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I The Game of Go
● Game of go: very ancient 

Asian game, probably 
originated in China in 
Antiquity

● Different name for different 
country :

Japan = Go

China = Weiqi

Korea = Baduk
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I The Game of Go
● Go is a very popular game in asia, this game is payed on a 

goban (see below)
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1.1 Rules of Go
● White and black stones alternatively 

put at intersections of 19 X 19 lines

● Stones without liberties are 
removed

● A chain with only one liberty is said 
in atari

● Handicap stones can be placed

● Aim of the game : construct 
protected territories
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1.1 Rules of Go
● A ko (left) and endgame (right) exampe :
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1.2 Player rankings
● There are nine levels (dans) of 

professionals followed by nine levels of 
amateurs

● A handicap stone can compensate for 
roughly one dan: like in golfing, players 
of different levels can play evenly 
thanks to handicaps

● There are regular tournaments of go 
since very long times
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1.3 Computer Simulations
● While Deep Blue beat the world chess chamion Kasparov in 

1997, Only since 2016 a computer program (AlphaGo) has 
beaten one of the best go player:

March 2016: It wins 4-1 vs. Lee Sedol (world No.3 ranked 
player) 

May 2017: It wins 3-0 vs.  Ke Jie (world No.1 ranked player)
● Difficult game to simulate:

Total number of legal positions 10171  vs. 1050 for chess

Not easy to assign positional advantage to a move
● AlphaGo uses Monte Carlo tree search algorithm and deep 

learning techinques, It can play random games during a game 
in order to assigned a value to a move  
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1.4 Databases
● Human played games :

8000 amateur games (http://www.u-go.net/)
● Computer generated games :

8000 games with deterministic 
algorithm (Gnugo)

8000 games with Monte Carle 
search tree algorithm (Fuego)

Only 50 AlphaGo vs AlphaGo 
Games (http://senseis.xmp.net/?AlphaGo)
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II Complex Directed Network Model
● G:=(E, V) is a network (graph) composed of N

E 
links (Edges) 

linking N
V
 nodes (Vertices)

● Each link has a direction from the outgoing node i toward the 
incoming node j.

● A first statistical investigation is the integrated distribution of 
links in a network :

The degree K(i)
in/out 

is the number of link (incoming or 
outgoing) of the i-th node

P(K
in/out

) is the probability to having at least K links (in/out) 
for a given node

=> Classification of networks, ex : (Scale-free, Random..)
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II Complex Directed Network Model
1 2 3 4

5 6 7
8

Fig. 2: Directed network, 8 
nodes and 10 links. dangling 
node and dangling group

Fig. 1: Two types of networks 
(Top), their respectiv integrated 
links distribution (Bottom)

P(k
in/out

) = kγ  => Power law => 
Scale-free network
Particularities :

Hubs (Nodes with highest 
degree)

Small-world phenomenon
Examples : Social networks, 
protein-protein interactiton, 
WWW and semantic network
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2.1 Nodes and local fight pattern
● We propose to use square of 3X3 intersections

N
v
=1107 nonequivalent patterns with empty centers:

symmetrically different

different by color swapping

Fig. 3:  Node ‘’0‘’ Fig. 4:  Node ‘’7’’
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2.2 Links and strategy bias
● We propose to use d

s
= 4 as a strategic distance between two 

linked nodes

● Time-directed links

● Finnaly if the node j (h
j
, v

j
) is played after (during the same 

game) the node i (hi,vi) and if we have max{ |h
j
-h

i
|, |v

j
-v

i
| } ≤ d

s
 

ji
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2.3 A Scale-free Network
● Integrated distribution of links for each kind of network (Human, 

Gnugo and Fuego) represents scale-free networks with high 
symmetry between in/out links (γ = -1)

● Due to the construction method => as we take consecutive 
games within a database for our network a node is often a 
source and a destination of a link

● Value of K for hubs (rightmost points) within human network is 
higher than in both computers network => human seems to 
prefer certain moves independently of the global strategy

● There are more oscillations for Gnugo and Fuego
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Gnugo
Fuego
Human

Hubs are slighlty rarer than 
human

Fig. 5: Integrated link distribution for 
Gnguo/Fuego/Human

K=K* K
tot

1589729
2046260
1527421
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Can we have more information about network structure ?Is there any difference between human and computer network ?
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III Google Matrix and PageRanking

1 2 3 4

5 6 7
8

H : Hyperlinks Matrix
S : Left Stochastic Matrix (eachc column 
summing to 1)
G : Google Matrix

l
j 
: number of outgoing link from P

j

B
j 
: ensemble of nodes with outgoing 

links toward j
α : damping factor

Fig. 6: S
ij

Fig. 7: G
ij

1
N
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3.1 Perron s Vector’

● Let A be a real, non-negative and asymmetric Matrix 
with each column summing to 1 => every eigenvalues 
are less or equal in absolute value to 1

● The perron vector is the leading eigenvector 
associated with λ=1 

Such that : Ap = p
● This vector represents the asymptotic time a random 

walker spend in each node of the network
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3.2 Google PageRanking 

● Using Perron-Frobenius theorem and iterative method 
=> Ranking Indexed webpage by importance order

● A node i is more important if it is pointing by importants 
nodes…

● The importance of a node is proportional to its value 
within google matrix perron’s vector

● Damping factor turns S into a diagonalisable matrix 
with no degenerated leading eigenvalue

α ∈ [0, 1]  , we will take the value 0.85
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3.3 PageRank

● p is a perron’s vector with size N

We call P, the PageRank with  1 ≤ P
k 
≤ N

as the permutation of integers obtained by ranking in 
decreasing order according to the entries p

i
 of the perron’s 

vector

such that => p
P(1) 

≥ p
P(2) 

≥ … ≥ p
P(N)
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3.4 Other Ranking Vector
● CheiRank is the PageRank applied to the reciprocal network 

inverting incoming and outgoing links

● We can also use the other eigenvectors => information about 
different communities of nodes in the network
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IV Distinguishing Human from Computer Strategy
● In the game of go case, our directed network reveals the 

strategy used within a databank of games

● The associated PageRank lights us about the most important 
moves played within the databank

● Let see here how can most important moves and eigenvalues 
for each network be involved in a Turing-like test => Is the 
computer imitate a human player ?
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4.1 Top20
Gnugo

Fuego

Human

Fig. 8: Top 20 of the PageRank, for Gnugo only 12 elements are in Human 
Top20 and for Fuego 18 elements are in Human Top20 
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4.2 PageRank Correlation
● We plot the correlation between the first half of the entries for 

two PageRanks A and B

● In order to quantify we compute σ the dispersion  

Human/Gnugo PageRank Correlation plots have a high 
dispersion value (193.48) contrary to Gnugo/Gnugo (24.04) and 
Human/Human (43.66)
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4000 

1000 

8000 

Fig. 9: PageRank correlation,  first column = human vs. Human, second 
column = computer vs. Human and last column = computer vs. computer  
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4.3 Spectrum of Google Matrix
● Spectrum using 8000 games and α = 1 :

Google matrix properties :

the eigenvalues lie inside the unit disk

complex ones occur in conjugated pairs

Gnugo => scattered spectrum

Fuego => similarity with Human but there are many outlying 
eigenvalues

● λ
c
(x) = radius of a circle (centred at 0) containing a certain percentage x 

of eigenvalues

=> more quantitative informations

=> striking differences between the two behaviours 

=> robust results with subset size
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Fig. 10:  Spectrum of the Google matrice for Gnugo, Fuego and Human with 8000-games network and 
α= 1.0 (top row). Radial distribution if eigenvalues (bottom) same color code, solid line for 
8000, long dashed 4000 and dashed 1000 games
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4.4 Distinguishing with PageRank
● We want to compare PageRanks from different networks

240 sets of 1000-games network, 120 of 2000-games network 
and 60 of 4000-games network

1 master group of 8000 games

different quantities : PageRank Fidelity F and PageRank Non-
ordered PageRank Similarity S

N 

Perron’s vectors normalized using 
a norme-2 condition
F = 0 => totaly different
F = 1 => same vectors
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4.5 Toward a Turing-like Test for go
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Conclusion
● Networks built from computer-generated games and human-played 

games have statistically significant differences in several respects :

– Google matrix Spectra

– PageRank vector
● Differences using different algorithms

– Deterministic (Gnugo), Monte-Carlo (Fuego) and even with a 
small database with deep learning simulator (AlphaGo)

=> In general the computer plays using more varied set of most 
played moves, but with more correlation between games for Gnugo

=> We could devise a Turing test for the go simulators 

Does this simulator imitate very well a biological palyer ?
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Thank you
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