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Dark matter capture – Three-body problem

DMP

Ecliptic

p

Possible DMP capture due to Jupiter rotation around the Sun
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Dark matter capture – Restricted circular three-body problem

Newton’s equations

mDMP � mX � m�

r̈ =
1− mX∥∥r�(t)− r

∥∥3

(
r�(t)− r

)
+

mX∥∥rX(t)− r
∥∥3

(
rX(t)− r

)
G = 1, mX + m� = 1,

∥∥ṙX
∥∥ ' 13km.s−1

= 1,
∥∥rX

∥∥ = 1

Energy change after a passage at perihelion (in absence of close encounter)

F ∼
mX
m�

∥∥ṙX
∥∥2 ' 10−3 (Petrosky 86’)

Assuming a Maxwellian distribution of Galactic DMP veloci-
ties

f (v)dv ∼ v2 exp
(
−3v2

/2u2
)

dv

with u ' 220km.s−1 ∼ 17 (mean DMP velocity)

As F � u2, not many candidates for capture among Galactic
DMPs
Most of the capturable DMPs have close to parabolic ap-
proaching trajectories (E ∼ 0)
Direct simulation of Newton’s equations is difficult : very
elongated ellipses, not many particles can be simulated,
CPU time consuming (Peter 09’)
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Dark matter capture – Kicked model

x : Jupiter’s phase when DMP at perihelion (x = ϕ/2π mod 1)
w : DMP energy (w = −2E/mDMP)

Symplectic Kepler-Petrosky map

x̄ = x + w̄−3/2 third Kepler’s law
w̄ = w + F(x) energy change after a kick

Map already used in the study of :
I Cometary clouds in Solar systems (Petrosky 86’)
I Chaotic dynamics of Halley’s comet (Chirikov, Vecheslavov 89’)
I Microwave ionization of hydrogen atoms (see e.g. Shepelyansky, scholarpedia)

Advantage : providing the fact the kick function F(x) is known the dynamics of a huge number of
particles can simulated.
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Dark matter capture – Dark map

Kick function determination

F(x)→ F`,θ,φ(x) ∼ Fq,θ,φ(x)

The kick function is different for each approaching con-
figuration (`, θ, φ) ∼ (q, θ, φ)
For close to 1 eccentricities the perihelion is such as

q ∼
`2

2

For each approaching configuration (q, θ, φ), the inte-
gration of the three-body problem gives the kick func-
tion.

θ

φ

q

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013



UTINAM
Institut

UTINAM
Institut

Dark matter capture – Dark map

Kick function determination

F(x)→ F`,θ,φ(x) ∼ Fq,θ,φ(x)

The kick function is different for each approaching con-
figuration (`, θ, φ) ∼ (q, θ, φ)
For close to 1 eccentricities the perihelion is such as

q ∼
`2

2

For each approaching configuration (q, θ, φ), the inte-
gration of the three-body problem gives the kick func-
tion.

-0.001

0

0.001

0 0.25 0.5 0.75 1

x

F
 (

x
) c

-0.002

0

0.002

F
 (

x
) b

-0.006

0

0.006

F
 (

x
) a

a : Halley’s comet
b : q = 1.5, n = 4, θ = 0.7, φ = 0
c : q = 0.5, n = 4, θ = 0., φ = π/2

Chaotic dark matter in the Solar system and galaxies, J. Lages, GRAVASCO IHP, Nov 2013



UTINAM
Institut

UTINAM
Institut

Dark matter capture – Dark map
Kick function determination
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Dark matter – Capture cross section

wcap =
mX
m�

∥∥ṙX
∥∥2 ' 10−3

σp = π
∥∥rX

∥∥2 Jupiter orbit area
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in agreement with Khriplovich & Shepelyansky 09’

I Predominance of long range interaction as suggested by Peter 09’
I Very small contribution from close encounters invalidating previous numerical results (Gould &

Alam 01’ and Lundberg & Edsjö 04’)
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Dark matter evolution – Chaotic dynamics
Simulation of the (isotropic) injection, the capture and the escape of DMPs during the whole lifetime
of the Solar system.
Injection of Ntot ' 1.5× 1014 DMPs with energy |w| in the range [0,∞] with NH = 4× 109 DMPs in
the Halley’s comet energy interval [0,wH ].

I Equilibrium reached after a time td ∼ 107yr similar to the diffusive escape time scale of the
Halley’s comet (Chirikov & Vecheslavov 89’) −→ Equilibrium energy distribution ρ(w)

I The dynamics of dark matter particles in the Solar system is essentially chaotic
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Back to real space – Density distribution of captured DMPs

Nowadays equilibrium density distribution ( tS = 4.5× 109yr )
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I The profile of the radial density ρ(r) ∝ dN/dr is similar to those observed for galaxies
where DMP mass is dominant. Indeed ρ(r) is almost flat (increases slowly) right after
Jupiter orbit (r = 1) −→ according to virial theorem the circular velocity of visible matter is
consequently constant as observed e.g. in Rubin 80’
More precisely, vm ∝ r0.25 (Dark map) quite close to vm ∝ r0.35 (Rubin 80’)
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Back to real space – Density distribution of captured DMPs

Surface density

ρs(z, R) ∝ dN/dzdR
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How much dark matter is present in the Solar system ?

The total mass of DMP passed through the System solar during its lifetime tS = 4.5× 109yr is

Mtot = ρgtS

∫ ∞
0

dv v f (v)σ(v) ≈ 35ρgtSG
∥∥rX

∥∥M�/u ≈ 0.9× 10−6M� ∼ M♀

At time tS the mass of captured DMPs in the Solar system is

MAC ≈ ηACMtot ≈ 2× 10−15M� within r < 0.5 distanceSun-αCentauri

M100au ≈ η100auMtot ≈ 1.3× 10−17M� within r < 100au

The captured DMP mass in the volume of the Neptune orbit radius is

M[ ≈ η[MAC ≈ 0.9× 10−18M� ≈ 1.5× 1015g

The captured DMP mass in the volume of the Jupiter orbit radius is

MX ≈ ηXMAC ≈ 4.6× 10−20M� ≈ 1014g

The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =
3MX
4πr3
X
≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solar
system, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0
dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 of
the density of actually capturable DMPs.

=⇒

The long range
interaction capture
mechanism is very
efficient for binary
systems (1+2) with

m1 � m2
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The average volume density of captured dark matter inside the Jupiter orbit sphere is

ρX =
3MX
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X
≈ 5× 10−29g/cm3 ≈ 1.2× 10−4

ρg � ρg (Galactic DMP density)

Globally, not much dark matter captured by the Solar
system, but ...

Let’s compare to the capturable DMP density

ρgH = ρg

∫ √wH

0
dv v f (v) ≈ 1.4× 10−32g/cm3

Huge chaotic enhancement ζ = ρX/ρgH ≈ 4× 103 of
the density of actually capturable DMPs.
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mechanism is very
efficient for binary
systems (1+2) with
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Conclusion : Dark matter capture in binary systems (preliminary results)
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Thank You !
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