

ROTATION OF A VISCOELASTIC, SYNCHRONOUS CRUST Benoît Noyelles, University of Namur, Belgium benoit.noyelles@unamur.be

The tensor of inertia

	$(< I_{11} >$	е	
$(\mathcal{I}) \propto$	е	< 1 ₂₂ >	
	ϵ	eε	<

This tensor of inertia is time-dependent, because of the variations of the gravitational torque of the parent planet.

The tidal models

- The Love numbers h, k, depend on the tidal frequency
- The Maxwell time τ_{M} has a critical role (limit elasticity/anelasticity)
- Andrade model more realistic at high frequencies for ices

 χ_1 : diurnal frequency, χ_3 : semi-diurnal, χ_6 : nodal

The algorithm of resolution

This is an iterative algorithm, based on numerical simulations and Fourier decomposition of the solutions.

- 1)Clever choice of initial conditions: synchronous rotation, Cassini States, + appropriate tensor of inertia
- 2)Propagation of the equations (10th order Adams-Bashforth-Moulton scheme)
- 3) Digital filtering (Fourier decomposition) to express the frequencydependent tidal coefficients
- 4)New iteration

eε *I*₃₃ >

			λαπ	pie or our	
l	₁₁ (kg.m ²)				
	Period			Analytical	
	∞			$1.9948 imes 10^{26}$	
	3.525 d	\mathcal{M}	\propto $m{ extsf{ extsf} extsf{ extsf{ extsf{ extsf} extsf{ extsf{ extsf} extsf{ extsf{ extsf} extsf{ extsf} extsf}$	$9.40368 imes 10^{20}$	g
	3.551 d			_	2
	1.763 d	$2\mathcal{M}$	$\propto {\it e}^2$	$1.55492 imes 10^{19}$	1
	1.769 d			_	7
	1.775 d	$2\mathcal{M}+2\omega$	$\propto \varepsilon^2$	$1.75023 imes 10^{15}$	
	1.769 d 1.775 d	$2\mathcal{M}$ + 2ω	$\propto e^2$	1.75023×10^{-10}	7

 \mathcal{M} : mean anomaly ω : pericenter

The numerical algorithm also gives the influence of the planetary perturbations.

The resulting libration

 $\sigma(t) = \sigma_0 + \sigma_1 \sin(\mathcal{M} + \phi_1) + \sigma_2 \sin(2\mathcal{M} + \phi_2)$

Conclusions and perspectives

- the spin-orbit resonance?)
- tides?

To know more...

- arXiV:1605.05919
- Keplerian orbit and atmospheric couplings, PSS

An example of output

 $1.9948 imes 10^{26}$ 9.39044×10^{20} $2.15698 imes 10^{19}$ $.53731 \times 10^{19}$ 2.08836×10^{17}

Numerical

• The viscoelasticity raises the rotational response of the body. • The dissipative tide $(Im(k_2))$ induces phase-shifts in the librations. • No supersynchronous rotation obtained from this theory (have to relax

How could the measurement of the rotational quantities affect the

• Goldreich P.M. & Mitchell J.L., 2010, *Elastic ice shells of synchronous moons:* Implications for cracks on Europa and non-synchronous rotation of Titan, Icarus • Karato S.-i., 2008, *Deformation of Earth materials*, Cambridge University Press • Laskar J., 1995, Introduction to frequency analysis, Proceedings of 3DHAM95 • Noyelles B., Interpreting the librations of a synchronous satellite, submitted,

• Richard et al., 2014, Librational response of a 3-layer Titan perturbed by non-• Van Hoolst et al., 2013, On the librations and tides of large icy satellites, Icarus