M /3 M �) 1/3 , where q �
s a comet’s perihelion distance ( Hamilton and Burns, 1992 ). The

alculated Hill radii R Hill are presented in Table 2 . From Table 2 ,

e see that that the typical size of 1P/Halley’s chaotic zone R ch is
he largest one in the sample, and it seems to engulf an essential

art of the Hill sphere, at least for the orbits of moderate and high

ccentricity (38% of the chaotic zone overlaps with the Hill sphere

t e � 0.5). This is an outcome of the slowness of rotation of the

ucleus. 

As mentioned above, ω � ω 0 are not generally probable, as a

ubble-pile object would disintegrate at such high rates of rota-

ion. For Comet 103P/Hartley, ω ≈ω 0 ; therefore, the nucleus may

ormally be on the brink of disintegration. The chaotic zone of this

bject is formally minimal in size in the sense that at ω < ω 0 the

one would be larger. 
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Following the general approach presented in (Shevchenko, 2007,

section 5) , the local Lyapunov time T L can be estimated, for a satel-

lite assumed to move within the chaotic domain around a nucleus.

It is approximately equal to the ratio of the satellite’s orbital pe-

riod and the map’s Lyapunov exponent. The map’s Lyapunov ex-

ponent averaged over the chaotic layer does not depend practi-

cally on the adiabaticity parameter, if the latter is high enough;

see Shevchenko (2007) . The local Lyapunov time is estimated tak-

ing the satellite’s orbital period T orb corresponding to the radius

of the central chaotic zone (a = R ch ) at e � 0.5 as given in Table 2 ,

as this gives the maximum possible T orb for the chaotic motion at

zero and moderate eccentricities, and, consequently, the maximum

possible local Lyapunov time. These estimations of the typical local

Lyapunov time for each cometary nucleus are given in Table 2 . One

can readily see that the Lyapunov times do not differ substantially,

ranging from ∼ 1 d to ∼ 10 d. The relative range is even less, if

the Lyapunov times are measured in the units of the rotation pe-

riod of the cometary nuclei; then they range from 1.3 to 3.1. For

the satellites with smaller orbits ( a < R ch ), the local Lyapunov time

is smaller, and, consequently, the motion is less predictable. 

Among the five objects listed in Table 1 , four out of the five

had been visited and observed closely in their vicinities by space

probes: 1P/Halley (by Vega-1, Vega-2, Giotto in 1986), 19P/Borrelly

(by Deep Space 1 in 2001), 67P/C–G (by Rosetta 1 in 2014–16),

and 103P/Hartley (by Deep Impact EPOXI mission in 2010). No

satellites of the nuclei had been observed (apart from apparently

replenishable clouds of “grains”) during these close rendezvous,

although meticulous surveys had been done in some cases; see

Bertini et al. (2015) and references therein. The observed absence

of cometary satellites is apparently in agreement with our theo-

retical findings on the large extents of the circumnuclear chaotic

zones. 

Among these four nuclei, two objects were observed in such a

detail as to allow for considering the close-to-nucleus mass trans-

fer and dynamics of various ejecta, which include, in particular,

quite large (decimetre sized) chunks of water ice ( A’Hearn et al.,

2011; Keller et al., 2017 ). Thus, there exists a source of material

which can be introduced in orbits around nuclei, as theoretically

described in Fulle (1997) and Scheeres and Marzari (20 0 0) . How-

ever, our theoretical findings imply that, even in the absence of any

forces other than gravitational, no long-lived orbits of any material

may sustain inside the circumnuclear chaotic zones. 

One may say that the rotating irregularly-shaped nuclei clean

up their vicinities. This clearing is analogous in some way to the

clearing of the “Wisdom gap” in the coorbital vicinities of a planet

that is massive enough. (On Wisdom’s coorbital chaotic layer, see,

e.g., Murray and Dermott, 1999 .) The dynamical difference is that

the Wisdom gap is formed by the overlap of accumulating first-

order mean motion resonances in the coorbital vicinity of a planet,

whereas the circumnuclear chaotic zone is formed by the over-

lap of accumulating integer and half-integer orbit-spin resonances

with the rotating nucleus, as discussed in Section 5.1 . 

Therefore, our theoretical expectation is that no long-lived

satellites, or any long-lived non-replenishable halos formed of

large particles, can be normally observed to exist around bilobed

cometary nuclei, within the defined boundaries of the circumnu-

clear chaotic zone. 

6. Conclusions 

We have used the generalized “dumb-bell” Kepler map, intro-

duced recently in Lages et al. (2017) , to describe the qualitative

chaotic dynamics around bilobed cometary nuclei. The analysis has

been based on the data for five comets whose nuclei are well-

documented to resemble dumb-bells. As lobes’ masses are com-

parable, m ∼ m , the chaotic zone’s configuration and extents de-
1 2 
end mostly on the cometary nuclei rotation rate ω. The sizes of

haotic zones around the nuclei and the Lyapunov times of the

otion inside these zones have been estimated. In the case of

omet 1P/Halley, the chaotic zone seems to engulf an essential

art of the Hill sphere, at least for orbits of moderate to high ec-

entricity. 

Therefore, simple analytical formulas, based on the Kepler map

ormalism, allow one to straightforwardly estimate the sizes of

haotic zones around the dumb-bell cometary nuclei and the Lya-

unov times of the motion inside these zones. 

In practice, the obtained numerical estimates of the character-

stics of the chaotic zones around the five considered objects allow

ne to judge where (in the space of orbital parameters) any small

atural satellites cannot be expected to orbit any of these objects,

r where any artificial satellite cannot be put in a stable orbit. On

he other hand, the knowledge of the Lyapunov times allows one

o judge on which timescales the coordinates of a satellite orbiting

n the chaotic zone are predictable. 
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