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The polarization process when polarizers act on an optical field is studied. We give examples for two kinds
of polarizers. The first kind presents an anisotropic absorption—as in a Polaroid film—and the second one is
based on total reflection at the interface with a birefringent medium. Using the Stokes vector representation, we
determine explicitly the trajectories of the wave light polarization during the polarization process. We find that
such trajectories are not always geodesics of the Poincaré sphere as is usually thought. Using the analogy
between light polarization and special relativity, we find that the action of successive polarizers on the light
wave polarization is equivalent to the action of a single resulting polarizer followed by a rotation achieved, for
example, by a device with optical activity. We find a composition law for polarizers similar to the composition
law for noncollinear velocities in special relativity. We define an angle equivalent to the relativistic Wigner
angle which can be used to quantify the quality of two composed polarizers.
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I. INTRODUCTION

It is now usual to describe the polarization state of an
electromagnetic field by using the notion of the Stokes vector
and that of the Poincaré sphere. This elegant representation
of the polarization state is very useful in optics; e.g., geo-
metrical phases such as the Pancharatnam phase can be effi-
ciently interpreted on the Poincaré sphere �1,2�. Actions of
polarizing devices are described in such a space with simple
mathematical operations. As an example, variations of the
polarization state when light passes through an optical active
medium are expressed by a simple rotation around the axis
connecting the two poles of the sphere. In the same way, the
effect of a birefringent plate corresponds to a rotation around
a vector lying in the equatorial plane by an angle determined
by the optical path delay between the ordinary and extraor-
dinary axes of the plate. However, it is curiously interesting
to note that the evolution of the polarization due to the action
of a polarizer has never been studied in detail. On the
Poincaré sphere, such an evolution corresponds to a trajec-
tory intuitively supposed to be a geodesic connecting the
polarization states of the field before and after the polarizer
�see, e.g., �4,5��. As we will see, the study of the actions of
two different kinds of polarizers �the first one using an an-
isotropic absorbing medium and the second one using total
reflection of one component of the electromagnetic field at
the interface with an anisotropic media� will show that such

an assumption is not always true and that the trajectories of
the polarization state of the field can be more complex and
do not necessarily correspond to Poincaré sphere geodesics.
At the beginning of the article, we introduce the Jones rep-
resentation of a polarizer. The action of a polarizer on the
polarization state is then studied by introducing rotation op-
erators and Lorentz boots operators borrowed from special
relativity. Since the SL�2,C� group is homomorphic to the
Lorentz group �see, e.g., �6,7��, a formal equivalence be-
tween the special relativity space and the polarization space
exists �8,9�. This formal equivalence can then be used to
determine what the counterparts are in the polarization space
of, for example, the composition law of velocities, of the
aberration phenomenon, or of the Wigner angle.

The paper is organized as follows. In Sec. II we define the
mathematical formalism used to describe the effect of polar-
izers on an optical field polarization. The states of polariza-
tion of the field are represented on the Poincaré sphere and
the action of the optical devices is defined by their associated
Jones matrix. It appears that the effect of polarizers on the
polarization is essentially defined by a complex number A
which contains information about the propagation and the
absorption of light in the polarizer. In Sec. III we analyze the
evolution of the Stokes vector s� when light goes through
different kinds of polarizers. Examples are studied, and the
trajectories of given optical states during the polarization
process are analyzed. We point out that the projection of such
trajectories on the Poincaré sphere is no longer a geodesic of
that sphere as could have been classically expected. In Sec.
IV we focus on the evolution of the optical field intensity and
we derive a natural generalized Malus law. Then we examine
the action of two successive polarizers and we show that they
are equivalent to one polarizer followed by a rotation exactly
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as in special relativity where the composition of two Lorentz
boosts is a Lorentz boost followed by a rotation. In Sec. V
we find the general composition law which permits one to
determine characteristics of the equivalent polarizer and the
angle of the rotation. Then we discuss the interpretation of
such a composition law. In Sec. VI we give the counterpart
of the Wigner angle in special relativity for two composed
polarizers and we relate such an angle to the quality of the
polarizers.

II. MATHEMATICAL DESCRIPTION

A. Stokes parameters and the Poincaré sphere

The polarization state of light will be described with the
use of the Poincaré sphere. Our goal is to describe the evo-
lution of the polarization state during its propagation inside a
polarizer. Without loss of generality we consider that the
optical field propagates along the z direction. This field can
then be described by the Jones vector

��̃� = �Ex

Ey
�

	�x�,�y�

, �1�

where Ex and Ey are the two complex components of the
electric field. Instead of the basis 	�x� , �y�
, we prefer to work
with the basis 	�R� , �L�
 related to right- and left-handed cir-
cularly polarized states:

�R� =
1
�2

�1

i
�

	�x�,�y�

, �L� =

1
�2

� 1

− i
�

	�x�,�y�

. �2�

In this basis the Jones vector ��̃�, �1�, is transformed into �3�

��� =
1
�2

�1 − i

1 i
���̃� =

1
�2

�Ex − iEy

Ex + iEy
�

	�R�,�L�

. �3�

The intensity I and the polarization of the wave light can
be characterized by the Stokes parameters �10�

s0 = �Ex�2 + �Ey�2 � I ,

s1 = �Ex�2 − �Ey�2,

s2 = 2 Re�E
x
*Ey� ,

s3 = 2 Im�E
x
*Ey� . �4�

If we construct a three-dimensional vector s� �called hereafter
the Stokes vector� with the components s1, s2, and s3, it is
easy to check that its norm s= 
s�
=s0= I. Thus, for a given
intensity, the Stokes vector can be parametrized using spheri-
cal coordinates as

s� = s��sin � cos ��e�1 + �sin � sin ��e�2 + �cos ��e�3� , �5�

where �� �0,��, �� �0,2��, and 	e�1 ,e�2 ,e�3
 is an R3 ortho-
normal basis. The Stokes vector s�, �5�, determines a point
located on the Poincaré sphere S2 of radius s. Since the norm
s gives the intensity of the wave light, the direction of the
vector s�—i.e., the angles � and �—characterizes the polar-

ization. Thus, the polarization state of the light wave corre-
sponds to a unique point on the Poincaré sphere S2 �see Fig.
1�.

In order to follow the evolution of the light wave
polarization—i.e., the evolution of the Stokes vector s�—we
prefer to work with the projector ������ instead of ��� itself.
Indeed, this projector can be easily expressed as a function of
s� since

������ =
1

2
� s0 + s3 s1 − is2

s1 + is2 s0 − s3 � =
1

2
�s0�0 + s� · �� � � �s�. �6�

Here �0 is the 2�2 identity matrix and �� is a vector the
components of which are the usual Pauli matrices

�1 = �0 1

1 0
�, �2 = �0 − i

i 0
�, �3 = �1 0

0 − 1
� . �7�

Usually �10�, one chooses as the north �south� pole of the
Poincaré sphere the circular right-handed �left-handed� polar-
ization state. With this definition, the angles � and �, �5�, are
directly related with the ellipticity angle 	 and the azimuth
angle 
 since �=� /2−2	 and �=2
, respectively �10�.
The circular right- �left-� handed polarization state corre-
sponds to �=0 ��=��. Right- �left-� handed elliptically po-
larized states correspond to s3�0 �s3�0� or, equivalently,
	�0 �	�0�. Linear polarization states are represented by
Stokes vectors lying in the equatorial plane of the Poincaré
sphere since �=� /2 �	=0�. Each linear polarization state is
determined by a given angle � or, equivalently, by a given
azimuth angle 
. For a linear polarized wave, the angle 
 is
defined as the angle between the vibration plane and a labo-
ratory axis e�x �reference axis� orthogonal to the direction of
the propagation. The difference of polarization for two linear
polarized light waves 1 and 2 can be measured, in the labo-
ratory, as the difference 

=
1−
2 or, equivalently, on the
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FIG. 1. Representation of the Stokes vector s� and the Poincaré
sphere S2.
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Poincaré sphere, as 
�=�1−�2=2

. Thus an angle mea-
sured in the laboratory is half of the corresponding angle in
the Poincaré sphere representation. For example, two or-
thogonal polarizations are characterized by 

=� /2 in the
laboratory frame and by 
�=� in the Poincaré sphere rep-
resentation. Although the rest of the paper does not consider
any particular choice of basis or any particular choice of
polarization, it is useful to keep in mind these last remarks in
order to be able to make at any time the parallel case with
known conventions in optics. So, in a general manner, two
states with orthogonal polarizations are represented by oppo-
site Stokes vectors and correspond to projectors �s� and �−s�.

B. Jones matrices for polarizing devices

1. Jones matrix for birefringent systems

The action of any optical system on the light wave state

��̃� �1� is defined by a 2�2 Jones matrix. For example, the
Jones matrix associated with a birefringent system and acting

on ��̃� can be written as

�ei�o 0

0 ei�e
� = ei��o+�e�/2�ei�/2 0

0 e−i�/2 � . �8�

Here �o and �e are the ordinary and extraordinary phases
associated with the propagation of the optical field polarized
along each optical axis. We have defined the difference be-
tween these two phases as �=�o−�e. For ordinary and ex-
traordinary axes rotated by an angle � in the �x ,y� laboratory
frame, the Jones matrix �8� becomes

B̃��,�o,�e� = ei��o+�e�/2� cos � sin �

− sin � cos �
��ei�/2 0

0 e−i�/2 �
��cos � − sin �

sin � cos �
� . �9�

The corresponding Jones matrix for a birefringent optical
device acting now on the Jones vector ��� written in the
	�R� , �L�
 basis �3� is then

B��,�o,�e� =
1

2
�1 − i

1 i
�B̃��,�o,�e��1 1

i − i
� . �10�

After performing the matrix multiplications, it is possible to
recast �10� in terms of Pauli matrices:

B��,�o,�e� = ei��o+�e�/2�cos
�

2
�0 + i sin

�

2
p� · ��� , �11�

where p� = �cos 2��e�1+ �sin 2��e�2. Using now the mathemati-
cal relation ei�q� ·�� =cos �+ i sin �q� ·�� valid for any angle �
and any unitary vector q� , we can rewrite �11� in a more
compact manner

B��,�o,�� = ei�0e−i�/2ei�/2p� ·�� . �12�

As we will see in Sec. III A, the action of the matrix
B�� ,�o ,�e� on the polarization state ��� can be viewed in the
Poincaré sphere framework as the rotation of the Stokes vec-
tor s� around the vector p� by an angle �. As no dissipation

phenomenon occurs, the norm s0 of the vector s� is constant.

2. Jones matrix for polarizers

The Jones matrix associated with a perfect polarizer act-

ing on ��̃� can be written as

�1 0

0 0
� . �13�

In that example only the x component of the field is con-
served; the orthogonal component is not transmitted. This
oversimplified picture corresponds to the limit case where
the attenuation factors in the x and y directions differ from
each other by several orders of magnitude. The realistic case
corresponds then to the matrix

�e−�1 0

0 e−�2
� = e−��1+�2�/2�e�/2 0

0 e−�/2 � , �14�

where e−�1 and e−�2 are the attenuation factors in the x and y
directions, respectively. We have defined the difference be-
tween the two attenuation terms as �=�2−�1. Again, if the
polarizer axis is rotated about an angle � in the �x ,y� labo-
ratory frame, the Jones matrix �14� becomes

P̃��,�1,�2� = e−��1+�2�/2� cos � sin �

− sin � cos �
��e� 0

0 e−� �
��cos � − sin �

sin � cos �
� . �15�

Following the same steps as in the previous section for bire-
fringent systems, the Jones matrix for a polarizer acting on
��� in the 	�R� , �L�
 basis �3� is

P��,�1,�� = e−�1e−�/2e�/2p� ·�� , �16�

where the vector p� encodes again information about the di-
rection of the polarizer in the laboratory frame. In the
Poincaré sphere framework, as the attenuation difference �
increases, the action of the operator �16� on ��� can be seen
as the progressive collapse of the Stokes vector s� on the
polarizer vector p� direction �see Sec. III B�.

We now use the derived expressions �12� and �16� to ex-
amine more precisely the case of a polarizer based on aniso-
tropic absorption �such as a Polaroid film� and the case of a
polarizer based on a total reflection at the interface of an
anisotropic crystal.

The case of an anisotropic absorbing polarizer can be
modeled by a system where the phases �o and �e in orthogo-
nal directions are complex:

�o = �k + i�o�z ,

�e = �k + i�e�z . �17�

The parameter k is the wave vector of the optical field in the
film, and �o and �e are the two absorption coefficients �for
the amplitude� in two orthogonal directions of polarization.
The system acts as a linear polarizer if �o��e. In �17�, the
parameter z is the propagation coordinate; i.e., z=0 at the
entrance of the polarizer and, e.g., z=L at its end. Hence,
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using �12�, the operator acting on ��� associated to such a
polarizer is

P1��,�o,�� = eikze−�oze−�/2e�/2p� ·�� , �18�

where �= ��e−�o�z. Up to a global phase term and a global
attenuation term which do not affect the light wave polariza-
tion, we retrieved, as expected, the expression of the Jones
matrix for a polarizer,. �16�.

The other case corresponds to a polarizer based on total
reflection. We consider a polarized light hitting the face of an
anisotropic crystal in such a manner that only one component
of the polarized light is transmitted, the other component
being evanescent after the interface. This kind of polarizer
can be modeled by an optical device with the phases �o and
�e defined as

�o = kz ,

�e = i�z , �19�

where k and � are the z real components of the wave vector
of the linear polarization which are transmitted and totally
reflected, respectively. Here, the parameter z is the propaga-
tion coordinate along the transmitted light wave component
�z=0 at the interface�. Again, using �12�, the Jones operator
acting on the wave light ��� and associated to such polarizer
is

P2��,�,�� = eikze−��+i��/2e��+i��/2p� ·�� , �20�

where �=�z and �=kz.
Comparing the just derived expressions �12�, �16�, �18�,

and �20� of Jones operators �Jones matrices� for polarizing
devices, we remark that all of them are written in the follow-
ing manner:

P�p� ,�p,A� = ei�pe−A/2eA/2p� ·�� , �21�

where A is a complex differential attenuation term, �p an
overall phase and attenuation term, and p� the polarization
vector associated with the axis of the polarizer. In the fol-
lowing we will drop out the overall factor ei�p from the ex-
pression of the Jones operator, �21�, since it does not affect
the evolution of the wave light polarization. We have just to
keep in mind that in the case of linear polarizers such as
those defined in and �16� and �18�, the overall factor ei�p

contains an attenuation part which globally reduces the in-
tensity of the wave light. From now on, it will be useful to
split A into its real and imaginary parts, A=�+ i�. Note that
A and, consequently, � and � are implicit linear functions of
the z propagation coordinate.

Also, although �21� has been derived from the analysis of
linear polarizers �vector p� lying in the equatorial plane�, our
model is completely general. It is possible to use a more
general rotation than �15�, bringing the polarizer characteris-
tic vector p� outside the equatorial plane. For example, if the
vector p� points toward the Poincaré sphere north �or south�
pole, our model �21� describes circular polarizers or, if A
= i�, media with optical activity.

III. LIGHT WAVE POLARIZATION VIEWED
AS A STOKES FOUR-VECTOR TRANSFORMATION

According to the previous section, the action of a polar-
izing device on a light wave can be characterized by the
following operator:

Pp� ,�,��z� = e−��+i��/2e��+i��/2p� ·�� , �22�

where ��z� and ��z� are real positive functions of the trans-
formation parameter z�R+. Usually, z is the length penetra-
tion of light into the device and the functions ��z� and ��z�
encode absorption and propagation of light inside the device,
respectively. We restrict our work to homogeneous media for
which these functions are linear in z; i.e., ��z�=�z and
��z�=�z, with � ,��R. The vector p� is a normalized polar-
ization vector �
p� 
 = p=1� associated with the polarizing de-
vice. The vector p� determines a point on the Poincaré sphere

S
2

p

s(
z)

s(
0)

δ(
z)

FIG. 2. In the case of a nonabsorbing polarizing device, the
Stokes vector s� is rotated around the polarization vector p� .
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FIG. 3. �Color online� Transformation �31� of the spatial com-
ponents s��z� of the Stokes four-vector s�z�. The polarization vector
is p� =e�1. The incoming light wave has an initial polarization s��0�
= (1 /�3)�e�1+e�2+e�3� represented by the thick red �light gray�
dashed vector. The Stokes vector for �→� is aligned along the
polarization vector p� =e�1 and is represented by the thick blue �dark
gray� vector. The other vectors are drawn to show the intermediate
positions of the Stokes vector s� as the parameter � �or equivalently
the parameter z� increases from 0 to �.
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which corresponds to a pure state �p� of polarization p� .
Using the projector �s�= ������ we are able to define the

Stokes four-vector s= �s0 ,s�� with the following components:

s� = Tr����s��, � � 	0,1,2,3
 . �23�

It is interesting to note that, introducing the Minkowskian
metric ���=diag	−1,1 ,1 ,1
, the Stokes four-vector can be
considered as a lightlike four-vector since ���s�s�=0. The
spatial components of the Stokes four-vector, 	si
i=1,2,3, are
the components of the three-dimensional Stokes vector s� de-
fined in the previous section. The time component of the
Stokes four-vector s0 is the norm of the Stokes vector s�.
Consequently this last component also corresponds to the
light wave intensity s0= �� ���= I.

So, according to the operator �22�, a polarization state
�s��0� is continuously transformed into another polarization
state �s��z� by the following operation:

�s��z� = Pp� ,�,��z��s��0�Pp� ,�,�
† �z�, z � R+. �24�

Now, using �23� and �24� we are able to define the evolution
of the Stokes four-vector s�z� by

s��z� = Tr����s��z�� = Tr�Pp� ,�,�
† �z���Pp� ,�,��z��s��0��,

� � 	0,1,2,3
 , �25�

where we recall that s0�z�=s�z�= 
s��z�
= I�z� is the intensity
of the light wave and 	si�z�
i�	1,2,3
 are the spatial compo-
nents of the Stokes vector s��z�. After some algebraic calcu-
lus, the components s��z� of the Stokes four-vector �25� can
be expressed as

s��z� = �s0�z� = e−��z��s0�0�cosh ��z� + sinh ��z�s��0� · p�� ,

s��z� = e−��z�	s��0�cos ��z� + s��0� � p� sin ��z� + �1 − cos ��z���p� · s��0��p� + s0�0�p� sinh ��z� + �cosh ��z� − 1��p� · s��0��p�
 .
� �26�

For the sake of clarity we now consider the two particular cases �=0,��0 and ��0 �=0 before considering the more general
case of polarizers with ��0 and ��0.

A. Nonabsorbing polarizing device: �=0, �Å0

The unitary case �=0, ��0, ∀z�R corresponds to nonabsorbing birefringent devices or to media with optical activity. In
such a case, the transformation �26� of the Stokes four-vector s becomes

s��z� = �s0�z� = s0�0� � 1,

s��z� = s��0�cos ��z� + s��0� � p� sin ��z� + �1 − cos ��z���p� · s��0��p� .
� �27�

The first equation in �27� verifies that s�z�= 
s��z�
=s0�0��1 is invariant under the action of the nonabsorbing polarizing
device. So the light wave intensity I is conserved and for convenience we have set I�1. The extremity of the vector s��z� still
lies on the Poincaré unit sphere after the transformation. The second equation in �27� is the Rodrigues formula for the rotation.
This equation implies that the Stokes vector s��0� has been rotated around the vector p� by an angle ��z� �Fig. 2�. Without any
loss of generality, we can always choose an R3 orthonormal basis 	e�i
i�	1,2,3
 such as p� =e�1. Then the Stokes four-vector
transformation �27� can be written in the following simple form:

s�z� =�
1 0 0 0

0 1 0 0

0 0 cos ��z� sin ��z�
0 0 − sin ��z� cos ��z�

�s�0� , �28�

where we recognize the rotation matrix around the e�1 axis by an angle ��z�.
The transformation �27� of the light wave polarization presented in Fig. 2 is typical of birefringent devices. For example, a

� /4 plate can be used to transform a linear polarized light wave into a circular polarized one—i.e., to transform a Stokes vector
lying in the equatorial plane into a Stokes vector pointing toward a pole of the Poincaré sphere.

B. Absorbing polarizer: �Å0, �=0

We consider now the nonunitary case ��0, �=0, ∀ z�R+. In such a case, the transformation �26� of the Stokes four-vector
s becomes

s��z� = �s0�z� = e−��z��s0�z�cosh ��z� + sinh ��z�s��0� · p�� ,

s��z� = e−��z�	s��0� + s0�0�p� sinh ��z� + �cosh ��z� − 1��p� · s��0��p�
 .
� �29�

Naturally, the s0 component giving the intensity of the light wave �first equation in �29�� is a decreasing function of the
parameter �. As �→�, the Stokes vector is brought along the direction of the p� vector since
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s��z� � p� , � → + � . �30�

For a finite value of �, the Stokes vector is not completely
brought along the direction of the vector p� ; the polarization
of the light wave is then only partial. From now on, devices
which transform the light wave polarization according to
�29� will be designated as nonperfect polarizers �finite �� or
perfect polarizer ��→��.

1. Four-dimensional representation

Again, without any loss of generality, we can choose p�
=e�1. Then the transformation �29� reads

s�z� = e−��z��
cosh ��z� sinh ��z� 0 0

sinh ��z� cosh ��z� 0 0

0 0 1 0

0 0 0 1
�s�0� . �31�

We recognize here a Lorentz boost in the p� =e�1 direction; the

absorption term � is then similar to the rapidity �
=arg tanh v /c in special relativity. So, up to an attenuation
factor e−�, the transformation �29� is a Lorentz boost in the
direction of the polarizer vector p� . The Lorentz boost mixes
only the intensity component s0�0� and the component along
the polarizer vector—i.e., the projection s��0� · p� . The other
components are left unchanged by the boost. Associated with
the global attenuation e−��z�, the boost attenuates the compo-
nents of s� which are orthogonal to the polarizer vector p� : s� is
progressively brought in the direction of the polarization
vector p� �Fig. 3�.

Note that this case exactly corresponds to using a polaroid
film with �= ��e−�o� z.

2. Poincaré sphere representation

The evolution of the light wave polarization can also be
followed on the surface of the Poincaré sphere by studying
the evolution of the normalized Stokes vector s���z�
=s��z� / 
s��z�
:

s���z� = �s�0�z� = s�0�0� = s0�0� � 1,

s���z� =
s��0� + p� sinh ��z� + �cosh ��z� − 1��p� · s��0��p�

s0�0�cosh ��z� + sinh ��z�s��0� · p�
. � �32�

We remark easily that throughout the continuous transforma-
tion the Stokes vector s��z� is always orthogonal to the unit
vector

q� =
1

s0�0�sin ��0�
p� � s��0� , �33�

where ��z�=�(p� ,s��z�). Indeed, for any parameter z, we can
write

s��0� � s��z� � q� . �34�

The set of the Stokes vectors s��z� with z�R+ defines a plane
orthogonal to the vector q� and containing the center of the
Poincaré sphere. This implies that the normalized Stokes
vector s���z� describes an arc of a great circle of the Poincaré
sphere S2 �Fig. 4�. The projection of the Stokes vector s��z�
describes a geodesic of the S2 unit Poincaré sphere. There-
fore, the normalized Stokes vector s���z� is rotated around the
axis q� by an angle ��z�=��0�−��z� �see Fig. 4�. Using the
Rodrigues formula, we can rewrite the transformation �32� as
a simple rotation

s���z� = �s�0�z� = s�0�0� � 1,

s���z� = s��0�cos ��z� + s��0� � q� sin ��z� ,
� �35�

with

sin ��z� = sin ��0�cos ��z� − sin ��z�cos ��0� �36�

and

cos ��z� = cos ��0�cos ��z� + sin ��z�sin ��0� , �37�

where

cos ��z� =
tanh ��z� + cos ��0�

1 + tanh ��z�cos ��0�
�38�

and

sin ��z� =
sin ��0�

cosh ��z� + sinh ��z�cos ��0�
. �39�

C. General polarizer: �Å0, �Å0

Choosing again p� =e�1, the transformation �26� for a gen-
eral polarizer can be written in the following matrix form:

s�z� = e−��z��
cosh ��z� sinh ��z� 0 0

sinh ��z� cosh ��z� 0 0

0 0 1 0

0 0 0 1
�

��
1 0 0 0

0 1 0 0

0 0 cos ��z� sin ��z�
0 0 − sin ��z� cos ��z�

�s�0� . �40�

Equation �40� shows clearly that the action of a polarizer on
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a light wave can be seen as three successive operations: a
rotation of the Stokes vector s��0� by an angle ��z� around the
polarizer vector p� , a Lorentz boost in the direction of the
polarizer vector p� , and the global attenuation e−��z�. Each of
these three operations evidently commutes with the others.
Thus, the operator �22� associated with a general polarizing
device can be rewritten as

Pp� ,�,��z� = e−��z�/2e−i��z�/2Rp� ,��z�Bp� ,��z� , �41�

where in the SL�2,C� group representation

Bp� ,��z� = e��z�/2p� ·�� �42�

is the Lorentz boost operator in the direction p� with the ra-
pidity � and

Rq� ,��z� = ei��z�/2q� ·�� �43�

is the rotation operator with the rotation vector q� and the
angle of rotation �. Figure 5 gives a typical illustration of the
Stokes vector evolution for a general polarizer �26�.

Note that this case corresponds to total reflection based
polarizers �20� with �=�z and �=−kz.

As a conclusion of this section, we can state that during
the polarization process of a wave light, the evolution of the
Stokes vector—i.e., the evolution of the polarization—does
not necessarily describe a geodesic on the Poincaré sphere. A
geodesic—i.e., here a part of a great circle of S2—is found
only in the case of polarizing device such as a � /4 plate or in
the case of a nonunitary polarizer with �=0 such as, e.g., a
Polaroid film. In this last case, it is the projection of the
Stokes vector on the Poincaré sphere which describe a geo-
desic. All these statements on the effective trajectory of the
light wave polarization are worth considering when geomet-
ric phase has to be calculated �11�.

IV. GENERALIZED MALUS LAW, DEGREE
OF POLARIZATION

Now, let us look at the intensity component s0�z� of the
Stokes four-vector. We define ��z�=2��z� as the oriented
angle �(p� ,s��z�) between the polarizer vector p� and the
Stokes vector s��z� for the parameter z. Then, ��z� is the
angle, in the laboratory frame, between the axis of the po-
larizer and the ordinary axis of the light wave at position z.
The intensity of the light wave, given by the first equation in
�26�, can be rewritten as

I�z� = I�0��cos2 ��0� + sin2 ��0�e−2��z�� , �44�

which is a generalization of the Malus law for nonperfect
polarizers. Figure 6�a� shows the Malus law for different
value of the absorption term ��z� from 0 to +�. Let us define
I
�z�= Ip��z� as the intensity of the light wave in the �p� polar-
izer state and I��z�= I−p��z� as the intensity in the correspond-
ing orthogonal state �−p�. After some calculus we obtain

I
�z� = Ip��z� = Tr��s��z��p�� = I�0�cos2 ��0� �45�

and

I��z� = I−p��z� = Tr��s��z��−p�� = I�0�sin2 ��0�e−2��z�. �46�

Now, if the polarizer is placed in an unpolarized beam, the
transmitted intensity at the point z is

�I�z����0� = �I
�z����0� + �I��z����0� =
I�0�

2
�1 + e−2��z�� ,

�47�

where the brackets �¯���0� denote the average over the initial
angles ��0�. From �47�, we remark that for a nonperfect po-
larizer �� finite� more than half of the incoming intensity is
transmitted. The degree of polarization ��z� of the nonper-
fect polarizer is given by

��z� =
�I
�z����0� − �I��z����0�

�I
�z����0� + �I��z����0�
= tanh ��z� �48�

and the extinction ratio ��z� by

q
p

q p

s(z)

s(z)

s(0)

δ(z)

α
(z)π

−
α
(0
)

s( )8

s( )8

x

FIG. 4. �Color online� Representation of typical evolutions of
the Stokes vector s��z� and of the normalized Stokes vector s���z�
according to the transformations �29� and �32�, respectively.

s(
0)
ax
is

p ax
is

FIG. 5. �Color online� Typical representation of the Stokes vec-
tor s��z� evolution according to the general transformation �40� or
�26�. The two dashed lines give the direction of the initial Stokes
vector s��0� and the direction of the polarization vector p� , respec-
tively. The initial Stokes vector s��0� is represented by the thick
black dashed vector. The Stokes vector for �→� is represented by
the thick black vector oriented along the direction of the polariza-
tion vector p� . The other vectors are the successive Stokes vectors s�
as the parameter � �or equivalently the parameter z� increases from
0 to �.
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��z� =
�I��z����0�

�I
�z����0�
= e−2��z�. �49�

As ��z� varies from 0 to +�, ��z� and ��z� vary from 0 to 1
and from 1 to 0, respectively. Although ��z� and ��z� mea-
sure already the efficiency of the polarizer, we can always
ask how far is the polarization vector s��z� from the polariza-
tion vector p� associated with the polarizer. For that purpose
we focus on the angle ��z� between the two vectors. Com-
bining the two equations in �26�, or equivalently using �48�
and �38�, we obtain the relation

cos ��z� =
��z� + cos ��0�

1 + ��z�cos ��0�
, �50�

from which we are able to extract the angle ��z� as

��z� = arccos„tanh	��z� + arg tanh�cos ��0��
… . �51�

Thus, as ��z� varies from 0 to +�, the angle ��z� varies from
��0� to 0, or equivalently cos ��z� varies from cos ��0� to 1.
Figure 6�b� shows ��z� as a function of ��0� for different
values of the absorption term ��z�. Expressions �50� and �51�
are dependent on the initial angle ��0�. The integration of
�50� over all the possible initial angles ��0�, i.e.,

�cos ��z����0� =
1

�
�

0

�

d��0�cos ��z� , �52�

provides a convenient parameter to characterize the quality
of the polarizer. Analytic calculation of �52� gives us

�cos ��z����0� =
1 − �1 − �2�z�

��z�
= tanh

��z�
2

. �53�

Hence, as ��z� varies from 0 to +� �perfect polarizer�, the
parameter �cos ��z����0� varies from 0 to 1.

V. COMPOSITION LAW FOR POLARIZERS

From now on, we assume the z parameter dependence of
the different functions, such as, e.g., � or �, and for clarity

we drop the z parameter from the following mathematical
expressions.

A. Association of two polarizers

Let us now consider the successive actions of two absorb-
ing polarizers ��=0; see Sec. III B� with different polariza-
tion axes p�1 and p�2 and different absorption terms �1 and �2.
The corresponding operator of the total system is then

Pp�2,�2,0Pp�1,�1,0 = e−��1+�2�/2Bp�2,�2
Bp�1,�1

, �54�

where we use the SL�2,C� group representation �42� of the
Lorentz boost operator. We keep in mind that the case of the
composition of two general polarizers—i.e., with ��0 �see
Sec. III C�—can be easily retrieved from the case �54� of two
absorbing polarizers ��=0�. We focus now on the two suc-
cessive boosts in �54�. We know �see, e.g., �6,7�� that the
action of two successive noncollinear Lorentz boosts Bp�1,�1
and Bp�2,�2

is equivalent to the action of a Lorentz boost Bp� ,�

followed by a rotation Rq� ,�; i.e.,

Bp�2,�2
Bp�1,�1

= Rq� ,�Bp� ,�, �55�

with suitable parameters � and � and suitable directions p�
and q� . Then, �54� can be rewritten as

Pp�2,�2,0Pp�1,�1,0 = e−��1+�2�/2Rq� ,�Bp� ,� �56�

or, using only polarizing device operators �22�, as

Pp�2,�2,0Pp�1,�1,0 = e��−�1−�2�/2ei�/2Pq� ,0,�Pp� ,�,0. �57�

In the Appendix, we derive from the initial parameters �1,
�2, p�1, and p�2 the expressions of the resulting rotation pa-
rameters � and q� and of the resulting boost parameters � and
p� entering the relation �55� and consequently entering �56�
and �57�. For the rotation parameters we have �A6�,

q� =
1

sin �
p�2 � p�1, �58�

and �A9�,
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FIG. 6. �Color online� �a� Generalized Malus law: representation of the ratio I�z� / I�0� as a function of ��0�=2��0� �angle between the
polarizer vector p� and the incoming wave polarization s��0�� for different values of the absorption term ��z�. �b� Angle ��z� between the
polarizer vector p� and the wave polarization s��z� as a function of ��0� for different values of the absorption term ��z�.
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� = 2 arg�1 + tanh
�1

2
tanh

�2

2
ei�� , �59�

where �=��p�1 , p�2�� �0,�� is the angle between the two
polarizer vectors p�1 and p�2. Equation �58� imply that the
rotation axis q� is orthogonal to the plane defined by the vec-
tors p�1 and p�2. Since the vectors p�1, p�2, and p� belong to the
same plane �see the Appendix, subsection 1�, it is possible to
parametrize these vectors with the help of an arbitrary refer-
ence axis u� belonging to this plane. Hence, the angles �1
=��u� , p�1�, �2=��u� , p�2�, and �=��u� , p�� characterize com-
pletely the respective vectors p�1, p�2, and p� . Figure 7 gives an
illustration of the relative positions of these vectors and the

associated angles. According to �A14�, the boost parameters
are given by the following expression:

tanh
�

2
ei� =

tanh
�1

2
ei�1 + tanh

�2

2
ei�2

1 + tanh
�1

2
tanh

�2

2
ei��2−�1�

. �60�

Indeed, the modulus and the argument of �60� give, respec-
tively, the absorption term � and the direction p� of the re-
sulting polarizer �through � �A16��.

Let us now define the following addition law

a � b =
a + b

1 + a*b
, a,b � C . �61�

Using that law, �60� can be rewritten in the following more
elegant form:

�ei� = �1ei�1 � �2ei�2, �62�

where we have have noted �=tanh �
2 . Since

Pp�2,�2,0Pp�1,�1,0 � Bp�2,�2
Bp�1,�1

= Rq� ,�Bp� ,�, �63�

�62�, which is similar to the addition law for noncollinear
velocities in special relativity �14�, is thus also the composi-
tion law for polarizers.

B. Association of N polarizers

Consider now the action of N successive absorbing polar-
izers �see Sec. III B�. The corresponding operator is

P�1,2, . . . ,N� = �
�

j=1
N Pp� j,�j,0

= Pp�N,�N,0 ¯ Pp�2,�2,0Pp�1,�1,0 = exp�−
1

2�
j=1

N

� j��
�

j=1
N Bp� j,�j

= exp�−
1

2�
j=1

N

� j�Bp�N,�N
Bp�N−1,�N−1�

�

j=1
N−2Bp� j,�j

= exp�−
1

2�
j=1

N

� j�R�N − 1,N�B�N − 1,N��
�

j=1
N−2Bp� j,�j

= exp�−
1

2�
j=1

N

� j���� j=1
N−1R�j, . . . ,N��B�1, . . . ,N� , �64�

where we use the following notation:

Bp� j,�j
Bp� i,�i

= R�i, j�B�i, j� �65�

and

B�i, . . . ,N�Bp� i−1,�i−1
= R�i − 1, . . . ,N�B�i − 1, . . . ,N� .

�66�

The operator B�i , . . . ,N� is the boost operator resulting from
the combination of the �N− i� last boost operators. The op-
erator R�i , . . . ,N� is the rotation operator resulting from the
combination of the boost operators B�i+1, . . . ,N� and Bp� i,�i

.

For the sake of completeness, we define B�i�=Bp� i,�i
and

R�i�=�0. In �64�, the boost operator

B�1, . . . ,N� = Bp� ,� = e�/2p� ·�� �67�

resulting from the combination of the N boost operators Bp� j,�j
�j=1, . . . ,N� is characterized by an absorption parameter �
and a vector p� directly calculated from N−1 successive ap-
plications of the composition law �62�. The ordered product
in �64�

1
p

p

2
p

pq o

u

qu

q

αα1

α2
φ

x

x

FIG. 7. Two successive boosts with respective directions p�1 and
p�2 can be decomposed in a boost of direction p� and a rotation
around the direction q� .
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�
�

j=1
N−1R�j, . . . ,N� = Rq� ,� = ei�/2q� ·�� �68�

is a resulting rotation operator characterized by a rotation
vector q� and an angle � calculated from successive applica-
tions of �A9�. The operator �64� corresponding to N succes-
sive absorbing polarizers can then be rewritten as

P�1,2, . . . ,N� = exp�−
1

2�
j=1

N

� j�Rq� ,�Bp� ,� �69�

or using polarizing device operators �22� as

P�1,2, . . . ,N� = exp�1

2
�� − �

j=1

N

� j��ei�/2Pq� ,0,�Pp� ,�,0.

�70�

Using �69�, the initial state �s�0
of an incoming light wave

is transformed into the following final state:

�s� = P�1, . . . ,N��s�0
P†�1, . . . ,N� , �71�

with the corresponding intensity

I = Tr��s�� = I0 exp�� − �
j=1

N

� j��cos2 �0 + sin2 �0e−2�� .

�72�

Here 2�0 �see Sec. IV� is the angle between the polarization
s�0 of the incoming wave and the resulting polarization vector
p� . So the transmitted intensity of an unpolarized light beam
is

�I��0
=

I0

2
exp�� − �

j=1

N

� j��1 + e−2�� . �73�

Let us define �p� as the degree of polarization of the N polar-
izers using the resulting polarization state �p� as the state of
reference. Using

Ip� = Tr��s��p�� = I0 exp�� − �
j=1

N

� j�cos2 �0 �74�

and

I−p� = Tr��s��−p�� = I0 exp�− � − �
j=1

N

� j�sin2 �0, �75�

we obtain the corresponding degree of polarization

�p� =
�Ip���0

− �I−p���0

�Ip���0
+ �I−p���0

= tanh � �76�

and the corresponding extinction ratio

�p� =
�I−p���0

�Ip���0

= e−2�. �77�

The expressions found in �76� and �77� are similar to the
expressions of the degree of polarization �, �48�, and of the
extinction ratio �, �49�, found for one polarizer except that

here the absorption term � results from the action of N ab-
sorbing polarizers. So the composition law �62�, whose N
−1 successive applications give �=tanh �

2 , is also the com-
position law for the degree of polarization �, �76�.

To conclude this section let us retrieve the intensity of an
initially unpolarized light beam through the succession of
two perfect polarizers ��1→�, �2→��. First, the modulus
of the composition law �60� implies that �→�. In that case
the expression �73� becomes

�I��0
=

I0

2
e�−�1−�2. �78�

Using �A2� and �A8� in the case of two perfect polarizers
��1→�, �2→�, �→�� we obtain the following relation

cos2 �

2
= e�−�1−�2, �79�

where �=2�12 is the angle between the polarization vectors
p�1 and p�2 �in the Poincaré sphere representation� of the two
successive polarizers. Thus �78� can be rewritten as

�I��0
=

I0

2
cos2 �12, �80�

which is the well-known expression for the intensity of an
initially unpolarized light beam going through two perfect
polarizers. We remark that � given by the composition law
�61� encodes in �78� and more generally in �73� the relative
positions on the Poincaré sphere of the successive polarizer
vectors p� j.

C. Discussion

The result �60� can be illustrated on the upper sheet H+ of
an hyperboloid or, more easily, on its stereographic projec-
tion known as the Poincaré disk. Let us consider in Fig. 8 the
hyperbolic triangle ABC, the three sides a, b, and c of which
correspond to polarizers P1, P2 and to the resulting polarizer
P, respectively. In that triangle, the lengths of sides a, b, and
c, opposite to vertices A, B, and C, are tanh

�1

2 , tanh
�2

2 , and
tanh �

2 , respectively. They physically correspond to the qual-
ity of the corresponding polarizers: the length of each side
approaches the limit 1 when its corresponding � tends to �.

FIG. 8. The hyperbolic triangle ABC corresponding to the po-
larizers P1, P2 and to the resulting polarizer P in the Poincaré disk.
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In that triangle �see Fig. 8�, � is the angle between the axis of
P1 and the axis of P2, � is the angle between the axis of P1
and the axis of the resulting polarizer P, and � is the angle
between the axis of P and the axis of P2. For the sake of
simplicity, we choose the axis of reference along the direc-
tion of the first polarizers—i.e., u� = p�1—so that in Fig. 7 we
have �1=0 and �2=�.

Now, in order to understand �60�, let us use Fig. 8 when
the second polarizer P2 is perfect; i.e., b=tanh

�2

2 =1. In such
a case, �60� reduces to

tanh
�

2
ei� =

tanh
�1

2
+ ei�

1 + tanh
�1

2
ei�

. �81�

So, using �59�, we obtain

tanh
�

2
ei� = ei�e−i�. �82�

This result shows that the polarizer equivalent to using po-
larizers P1 and P2 successively �and in that order� is a perfect
polarizer �tanh �

2 =1� the axis of which is in the direction �
=�−�. That result could be surprising, since we could expect
to find its axis in the � direction. This comes from properties
of hyperbolic triangles. The angle � between P and P2 can be
calculated using �60�: noting that the angle of AC with CB is
−� and taking now the direction of the arbitrary reference
axis for angles in the direction of P2, we get �note that
tanh

�2

2 =1�

tanh
�

2
e−i� =

tanh
�2

2
+ tanh

�1

2
e−i�

1 + tanh
�2

2
tanh

�1

2
e−i�

=

1 + tanh
�1

2
e−i�

1 + tanh
�1

2
e−i�

= 1,

�83�

so that �=0: the axis of P equivalent to using P1 and P2
successively is, as expected, directed in the direction of the
axis of P2. These two last results—i.e., the angle of P with
P1 is �=�−� and that of P with P2 is �=0—come from the
fact that the sum of the three angles of an hyperbolic triangle
is not �, but �−� where � is its angular defect. It is inter-
esting to underline that this case �P2 perfect� corresponds to
the case of aberration in special relativity.

For the sake of completeness, let us show that � is indeed
the angular defect, which we denote ��, of the hyperbolic
triangle ABC. The sum of the angles of the hyperbolic tri-
angle ABC gives

� + �� − �� + � = � − ��, �84�

so that

ei�� = ei�e−i�e−i�. �85�

Using �A16� and extracting the angle � from the first equality
of �83�, �85� can be rewritten as

ei�� =

1 + tanh
�1

2
tanh

�1

2
ei�

1 + tanh
�1

2
tanh

�1

2
e−i�

. �86�

Comparing �86� with �59� gives us ��=�. Thus the parameter
� of the rotation Rq� ,�, �55�. is the angular defect of the hy-
perbolic triangle build using the parameters of P1, P2, and P.

To conclude this section, let us remark that the angle �,
�A16�, giving the direction of the resulting polarizer P can be
rewritten as

� = �Euclid −
�

2
, �87�

where

�Euclid = arg�tanh
�1

2
+ tanh

�2

2
ei�� �88�

would have been the angle between the axis of the polarizers
P1 and P if the geometry were Euclidean.

VI. WIGNER ANGLE

The composition law �62�—i.e., the addition law �—is
noncommutative �13�. Indeed, the final polarization of the
light wave passing through polarizer 1 and then through po-
larizer 2 is not the same as the final polarization of the light
wave passing through polarizer 2 and then through polarizer
1. Such a noncommutativity is obvious in the case of perfect
polarizers since the final polarization always corresponds to
the polarization vector of the second polarizer. With two po-
larizers with respective absorption terms �1 and �2 and with
respective vectors p�1 and p�2, the two possibilities of compo-
sition are

�1�2ei�1�2 = �1ei�1 � �2ei�2 �89�

and

�2�1ei�2�1 = �2ei�2 � �1ei�1. �90�

From the definition of the addition law �61� we easily see
that

�1�2 = �2�1 = � �91�

and consequently

�1�2 = �2�1 = � . �92�

However, the angles �1�2 and �2�1 are not equal. Thus, by
analogy with special relativity �or with optical studies of
multilayers �12��, we introduce the Wigner angle w=�2�1
−�1�2 which can be seen as a measure of the noncommuta-
tivity of the addition law �. Using �61�, �89�, and �90�, we
easily determine the Wigner angle �14� �see also �15,16��
through
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eiw =
�2ei�2 � �1ei�1

�1ei�1 � �2ei�2
=

1 + �1�2ei�

1 + �1�2e−i� = �1�2ei�
� 1,

�93�

which gives then

w = 2 arg�1 + �1�2ei�� = � , �94�

where �=�2−�1 is the angle between p�1 and p�2.
For perfect polarizers �1�2=1, the light wave is polarized

first in one direction p�1 and then in the other direction p�2, so
the Wigner angle is w=�. For nonperfect polarizers the mea-
sure of the Wigner angle w can be seen as a measure of the
quality of the polarizers. Indeed, if one measures w�� for a
given �, we are able to retrieve the product �1�2 and then to
state on the quality of the polarizers. Figure 9 shows the
Wigner angle w as a function of � for different values of the
product �1�2.

VII. CONCLUSION

Textbooks usually only consider perfect polarizers �i.e.,
polarizers with �→�� and do not examine the question of
knowing how the polarization of a light beam is progres-
sively transformed when propagating inside a polarizer. In
the present paper, we have addressed these two problems
using the notion of the Stokes vector and that of the Poincaré
sphere in order to characterize the evolution of a light wave
polarization through a polarizer. Whereas the action of a po-
larizer is intuitively thought of to be a simple rotation of the
polarization along a geodesic on the Poincaré sphere, we
have shown that it is not always the case. In the general case,
more complex trajectories differing from geodesics can in
fact be found, especially in the case of total-reflection-based
polarizers �see Sec. III C�. How these trajectories will affect
geometric phases of light wave going through polarizers will
be a question addressed in a following paper �11�.

Nonperfect polarizers—i.e., here polarizers with finite
�—lead us naturally to define a generalized Malus law and a
degree of polarization ��z�.

The action of a polarizer on light wave polarization can be
described by Lorentz operators, where the attenuation factor
� is the counterpart of the rapidity � commonly used in
special relativity. The association of two such polarizers, in-

volving then two Lorentz boosts, can always be viewed as
the result of a Lorentz boost transformation followed by a
rotation. In other words, the association of two polarizers is
equivalent to the association of a polarizer and, for example,
a device with optical activity giving an additional rotation of
the polarization. We have then derived a composition law
�61� for polarizers similar to the composition law for noncol-
linear velocities in special relativity. This composition law �

appears to be a very natural law to “add” quantities the val-
ues of which are limited to finite values. In fact, �61� implies
that no matter what are the values of the complex quantities
a and b, such as �a��1 and �b��1, the modulus of the over-
all resulting quantity a � b cannot exceed unity. Because it
avoids infinity, such a generalization of Einstein’s composi-
tion law of velocities appears to be a natural “addition” law
of physical quantities in a closed interval.

The association of N polarizers can also be viewed as the
association of a resulting polarizer and an optical device giv-
ing an additional rotation. Recursive iterations of the compo-
sition law �61� give directly the characteristics of the result-
ing polarizer �i.e., � and p�� and of its associate rotation �i.e.,
� and q��. We have defined the Malus law for the association
of N polarizers and the corresponding degree of polarization,
the latter being easily determined using the composition law.

In addition to the degree of polarization �or equivalently
the extinction ratio� we have defined others quantities char-
acterizing the quality of the polarizers. We have defined �see
Sec. IV� the angle ��z� measuring how far the light wave
polarization vector is from the polarizer vector p� . Also, using
the existing isomorphism between special relativity and po-
larization in optics, we have defined �see Sec. VI� the rela-
tivistic Wigner angle for the association of two polarizers.
The Wigner angle is a direct consequence of the noncommu-
tativity of the addition law �, �61�, and we have shown that
the latter can be used to directly measure the quality of the
association of two polarizers.

APPENDIX

We aim to determine the absorption term �, the angle �,
and the vectors p� and q� entering the relation �55�; i.e.,

Bp�2,�2
Bp�1,�1

= Rq� ,�Bp� ,�. �A1�

We define �=��p�1 , p�2�� �0,�� as the angle between the
two polarizer vectors p�1 and p�2. Using the definitions �42�
and �43� and expanding the exponential operators in �A1� we
obtain the following set of four equations:

cosh
�2

2
cosh

�1

2
+ sinh

�2

2
sinh

�1

2
cos � = cos

�

2
cosh

�

2
,

�A2�

sin
�

2
sinh

�

2
q� · p� = 0, �A3�

π
2

π0

π

0

π
2

α

w

FIG. 9. Representation of the Wigner angle w, �94�, as a func-
tion of � for different values of the product ��1�2 from 0.6 �dotted
line�, 0.8 �double-dot-dashed line�, 0.95 �dot-dashed line�, 0.99
�dashed line�, and 1 �solid line�.
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sinh
�2

2
cosh

�1

2
p�2 + sinh

�1

2
cosh

�2

2
p�1

= sinh
�

2
cos

�

2
p� − sin

�

2
sinh

�

2
q� � p� , �A4�

sinh
�2

2
sinh

�1

2
p�2 � p�1 = sin

�

2
cosh

�

2
q� . �A5�

1. Rotation parameters �, q�

As �A3� holds for any parameter ��R+ and for any angle
�� �0,2��, we have q� · p� =0. Consequently, the two vectors
p� and q� are orthogonal. Equation �A5� fixes then the unit
vector q� as

q� =
1

sin �
p�2 � p�1. �A6�

The vectors p�1, p�2, and p� are coplanar since p� is orthogonal
to q� �see Fig. 7�. Using �A6�, �A5� can be replaced by the
following equation:

sinh
�2

2
sinh

�1

2
sin � = sin

�

2
cosh

�

2
. �A7�

With �A2� and �A7� the angle � is given by

tan
�

2
=

tanh
�1

2
tanh

�2

2
sin �

1 + tanh
�1

2
tanh

�2

2
cos �

�A8�

or, equivalently, by

�

2
= arg�1 + tanh

�1

2
tanh

�2

2
ei�� . �A9�

Thus, from the initial parameters, �1, �2, p�1, and p�2, �A6�
and �A9� can be used to obtain respectively the axis q� and
the angle � of the rotation entering �A1�.

2. Boost parameters �, p�

Let us now define the angles �1=��u� , p�1� and �2
=��u� , p�2� �see Fig. 7� where u� is an arbitrary reference axis
in the plane defined by p�1 and p�2. In order to calculate the
angle �=��u� , p��, we project the two members of �A4� along

the direction u� and along the orthogonal direction u� �q� . We
obtain the following two equations:

sinh
�2

2
cosh

�1

2
cos �2 + sinh

�1

2
cosh

�2

2
cos �1

= cos
�

2
sinh

�

2
cos � − sin

�

2
sinh

�

2
sin � , �A10�

sinh
�2

2
cosh

�1

2
sin �2 + sinh

�1

2
cosh

�2

2
sin �1

= cos
�

2
sinh

�

2
sin � + sin

�

2
sinh

�

2
cos � . �A11�

The combination of these two equations gives us

sinh
�2

2
cosh

�1

2
ei�2 + sinh

�1

2
cosh

�2

2
ei�1 = sinh

�

2
ei��+�/2�.

�A12�

Combining now �A2� and �A7�, we obtain

cosh
�2

2
cosh

�1

2
+ sinh

�2

2
sinh

�1

2
ei� = cosh

�

2
ei�/2.

�A13�

Dividing the members of �A12� by those of �A13�, we find

tanh
�

2
ei� =

tanh
�1

2
ei�1 + tanh

�2

2
ei�2

1 + tanh
�1

2
tanh

�2

2
ei��2−�1�

. �A14�

From the initial parameters �1, �2, p�1, and p�2, �A14� al-
lows us to calculate the absorption term � and the direction p�
entering �A1�. Indeed, the modulus of �A14� gives us � since

tanh
�

2
= � tanh

�1

2
+ tanh

�2

2
ei��2−�1�

1 + tanh
�1

2
tanh

�2

2
ei��2−�1�� �A15�

and the direction of the unit vector p� is determined from

� = �1 + arg� tanh
�1

2
+ tanh

�2

2
ei��2−�1�

1 + tanh
�1

2
tanh

�2

2
ei��2−�1�� . �A16�
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