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We study the influence of disorder on the vortex charge, both due to random pinning of the vortices and due
to scattering off nonmagnetic impurities. In the case when there are no impurities present, but the vortices are
randomly distributed, the effect is very small, except when two or more vortices are close by. When impurities
are present, they have a noticeable effect on the vortex charge. This, together with the effect of temperature,
changes appreciably the vortex charge. In the case of an attractive impurity potential the sign of the charge
naturally changes.
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I. INTRODUCTION

Some time ago1 it was proposed that the vortex induced
by an external magnetic field in a type-II superconductor
should be electrically charged. This effect was proposed to
occur since the chemical potential is expected to be larger in
the vortex core than in the bulk of the superconductor. It is
energetically favorable for the electrons to lower their energy
through the condensation energy and, since the vortex core is
interpreted as being a normal region, the electrons tend to
move to the bulk, leaving a charge deficiency close to the
vortex line. It is the electrochemical potential �the sum of the
chemical potential and electrostatic energy� that is constant
in the superconductor. Due to the circulating currents around
the vortex line, the electrostatic potential is needed to com-
pensate the centrifugal force due to the circular motion.2

We should note that the initial understanding that the vor-
tex core region is populated by normal electrons has been
questioned. In particular, in the case of clean superconduct-
ors, where the mean free path is much larger than the coher-
ence length, the localized states bound to the vortex core are
the result of Andreev scattering.3 The core states are coherent
superpositions of particle and hole states and interpreted as
being the result of constructive interference of multiple An-
dreev scattering from the spatial variation of the order pa-
rameter. Also it was shown that the main contribution to the
supercurrent originates in these states.

Soon after the proposal of Khomskii and Freimuth it was
suggested that the effect could be tested experimentally due
to the dipole field created at the surface of the
superconductor.4 It has been claimed that the charge of the
vortex has been measured using NMR in high-temperature
superconductors.5

Theoretical studies of the existence of the vortex charge
were carried out subsequently.6–9 In particular, a relation was
established between the vortex core charge and the vortex
bound states for an s-wave vortex.6 In particular, in the quan-
tum limit the influence of the bound states is important. This
regime is reached when T /Tc�1/ �kF�0�, where Tc is the
critical temperature, kF is the Fermi momentum, and �0
=vF /�0 is the coherence length, corresponding to a regime

where the thermal width is smaller than the level spacing. In
this regime the particle-hole asymmetry in the local density
of states �LDOS� has been related to the vortex charge.6 The
asymmetry results from the different effect the supercurrent
around the vortex has on the particle and hole wave
functions.10 However, in d-wave superconductors the low-
lying states are not localized.11 As shown recently, it is the
winding of the phase around the vortex and not the detailed
decreasing of the gap amplitude near the vortex core that is
ultimately responsible for the supercurrent and the nature of
the low-lying states �bound states in the s-wave case� and
their effect on many properties,10,12 such as the vortex
charge.

Taking into account the screening of the vortex charge,
the Friedel oscillation in the charge profile was obtained for
the case of an s-wave vortex,7 showing that the charge is
screened but prevails with a somewhat reduced value. Other
pairing symmetries were also considered8,13 showing that the
existence of the vortex charge is universal. In all these stud-
ies the vortex is charged positively �electron deficiency�.
This positive charge has been argued to be the cause of the
Hall anomaly where the Hall conductance changes sign
when entering the superconducting phase.14

In the high-magnetic-field regime, where a Landau-level
description is appropriate, the low-lying states are coherent
through the vortex lattice15 both in the s-wave15 and in the
d-wave16 cases. The coherent nature of the states originates
gapless superconductivity due to the center-of-mass motion
of the Cooper pairs and the action of a high magnetic
field.15,17 In this regime the vortex charge has not yet been
studied.

In d-wave superconductors it is likely that other orderings
compete with the superconductivity—in particular,
antiferromagnetism18 or d density waves.19 The vortex struc-
ture and, in particular, the vortex charge have also been stud-
ied when there is competition between the various order
parameters.13,20–23 In general, a small region around the vor-
tex will have a nonvanishing order parameter which affects
the density of states and in particular the vortex charge. It
may change sign from an electron defficiency to an electron
abundance at the vortex core. Also, increasing the tempera-
ture, in a regime of parameters where the competing order is
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absent, the positive vortex charge is recovered.21

Also, since most systems have impurities, these affect
both the motion of the quasiparticles through scattering and
through pinning of the vortices. Therefore it is necessary to
study the effect of the impurities. Such a study has been
carried out in the case of the d-density-wave state.24 It is
clear that, at the very least, the effect of the addition of the
impurities is to locally change the chemical potential.

In this work we consider several causes for disorder and
their effect on the vortex charge. The effect of a charge in-
side a superconductor is in general screened. In usual super-
conductors of the s-wave type, the dominant contribution is
due to Thomas-Fermi-like screening, as in the normal state.25

Due to the presence of the gap, the Fermi-surface Friedel
oscillations are suppressed. The exponential screening acts
on the scale of the Thomas-Fermi length which in general is
much smaller than the coherence length, and therefore any
charge is very small. However, in d-wave superconductors or
in s-wave superconductors in the vicinity of a vortex, the
Friedel oscillations are important since in the first case there
are gapless states and in the second case there are states of an
essentially normal character in the vicinity of the vortex
core.7 These oscillations act on a scale which is comparable
to the coherence length, which in type-II superconductors is
small. Therefore in the vicinity of the vortex core the screen-
ing effect, even though noticeable, does not change qualita-
tively the effect of the charge depletion. This is shown in Fig.
1 of Ref. 7 where the charge oscillations near the core, even
though depressed, are still visible and only a quantitative
change is observed. Therefore, for simplicity, we will neglect
in this work the effect of screening since the results will be
qualitatively the same. Also, as we will show later, the effect

of the impurities has a local nature and only affects signifi-
cantly the physical quantities near the vortex core where
screening has not fully acted. Only far from the vortex core
the screening of the Thomas-Fermi type will strongly sup-
press the charge oscillations.7

II. VORTICES AT LOW TO INTERMEDIATE FIELDS

Consider the lattice formulation of a superconductor in a
magnetic field. Let us start from the Bogoliubov–de Gennes
�BdG� equations H�=�� where �†�r�= (u*�r� ,v*�r�) and
where the matrix Hamiltonian is given by

H = � ĥ �̂

�̂† − ĥ†
� , �1�

with26,27

ĥ = − t�
�

exp�−
ie

�c
�

r

r+�

A�r� · dl�ŝ� − �F �2�

and

�̂ = �0�
�

e�i/2�	�r�
̂�e�i/2�	�r�. �3�

The sums are over nearest neighbors ��= ±x , ±y on the
square lattice�; A�r� is the vector potential associated with
the uniform external magnetic field B=��A, the operator
ŝ� is defined through its action on space-dependent functions,
ŝ�u�r�=u�r+��, and the operator 
̂� describes the symmetry
of the order parameter. It is convenient to perform a singular
gauge transformation to eliminate the phase of the off-

FIG. 1. �Color online� Electron density n�r�−nbulk for s-wave
symmetry in a regular vortex lattice. Here �= t, �=−2.2t, and
nbulk=0.377.

FIG. 2. �Color online� Electron density n�r�−nbulk for d-wave
symmetry in a regular vortex lattice. Here �= t, �=−2.2t, and
nbulk=0.509.
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diagonal term �3� in the matrix Hamiltonian. We consider the
unitary Franz-Tesanovic gauge transformation H→U−1HU,
where26

U = �ei	A�r� 0

0 e−i	B�r� � , �4�

with 	A�r�+	B�r�=	�r�. The phase field 	�r� is decom-
posed at each site of the two-dimensional lattice in two com-
ponents 	A�r� and 	B�r� which are assigned, respectively, to
a set of vortices A, positioned at �ri

A�i=1,NA
, and a set of vor-

tices B, positioned at �ri
B�i=1,NB

. The phase fields 	�=A,B are
defined through the equation

� � �	��r� = 2
z�
i

��r − ri
�� , �5�

where the sum runs only over the �-type vortices. After cary-
ing out the gauge transformation �4� the Hamiltonian �1�
reads

H� = 	 − t�
�

eiV�
A�r�ŝ� − �F �0�

�

e−i��	/2�
̂�ei��	/2�

�0�
�

e−i��	/2�
̂�
†ei��	/2� t�

�

e−iV�
B�r�ŝ� + �F 
 .

�6�

The phase factors are given by27 V�
��r�=�r

r+�ks
� ·dl and

�	�r�=	A�r�−	B�r�, where �ks
�=mvs

�= ��	�− e
cA is the

superfluid momentum vector for the � supercurrent. Physi-
cally, the vortices A are only visible to the particles and the
vortices B are only visible to the holes. Each resulting �
subsystem is then in an effective magnetic field

Beff
� = −

mc

e
� � vs

� = B − 	0z�
i

�2�r − ri
�� , �7�

where each vortex carries an effective quantum magnetic
flux 	0. For the case of a regular vortex lattice,26,27 these
effective magnetic fields vanish simultaneously on average if
the magnetic unit cell contains two vortices, one of each
type. More generally, in the absence of spatial symmetries, as
is the case for disordered systems, these effective magnetic
fields Beff

�=A,B vanish if the numbers of vortices of the two
types A and B are equal—i.e., NA=NB—and their sum equals
the number of elementary quantum fluxes of the external
magnetic field penetrating the system.

The �-superfluid wave vector ks
��r� characterizes the su-

percurrents induced by the � vortices. This vector can be
calculated for an arbitrary configuration of vortices27 like

ks
��r� = 2
� d2k

�2
�2

ik � z

k2 + �−2�
i=1

�

eik·�r−ri
��. �8�

As we take the London limit, which is valid for low mag-
netic field and over most of the H-T phase diagram in ex-
treme type-II superconductors such as cuprates, we assume
that the size of the vortex core is negligible and place each
vortex core at the center of a plaquette.

For the conventional s-wave case the operator character-
izing the symmetry of the order parameter is constant 
̂�

= 1
4 and the off-diagonal terms of the Hamiltonian �6� are

then considerably simplified:

FIG. 3. �Color online� Electron density n�r�−nbulk for d-wave
symmetry in a regular vortex lattice. Here �=0.25t, �=−2.2t, and
nbulk=0.36.

FIG. 4. �Color online� Electron density n�r�−nbulk for s-wave
symmetry in a regular vortex lattice. Here �= t, �=−0.1t, and
nbulk=0.965.
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H� = 	− t�
�

eiV�
A�r�ŝ� − �F �0

�0
t�

�

e−iV�
B�r�ŝ� + �F
 . �9�

Note that in this case the phase of the off-diagonal term is
eliminated.

For the unconventional d-wave case the operator 
̂� takes
the form 
̂�= �−1��yŝ�. With these definitions the d-wave
Hamiltonian can be derived from the Hamiltonian �6� and
reads

H� = 	 − t�
�

eiV�
A�r�ŝ� − �F �0�

�

eiA��r�+i
�yŝ�

�0�
�

e−iA��r�−i
�yŝ� t�
�

e−iV�
B�r�ŝ� + �F 
 , �10�

where the phase factor A��r� has the form

A��r� =
1

2
�

r

r+�

��	A − �	B� · dl =
1

2
�

r

r+�

�ks
A − ks

B� · dl .

�11�

In the Hamiltonian �10� and in Eq. �11� the vector

as =
1

2
�ks

A − ks
B� �12�

acts as an internal gauge field independent of the external
magnetic field.27 The associated internal magnetic field b
=��as consists of opposite A-B spikes fluxes carrying each
one-half of the magnetic quantum flux 	0, centered in the
vortex cores and vanishing on average since the numbers of
A- and B-type vortices are the same.

The solution of the BdG equations gives the spectrum and
wave functions of the quasiparticles. As the effective mag-
netic fields experienced by the particles and holes vanish on
average, within the gauge transformation we are allowed to
use periodic boundary conditions on the square lattice ���x
+nL ,y+mL�=��x ,y� with n ,m�Z
. The L�L original lat-
tice becomes then a magnetic supercell where the impurities
are placed at random and where the vortices are placed in
such a way as to minimize their total energy. The disorder
induced by the impurities in the system is then established
over a length L. Thus in order to compute the eigenvalues
and eigenvectors of the Hamiltonian we seek eigensolutions
in the Bloch form �nk

† �r�=e−ik·r�Unk
* ,Vnk

* � where k is a point
of the Brillouin zone. We diagonalize then the Hamiltonian
e−ik·rHeik·r for a large number of points k in the Brillouin
zone and for many different realizations �around 100� of the
random impurity positions and of the correlated vortex posi-
tions.

The density of states �DOS� and the local density of states
�LDOS� for the cases of vortex disorder31 and the combined
effects of vortex disorder and impurity scattering32 were
studied recently. The disorder in general increases the DOS
at low energies, by filling the gap in the s-wave case and
originating a finite density of states at zero energy in the
d-wave case. An approximate scaling regime was obtained in
the last case. Also, the results for the LDOS are in qualitative
agreement with scanning tunneling microscopy �STM� ex-
periments if most vortices are pinned at the impurity loca-
tions.

The electron density is calculated in the usual way

FIG. 5. �Color online� Electron density n�r�−nbulk for s-wave
symmetry in a regular vortex lattice. Here �= t, �=0.5t, and nbulk

=1.17.

FIG. 6. �Color online� Electron density n�r�−nbulk for s-wave
symmetry in a disordered vortex lattice. Here the magnetic field is
B=1/160 which corresponds to ten vortices in a 40�40 unit cell.
Here �= t, �=−2.2t, and nbulk=0.375.
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n�r�� = 2�
i

��ui�r���2f�Ei� + �vi�r���2�1 − f�Ei�
� , �13�

where Ei are the energy eigenvalues and f�Ei� is the Fermi
function.

A. Vortex lattice

We consider first, for completeness, a regular distribution
of vortices both for s-wave and d-wave pairings. At not very
high fields, the vortices are sufficiently apart and the vortex
charge is depleted from the vortex cores, as mentioned
above. Therefore the vortices are positively charged. In Fig.
1 we consider the s-wave pairing case, and in Fig. 2 we
consider the d-wave pairing case. In this last case a checker-
board modulation of the charge density is seen. Both sets of
results are presented for the case �= t. Linearizing the BdG
equations defined in a continuum close to the nodes leads
naturally to the definition of two velocities: the Fermi veloc-
ity vF and a velocity v�=�0 / pF, where pF is the Fermi mo-
mentum. This velocity denotes the slope of the gap at the
node.26,33 Defining the anisotropy of the Dirac cone as the
ratio �D=vF /v� which in the lattice case translates to �D
= t /�0, the case considered above �= t is called the isotropic
case. In many d-wave superconductors the anisotropy is ac-
tually stronger. We present for comparison in Fig. 3 results
for d-wave pairing considering �=0.25t �note that in high-Tc
materials the anisotropy is actually stronger of the order of
t=15��. As the anisotropy increases the charge depletion de-
creases in depth but extends in area.

We have considered a low-density regime. We can vary
the chemical potential �and the band filling�. In Fig. 4 we

present the electron density for a situation close to half-
filling for the s-wave case. In Fig. 5 we consider a case larger
than half-filling. In this case there is a charge accumulation
�or hole depletion�. Indeed as explained before6 the density
of the dominant carriers is depleted near the vortex core.
Also, we have checked explicitly that at half-filling the vor-
tex charge vanishes6 and the electron density is uniform. The
results for the d-wave case show the same trend.

B. Vortex disorder

We consider now the case when the vortices are distrib-
uted randomly due to some strong pinning effects, but ne-
glect the effect of impurities on the motion of the quasipar-
ticles. Therefore, the superfluid velocities are determined by
a random distribution of the locations of the vortices, as-
sumed static.

In Fig. 6 we consider the case of s-wave pairing, and in
Fig. 7 we consider d-wave pairing for a particular random
distribution of the vortices �note that there is no sum over
random configurations, like in the calculation of the LDOS�.
When a vortex is isolated the distortion of the charge profile
is very similar to the lattice case. However, if two vortices
are pinned nearby, the charge profile is significantly changed.
In conjunction with the charge depletion, there is a sign re-
versal of the electron density. This is particularly visible in
the s-wave case but also occurs for the d-wave symmetry. In
the region where the two vortex cores are located there is a
charge accumulation which leads to a local negative charge
with respect to the bulk value. These fluctuations are of a

FIG. 7. �Color online� Electron density n�r�−nbulk for d-wave
symmetry in a disordered vortex lattice. Here the magnetic field is
B=1/160 which corresponds to ten vortices in a 40�40 unit cell.
Here �= t, �=−2.2t, and nbulk=0.507.

FIG. 8. �Color online� Electron density n�r�−nbulk for d-wave
symmetry with impurities and no vortices. Here �= t, �=−2.2t, U
=5t, and nbulk=0.509.
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similar order of magnitude as the charge depletion at the
single vortices. However, the integration of the charge den-
sity in the neighborhood of the two vortices is still positive,
despite the strong negative oscillations. The total charge in
the case when two vortices are close by, even though still
positive, is considerably smaller.

C. Effect of impurities

We consider now the effect of impurities. These are intro-
duced at the Hamiltonian level, with the substitution

ĥ → ĥ + U�r� .

Here U�r� is the potential due to the impurities placed ran-
domly in the system. We model the disorder using the binary
alloy model.28 At each impurity site it costs an energy U to
place an electron �it acts as a local shift on the chemical
potential�. The impurities are randomly distributed over a L
�L periodic two-dimensional lattice and play the role of
pinning centers for the vortices. In general, it is favorable
that a vortex is located in the vicinity of an impurity.29 How-
ever, in this work we will be considering random distribu-
tions of the vortices and impurities and study the electron
density throughout the system with an arbitrary distribution
of the vortices and impurities. Due to the nonhomogeneous
nature of the order parameter, the BdG equations have to be
solved self-consistently.

The effect of the impurities is the expected one. If the
potential is repulsive, the electron density is lowered, and if
the potential is attractive, the electron density is increased,

leading to an electron accumulation and a sign reversal.
There are sharp peaks at the impurity locations that mask the
effect of the vortex charge in the material. If a vortex is
pinned at an impurity site �as in most systems they are�, the
effect of the impurity potential is quite strong. For moderate
values of the potential the effect is smaller but still notice-
able.

To compare the effects of the impurities and the vortices,
we show in Figs. 8 and 9 the electron density for U=5t
without and with vortices for a specific distribution of the
impurities. In Fig. 10 we plot the difference between the two
cases. We see that even though the impurities have a strong
�local� influence on the charge distribution, the contributions
from the impurities and vortices add up and the difference is
not negligible. The same is observed for the attractive case
U=−5t shown in Figs. 11–13. Also, note that increasing the
impurity potential for values �U � �5t does not change quali-
tatively the charge since �U � =5t is already a large value.

Clearly, when the vortices are diluted and neglecting the
effect of the impurities, the interaction between the vortices
is not so important and the behavior of the system is not very
different from an isolated vortex. A possible exception is the
regime of very high magnetic fields. But for low to interme-
diate fields, as seen from Figs. 1 and 2, the distortion of the
electron density occurs close to the vortex locations and the
behavior is characteristic of a single vortex. The vortex
charge has been studied for a single vortex, as mentioned
above, considering a vortex with a quantum of flux. It is
therefore also interesting to consider the influence of an im-
purity in the single-vortex case.

FIG. 9. �Color online� Electron density n�r�−nbulk for d-wave
symmetry in a disordered vortex lattice with impurities. Here �= t,
�=−2.2t, U=5t, B=1/160, and nbulk=0.505.

FIG. 10. �Color online� Difference in the electron density be-
tween the cases with and without vortices shown in Figs. 8 and 9.
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III. SINGLE VORTEX

We consider then the effect of an impurity in an s-wave
vortex. We solve the Bogoliubov–de Gennes equations on a
continuum,30 introducing an impurity as a disk of small ra-
dius d centered at the vortex location.

The general solution is obtained solving numerically the
BdG equations. In the s-wave case these can be written as

�He + U�r�
u�r� + ��r�v�r� = �u�r� ,

− �He
* + U�r�
v�r� + �*�r�u�r� = �v�r� . �14�

Here

He�r� =
1

2m
��

i
� −

e

c
A�2

+ U�r� − EF,

where m is the electron mass, A is the vector potential, EF is
the Fermi energy, and U�r� is the potential originating from
the impurity.

The BdG equations are solved using the decompositions30

ui��,�� = �
�,j

c�,j
i ei��	 j,���� ,

vi��,�� = �
�,j

d�,j
i ei��	 j,���� , �15�

and choosing a gauge such that ��� ,��=����e−im�, appro-
priate for a vortex containing m flux quanta. Here � is an
integer, j is the number of the zero of the Bessel functions in
a disk of radius R, and the normalized functions 	 j,� consti-
tute a complete set over the zeros and are defined by

	 j,� =
�2

RJ�+1�� j,��
J��� j,�

�

R
� . �16�

Here J� is the Bessel function of order � and � j,� is the jth
zero of the Bessel function J�. The functions 	 j,�, by con-
struction, are zero at the border of the disk, �=R. In the basis

FIG. 11. �Color online� Electron density n�r�−nbulk for d-wave
symmetry with impurities and no vortices. Here �= t, �=−2.2t, U
=−5t, and nbulk=0.513.

FIG. 12. �Color online� Electron density n�r�−nbulk for d-wave
symmetry in a disordered vortex lattice with impurities. Here �= t,
�=−2.2t, U=−5t, B=1/160, and nbulk=0.509.

FIG. 13. �Color online� Difference in the electron density be-
tween the cases with and without vortices shown in Figs. 11 and 12.
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of the functions 	 j,� we have to solve a set of equations for
the c and d coefficients of the form

�
��,j�

�T�,j;��,j�
−

��,j;��,j�

��,j;��,j�
T T�,j;��,j�

+ ��c��,j�

d��,j�
� = E�c�,j

d�,j
� .

Here the various components are diagonal in the angular mo-
mentum T�,j;��,j�

± =��,��T�;j,j�
± and the same for the off-

diagonal terms. In the case of strongly type-II superconduct-
ors and if we are interested in the low-energy states, which
are particularly relevant at small distances from the vortex
core, the vector potential may be neglected. The various
terms are then given by

T�;j,j�
± = � � �2

2m
�� j,�

R
�2

− EF�� j,j�

� U�
0

d

d��	 j,����	 j�,����

and

��;j,j� = �
0

R

d��	 j,��������	 j�,�+m��� , �17�

where we have used that

U��� = U��d − �� .

The gap function is obtained in the usual way:

���� = V �
�,i��Ei���D�

ū�,i���v̄�,i����1 − 2f�E�,i�
 , �18�

with u�,i�� ,��=ei��ū�,i��� and v�,i�� ,��=ei��+mv̄�,i���
where V is the attractive effective interaction between the
electrons. The BdG equations are solved self-consistently, as
mentioned above.

Considering first the case of a vortex enclosing a quantum
of flux �m=1� we show, for completeness, in Fig. 14 the
charge profile close to the vortex core, considering first U
=0 �no impurity�.6 Close to the vortex core the electron den-
sity decreases with respect to the bulk value. The effect is
especially evident at low T. As the temperature increases the
charge depletion decreases. This result is due to the Kramer-
Pesch effect: the vortex core size increases as the tempera-
ture increases and, since the charge depletion may be related
to the variation of the gap function,34 this derivative de-
creases as T increases and therefore the charge depletion de-
creases as T increases. As proposed in Ref. 34 the electro-
static potential has contributions that are due to the
difference of the gap function at the vortex with respect to
the bulk value due to the derivatives of the amplitude and of
the phase of the gap function. Through Poisson’s equation
these dependences carry to the electron density. Note that at
low T there are oscillations in the electron charge density.
Also note that we are considering here the full quantum limit
where we have access to the vortex structure inside the vor-
tex core. In the previous sections the method neglected the
vortex core and we had no access to the true vortex core.

As we saw in Sec. II B, when two vortices are close by
there are also oscillations in the charge density that result, in

this case, from the vicinity of two vortices. On a large scale
�where the vortex core is averaged out� two vortices nearby
may appear similar to a vortex containing two flux quanta
�note, however, that the energy of a double-flux vortex is
higher than two single-quantum-flux vortices�. In Fig. 15 we
consider the case of a vortex containing two flux quanta
�m=2�. The inner structure of the vortex is somewhat
different.3,35 The gap function has a node near the origin, and
there are opposing currents in the same regime, as also ob-
tained using the Andreev Hamiltonian. In the right panel of
Fig. 15 we show the electron density profile. As one ap-
proaches the core the charge is depleted, but very close to the
location of the vortex the charge approaches the bulk value
and changes sign. The trend is similar to the case studied in
Sec. II B even though the effect is more pronounced in this
last case.

In Fig. 16 we consider the effect of the impurity potential
at a low value of T. For positive values of U as U increases

FIG. 14. �Color online� Electron density of a single vortex as a
function of distance for different values of T. The parameters are
chosen as EF=1, V=1.6, and R=80. The energies are in units of the
Fermi energy and the lengths in units of the inverse of the Fermi
momentum.

FIG. 15. Vortex with a double flux 2�0. Left panel: � as a
function of distance. Right panel: electron density as a function of
distance.
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the charge is further depleted, decreasing both the value of
the electron density �it vanishes at the origin for a suffi-
ciently large value U=5� and extending the regime where the
charge is depleted. A value of U=5 is again similar to any
larger value. If the impurity potential is negative �U�0�,
even small values of U like, for instance, U=−0.5 have a
considerable effect on the vortex charge. The attractive po-
tential accumulates charge at the vortex core. The effect of
the impurity potential on the gap function if U�0 is also
clear. Increasing U is similar to the effect of increasing the
temperature �Kramer-Pesch effect�. However, an attractive

potential has a more profound effect. Even for a small value
U=−0.5 a node appears in a way similar to the node of the
vortex with two flux quanta �m=2� previously considered.
As U decreases further, for instance, for U=−5, two nodes
appear in the gap function. Therefore, there is a similarity
between the attractive impurity case, the vicinity of two vor-
tices, and the multiple-flux vortex. The quantitative effect on
the vortex charge is, however, different, since the impurity
potential is more effective in changing the signal of the vor-
tex charge.

IV. CONCLUSIONS

Earlier treatments predicted a universal charge depletion
at the vortex cores. Taking into account the competition in
the d-wave case with other order parameters it has been de-
termined that in some circumstances the vortices may be
negatively charged �charge accumulation with respect to the
bulk value�.

In this work we did not consider the effect of other order-
ings but considered the influence of disorder. We focused on
the effects of positional disorder of the vortices and on the
effect of impurities. When two vortices are close by we
found that strong fluctuations appear in the shared region of
the vortices, which induce a smaller charge accumulation.
Also, the addition of impurities changes the charge profiles.
A small to moderate attractive potential also changes the
signal of the vortex charge, since it renormalizes locally the
chemical potential in a straightforward way.

The case of a vortex lattice in a very high magnetic field,
where the quasiparticles propagate coherently throughout the
system and gapless superconductivity occurs, is a qualitative
different state. In this regime a Landau-level description is
adequate and a different behavior is found for many physical
properties.36 Preliminary results seem to indicate that the ef-
fect of the coherence on the vortex charge is to change the
signal of the vortex charge: close to the vortices there is a
charge accumulation instead of a charge depletion.37 These
results would then be in disagreement with possible explana-
tions of the Hall anomaly as due to the positively charged
vortices. Indeed the Hall anomaly is detected close to the
normal phase, where in strongly type-II superconductors,
like high-Tc materials, it is predicted that a Landau descrip-
tion should be appropriate.17
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