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Projects devoted to the physical analysis of complex networks and the application of Google matrix based analysis to complex systems.



How Google search engine works

From Markov (1906) to Brin & Page (1998)

Markovian process : a random surfer probe the structure of a directed network.
A each step, the random surfer jumps randomly on an adjacent node and continue its journey.
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How Google search engine works

From Markov (1906) to Brin & Page (1998)

Markovian process : a random surfer probe the structure of a directed network.
A each step, the random surfer jumps randomly on an adjacent node and continue its journey.

Adjacency matrix Stochastic matrix Google matrix

Gz‘j = aSij + (1 — a)/N

N N
P e TR E DV DL e
Y Osij-=»1 Y k=1 k=1 with 0.5 < a <1

/N otherwise Perron-Frobenius operator
(0.03109452568730597 Distribution P(K)
0.04353233614756617 where K is the rank index:
PageRank vector ) 00609 1527086606558 P(1) = 0.35181679356094430 @
P = lim P™ = lim G"P 0067204 19361707856 P(2) = 0.34377243843697143 @
P = 0'07044998’99’86171 P(3) = 0.07044998599586171 @
n . JJJO _
Pi( )is the probability that random 0.35181679356094489 P(4) o 0'06729412361797826 O
surfer arrives at node i at the e [ IDUIERO: P(5) = 0.06094527086606558 @
nth step. 0.03109452568730597 P(6) = 0.04353233614756617 @
\0.34377243843697143 ) P(7) = P(8) = 0.03109452568730597 @ @
P is the G matrix eigenvector  The most important node is the one with the highest probability.
associated with eigenvalue 1 Recursive definition: the more a node is pointed by important nodes, the more it is important.

P =GP .
PageRank measures the influence of a node.
Steady-state PageRank was (is ?) at the heart of Go gle search engine (Brin, Page ‘98).



The reduced Google matrix

Let us consider a very large network with N> 1.
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For the global matrix, we have

GP =P
We define the reduced Google matrix G, associated to the N -size subset of interest such as
GRPT — Pfr

The reduced Google matrix can be written as

GR - Grr + Grs <1 - Gs.s)_l G.sr

Contributions Contributions Very slow convergence since the leading eigenvalue 1 of G_ G is very close to 1.

from direct links from indirect links
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Contributions Contributions Projection onto the subspace associated to the leading eigenvalue A~1 with
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The reduced network

The reduced Google matrix

Let us consider a very large network with N> 1.
Consider a sub-network of N <N nodes of interest. \
The reduced Google matrix can be written as
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Proof of concept with Wikipedia as a complex network

Hidden links between political leaders
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Analysis of hidden links between 2012 G20 leaders from the English

edition Wikipedia (extracted in 2013)

El Zant, S, Frahm, K.M,, Jaffrés-Runser, K. et al. Analysis of world terror networks from the reduced Google matrix of
Wikipedia. Eur. Phys. J. B 91,7 (2018)

qu Frwiki Followers Green

38
187,
== Ho
) N

Far-left %5 Mélenchon

Analysis of hidden links between 2013 French
politics from the French edition Wikipedia
(extracted in 2013)

We retrieve knowledge about known political acquaintances (not trivially stated in Wikipedia).

The reduced Google matrix approach was also used for the network analysis of:

terrorist groups, pharmaceutical groups,

infectious diseases,, bitcoin transactions,

the world trade, ...

(within Wikipedia)

. . Y .
(within corresp. economical networks)



Googlomics : Inferring hidden causal relations between proteins
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Googlomics : Inferring hidden causal relations between proteins

Inferring indirect (hidden) causal connections between AKT-mTOR pathway members (subnetwork of 63 proteins)
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Inferring indirect (hidden) causal connections between AKT-mTOR pathway members (subnetwork of 63 proteins)
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Googlomics : Inferring hidden causal relations between proteins

Genes of a proliferative signature resulted from pancancer transcriptomic analysis (subnetwork of 49 proteins)
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Googlomics : Inferring hidden causal relations between proteins

Genes of a proliferative signature resulted from pancancer transcriptomic analysis (subnetwork of 49 proteins)
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Take home messages

e Reduced Google Matrix: analytical approach for inferring hidden indirect connections within a set of nodes embedded in
a very large network

e In the case of the proteome, hidden signaling pathways can be detected

e  Structural changes in transcriptional network lead to implicit rewiring of pathways in cancer
o  Emergence of oncogenic pathways
o  Disappearance of hidden indirect connections in oncogenic networks

° Upstream from an Al treatment, the reduced Google matrix can considerably reduce the size of very large networks

Thank you for your attention !!
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How Google search engine works
From Markov (1906) to Brin & Page (1998)

Markovian process : a random surfer probe the structure of a directed network.
A each step, the random surfer jumps randomly on an adjacent node and continue its journey.

Adjacency matrix Stochastic matrix Google matrix
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1/N otherwise .
/ Perron-Frobenius operator

The most important node is the one with the highest probability.

PageRank vector Recursive definition: the more a node is pointed by important nodes, the more it is important.
— 1 (n) — 7 np(0)
P nll_{rolo P nh_{%o G"P PageRank measures the influence of a node.

PageRank was (is ?) at the heart of (Go gle search engine (Brin, Page ‘98).

p,("). -
e probabily et 9T cheiRank vestor PGP
4th ste Similar to the PageRank vector for the network with inverted links. With inverted adjacency
P matrix elements A7, = Aj;itis pOSSIb|e to define the stochastic matrix elements S #* 8 i

) o and the Google ma{nx elements GIJ # Gﬂassoaated to the inverted network (Fogaras ‘03,
P is the G matrix eigenvector Chepelianskii ‘10).

associated with eigenvalue 1

P =GP

Steady-state The CheiRank measures the diffusion/the commmunication of a node.

Recursive definition: the more a node points toward important nodes, the more it is important.



