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We determine the two-dimensional symplectic map describing 1P/Halley chaotic dynamics. We compute 
the Solar system kick function, i.e. the energy transfer to 1P/Halley along one passage through the Solar 
system. Each planet contribution to the Solar system kick function appears to be the sum of a Keplerian 
potential and of a rotating gravitational dipole potential due to the Sun movement around Solar system 
barycenter. The Halley map gives a reliable description of comet dynamics on time scales of 104 yr while 
on a larger scales the parameters of the map are slowly changing due to slow oscillations of orbital 
momentum.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The short-term regularity of 1P/Halley appearances in the So-
lar system (SS) contrasts with its long-term irregular and unpre-
dictable orbital behavior governed by dynamical chaos [1]. Such 
chaotic trajectories can be described by a Kepler map [1,2] which 
is a two-dimensional area preserving map involving energy and 
time. The Kepler map was originally analytically derived in the 
framework of the two-dimensional restricted three body problem 
[2] and numerically constructed for the three-dimensional realis-
tic case of 1P/Halley [1]. Then the Kepler map has been used to 
study nearly parabolic comets with perihelion beyond Jupiter or-
bital radius [2–5], 1P/Halley chaotic dynamics [1,6], mean motion 
resonances with primaries [7,8], chaotic diffusion of comet trajec-
tories [7,9–12] and chaotic capture of dark matter by the SS and 
galaxies [13–15]. Alongside its application in celestial dynamics 
and astrophysics, the Kepler map has been also used to describe 
atomic physics phenomena such as microwave ionization of excited 
hydrogen atoms [16–18], and chaotic autoionization of molecular 
Rydberg states [19].

In this work we semi-analytically determine the symplectic 
map describing 1P/Halley dynamics, taking into account the Sun 
and the eight major planets of the SS. We use Melnikov integral 
(see, e.g. [4,20–24]) to compute exactly the kick functions associ-
ated to each major planet and in particular we retrieve the kick 
functions of Jupiter and Saturn which were already numerically 
extracted by Fourier analysis [1] from previously observed and 
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computed 1P/Halley perihelion passages [25]. We show that each 
planet’s contribution to the SS kick function can be split into a 
Keplerian potential term and a rotating dipole potential term due 
to the Sun movement around the SS barycenter. We illustrate the 
chaotic dynamics of 1P/Halley with the help of the symplectic 
Halley map and give an estimate of the 1P/Halley sojourn time. 
Then we discuss its long-term robustness comparing the semi-
analytically computed SS kick function to the one we extract from 
an exact numerical integration of Newton’s equation for Halley’s 
comet orbiting the SS constituted by the eight planets and the 
Sun (see snapshots in Fig. 1) from −1000 to +1000 Jovian years 
around J2000.0, i.e. from about −10 000 BC to about 14 000 AD. 
Exact integration over a greater time interval does not provide ex-
act ephemerides since Halley’s comet dynamics is chaotic, see e.g. 
[6] where integration of the dynamics of SS constituted by the Sun, 
Jupiter and Saturn has been computed for 106 years.

2. Symplectic Halley map

Orbital elements of the current osculating orbit of 1P/Halley 
are [26]

e � 0.9671, q � 0.586 au,

i � 162.3, � � 58.42,

ω � 111.3, T0 � 2446467.4 JD

Along this trajectory (Fig. 1) the comet’s energy per unit of mass 
is E0 = −1/2a = (e − 1)/2q where a is the semi-major axis of the 
ellipse. In the following we set the gravitational constant G = 1, 
the total mass of the Solar system (SS) equal to 1, and the semi-
major axis of Jupiter’s trajectory equal to 1. In such units we have 
q � 0.1127, a � 3.425 and E0 � −0.146. Halley’s comet pericenter 
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Fig. 1. Two examples of three-dimensional view of Halley’s comet trajectory. The left 
panel presents an orthographic projection and the right panel presents an arbitrary 
point of view. The red trajectory shows three successive passages of Halley’s comet 
through SS, the other near circular elliptic trajectories are for the eight Solar system 
planets, the yellow bright spot gives the Sun position. At this scale details of the 
Sun trajectory is not visible. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)

can be written as q = a (1 − e) � �2/2 where � is the intensity per 
unit of mass of the comet angular momentum vector. Assuming 
that the latter changes sufficiently slowly in time we can consider 
the pericenter q as constant for many comet’s passages through 
the SS. We have checked by direct integration of Newton’s equa-
tions that this is actually the case (�q � 0.07) at least for a period 
of −1000 to +1000 Jovian years around J2000.0. Consequently, 
Halley’s comet orbit can be reasonably characterized by its semi-
major axis a or equivalently by Halley’s comet energy E . During 
each passage through the SS many body interactions with the Sun 
and the planets modify the comet’s energy. The successive changes 
in energy characterize Halley’s comet dynamics.

Let us rescale the energy w = −2E such as now positive en-
ergies (w > 0) correspond to elliptic orbits and negative energies 
(w < 0) to hyperbolic orbits. Let us characterize the nth passage at 
the pericenter by the phase xn = tn/T J mod 1 where tn is the date 
of the passage and T J is Jupiter’s orbital period considered as con-
stant. Hence, x represents an unique position of Jupiter on its own 
trajectory. The energy wn+1 of the osculating orbit after the nth 
pericenter passage is given by

wn+1 = wn + F (xn)

xn+1 = xn + w−3/2
n+1

(1)

where F (xn) is the kick function, i.e. the energy gained by the 
comet during the nth passage and depending on Jupiter phase xn

when the comet is at pericenter. The second row in (1) is the third 
Kepler’s law giving the Jupiter’s phase at the (n +1)th passage from 
the one at the nth passage and the energy of the (n + 1)th oscu-
lating orbit.

The set of Eqs. (1) is a symplectic map which captures in a 
simple manner the main features of Halley’s comet dynamics. This 
map has already been used by Chirikov and Vecheslavov [1] to 
study Halley’s comet dynamics from previously observed or com-
puted perihelion passages from −1403 BC to 1986 AD [25]. In [1]
Jupiter’s and Saturn’s contributions to the kick function F (x) had 
been extracted using Fourier analysis. In the next section we pro-
pose to semi-analytically compute the exact contributions of each 
of the eight SS planets and the Sun.

3. Solar system kick function

Let us assume a SS constituted by eight planets with masses 
{μi}i=1,...,8 and the Sun with mass 1 − μ = 1 − ∑8

i=1 μi . The total 
mass of the SS is set to 1 and μ � 1. In the barycentric reference 
frame we assume that the eight planets have nearly circular el-
liptical trajectories with semi-major axis ai . We rank the planets 
such as a1 < a2 < . . . < a8 so a5 and μ5 are the orbit semi-major 
axis and the mass of Jupiter. The corresponding mean planet ve-

locities {vi}i=1,...,8 are such as v2
i =

(
1 − ∑

j≥i μ j

)
/ai � 1/ai . Here 

we have set the gravitational constant G = 1 and in the following 
we will take the mean velocity of Jupiter v5 = 1. The Sun tra-
jectory in the barycentric reference frame is such as (1 − μ) r� =
− 

∑8
i=1 μiri .

In the barycentric reference frame, the potential experienced by 
the comet is consequently

�(r) = − 1 − μ

‖r − r�‖ −
8∑

i=1

μi

‖r − ri‖

= �0(r)

[
1 +

8∑
i=1

μi

(
−1 − r · ri

r2
+ r

‖r − ri‖
)]

+ o
(
μ2

)
(2)

where �0(r) = −1/r is the gravitational potential assuming all the 
mass is located at the barycenter.

Let us define a given osculating orbit C0 with energy E0 and 
corresponding to the �0(r) potential. The change of energy for the 
comet following the osculating orbit C0 under the influence of the 
SS potential �(r) (2) is given by the integral

�E (x1, . . . , x8) =
∮
C0

∇ (�0(r) − �(r)) · dr (3)

which gives at the first order in μ

�E (x1, . . . , x8)

�
8∑

i=1

μi

∮
C0

∇
(

r · ri

r3
− 1

‖r − ri‖
)

· dr

�
8∑

i=1

�Ei (xi) (4)

This change in energy depends on the phases (xi = t/Ti mod 1) of 
the planets when the comet passes through pericenter. From (4)
we see that each planet contribution �Ei (xi) are decoupled from 
the others and can be computed separately.

The integral (3) is similar to the Melnikov integral (see e.g. 
[4,20–24]) which is usually used in the vicinity of the separatrix 
to obtain the energy change of the pendulum perturbed by a peri-
odic parametric term. In the case of the restricted 3-body problem 
the Melnikov integral can be used to obtain the energy change of 
the light body in the vicinity of 2-body parabolic orbit (w � 0) [4]. 
We checked that integration (3) along an elliptical osculating orbit 
or along the parabolic orbit corresponding to the same pericen-
ter give no noticeable difference as long as the comet semi-major 
axis is greater than planet semi-major axis. To be more realistic 
we adopt integration over an elliptical osculating orbit C0 since in 
the case of 1P/Halley slight differences start to appear for Neptune 
contribution to the kick function.

After the comet’s passage at the pericenter, when the planet 
phases are x1, . . . , x8, the new osculating orbit corresponds to the 
energy E0 + �E (x1, . . . , x8). Knowing the relative positions of the 
planets, the knowledge of e.g. x = x5 is sufficient to determine all 
the xi ’s. Hence, for Halley map (1) the kick function of the SS is 
F (x) = −2�E (x) = ∑8

i=1 Fi(xi) where Fi(xi) is the kick function of 
the ith planet. In the following we present results obtained from 
the computation of the Melnikov integral (3) using coplanar circu-
lar trajectories for planets. We have checked the results are quite 
the same in the case of the non-coplanar nearly circular elliptic 
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Fig. 2. Contributions of the eight planets to SS kick function F (x). On each panel Fi(xi) is obtained from Melnikov integral calculation (thick line), the red dashed line (the 
blue dotted-dashed line) shows the Keplerian contribution (dipole contribution) to the Melnikov integral. On Jupiter and Saturn panels, the kick functions extracted by Fourier 
analysis from observations and exact numerical calculations are shown ( , see Fig. 2 in [1]). (For interpretation of the references to color in this figure, the reader is referred 
to the web version of this article.)
trajectories for the planets taken at J2000.0 (see dashed lines in 
Fig. 3 right panel).

Fig. 2 shows contributions for each of the eight planets to the 
SS kick function. The two uppermost panels in Fig. 2 right col-
umn show contributions of Jupiter, F5(x), and Saturn, F6(x6), to 
the SS kick function. We set x = x5 = 0 when Halley’s comet was 
at perihelion in 1986. We clearly see that the exact calculus of 
the Melnikov integral (3) are in agreement with the contributions 
of Jupiter and Saturn extracted by Fourier analysis [1] of previ-
ously observed and computed perihelion passages [25]. As seen 
in Fig. 2 the kick function is the sum of two terms (4): the Ke-
pler potential term −‖r − ri‖−1 (dashed red line in Fig. 2) and the 
dipole potential term r · ri/r3 (dot dashed blue line in Fig. 2). These 
two terms are of the same order of magnitude, the dipole term 
due to the Sun displacement around the SS barycenter is there-
fore not negligible for Jupiter (Saturn) kick function. The rotation 
of the Sun around SS barycenter creates a rotating circular dipole 
of amplitude μi � Mi/M S similar to the one analyzed for Rydberg 
molecular states [19] that gives additional kick function of sinus 
form.

In Fig. 2 we clearly see that the saw-tooth shape used in [1] to 
model the kick function is only a peculiar characteristic of Jupiter 
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Fig. 3. Left panel: Peak amplitude of the kick function shape f i(xi) (thick black line) as a function of pericenter distance q/ai [27]. The red dashed line (the blue dotted-dashed 
line) shows the maximum amplitude of the Keplerian contribution (dipole contribution). Vertical dashed lines show relative positions of planets. On that scale Saturn, Uranus 
and Neptune relative positions are not shown. Right panel: Variation domain of the SS kick function F (x) (light blue shaded area) as a function of Jupiter’s phase x = x5. The 
variation width is �F � 0.00227. Data from observations and exact numerical calculations (Fig. 1 from [1]) are shown ( ). The dashed lines bound the variation domain of 
the SS kick function when current elliptical trajectories for planets are considered. (For interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)
and Saturn contributions. Also, the sinus shape analytically found 
in [2] for large q can only be considered as a crude model for the 
planet contributions of the SS kick function. For Venus, Earth and 
Mars the kick function is dominated by the Kepler potential term, 
the dipole potential term being weaker by an order of magnitude. 
Uranus contribution to the SS kick function share the same char-
acteristics as Jupiter’s (Saturn’s) contributions but two (one) orders 
of magnitude weaker. For Neptune as its semi-major axis is about 
60 times greater than Halley’s comet perihelion, the direct grav-
itational interaction of Neptune is negligible and the dipole term 
dominates the kick function. Neptune indirectly interacts on Hal-
ley’s comet by influencing the Sun’s trajectory. As Mercury semi-
major axis is less than perihelion’s comet, Mercury, like the Sun, 
acts as a second rotating dipole, consequently the two potential 
terms in (4) contribute equally.

For a given osculating orbit, the shape f i(xi) of the kick func-
tion defined such as Fi(xi) = μi f i(xi)v2

i has to be only dependent 
on q/ai . Let us use the case of 1P/Halley to study general fea-
tures of f i(xi). Fig. 3 left panel shows the peak amplitude f imax of 
f i(xi). In the region 0.25 � q/ai � 0.75 the peak amplitude f imax
is clearly dominated by the Keplerian potential term and even di-
verges for close encounters at q � 0.3ai and q � 0.7ai . For q � 1.5ai
the Keplerian potential and the circular dipole potential terms give 
comparable sine waves almost in phase opposition (Fig. 2 top left 
panel and [27]). We clearly observe for q � 1.5ai an exponential 
decrease of the peak amplitude, f imax ∼ exp(−2.7q/ai), consistent 
with the two-dimensional case studied in [2,3].

The orbital frequency of the planets being only near integer 
ratio, for a sufficiently long time randomization occurs and any 
8-tuple {xi}i=1,...,8 can represent the planets position in the SS. For 
x = x5 the SS kick function F (x) is a multivalued function for all 
0 ≤ x ≤ 1. We can nevertheless define a lower and upper bound to 
the SS kick function which are presented as the boundaries of the 
blue shaded region in Fig. 3 right panel. We clearly see that raw 
data points extracted in [1] from previously observed and com-
puted Halley’s comet passages at perihelion [25] lie in the variation 
domain of F (x) deduced from the Melnikov integral (3).

4. Chaotic dynamics of Halley’s comet

The main contribution to the SS kick function F (x) is F5(x) the 
one from Jupiter as the other planet contributions are from 1 (Sat-
urn) to 4 (Mercury) orders of magnitude weaker. The dynamics of 
Halley’s comet is essentially governed by Jupiter’s rotation around 
the SS barycenter. The red shaded area in Fig. 4 shows the sec-
Fig. 4. Left panel: Poincaré section of Halley’s map generated only by Jupiter’s kick 
contribution F5(x) (red area). The cross symbol (×) at (x = 0, w � 0.2921) gives 
Halley’s comet state at its last 1986 perihelion passage. An example of orbit gen-
erated by the Halley map (1) with the contributions of all the planets is shown by 
black dots. Right top panel: closeup on the invariant KAM curve stopping chaotic 
diffusion. Right bottom panel: closeup centered on Halley’s current location. Stabil-
ity islands are tagged with the corresponding resonance p:n between Halley’s comet 
and Jupiter orbital movements. (For interpretation of the references to color in this 
figure, the reader is referred to the web version of this article.)

tion of Poincaré obtained from Halley map (1) taking only into 
account Jupiter’s contribution F (x) = F5(x). We clearly see that the 
accessible part of the phase space is densely filled which is a fea-
ture of dynamical chaos. In the region 0 < w � wcr � 0.125 the 
comet can rapidly diffuses through a chaotic sea whereas in the 
sticky region wcr � 0.125 � w � 0.5 the diffusion is slowed down 
by islands of stability. The estimated threshold wcr � 0.125 is the 
same as the one estimated analytically in the saw-tooth shape 
approximation in [1]. Stability islands are located far from the 
separatrix (w = 0) on energies corresponding to resonances with 
Jupiter. The current position of Halley’s comet (x = 0, w � 0.2921)
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Fig. 5. Numerical simulation of Halley’s comet dynamics over a time period of −1000 to 1000 Jovian years around J2000.0 (t = 0) with SS modeled as (a, b) the Sun and 
8 planets with coplanar circular orbits, (c, d) the Sun and Jupiter with non-coplanar elliptical orbits, (e, f) the Sun and the eight planets with non-coplanar elliptical orbits. 
Left panels: kick function F (x) values (+) extracted from 290 successive simulated pericenter passages of Halley’s comet. The color symbol goes linearly from black for 
data extracted at time t = 0 to light green for data extracted at time |t| � 103 P J . We show only points in the range −0.008 < F (x) < 0.008. Data from observations and 
exact numerical calculations (Fig. 1 from [1]) are shown ( ). Right panels: time evolution of pericenter q (black curves, left axis) and of the osculating orbit energy w (red 
curves, right axis). Numerical simulations have been done time forward and time backwards from t = 0. The gray curves show the time evolution of the �2/2 quantity. (For 
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
is between two stability islands associated with 1:6 and 3:19 res-
onances with Jupiter orbital movement (Fig. 4 right bottom panel). 
As the comet’s dynamics is chaotic the unavoidable imprecision on 
the current comet energy w allows us only to follow its trajectory 
in a statistical sense. According to the Poincaré section (Fig. 4) as-
sociated with Halley map (1) for F = F5 the motion of the comet 
is constrained by a KAM invariant curve around w � 0.5 (Fig. 4
top right panel) constituting an upper bound to the chaotic dif-
fusion. Consequently as the comet dynamics is bounded upwards 
the comet will be ejected outside SS as soon as w reaches a neg-
ative value. Taking 105 random initial conditions in an elliptically 
shaped area with semi-major axis �x = 5 ·10−3 and �w = 5 ·10−5

centered at the current Halley’s comet position (x = 0, w = 0.2921)

we find a mean sojourn time of τ � 4 · 108 yr and a mean number 
of kicks of N � 4 · 104. A wide dispersion has been observed since 
3 · 105 yr � τ � 3 · 1013 yr and 749 ≤ N � 9 · 107.

Now let us turn on also the other planets contributions. As 
shown in [6], where only Jupiter and Saturn are considered, dif-
fusion inside previously depicted stability islands is now allowed 
as the other planets act as a perturbation on the Jupiter’s kick 
contribution. In the example presented in Fig. 4 left panel the 
comet is locked for a huge number of successive kicks in a 1:7 
and 2:11 resonances with Jupiter around w � 0.27 and w � 0.32. 
We have also checked that for some other initial conditions even 
close to the previous example one the KAM invariant curve around 
w � 0.5 associated with the Jupiter contribution (see Fig. 4 top 
right panel) no more stops the diffusion towards w ∼ 1 region 
where the kicked picture and therefore the map description are 
no more valid. Taking statistically the same conditions as in the 
only Jupiter contribution case we discard about 11% of the ini-
tial conditions giving orbits exploring the region w > 0.5 and for 
the remaining initial conditions we obtain a mean sojourn time of 
τ ′ � 4 · 107 yr and a mean number of kicks of N ′ � 3 · 104. A wide 
dispersion has been observed since 1 · 105 yr � τ ′ � 6 · 1011 yr and 
559 ≤ N ′ � 5 · 105. The two maps give comparable mean number 
of kicks N ′ ∼ N but the mean sojourn time is ten time less in the 
case of the all-planets Halley map (τ ∼ 10 τ ′). This is due to the 
fact that the comet can be locked in for a great number of kicks in 
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Jupiter resonances at large 0.5 � w � 0.125 which correspond to 
small orbital periods. In accordance with the results presented in 
[1] we retrieve for the mean sojourn time a 10 factor between the 
only Jupiter contribution case and the all planets contribution case 
(Jupiter and Saturn only in [1]). But we note that the mean sojourn 
times computed here are 10 times greater than those computed in 
[1] where only 40 initial conditions have been used.

5. Robustness of the symplectic map description

In order to test the robustness of the kicked picture for Halley’s 
comet dynamics we have directly integrated Newton’s equations 
for a period of −1000 to +1000 Jovian years around J2000.0 in 
the case of a SS constituted by the Sun and the eight planets with 
coplanar circular orbits (Fig. 5 first row), the Sun and Jupiter with 
elliptical orbits (Fig. 5 second row), and the Sun and the eight 
planets with elliptical orbits (Fig. 5 third row). From Fig. 5 right 
panels we see that our modern era is embedded in a time in-
terval −400P J < t < 200P J (−2800BC < t < 4400AD) with quite 
constant Halley’s comet energy w � 0.29 and perihelion q � 0.11. 
This relatively dynamically quiet time interval allows the good 
agreement between our semi-analytic determination of SS kick 
function using the Melnikov integral (3) and the SS kick function 
extracted [1] from previously observed and computed perihelion 
passages [25].

In Fig. 5 left panels we reconstruct as in [1] the kick function 
using the dates tn of the Halley’s comet passages at perihelion 
F (xn) = (tn+1 − tn)−2/3 − (tn − tn−1)

−2/3. We clearly see that these 
kick function values lie in the variation domain of the SS kick func-
tion when coplanar circular orbits are considered for the Sun and 
the planets (Fig. 5a). In the case of non-coplanar elliptical orbits 
(Fig. 5c and e) the agreement is good but weaker than the copla-
nar circular case. This is due to Halley’s comet precession which 
introduces a phase shift in x (see gradient from black to green 
color in Fig. 5a, c and e). As the coplanar circular orbits case pos-
sesses an obvious rotational symmetry, it is much less affected by 
the comet precession (Fig. 5a).

In Fig. 5 left panels we show only kick function values in the 
interval range −0.008 < w < 0.008 corresponding to the varia-
tion range of the SS kick function (Fig. 3 right panel) obtained 
using Melnikov integral (3). Around the sharp variation x � 0.6
we obtained few kick function values outside this energy inter-
val (up to |F | � 0.05) which corresponds to big jumps in energy 
(e.g. at t � 400P J in Fig. 5f) shown in Fig. 5 right panels. We 
have checked that those big jumps occur when Halley’s comet at 
its perihelion approaches closer to Jupiter. As a consequence the 
two-dimensional Halley map (1) can be used with confidence only 
for short intervals of time �t � 104 yr such as e.g. the one at 
−400P J � t � 200P J in Fig. 5 right panels.

6. Conclusion

We have exactly computed the energy transfer from the SS to 
1P/Halley and we have derived the corresponding symplectic map 
which characterizes 1P/Halley chaotic dynamics. With the use of 
Melnikov integral, energy transfer contributions from each SS plan-
ets have been isolated. In particular, we have retrieved the kick 
functions of Jupiter and Saturn previously extracted by Fourier 
analysis [1]. The Sun movement around SS barycenter induces 
a rotating gravitational dipole potential which is non-negligible 
in the energy transfer from the SS to 1P/Halley. The symplec-
tic Halley map allows us to follow the chaotic trajectory of the 
comet during relatively quiet dynamical periods �t � 104 yr ex-
empt of closer approach with major planets. One can expect that 
a higher-dimensional symplectic map involving the angular mo-
mentum and other orbital elements would allow to follow Halley’s 
comet dynamics for longer periods taking into account large vari-
ation in energy (close planet approach) and precession. In spite of 
the slow time variation of the Halley map parameters such a sym-
plectic map description allows to get a physical understanding of 
the global properties of comet dynamics giving a local structure 
of phase pace and a diffusive time scale of chaotic escape of the 
comet from the Solar system.
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