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a b s t r a c t

We use the quantum kinematic approach to revisit geometric phases associated with polarizing
processes of a monochromatic light wave. We give the expressions of geometric phases for any, unitary
or non-unitary, cyclic or non-cyclic transformations of the light wave state. Contrarily to the usually
considered case of absorbing polarizers, we found that a light wave passing through a polarizer may
acquire in general a nonzero geometric phase. This geometric phase exists despite the fact that initial and
final polarization states are in phase according to the Pancharatnam criterion and cannot be measured
using interferometric superposition. Consequently, there is a difference between the Pancharatnam
phase and the complete geometric phase acquired by a light wave passing through a polarizer. We
illustrate our work with the particular example of total reflection based polarizers.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The concept of geometric phase naturally arises for polarized
light in optics. In 1956, Pancharatnam [1] studied how the phase of
polarized light changes after a cyclic evolution of its polarization.
He found that light wave acquires, in addition to the usual phase
associated with the optical path, a geometric phase depending
only on the relative loci of the polarization states on the Poincaré
sphere. Later, Berry [2] developed the concept of geometric phase
for dynamical quantum systems with cyclic adiabatic unitary
evolutions and showed its similarity with the Pancharatnam phase
in optics [3]. The existence of geometric phase has been also
demonstrated for nonunitary and noncyclic evolutions [4,5], and
recently for open quantum systems [6–10]. Many experiments
[11–18] have provided evidence for geometric phase in the context
of polarized light. Along a given path, closed or not, on the
Poincaré sphere, bringing the polarization from a state j1〉 to a
state j2〉, the light wave state acquires a geometric phase which is
equal to minus half of the solid angle enclosed by the effectively
followed path and the geodesic connecting states j1〉 and j2〉 [5]. If
the path coincides with the geodesic then no geometric phase is
gained. Since any cyclic path on the Poincaré sphere is at least
a concatenation of two geodesics and is therefore by itself not
a geodesic, a light wave along such a path acquires de facto a

nonzero geometric phase. This property has been widely used in
the above cited experiments where cyclic evolution of the polar-
ization state was usually achieved using retarders (unitary trans-
formations) [11–14,16], polarizers (non-unitary transformations)
[16–18], and both [11,15].

When a retarder (e.g. a wave plate) is used on a light wave, its
polarization follows then a piece of circle on the Poincaré sphere
and a geometric phase is consequently acquired (except if the
piece of circle is a piece of great circle of length less than π). As far
as we know, in the literature, the action of a polarizer is considered
to not introduce geometric phase since it is considered to project
the light wave polarization from a state onto another following a
geodesic [11,15–18]. This is effectively true for the case of absorb-
ing polarizers. We find that this is no longer true if one considers
total reflection based polarizers since the path followed by the
polarization is no more a geodesic but a loxodrome. More
generally, we show that even if a light wave state j1〉 is projected
onto another state j2〉〈2j1〉, for example by means of a polarizer, a
nonzero geometric phase can be acquired by the light wave. At the
end of such a transformation the acquired geometric phase is
exactly compensated by the acquired dynamic phase in such a way
that the total phase has no memory of these two phases. As a
consequence interferometry measurements are not able to capture
possible geometric phase acquired during a state projection.

However the Pancharatnam phase [1], which is a kind of
geometric phase, can be measured using interferometry experi-
ments. As reminded by de Vito and Levrero [19], we can consider
that a light wave acquires a Pancharatnam phase if in the Hilbert
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space the light wave state is projected successively onto states the
polarizations of which marked out a cyclic path on the Poincaré
sphere. The use of successive polarizers ensures that the light
wave state is successively projected and then that a Pancharatnam
phase is indeed measured [16–18]. We show that the Panchar-
atnam phase is not the complete geometric phase indeed acquired
by a light wave since the Pancharatnam phase does not take into
account the geometric phase possibly acquired during the projec-
tion processes.

In this paper, we also provide the most general expression of
the geometric phase acquired by a light wave experiencing a
polarizing transformation. We address particularly the case of the
possible geometric phase acquired by a light wave passing through
a total reflection based polarizer. The paper is organized as
follows: In Section 2, we define the mathematical formalism
describing the light wave state and its polarization. Using the
quantum kinematic approach [20], in Section 3, we describe the
geometric phase and the modulus of the degree of coherence as
the gauge invariant quantities associated with a non-unitary
evolution of the light wave state. In Section 4, we classify any
light wave state transformation induced by a polarizing element in
terms of SLð2;CÞ transformations. In Section 5, first, we revisit the
case of unitary transformations corresponding to retarders or to
media with optical activity and the case of nonunitary transforma-
tion corresponding to absorbing polarizing elements. Then, we
show that, in the case of nonunitary transformation combining
both differential attenuation and differential dephasing a light
wave does acquire a geometric phase and we derive its expression.
In Section 6, we derive for the sake of completeness the total
phase and the dynamic phase acquired by a light wave passing
through a polarizing device using the model [21]. In the frame of
this model we express the Pancharatnam criterion [1]. In Section
7, we apply the results derived in Section 5 for general polarizing
elements to the specific case of polarizers. We found that a
polarizer in general does induce a nontrivial geometric phase
and we derive its expression for the case of a total reflection based
polarizer. This geometric phase exists despite the fact that the
initial and final polarization states are in phase according to the
Pancharatnam criterion and is a direct reminiscence of the
evanescent component of the electromagnetic field inside the
polarizer. In the limit where differential absorption is predominant
over birefringence (e.g. in polaroid films), we retrieve as expected a
zero geometric phase. In Section 8, we discuss the difference
between the Pancharatnam phase and the geometric phase
acquired by a light wave.

2. Polarization, space of rays, and Poincaré sphere

A polarized light wave may be described by a vector jψ 〉 lying in
a two dimensional complex Hilbert space H. Such a vector jψ 〉 may
be written as

jψ 〉¼
ffiffi
I

p
eiΦ cos

θ
2
j0〉þeiϕ sin

θ
2
j1〉

� �
ð1Þ

where I¼ 〈ψ jψ 〉ARþ is the light wave intensity, ΦA ½0;2π½ a
global phase, ϕA ½0;2π½ a relative phase, θA ½0;π� the polar angle,
and fj0〉; j1〉g an orthonormal basis of H. The vectors j0〉 and j1〉
represent e.g. the normalized state with circular right-handed
polarization and that with circular left-handed polarization
respectively.

The polarization of the light wave jψ 〉 depends only on the
ellipticity angle χ and on the azimuthal angle Ψ [22] which are
directly related to the polar angle θ¼ π=2�2χ and to the relative
phase ϕ¼ 2Ψ . So, two light waves jψ 〉 and jψ 0〉¼ ajψ 〉, where a is a
complex factor, share the same polarization. We say that jψ 〉 and

jψ 0〉 are equivalent, i.e. jψ 0〉� jψ 〉, in the sense that it is possible to
convert one of these wave to the other by using a complex scale
transformation. Let us then define the space R of unit rays by

R¼H=� ¼ fρ¼ I�1jψ 〉〈ψ jjjψ 〉AHg. An element ρ belonging to R
may be written as

ρ¼ 1
2
ðs0þ S

!� s!Þ� ρ
S
! ð2Þ

where s! is a three dimensional vector whose components are the
Pauli matrices fsigi ¼ 1;2;3 and where s0 is the 2�2 identity matrix.
Any projector ρ is associated with a unique normalized Stokes

vector S
!¼ sin θ cos ϕ e!1þ sin θ sin ϕ e!2þ cos θ e!3

. The set
of the endpoints of all the normalized Stokes vectors defines the

Poincaré sphere S2. Each S
!

vector is in bijective relation with a
point in the space of rays R, i.e. with a projector belonging to R.
So, the unit Poincaré sphere S2 is isomorphic to the space of unit
rays S2 �R. The set of vectors fjψ 0〉¼ ajψ 〉; aACg corresponds to a
unique projector ρ

S
! (2) and consequently corresponds to a

unique normalized Stokes vector S
!

. A wave jψ 〉 as defined in
Eq. (1) may be then represented, modulo a global complex factor, by
a point in the space of unit rays R or equivalently by a point on the
Poincaré sphere S2. The circular right(left)-handed polarization
state j0〉 (j1〉), corresponds to θ¼ 0 (θ¼ π), i.e. to the north (south)
pole of the Poincaré sphere. Linear polarization states correspond
to vectors of H with θ¼ π=2, or equivalently correspond to points
of the Poincaré sphere equator.

3. Local gauge invariance

Passing through an optical device, the state jψ 〉 of a light wave
evolves in the Hilbert space H along a curve C¼ fjψ ðsÞ〉AH
jsA ½s1; s2� �Rg �H. Let us now define another curve C0 the
elements of which are related to the elements of C by a local
gauge transformation, jψ 0ðsÞ〉¼ aðsÞjψ ðsÞ〉. Here, a(s) is a smooth
nonzero complex function of sA ½s1; s2�. Comparing 〈ψ 0ðsÞjd=
dsjψ 0ðsÞ〉 with 〈ψ ðsÞjd=dsjψ ðsÞ〉, it is possible to construct the
following complex gauge invariant expression [20]:

〈ψ ðs1Þjψ ðs2Þ〉
〈ψ ðs1Þjψ ðs1Þ〉

exp �
Z s2

s1
ds
〈ψ ðsÞj _ψ ðsÞ〉
〈ψ ðsÞjψ ðsÞ〉

� �
: ð3Þ

Here the dot denotes the differentiation with respect to the
parameter s. Let us define the projection map π : H-R such as,
for all aAC, πðajψ 〉Þ ¼ πðjψ 〉Þ ¼ ρAR. Since the curves C0 and C are
related by a gauge transformation, C� C0, they share the same
projected curve image C¼ πðCÞ ¼ πðC0Þ in the space of unit rays R.
As expression (3) is gauge invariant, it is a functional of the curve C
and, its modulus ιg½C� and complex argument ϕg½C� are also gauge
invariant functionals of the curve C. The modulus of Eq. (3) can be
written in the following form:

ιg½C� ¼
j 〈ψ ðs1Þjψ ðs2Þ〉jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Iðs1ÞIðs2Þ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðρðs1Þρðs2ÞÞ

p
ð4Þ

which is also the modulus of the complex degree of coherence
γ12ð0Þ ¼ ιg½C�ei arg 〈ψ ðs1Þjψ ðs2Þ〉. Hence the modulus of the interference
term between the two normalized wave states ð1=

ffiffiffiffiffiffiffiffiffi
Iðs1Þ

p
Þjψ ðs1Þ〉

and ð1=
ffiffiffiffiffiffiffiffiffi
Iðs2Þ

p
Þjψ ðs2Þ〉 is a geometric invariant. The complex argu-

ment of Eq. (3) is the geometric phase [20] associated with the
curve C�R

ϕg½C� ¼ arg〈ψ ðs1Þjψ ðs2Þ〉� Im
Z s2

s1
ds
〈ψ ðsÞj _ψ ðsÞ〉
〈ψ ðsÞjψ ðsÞ〉

�ϕt½C��ϕd½C�: ð5Þ
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Here

ϕt½C� � arg〈ψ ðs1Þjψ ðs2Þ〉 ð6Þ
is the total phase of the curve C, i.e. the relative phase of the
ending point of C with respect to its starting point, and

ϕd½C� � Im
Z s2

s1
ds
〈ψ ðsÞj _ψ ðsÞ〉
〈ψ ðsÞjψ ðsÞ〉 ð7Þ

is the dynamic phase. Although ϕt½C� and ϕd½C� are functionals
depending on the Hilbert space curve C, their difference ϕg½C� is a
functional depending only on the corresponding projected curve C
in the unit rays space, and thus is a geometric invariant. Hence,
equivalent trajectories in the Hilbert space, each one related to
the other ones by local complex scale transformations, share the
same geometric interference term ιg½C� and the same geometric
phase ϕg½C�.

4. Polarizing devices

The most general operator affecting the polarization of a given
state (1) is proportional to the SLð2;CÞ group operator (see e.g.
[23,24])

expððγ p1
�!� iδ p2

�!Þ � s!=2Þ ð8Þ

where γ and δ are real and where p1
�! and p2

�! are unit vectors
associated with two particular polarization states. In the following,
we will consider particular cases of this general operator: (a) the

SLð2;CÞ rotation operator e� iδ=2 p!�s!, (b) the SLð2;CÞ boost operator
eγ=2 p

!�s!, and (c) the boost-rotation operator eðγ� iδÞ=2 p!�s!. With
the same procedure we use throughout this paper, it is also possible
to compute geometric phase for the most general case (8) where

vectors p1
�! and p2

�! are noncollinear, but the result is hardly
understandable in simple geometrical terms such as area decom-
position on the Poincaré sphere. Moreover, as far as we know, this
case does not correspond to an elementary light wave transforma-
tion, contrary to the particular cases (a), (b) and (c) [25–27].

Let us consider a light wave initially in the state jψ ð0Þ〉 passing
through an optical device and transformed into

jψ ðzÞ〉¼ aðzÞeAðzÞ=2 p
!�s!jψ ð0Þ〉: ð9Þ

Here, the evolution parameter is z which can be identified to the
penetration length of the light into the optical device. The function
aðzÞ ¼ jaðzÞjeiαðzÞ put together global light wave attenuation jaðzÞj
and global propagation phase αðzÞ. By definition (9), jað0Þj ¼ 1 and
αð0Þ ¼ 0. Independently of its exact form, the function a(z) con-
stitutes a local gauge degree of freedom since it does not alter the
light wave polarization. In the case of unitary transformation
jaðzÞj ¼ 1 for all z. The function A(z), such as Að0Þ ¼ 0, determines
the type of transformation: (a) In the case of nonabsorbing
birefringent devices or of media with optical activity, the function
A(z) is imaginary, i.e AðzÞ ¼ � iδðzÞ. For birefringent material, δðzÞ is
the difference between the ordinary and the extraordinary phases
associated with the propagation of the optical field along each
optical axis. The unitary transformation (9) is then equivalent in
the Poincaré space to the rotation of the light wave polarization S

!

around the axis p! by an angle δðzÞ. (b) In the case of absorbing
polarizers, such as polaroid films, the function A(z) is real, i.e
AðzÞ ¼ γðzÞ. The function γðzÞ is then the difference between the
light wave attenuations in the polarizer axis direction p! and in its
orthogonal direction � p!. During the nonunitary transformation
(9), the polarization S

!
is progressively brought toward the

polarizer axis p!. Modulo a global attenuation term jaðzÞj, the
transformation (9) can be seen as a Lorentz boost transformation

written in the SLð2;CÞ group representation. (c) Finally, in the case
where the function AðzÞ ¼ γðzÞ� iδðzÞ is complex, the two effects
(a) and (b) described above act together on the light wave state.
This is for example the case of total reflection based polarizers
[21], i.e. polarizers using the fact that at the interface between a
medium with index n and a birefringent medium with indexes no
and ne, satisfying no4n4ne, only the light wave component
associated with no is transmitted for suitable incident angles.
The case (c) corresponds also to the case of optical devices which
are both absorbing and birefringent. For example, realistic absorb-
ing polarizers present inherently a small amount of birefringence.

5. Geometric phase induced by polarizing transformations

Let us now compute the geometric phase ϕg½C� for the different
types of transformation (a), (b) and (c) defined in the paragraph
above. For that purpose we use the horizontal lift Ch �H of the
unit ray space curve C�R. For such a curve Ch, the dynamic phase
vanishes, ϕd½Ch� ¼ 0, since for any jψ ðsÞ〉ACh, with sA ½0; z�, we
have Im〈ψ ðsÞj _ψ ðsÞ〉¼ 0. The geometric phase (5) reads then

ϕg½C� ¼ arg〈ψ ð0Þjψ ðzÞ〉: ð10Þ

5.1. Unitary case (δa0; γ ¼ 0)

Using (9) for unitary transformations (a), the condition jψ ðsÞ〉
belongs to Ch implies for the global phase αðzÞ the following
relation

αðzÞ ¼ �ΩðzÞ
2

þδðzÞ
2

ð11Þ

where

ΩðzÞ ¼ δðzÞð1� cos βÞ ð12Þ
is the accumulated solid angle subtended by the unit Poincaré
sphere surface swept during the transformation by the arc length
joining the endpoint of the normalized Stokes vector S

!ðzÞ and the
endpoint of the rotation vector p! (see Fig. 1). In Eq. (12), β is the
angle between the Stokes vector S

!
and the polarizing device

characteristic vector p!. Using Eqs. (9), (10) and (11), the calcula-
tion of the geometric phase gives

ϕg½C� ¼ �ΩðzÞ
2

þδðzÞ
2

� tan �1 tan
δðzÞ
2

cos β
� �

: ð13Þ

δ

η η

ω

ω

p

S(0) S(z)Cg

C

Fig. 1. Polarization trajectory on the Poincaré sphere corresponding to a unitary
transformation of the light wave state. The ray space trajectory is C. The curve Cg is
the geodesic connecting the endpoints of C, i.e. S

!ð0Þ and S
!ðzÞ. During the unitary

evolution of the Stokes vector, the accumulated solid angle is ΩðzÞ ¼ω0ðzÞþωðzÞ. The
geometric phase accumulated along the trajectory C is minus half of the shaded
area, i.e. ϕg½C� ¼ �ωðzÞ=2.
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For the particular case of a closed loop, i.e. a rotation of
δðzÞ ¼ 2nπ (nANn), we retrieve the expected result for the geo-
metric phase, ϕg ¼ �nΩ0=2¼ �nπð1� cos βÞ, which is minus n
times half of the solid angle Ω0 enclosed by a single loop.

For unclosed loops, the sum of the second and the third terms
in Eq. (13) does not vanish and is equal to half of the area ω0ðzÞ of
the spherical triangle connecting the points p!, S

!ð0Þ and S
!ðzÞ (see

Fig. 1). Since, ΩðzÞ ¼ω0ðzÞþωðzÞ (see Fig. 1), the geometric phase
(13), ϕg½C� ¼ �ΩðzÞ=2þω0ðzÞ=2, is then minus half of the shaded
area ωðzÞ enclosed by the ray space trajectory C and the geodesic
Cg connecting the endpoints of C

ϕg½C� ¼ �ωðzÞ
2

: ð14Þ

This result can be easily checked using elementary spherical
geometry, ω0ðzÞ ¼ δðzÞþ2ηðzÞ�π. The angle ηðzÞ in Fig. 1 can be
easily calculated as the angle at the vertex S

!ð0Þ between the
tangent vector associated to the geodesic S

!ð0Þ- p! and the
tangent vector associated to the geodesic S

!ð0Þ- S
!ðzÞ. The calcu-

lus gives ηðzÞ ¼ π=2� tan �1ð tan ðδðzÞ=2Þ cos βÞ.

5.2. Pure absorption case (δ¼ 0; γa0)

Following the same procedure as above, i.e. we calculate the
geometric phase along the horizontal lift Ch of C, we obtain
trivially for the pure absorbing transformations (b)

αðzÞ ¼ αð0Þ ¼ 0: ð15Þ
The geometric phase calculated with (9) and (15) is then zero:

ϕg½C� ¼ 0: ð16Þ

This result is explained by the fact that, for pure absorption, the
normalized Stokes vector describes a geodesic connecting the
initial and final polarization states on the unit Poincaré sphere
[21], and thus the area ωðzÞ in Fig. 1 is zero (the curves C and Cg are
the same, C¼ Cg).

5.3. General case (δa0; γa0)

In the general case (c), the calculus of the geometric phase
using the horizontal lift Ch of C forces αðzÞ, to obey the following
expression:

2
dα
dδ

¼ tanh γðsÞþ cos βð0Þ
1þtanh γðsÞ cosβð0Þ ð17Þ

where βð0Þ is the angle between the initial light wave polarization
S
!ð0Þ and the vector p! associated with the polarizing transforma-
tion. The right-hand side of this expression is analogous to the
relativistic formula for aberration of light. Indeed, considering two
reference frames K and K0, the latter moving from the first at the
velocity v, replacing γ by the rapidity Φ¼ arg tanh v=c, and finally
considering βð0Þ as the angle through which an observer at rest in
K observes a given star, the right-hand side of expression (17) is
equal to the cosine of the apparent angle βðsÞ through which an
observer at rest in K0 observes the same given star. This analogy
allows us to define

βðsÞ ¼ β○γðsÞ ¼ arc cos
tanh γðsÞþ cos βð0Þ
1þtanh γðsÞ cos βð0Þ

� �
ð18Þ

which is [21,28] the angle between the Stokes vector S
!ðsÞ, repre-

senting the light wave polarization at sA ½0; z�, and the vector p!. This
angle βðsÞ increases from βð0Þ to 0 as γ increases from 0 to þ1.

Integrating Eq. (17) with the help of Eq. (18), the global phase
αðzÞ can be written as

αðzÞ ¼ �ΩðzÞ
2

þδðzÞ
2

ð19Þ

where

ΩðzÞ ¼
Z
ΩðzÞ

dΩ ð20Þ

is the accumulated solid angle ΩðzÞ. Here dΩ¼ sin βdβ dδ is the
surface element of the unit Poincaré sphere. Eqs. (11), (12) and (15)
are particular cases of the more general equation (19) and (20).

Now, using Eqs. (9), (10) and (19), the geometric phase is

ϕg½C� ¼ �ΩðzÞ
2

þδðzÞ
2

� tan �1 tan
δðzÞ
2

cos β○
γðzÞ
2

� �
: ð21Þ

This expression of the geometric phase is the generalization of the
unitary case expression (13) (γ ¼ 0) and also trivially of the pure
absorption case expression (16) (δ¼ 0). As in the unitary case, the
geometric phase (21) is equal to minus half of the area ωðzÞ
delimited by the effectively followed unit ray space trajectory C
and the unit ray space geodesic Cg connecting the endpoints of C.
In Fig. 2, we represent the stereographic projection of C, Cg , and
ωðzÞ (shaded area).

6. Total phase and dynamic phase induced by elementary
polarizing devices

For the sake of completeness we also discuss in this paragraph
the total phase ϕt½C� and the dynamic phase ϕd½C� induced by
elementary polarizing devices. Contrary to the geometric phase
ϕg½C�which depends only on the effectively followed path C on the
Poincaré sphere, the total and the dynamic phases depend on the
followed path C in the Hilbert space H. Consequently, we have to
consider a given model describing the Hilbert space evolution of
the light wave state. In the following, we use the model presented
in Ref. [21] to depict a light wave passing through uniaxial
elementary optical devices such as wave plates, media with optical
activity, absorbing polarizers, and total reflection based polarizers.
Within this model [21], the state jψ ð0Þ〉 of a light wave passing
through such optical devices is transformed according to

jψ ðzÞ〉¼ e� ikoze�μoze� γ� iδ=2eγ� iδ=2 p!�s!jψ ð0Þ〉 ð22Þ
where δðzÞ ¼ ðko�keÞz is the phase difference induced by the
optical device between the ordinary and the extraordinary light
wave components and γðzÞ ¼ ðμe�μoÞz is the difference between
light wave attenuation rates along the two axes. In the case of

ω

δ

ω
ζ

η

S (0)

S (z)

O

CgC

p

Fig. 2. Polarization trajectory on the Poincaré sphere surface corresponding to a
nonunitary transformation of the light wave state. We use a stereographic
projection of the ray space trajectory viewed from the pole � p!. The ray space
trajectory C is a piece of loxodrome [21] on the Poincaré sphere and its stereo-
graphic projection is a piece of logarithmic spiral. The curve Cg is the geodesic
connecting the endpoints, S

!ð0Þ and S
!ðzÞ, of C, its stereographic projection is a

circular arc with center O0 . As in Fig. 1, the accumulated solid angle is
ΩðzÞ ¼ω0ðzÞþωðzÞ and the geometric phase accumulated along the trajectory C is
minus half of the shaded area, i.e. ϕg½C� ¼ �ωðzÞ=2.
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wave plates or elements with optical activity, the vector p! is the
vector about which the polarization S

!ð0Þ is rotated by an angle
δðzÞ. In the case of polarizers, the vector S

!ð0Þ is progressively
brought along the polarization states vector p!. Using the defini-
tions provided by (6) and (7), the transformation (22) gives the
following expressions for the total phase:

ϕt½C� ¼ �kozþδðzÞ
2

� tan �1 tan
δðzÞ
2

cos β○
γðzÞ
2

� �

¼ �kozþω0ðzÞ
2

ð23Þ

and for the dynamic phase

ϕd½C� ¼ �kozþΩðzÞ
2

ð24Þ

where ω0ðzÞ is the area of the geodesic triangle ð p!; S
!ð0Þ; S!ðzÞÞ on

the Poincaré sphere (see Figs. 1 and 2) and whereΩðzÞ is again the
accumulated solid angle (20), i.e. the area ωþω0 swept by the arc
length joining the polarizing vector p! and the Stokes vector S

!

during the evolution of the polarization state. We immediately
retrieve the expression of the geometric phase ϕg½C� (21) in the
general case (γa0; δa0) if we consider the difference between
(23) and (24).

In Eqs. (23) and (24), the velocity of the ordinary light wave
component seems to play a particular role. This is due to the fact
that in the model (22) the phase e� ikoz is factorized so the other
phase terms depend only on δðzÞ which involves the relative
velocity between the two light wave components. In fact none of
the two light wave components (ordinary or extraordinary) plays a
particular role as Eqs. (23) and (24) can be rewritten in a more
symmetric way respectively as

ϕt½C� ¼ �ðkoþkeÞz
2

� tan �1 tan
ðko�keÞz

2
cos β○

γðzÞ
2

� �
ð25Þ

and as

ϕd½C� ¼ �ðkoþkeÞz
2

�ðko�keÞ
2

Z z

0
ds cos β○γðsÞ: ð26Þ

In Eqs. (23) and (24), it would have been possible to single out the
�kez term instead of the �koz term, the definition of δ would
have been changed by a minus sign.

6.1. Pancharatnam in phase criterion

The Pancharatnam criterion [1] states that two light wave
states jψ1〉 and jψ2〉 are in phase if their interference gives the
maximum intensity, e.g. if arg〈ψ1jψ2〉¼ 0. Although the two light
waves experience different polarization processes, the two light
wave states are said in phase if the polarization processes do not
introduced extra phases. It is important to note that in the original
paper [1] only pure polarization processes are considered, and
propagation phases are not considered.

In the model (22), once the pure propagation phase term e� ikoz

is factorized, the polarization process is completely determined by
δðzÞ, γðzÞ, p!, and S

!ð0Þ. The total phase will be

ϕt½C� ¼ �kozþ
extra phase
due to the

polarization process:
ð27Þ

For a given polarizing device the free evolution term �koz is constant
since it corresponds to the acquired phase during the free evolution of
the light wave through amedium of optical index no and fixed depth z.
Hence, within the particular model (22), no extra phase coming from
the polarization process is added between the initial state jψ ð0Þ〉 and
the final state jψ ðzÞ〉 if, for any orientation of the polarization device,
ϕt½C� ¼ arg 〈ψ ð0Þjψ ðzÞ〉¼ �koz. If we want to bring the initial state

jψ ð0Þ〉 and the final state jψ ðzÞ〉 to interfere with each other, we will
observe the interference of the light wave states jψ1〉¼ eiδ1 jψ ð0Þ〉 and
jψ2〉¼ eiδ2 jψ ðzÞ〉 where δ1 and δ2 are directly related to optical paths.
If no extra phase coming from the polarization process is induced by
the polarizing device, the intensity of the sum of these two states will
be modulated by the cosine of the angle arg〈ψ1jψ2〉¼ �kozþδ2�δ1.
This constant angle can be reduced to zero if optical paths are chosen
conveniently, and then the Pancharatnam criterion is fulfilled. We
recall again that in the Pancharatnam original paper [1], only phase
changes due to polarizing processes were considered. We will there-
fore consider, in the following, that the Pancharatnam in phase
criterion can be fulfilled once ϕt½C� ¼ arg〈ψ ð0Þjψ ðzÞ〉¼ �koz.

6.2. Wave plates or media with optical activity

For wave plates or media with optical activity (γ ¼ 0, μo ¼ 0), the
transformation (22) is unitary and introduces a nontrivial total phase:

ϕt½C� ¼ �kozþ
δðzÞ
2

� tan �1 tan
δðzÞ
2

cos βð0Þ
� �

ð28Þ

and the following dynamic phase

ϕd½C� ¼ �kozþ
δðzÞ
2

ð1� cos βð0ÞÞ: ð29Þ

The difference between the total phase ϕt½C� and the dynamic phase
ϕd½C� acquired by a light wave passing through a retarder or a media
with optical activity gives back as expected the geometric phase ϕg½C�
for unitary transformations (13).

Experiments [11–14] using only retarders to cycle the polariza-
tion state in order to measure the geometric Pancharatnam phase
have been criticized [19] on the ground that two successive light
wave states of the cycle are not in phase since an extra phase due
to the polarization process is introduced between them. This is
clearly seen in Eq. (28) where ϕt½C�a�koz.

6.3. Polarizers

A polarizer is used to convert any light wave polarization into a
specific one. In other words, a polarizer brings continuously any light
wave Stokes vector S

!
along a given direction p! related with the

polarizer axis. In experimental setups, efficient polarizers are required
which means that γðzÞ⪢1. In this limit, Eq. (18) gives cos β○γðzÞ=2¼ 1,
so the total phase (23) and the dynamic phase (24) accumulated by a
light wave through any polarizer are respectively

ϕt½C� ¼ �koz ð30Þ

and

ϕd½C� ¼ �kozþ lim
γðzÞ-1

ΩðzÞ
2

: ð31Þ

The result (30) corroborates the fact that a polarizer does not
induce any extra phase coming from the polarization process. The
Pancharatnam in phase criterion can therefore be fulfilled using a
light wave going through a polarizer and the same light wave
evolving freely. It is important to note that this result holds for any
type of polarizer, whether it is mainly absorbing such as polaroid
films, or not as for example in the case of total reflexion based
polarizers.

The result (30) can also be rapidly deduced using geometric
properties. Indeed, ω0ðzÞ in Eq. (23) is the area of the
ð p!; S

!ð0Þ; S!ðzÞÞ-geodesic triangle (see Fig. 2). For a perfect polar-
izer it is required that S

!ðzÞ ¼ p!, so the area of the geodesic
triangle is zero.
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7. Geometric phase induced by polarizers

Using Eqs. (30) and (31), the geometric phase acquired by a
light wave going through any type of polarizer (γðzÞ⪢1) is a priori
nonzero and reads

ϕg½C� �ϕt½C��ϕd½C� ¼ � lim
γðzÞ-1

ΩðzÞ
2

: ð32Þ

Expression (32) is the most general expression for the geometric
phase induced by a polarizer. It is worth to note in the case of
polarizers, as the total phase is constant (30), variations in the
geometric phase (32) and variations in the dynamic phase (31) are
compensating each other.

Before considering the geometric phases induced by absorption
based polarizers (Section 7.1) and total reflection based polarizers
(Section 7.2), let us calculate for the general case transformations
(δa0; γa0) (see Section 5.3) the expression of the accumulated
solid angle ΩðzÞ entering the expression of the geometric phase
(21) and consequently (32). This expression will be useful in the
following. Using (18) and the light wave intensity expression

IðsÞ
Ið0Þ ¼ jaðsÞj 2ðcosh γðsÞþsinh γðsÞ cos βð0ÞÞ; ð33Þ

computed from Eq. (9), it is possible to rewrite the accumulated
solid angle ΩðzÞ defined in Eq. (20) as

ΩðzÞ ¼ δðzÞ�
Z z

0
ds

_δðsÞ
_γ ðsÞ

d
ds

ln
IðsÞ

Ið0ÞjaðsÞj 2: ð34Þ

A convenient property of the geometric invariants ιg½C� and ϕg½C� is
that these functionals are parametrization invariant [20]. Hence,
choosing freely the parametrization of δðsÞ and γðsÞ will not affect
the geometric phase associated with C. We choose the natural and
convenient parametrization already used in Section 6 which is,
γðsÞ ¼Γs and δðsÞ ¼Δs, where Γ ¼ μe�μo is the differential
attenuation rate of the optical device and Δ¼ ko�ke the differ-
ential propagation rate. The parameter s is then the penetration
length inside the polarizing device. Using now this particular
parametrization we can easily integrate (34) as

ΩðzÞ ¼Δz�Δ
Γ ln eΓz cos 2βð0Þ

2
þe�Γz sin 2βð0Þ

2

� �
: ð35Þ

7.1. Absorption based polarizers

Absorption based polarizers (dichroic polarizers) absorb a light
wave polarization state component more efficiently than its
orthogonal light wave polarization state. Although dichroic polar-
izers present inherently some birefringence due to their aniso-
tropy, their principal characteristic is the dichroism. For such
polarizers it is reasonable to assume that the absorption rate Γ
is much greater than the dephasing rate Δ. Hence assuming
Δ=Γ-0 and Γ⪢1=z in Eqs. (35) and (32), we retrieve the fact that
in a very good approximation a dichroic polarizer, such as a
polaroid film, does not induce any geometric phase since

ϕg½C� ¼ 0: ð36Þ

The fact that for such polarizers

lim
Δ=Γ-0

ΩðzÞ ¼ 0 ð37Þ

clearly illustrates that the path followed by the light wave state on
the Poincaré sphere is the geodesic connecting the initial to the
final polarization state.

It is worth to note that no contribution from the polarization
process enters the expression of the dynamic phase acquired by a

light wave through an absorbing polarizer since

ϕd½C� ¼ �koz: ð38Þ

7.2. Total reflexion based polarizers

In the case of total reflection based polarizers, we have to take
into account the fact that Δ and Γ are characteristics of the same
order of magnitude. Indeed, considering a light wave coming
from a mediumwith an index n and entering at z¼0 a birefringent
medium with indexes no and ne, satisfying n04n4ne, the
continuity of the Maxwell equations at z¼0 gives

Δ=Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2

0�n2 sin 2iÞ=ðn2 sin 2i�n2
e Þ

q
where i is a convenient

incident angle ensuring the total reflection of the extraordinary
light wave component. The ratio Δ=Γ is then a priori finite. In
those conditions, i.e. Γ⪢1=z and Δ=Γ ¼ cte, the accumulated
geometric phase (32) is not trivially zero as in the case of
absorption based polarizer (36), but instead finite

ϕg½C� ¼
Δ
Γ

ln cos
βð0Þ
2

: ð39Þ

This geometric phase depends only on the distance βð0Þ between
the initial and final light wave polarization states, and, on the
characteristic ratio Δ=Γ of the polarizer. Even though the evanes-
cent field component of the light wave dies within few wave-
lengths just after the interface (z¼0) and obviously does not
contribute to the final light wave polarization, information on its
attenuation rate Γ and its dephasing rate Δ is nevertheless
encoded in the geometric phase (39). Hence, this geometric phase
is a direct reminiscence of the evanescent field component
existing inside a total reflection based polarizer. Fig. 3 shows that
the density plot of the geometric phase ϕg½C� as βð0Þ varies from
0 to π and as the ratio Δ=Γ varies from 0 to 25. We note that as the
initial distance βð0Þ approaches π the geometric phase ϕg½C� is
rapidly varying.

As even absorption based polarizers, such as polaroid films, are
inherently birefringent, the zero induced geometric phase in the
case of ideal absorption based polarizer (36) can be seen as the
limit of the geometric phase (39) where the rate of attenuation/
absorption (Γ) is predominant over the rate of dephasing (Δ) due
to birefringence.

0

π

β(0)

0
−φg

Fig. 3. Geometric phase ϕg for the case of a total reflection based polarizer.
Cylindrical presentation of �ϕg as a function of βð0Þ for Δ=Γ ¼ 20.
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8. Difference between Pancharatnam phase and geometric
phase

In this section, we illustrate the difference between the
Pancharatnam phase and the geometric phase acquired by a
light wave.

Let us consider a light wave with an initial polarization S0
!

going
through successively three polarizers with respective polarization

axis p1
�!, p2

�!, p3
�!¼ S0

!
. The trajectory C of the light wave

polarization state on the Poincaré sphere is closed since the

polarization returns to its initial value S0
!

. We note C the trajectory
of the light wave state in the Hilbert space. Using Eq. (2), let us
associate to the three polarization axis the three normalized
Hilbert states j1〉, j2〉, j0〉 such as ρ

p1
�! ¼ j1〉〈1j, ρ

p2
�! ¼ j2〉〈2j,

ρ
p3
�! ¼ ρ

S0
!¼ j0〉〈0j. From now on we will consider normalized

states since the evolution of the light wave intensity does not
influence the geometric phase and the Pancharatnam phase. Let us
denote by jψ0〉¼ j0〉 the initial state of the light wave. As stated in
Section 6.3, the state of the light wave after the first polarizer is

jψ1〉¼ j1〉〈1j0〉eiϕ01
t where ϕ01

t ¼ arg〈ψ0jψ1〉 is the total phase
between light wave states jψ0〉 and jψ1〉. Also, the light wave state
after the second and the third polarizers are respectively

jψ2〉¼ j2〉〈2jψ1〉e
iϕ12

t ¼ j2〉〈2j1〉〈1j0〉ei ϕ01
t þϕ12

t

� �
and jψ3〉¼ j0〉〈0jψ2〉

eiϕ
23
t ¼ j0〉〈0j2〉〈2j1〉〈1j0〉eiðϕ01

t þϕ12
t þϕ23

t Þ where ϕ12
t ¼ arg〈ψ1jψ2〉 and

ϕ23
t ¼ arg〈ψ2jψ3〉 are the total phases between respectively the

light wave states jψ1〉 and jψ2〉 and the light wave states jψ2〉 and

jψ3〉. As in Eq. (30) the total phases ϕ01
t , ϕ12

t , and ϕ23
t are irrelevant

phases which are not related to the three successive polariza-
tion processes experienced by the light wave. Choosing suitable
optical paths between polarizers, it is always possible to wipe

out the phases ϕ01
t , ϕ12

t , and ϕ23
t in order to fulfill successively

the Pancharatnam in phase criterion between light wave states
jψ0〉 and jψ1〉, jψ1〉 and jψ2〉, and, jψ2〉 and jψ3〉 (see Section 6.1).
Hence, although two successive light wave states can be said in
phase, the initial and the final light wave state cannot be since

ϕ03
t ¼ arg〈ψ0jψ3〉¼ argð〈0j2〉〈2j1〉〈1j0〉Þþϕ01

t þϕ12
t þϕ23

t . Unlike

the phase term ϕ01
t þϕ12

t þϕ23
t which depends on the light wave

optical path and can be arbitrarily set to zero, the phase term

ϕ012
p ¼ argð〈0j2〉〈2j1〉〈1j0〉Þ ¼ arg Trðρ

p2
�!ρ

p1
�!ρ

S0
!Þ; ð40Þ

named after Pancharatnam [1], is a phase depending only on
the relative loci of the polarization states on the Poincaré

sphere. In the chosen example, the Pancharatnam phase ϕ012
p

is equal to minus half of the area enclosed by the geodesic
triangle whose the vertices correspond to the polarization

vectors S0
!

, p1
�! and p2

�! on the Poincaré sphere (see the dashed
line delimited geodesic triangle on Fig. 5). The interference of
the initial and final light wave states, i.e. jψ0〉 and jψ3〉, will

give interference fringes which depend on the phase ϕ03
t and

consequently on the Pancharatnam phase ϕ012
p . As a conse-

quence, changing e.g. the first polarizer direction p1
�! to p1

�!0

induces a change in the Pancharatnam phase (ϕ012
p -ϕ102

p )
which is detected as a shift of the interference fringes. In

the same time, the phase term ϕ01
t þϕ12

t þϕ23
t does not change

since ϕ01
t ¼ϕ010

t and ϕ12
t ¼ϕ102

t . The Pancharatnam phase ϕ012
p

is a kind of geometric phase which has been measured by
interferometry experiments [16–18].

The above presented example is valid for any type of polarizer
since the only required assumption is that each intermediate
polarization state jψ i〉 is projected on the next one jψ iþ1〉.

If all the polarizers crossed by the light wave are absorbing
polarizers, the Pancharatnam phase ϕ012

p is indeed the geometric
phase acquired by the light wave through the trajectory C,
ϕg½C� ¼ϕ012

p . Between each intermediate polarization state no
geometric phase (36) is acquired since the polarization state
follows a geodesic Ciiþ1 on the Poincaré sphere, but along the
overall trajectory C, which is obviously not a geodesic since the
trajectory is closed, the geometric phase ϕ012

p is acquired.
Let us now consider that all the polarizers but the second are

absorbing polarizers. We take the second polarizer as a total
reflection based polarizer. As stated before the Pancharatnam
phase measured by an interferometry experiment will be the
same as the one measured in the equivalent experiment using
uniquely absorbing polarizers. But the Pancharatnam phase is not
the whole geometric phase really acquired by the light wave.
Indeed, see Appendix A, the geometric phase, in the chosen
example, is

ϕg½C� ¼ϕ012
p þϕg½C12�: ð41Þ

Here, the geometric phase ϕg½C�, which is equal to minus half of

the snail shell area presented in Fig. 5, is the sum of, ϕ012
p , the

0 π

0

2π

β(0)

Δ
Γ

0

5

10

15

20

25

π
2

3π
2

π
4

−φg

Fig. 4. Geometric phase ϕg for the case of a total reflection based polarizer. Density
plot of �ϕg mod 2π as a function of Δ=Γ and βð0Þ.

p
2

p
1

S0

Fig. 5. Polarization trajectory on the Poincaré sphere of a light wave with initial
polarization S0

!
passing through an absorbing polarizer p1

�!, then through a total
reflection based polarizer p2

�! and finally through an absorbing polarizer p3
�!¼ S0

!
.

We use a stereographic projection of the Poincaré sphere viewed from � p!2. The
polarization p2

�! is here the center of the stereographic projection. The solid line
represents the actual trajectory followed by the polarization state: this trajectory
follows the geodesic relying S0

!
to p1

�!, a loxodrome from p1
�! to p2

�!, and again the
geodesic relying p2

�! to S0
!

. The dashed line delimits the geodesic triangle whose the
vertices are the polarization states S0

!
, p1
�! and p2

�!. The presented loxodrome is
such as Δ=Γ ¼ 10.
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Pancharatnam phase, which is related to the area of the ρ
S0
!, ρ

p1
�!,

ρ
p2
�!�geodesic triangle, and, ϕg½C12�, the nonzero geometric phase

acquired by the light wave during the polarization process
between polarization states ρ

p1
�!, and ρ

p2
�!, which is related to

the complementary area.
More generally, and in even in the quantum realm, let us

consider a curve C in the Hilbert space H which corresponds to a
closed curve C in the space of raysR. Let us consider that the curve
C is marked out with a set of states fjψ i〉gi ¼ 0;…;N such as jψ i〉 is a
projection of the previous state jψ i�1〉 and such as ρ

S0
!¼ ρ

SN
�!. The

Pancharatnam phase does not take into account how each succes-
sive states jψ i〉 is projected onto the following one, so the

Pancharatnam phase ϕ0…N�1
p will be proportional to the area of

the geodesic polygon of which the vertices are the loci of the ρ
Si
!

states on the Poincaré sphere. A contrario, the whole geometric
phase ϕg½C� includes also the nonzero geometric phases ϕg½Ciiþ1�
possibly acquired during the successive state projections. The
whole geometric phase is then

ϕg½C� ¼ϕ0…N�1
p þ ∑

N�1

i ¼ 0
ϕg½Ciiþ1�: ð42Þ

As interferometric superposition is sensitive to the total phase

ϕ0N
t ¼ arg〈ψ0jψN〉, it cannot be used to measure the whole geo-

metric phase acquired by a quantum state. Indeed, if we consider
an Hilbert space curve C of which a point jψ b〉AC is the projection
of a previous point jψ a〉AC, an interferometry based experiment
will be able to measure only the truncate geometric phase
ϕg½C��ϕg½Cab�. The acquired geometric phase ϕg½Cab� between
the states jψ a〉 and jψ b〉 is compensated by the nontrivial part of
the dynamic phase ϕd½Cab�. This is clearly seen if we compare Eqs.
(32) and (31). The projection process dependent part of Eq. (31)
compensates exactly the geometric phase (32). The total phase

ϕ0N
t has no memory of geometric phases possibly acquired

between two Hilbert states such as one being the projection of
the other.

9. Summary and conclusion

In this paper we have considered the geometric phase acquired
by a light wave going through elementary polarizing devices. We
used the quantum kinematic approach of geometric phases and
we have discussed the different cases using area decomposition of
the Poincaré sphere. After a review of unitary case, e.g. the
geometric phase acquired by the light wave going through a
birefringent plate or a media with optical activity, we have
presented the nonunitary case corresponding to the geometric
phase acquired by a light wave passing through any polarizer. As
expected we retrieve the fact that for ideal absorption based
polarizers the light wave gains no geometric phase. However, for
other types of polarizers, such as ideal total reflection based
polarizers or realistic polarizers which can be for example dichroic
polarizers containing inherently small amount of birefringence, a
nontrivial geometric phase is acquired. This geometric phase is
nonzero despite the fact that, as seen in Eq. (7), the initial and the
final polarization states are in phase according to the Panchar-
atnam criterion [1]. This nonzero geometric phase (39) is indeed
acquired by the light wave since the evolution of its normalized
Stokes vector does not describe a geodesic of the Poincaré sphere.
In the case of total reflection based polarizer, the polarization
describes [21] on the Poincaré sphere a loxodrome (Fig. 2) with a

characteristic angle χ ¼ arctanðΓ=ΔÞ depending on the ratio
between the attenuation/absorption rate and the dephasing rate.

In this paper, we have also shown that the geometric phase
acquired by a light wave the initial state of which is projected onto
its final state cannot be measured using the usual interferometric
superposition. As a consequence, interferometry experiments are
able to measure the Pancharatnam phase but not the actual
complete geometric phase.

Appendix A

We provide here a demonstration of Eq. (41). Let us compute
the geometric phase ϕg½C� using the horizontal lift Ch �H of the
unit ray space curve C�R. For such a curve Ch, the dynamic phase
vanishes, ϕd½Ch� ¼ 0, since for any point jψ ðsÞ〉 on the curve Ch, we
have Im〈ψ ðsÞj _ψ ðsÞ〉=〈ψ ðsÞjψ ðsÞ〉¼ 0. As the unit ray space curve C
passes through the polarization states ρ

S0
!, ρ

p1
�!, ρ

p2
�!, and again

ρ
S0
!, let us consider that the Hilbert space curve Ch passes through

the normalized states jψ0〉, jψ 0
1〉� jψ1〉, jψ 0

2〉� jψ2〉, and
jψ 0

3〉� jψ0〉. In such conditions the geometric phase (5) reads then

ϕg½C� ¼ arg〈ψ0 jψ 0
3〉: ðA:1Þ

Let us compute successively jψ 0
1〉, jψ 0

2〉, and jψ 0
3〉.

A.1. jψ0〉-jψ 0
1〉

The light wave passes through an absorbing polarizer bringing
progressively the light wave polarization onto p1

�!. The light wave
state experiences a transformation

jψ ðsÞ〉¼ eiαðsÞ

cosh γ1ðsÞþS0
!� p1

�! sinh γ1ðsÞ
eγ1ðsÞ=2 p1

�!�s! jψ0〉 ðA:2Þ

where the s parameter runs from s0 to s1 with jψ ðs0Þ〉¼ jψ0〉 and
jψ ðs1Þ〉¼ jψ 0

1〉. The absorption parameter γ1ðsÞ is such as γ1ðs0Þ ¼ 0
and γ1ðs1Þ-þ1. The gauge parameter αðsÞ is such as αðs0Þ ¼ 0 and
such as Im〈ψ ðsÞj _ψ ðsÞ〉¼ 0 for all sA ½s0; s1�. A straightforward
calculus gives αðsÞ ¼ αðs0Þ ¼ 0 and

jψ 0
1〉¼

2

1þS0
!� p1

�! ρ
p1
�! jψ0〉: ðA:3Þ

As expected, no geometric phase is acquired by the light wave
during this transformation since arg〈ψ0jψ 0

1〉¼ 0.

A.2. jψ 0
1〉-jψ 0

2〉

The light wave passes now through a total reflection based
polarizer bringing progressively the light wave polarization onto
p2
�!. The light wave state experiences a transformation

jψ ðsÞ〉¼ eiαðsÞ

cosh γ2ðsÞþ p1
�! � p2

�! sinh γ2ðsÞ
eðγ2ðsÞ� iδ2ðsÞÞ=2 p2

�!�s! jψ 0
1〉

ðA:4Þ

where the s parameter runs from s1 to s2 with jψ ðs1Þ〉¼ jψ 0
1〉 and

jψ ðs2Þ〉¼ jψ 0
2〉. The attenuation parameter γ2ðsÞ and the dephasing
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parameter δ2ðsÞ are such as the ratio _γ2ðsÞ= _δ2ðsÞ is finite (see
Section 7.2) with γ2ðs1Þ ¼ δ2ðs1Þ ¼ 0 and γ2ðs2Þ-þ1. The gauge
parameter αðsÞ is such as αðs1Þ ¼ 0 and such as Im〈ψ ðsÞj _ψ ðsÞ〉¼ 0
for all sA ½s1; s2�. Using (19), the final state of thisintermediate
transformation is

jψ 0
2〉¼

2e� iΩ=2

1þ p1
�! � p2

�! ρ
p2
�! jψ 0

1〉 ðA:5Þ

where the solid angle Ω is the area swept on the Poincaré sphere
by the arc length joining the endpoint of the Stokes vector
S
!ðzÞ during the transformation and the endpoint of the polariza-
tion vector p2

�! (see Fig. 4). As in Eq. (32), the geometric phase
gained by the light wave during this transformation is
arg〈ψ 0

1jψ 0
2〉¼ �Ω=2.

A.3. jψ 0
2〉-jψ 0

3〉

Finally, the light wave passes through an absorbing polarizer
bringing progressively the light wave polarization onto its initial
value S0

!
. The light wave state experiences a transformation:

jψ ðsÞ〉¼ eiαðsÞ

cosh γ3ðsÞþ p2
�! � S0

!
sinh γ3ðsÞ

eγ3ðsÞ=2S0
!

�s! jψ 0
2〉 ðA:6Þ

where the s parameter runs from s2 to s3 with jψ ðs2Þ〉¼ jψ 0
2〉 and

jψ ðs3Þ〉¼ jψ 0
3〉. The absorption parameter γ3ðsÞ is such as γ3ðs2Þ ¼ 0

and γ3ðs3Þ-þ1. The gauge parameter αðsÞ is such as αðs2Þ ¼ 0 and
such as Im〈ψ ðsÞj _ψ ðsÞ〉¼ 0 for all sA ½s2; s3�. As in the jψ0〉-jψ 0

1〉

transformation, a straightforward calculus gives αðsÞ ¼ αðs2Þ ¼ 0
and

jψ 0
3〉¼

2

1þ p2
�! � S0

! ρ
S0
! jψ 0

2〉: ðA:7Þ

Again, as expected, no geometric phase is acquired by the light
wave during this transformation since arg〈ψ 0

2jψ 0
3〉¼ 0.

A.4. jψ0〉-jψ 0
1〉-jψ 0

2〉-jψ 0
3〉

The geometric phase acquired through the complete transfor-
mation is then

ϕg½C� ¼ arg〈ψ0 jψ 0
3〉

¼ �Ω
2
þarg〈ψ0 jρ

S0
!ρ

p2
�!ρ

p1
�! jψ0〉

¼ �Ω
2
þarg Trðρ

p2
�!ρ

p1
�!ρ

S0
!Þ

¼ϕg½C12�þϕ012
p : ðA:8Þ
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