Modeling the rotation of Mercury

Benoît Noyelles

University of Namur (Belgium) in collaboration with A. Lemaître, C. Lhotka, J. Frouard, S. D'Hoedt and J. Dufey

May, 17th 2013 - Rio Claro

ヘロト 人間 ト ヘヨト ヘヨト

æ

Plan

2 Mathematical formulation of the rotation

- A rigid Mercury
- Equilibrium and free periods
- Introduction of a liquid core
- The Poincaré-Hough model
- 3 Our numerical treatment

Perspective and conclusions

< 17 ▶

★ E ► < E ►</p>

- 2 Mathematical formulation of the rotation
 - A rigid Mercury
 - Equilibrium and free periods
 - Introduction of a liquid core
 - The Poincaré-Hough model
- Our numerical treatment
- Perspective and conclusions

→ E → < E →</p>

< 17 ▶

The dynamics of Mercury

- Semi-major axis: 0.389 AU
- Eccentricity: 0.206
- Inclination: 7°
- Orbital period: 88 days
- Spin period: 58 days
- $\bullet~$ Obliquity: 2.04 \pm 0.08 arcmin

< 🗇 >

- < ≣ → <

Radius: 2439.7 \pm 1.0 km

The rotation of Mercury

3:2 spin-orbit resonance

Benoît Noyelles Modeling the rotation of Mercury

ヘロト 人間 ト ヘヨト ヘヨト

3

The mission MESSENGER (NASA) Mercury Surface, Space Environment, Geochemistry and Ranging

- Launched on August 3, 2004
- 3 flybys : January 14 2008, October 6 2008 and September 29 2009
- Orbit insertion : March 18, 2011
- Goals : Maps, 3-D model of magnetosphere, gravity field, etc.

イロト イポト イヨト イヨト

The gravity field of Mercury

$$U(r,\lambda,\phi) = \frac{GM}{r} + \frac{GM}{r} \sum_{n=2}^{\infty} \sum_{m=0}^{n} \left(\frac{R}{r}\right)^{n} P_{nm}(\sin\phi) \left[C_{nm}\cos m\lambda + S_{nm}\sin m\lambda\right]$$

r: distance, λ : longitude, ϕ : latitude

Mariner 10 (1973)		MESSENGER (2012)
		$(1.74 \pm 6.5) imes 10^{-8}$
	$(8.1 \pm 0.8) imes 10^{-6}$	
	$(-0.3 \pm 1.2) imes 10^{-6}$	
		$(-1.188 \pm 0.08) imes 10^{-5}$
		$(-1.95 \pm 0.24) imes 10^{-5}$

ヘロト 人間 とくほとくほとう

3

The gravity field of Mercury

$$U(r,\lambda,\phi) = \frac{GM}{r} + \frac{GM}{r} \sum_{n=2}^{\infty} \sum_{m=0}^{n} \left(\frac{R}{r}\right)^{n} P_{nm}(\sin\phi) \left[C_{nm}\cos m\lambda + S_{nm}\sin m\lambda\right]$$

r: distance, λ : longitude, ϕ : latitude

	Mariner 10 (1973)	2 flybys (2010)	MESSENGER (2012)
$C_{20} = -J_2$	$(-6.0 \pm 2.0) imes 10^{-5}$	$(-1.92 \pm 0.67) imes 10^{-5}$	$(-5.031 \pm 0.02) imes 10^{-5}$
C ₂₁	-	-	$(-5.99\pm 6.5) imes 10^{-8}$
S ₂₁	-	-	$(1.74 \pm 6.5) imes 10^{-8}$
C ₂₂	$(1.0 \pm 0.5) imes 10^{-5}$	$(8.1 \pm 0.8) imes 10^{-6}$	$(8.088 \pm 0.065) imes 10^{-6}$
S ₂₂	-	$(-0.3 \pm 1.2) imes 10^{-6}$	$(3.22 \pm 6.5) imes 10^{-8}$
$C_{30} = -J_3$	-	-	$(-1.188 \pm 0.08) imes 10^{-5}$
$C_{40} = -J_4$	-	-	$(-1.95\pm0.24) imes10^{-5}$

ヘロト 人間 とくほとくほとう

3

The gravity field of Mercury Smith et al. 2012

$$U(r,\lambda,\phi) = \frac{GM}{r} + \frac{GM}{r} \sum_{n=2}^{\infty} \sum_{m=0}^{n} \left(\frac{R}{r}\right)^{n} P_{nm}(\sin\phi) \left[C_{nm}\cos m\lambda + S_{nm}\sin m\lambda\right]$$

r: distance, λ : longitude, ϕ : latitude

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

The mission BepiColombo (1/3) (ESA / JAXA)

Giuseppe Colombo (1920-1984)

Benoît Noyelles Modeling the rotation of Mercury

★ Ξ → ★ Ξ →

ъ

The mission BepiColombo (2/3)

Launch : August 2015

Benoît Noyelles Modeling the rotation of Mercury

ヘロト ヘ戸ト ヘヨト ヘヨト

э

The mission BepiColombo (3/3)

MPO (Mercury Planetary Orbiter, ESA)

- 11 instruments
- 400 1500 km
- Period: 2.3 h

MMO (Mercury Magnetospheric Orbiter, JAXA)

- 5 instruments
- 400 11800 km
- Period: 9.3 h

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The MORE experiment

Mercury Orbiter Radio-Science Experiment

Goals

- Gravity field of Mercury
- Test of General Relativity (PPN γ, β, η, α₁, + Solar J₂)
- Rotation

Our job in Namur

Provide a routine giving the matrix between an inertial reference frame and the principal axes of inertia of Mercury at any date and for any set of relevant interior parameters (C_{20} , C_{22} , size of the core, ...)

A rigid Mercury Equilibrium and free periods ntroduction of a liquid core The Poincaré-Hough model

Plan

Introduction

2 Mathematical formulation of the rotation

- A rigid Mercury
- Equilibrium and free periods
- Introduction of a liquid core
- The Poincaré-Hough model
- Our numerical treatment
- 4 Perspective and conclusions

(신문) (문문

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The variables 3 degrees of freedom

Λ₁ (Angular Momentum)

•
$$\Lambda_2 = \Lambda_1(1 - \cos J)$$
 (Wobble)

• $\Lambda_3 = \Lambda_1(1 - \cos K)$ (Obliquity)

・ロト ・ 理 ト ・ ヨ ト ・

ъ

(from D'Hoedt & Lemaître 2004)

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The Hamiltonian

$$\mathcal{H} = \frac{(\Lambda_1 - \Lambda_2)^2}{2C} + \frac{\Lambda_1^2 - (\Lambda_1 - \Lambda_2)^2}{2} \Big(\frac{\sin^2 \lambda_2}{A} + \frac{\cos^2 \lambda_2}{B} \Big) \\ - \frac{3}{2} \frac{GM_{\odot}}{r^3} MR^2 \big(J_2(x^2 + y^2) + C_{22}(x^2 - y^2) \big)$$

with :

- *M*_☉: Solar mass
- (x, y, z): unit vector pointing at the Sun in the Hermean frame
- A < B < C: principal moments of inertia

•
$$J_2 = \frac{2C - B - A}{2MR^2}, C_{22} = \frac{B - A}{4MR^2}$$

・ロト ・ 理 ト ・ ヨ ト ・

3

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The equilibrium

2 "resonant" arguments

- $\sigma_1 = \lambda_1 \frac{3}{2}I_o \varpi_o$ (spin-orbit resonance)
- $\sigma_3 = \lambda_3 + \Omega_o$ (3rd Cassini Law)

The equilibrium

- $\Lambda_1^* = \frac{3}{2}nC$ (rigid)
- $\sigma_1^* = 0, \, \sigma_3^* = 0$
- $J^* = 0, K^* \propto \dot{\Omega}_o$

イロト 不得 とくほと くほとう

ъ

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The free librations (1/2)

Centering the Hamiltonian

$$\mathcal{H}_{1} = \alpha_{1}\sigma_{1}^{2} + 2\alpha_{2}\sigma_{1}\sigma_{3} + \alpha_{3}\sigma_{3}^{2} + \alpha_{4}\eta_{1}^{2} + 2\alpha_{5}\eta_{1}\eta_{3} + \alpha_{6}\eta_{3}^{2} + \alpha_{7}\lambda_{2}^{2} + \alpha_{8}\Lambda_{2}^{2} + \text{third-order}$$

Obtention of the free librations

Untangling the degrees of freedom (Henrard & Lemaître 2005)

• We get :
$$\mathcal{H}_2 = \omega_u U + \omega_v V + \omega_w W$$

ヘロン ヘアン ヘビン ヘビン

3

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The free librations (2/2) Numerical values

	Rigid case	Liquid core ($C_m/C = 0.579$)
Tu	15.85 y	12.06 y
T_{v}	1065 y	616 y
T_w	582 y	460 y

Benoît Noyelles Modeling the rotation of Mercury

イロト 不得 とくほ とくほとう

ъ

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

3 timescales of excitation...

• Orbital period of Mercury: 88 days

- Orbital period of Jupiter: 11.86 years
- Nodal regression period: \approx 300 kyrs

イロト イポト イヨト イヨト

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

3 timescales of excitation...

- Orbital period of Mercury: 88 days
- Orbital period of Jupiter: 11.86 years
- Nodal regression period: \approx 300 kyrs

くロト (過) (目) (日)

æ

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

3 timescales of excitation...

- Orbital period of Mercury: 88 days
- Orbital period of Jupiter: 11.86 years
- Nodal regression period: \approx 300 kyrs

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The Peale experiment

Question

Does Mercury have a partially molten core?

Assumptions

- For short-term motion (longitudinal librations), the (spherical) fluid core does not affect the rotation
- For long-term motion (obliquity), the fluid core behaves like a rigid body

ヘロト ヘワト ヘビト ヘビト

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The Peale experiment

Question

Does Mercury have a partially molten core?

Assumptions

- For short-term motion (longitudinal librations), the (spherical) fluid core does not affect the rotation
- For long-term motion (obliquity), the fluid core behaves like a rigid body

イロト イポト イヨト イヨト

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The equations

Amplitude of the longitudinal librations (88 days)

$$b = \frac{3}{2} \frac{B-A}{C_m} \left(1 - 11e^2 + \frac{959}{48}e^4 + \dots \right)$$
$$= 6C_{22} \frac{MR^2}{C} \frac{C}{C_m} \left(1 - 11e^2 + \frac{959}{48}e^4 + \dots \right)$$

Equilibrium obliquity (Cassini State 1)

$$\epsilon = -\frac{\frac{C}{MR^2}\dot{\Omega}\sin\iota}{\frac{C}{MR^2}\dot{\Omega}\cos\iota + 2n\left(\frac{7}{2}e - \frac{123}{16}e^3\right)C_{22} - n(1 - e^2)^{-3/2}C_{20}}$$

ヘロア 人間 アメヨア 人口 ア

ъ

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The observed quantities Margot et al. 2007, 2012

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

Including the pressure coupling

 $\epsilon_1 = \frac{2C - A - B}{2C} = J_2 \frac{MR^2}{C}$ $\epsilon_2 = \frac{B - A}{2C} = 2C_{22} \frac{MR^2}{C}$ $\epsilon_3 = \frac{2C_c - A_c - B_c}{2C_c}$ $\epsilon_4 = \frac{B_c - A_c}{2C_c}$ $\delta = C_c/C$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The variables of the problem 4 degrees of freedom

Canonical variables

- (p, P): spin & norm of the total angular momentum
- (r, R): node & obliquity
- (η_1, ξ_1) : polar momentum of the whole body
- $(\eta_2, \xi_2) \approx$ velocity field of the fluid

Interesting quantities

- Longitudinal librations ϕ_m
- Obliquity of the mantle K_m
- Polar motion of the mantle J_m
- Tilt of the velocity field of the fluid J_c

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The variables of the problem 4 degrees of freedom

Canonical variables

- (p, P): spin & norm of the total angular momentum
- (r, R): node & obliquity
- (η_1, ξ_1) : polar momentum of the whole body
- $(\eta_2, \xi_2) \approx$ velocity field of the fluid

Interesting quantities

- Longitudinal librations ϕ_m
- Obliquity of the mantle K_m
- Polar motion of the mantle J_m
- Tilt of the velocity field of the fluid J_c

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The Hamiltonian of the model Noyelles et al. 2010

$$\begin{aligned} \mathcal{H} &\approx \quad \frac{n}{2(1-\delta)} \left(P^2 + \frac{P_c^2}{\delta} + 2\sqrt{PP_c} (\eta_1 \eta_2 - \xi_1 \xi_2) + 2 \left(P \frac{\xi_2^2 + \eta_2^2}{2} + P_c \frac{\xi_1^2 + \eta_1^2}{2} - PP_c \right) \right) \\ &+ \quad \frac{n\epsilon_1}{2(1-\delta)^2} \left(P(\xi_1^2 + \eta_1^2) + P_c(\xi_2^2 + \eta_2^2) + 2\sqrt{PP_c} (\eta_1 \eta_2 - \xi_1 \xi_2) \right) \\ &+ \quad \frac{n\epsilon_2}{2(1-\delta)^2} \left(P(\xi_1^2 - \eta_1^2) + P_c(\xi_2^2 - \eta_2^2) - 2\sqrt{PP_c} (\eta_1 \eta_2 + \xi_1 \xi_2) \right) \\ &- \quad \frac{n\epsilon_3}{2(1-\delta)^2} \left(\delta P(\xi_1^2 + \eta_1^2) + \left(2 - \frac{1}{\delta}\right) P_c(\xi_2^2 + \eta_2^2) + 2\delta\sqrt{PP_c} (\eta_1 \eta_2 - \xi_1 \xi_2) \right) \\ &+ \quad \frac{n\epsilon_4}{2(1-\delta)^2} \left(\delta P(\eta_1^2 - \xi_1^2) + \left(2 - \frac{1}{\delta}\right) P_c(\eta_2^2 - \xi_2^2) + 2\delta\sqrt{PP_c} (\eta_1 \eta_2 + \xi_1 \xi_2) \right) \\ &- \quad \frac{3}{2} \frac{\mathcal{GM}}{nr^3} (\epsilon_1 (x^2 + y^2) + \epsilon_2 (x^2 - y^2)) \end{aligned}$$

イロト 不得 とくほ とくほとう

ъ

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

How the shape of the core affects the frequencies shape = triaxiality

	ϵ_3/ϵ_1	0	0.1	1	3	3
	ϵ_4/ϵ_2	0	0	1	3	0
(longitude)	<i>T_U</i> (y)	12.05800	12.05775	12.05772	12.05777	12.05773
(obliquity)	$T_V(y)$	615.77	(large)	1636.43	1214.91	1216.09
(wobble)	$T_W(y)$	337.82	337.82	337.87	338.14	338.20
(Free Core Nutation)	T_Z (d)	-	58.630	58.619	58.585	58.585
	$T_{Z-\omega}$ (y)	-	574.06	343.45	154.04	154.01

 ϵ_3, ϵ_4 : polar flattening, equatorial ellipticity of the core

The equatorial flattening (ϵ_4) of the core has no influence on the rotational dynamics.

The longitudinal librations are well represented with a spherical core.

ヘロア 人間 アメヨア 人口 ア

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

How the shape of the core affects the frequencies shape = triaxiality

	ϵ_3/ϵ_1	0	0.1	1	3	3
	ϵ_4/ϵ_2	0	0	1	3	0
(longitude)	<i>T_U</i> (y)	12.05800	12.05775	12.05772	12.05777	12.05773
(obliquity)	$T_V(y)$	615.77	(large)	1636.43	1214.91	1216.09
(wobble)	$T_W(y)$	337.82	337.82	337.87	338.14	338.20
(Free Core Nutation)	T_Z (d)	-	58.630	58.619	58.585	58.585
	$T_{Z-\omega}$ (y)	-	574.06	343.45	154.04	154.01

 ϵ_3, ϵ_4 : polar flattening, equatorial ellipticity of the core

The equatorial flattening (ϵ_4) of the core has no influence on the rotational dynamics.

The longitudinal librations are well represented with a spherical core.

ヘロン ヘアン ヘビン ヘビン

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

Longitudinal librations Dufey et al. (2008, 2009)

Ν Period Amplitude Ratio 10 I_V ls. le Mercury Venus Earth Jupiter Saturn 11.862 y 43.711 as 1.2193 2 1 87.970 d 35.848 as 1.0000 3 2 43.985 d 3.754 as 0.1047 --2 4 -5 5.664 v 3.597 as 0.1003 5 2 14.729 y 1.568 as 0.0437 6 2 5.931 y 1.379 as 0.0385 7 1 -4 6.575 y 0.578 as 0.0161 8 3 29.323 d 0.386 as 0.0108 9 1 -2 91.692 d 0.201 as 0.0056 2 10 1 84.537 d 0.191 as 0.0053 11 2 -5 883.28 y 0.103 as 0.0029 12 2 -1 44.436 d 0.069 as 0.0019 2 13 1 43.541 d 0.067 as 0.0019 14 1 -1 89.793 d 0.044 as 0.0012 15 1 1 86.217 d 0.043 as 0.0012 16 2 -2 44.897 d 0.041 as 0.0011 17 2 43.110 d 0.040 as 0.0011

Free period : 12.06 years

Benoît Noyelles Modeling the rotation of Mercury

∃ > < ∃ >

э

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

A longitudinal resonance

- Free period: 12.06 years
- Orbital period of Jupiter: 11.86 years

(Peale, Margot & Yseboodt 2009)

★ Ξ → ★ Ξ →

< < >> < </>

A rigid Mercury Equilibrium and free periods Introduction of a liquid core The Poincaré-Hough model

The forced polar motion

Period: 175.9 days

This motion is negligible.

< ∃→

ъ

Plan

- 2 Mathematical formulation of the rotation
 - A rigid Mercury
 - Equilibrium and free periods
 - Introduction of a liquid core
 - The Poincaré-Hough model
- Our numerical treatment
- Perspective and conclusions

★ E → ★ E →

< 🗇 🕨

Our job for MORE / BepiColombo

Our job

Provide a routine giving the matrix between an inertial reference frame and the principal axes of inertia of Mercury at any date and for any set of relevant interior parameters (C_{20} , C_{22} , size of the core, ...)

Problem

It is very difficult to simulate the rotation without generating free librations.

ヘロト 人間 ト ヘヨト ヘヨト

Our job for MORE / BepiColombo

Our job

Provide a routine giving the matrix between an inertial reference frame and the principal axes of inertia of Mercury at any date and for any set of relevant interior parameters (C_{20} , C_{22} , size of the core, ...)

Problem

It is very difficult to simulate the rotation without generating free librations.

イロト イポト イヨト イヨト

The way we proceed

- Consideration of 2 degrees of freedom (polar motion neglected)
- Numerical integrations of the equations of motion over 6000 yrs
- Use of JPL/DE406 ephemerides (available over -3000 +3000)
- Damping of the free longitudinal librations (period: \approx 12 yrs)
- Problem: How to remove the free librations of the obliquity? (period: \approx 1 kyr)

ヘロト ヘアト ヘビト ヘビト

The way we proceed

- Consideration of 2 degrees of freedom (polar motion neglected)
- Numerical integrations of the equations of motion over 6000 yrs
- Use of JPL/DE406 ephemerides (available over -3000 +3000)
- Damping of the free longitudinal librations (period: \approx 12 yrs)
- Problem: How to remove the free librations of the obliquity? (period: \approx 1 kyr)

ヘロン 人間 とくほ とくほ とう

1

The way we proceed

- Consideration of 2 degrees of freedom (polar motion neglected)
- Numerical integrations of the equations of motion over 6000 yrs
- Use of JPL/DE406 ephemerides (available over -3000 +3000)
- Damping of the free longitudinal librations (period: \approx 12 yrs)
- Problem: How to remove the free librations of the obliquity? (period: \approx 1 kyr)

イロト イポト イヨト イヨト 三日

The way we proceed

- Consideration of 2 degrees of freedom (polar motion neglected)
- Numerical integrations of the equations of motion over 6000 yrs
- Use of JPL/DE406 ephemerides (available over -3000 +3000)
- Damping of the free longitudinal librations (period: \approx 12 yrs)
- Problem: How to remove the free librations of the obliquity? (period: \approx 1 kyr)

<ロ> (四) (四) (三) (三) (三)

The way we proceed

- Consideration of 2 degrees of freedom (polar motion neglected)
- Numerical integrations of the equations of motion over 6000 yrs
- Use of JPL/DE406 ephemerides (available over -3000 +3000)
- Damping of the free longitudinal librations (period: \approx 12 yrs)
- Problem: How to remove the free librations of the obliquity? (period: \approx 1 kyr)

イロト イポト イヨト イヨト 三日

Minimizing the free librations in obliquity

Problem

Difficult to damp librations of 1000 yrs over 4000 yrs without altering significantly the equilibrium.

Idea

Optimize the initial conditions.

Algorithm: a long-term study

- Averaging of the equations of motion
- Extrapolation of the relevant orbital quantities
- Frequency analysis to remove the free librations
- Expression of the initial conditions

Minimizing the free librations in obliquity

Problem

Difficult to damp librations of 1000 yrs over 4000 yrs without altering significantly the equilibrium.

Idea

Optimize the initial conditions.

Algorithm: a long-term study

- Averaging of the equations of motion
- Extrapolation of the relevant orbital quantities
- Frequency analysis to remove the free librations
- Expression of the initial conditions

Extrapolation of the eccentricity Noyelles & D'Hoedt 2012

$$z(t) = e(t) \exp i \varpi(t) = e(t) (\cos \varpi(t) + i \sin \varpi(t)) = k(t) + i h(t)$$

$h(t) = e(t) \sin \varpi(t)$		$k(t) = e(t) \cos \varpi(t)$			
h(t)	\approx	$a_2t^2 + a_1t + a_0$	k(t)	\approx	$a_5t^2 + a_4t + a_3$
	\approx	$\alpha_1 \sin(\dot{\omega}_1 t + \phi_1) + \alpha_2 \sin(\dot{\omega}_2 t + \phi_2)$		\approx	$\alpha_1 \cos(\dot{\omega}_1 t + \phi_1) + \alpha_2 \cos(\dot{\omega}_2 t + \phi_2)$
<i>a</i> ₀	=	$\alpha_1 \sin \phi_1 + \alpha_2 \sin \phi_2$	a ₃	=	$\alpha_1\cos\phi_1+\alpha_2\cos\phi_2$
a ₁	=	$\alpha_1\dot{\omega}_1\cos\phi_1+\alpha_2\dot{\omega}_2\cos\phi_2$	a_4	=	$-\left(lpha_{1}\dot{\omega}_{1}\sin\phi_{1}+lpha_{2}\dot{\omega}_{2}\sin\phi_{2} ight)$
a ₂	=	$-\left(\alpha_1\dot{\omega}_1^2\sin\phi_1+\alpha_2\dot{\omega}_2^2\sin\phi_2\right)/2$	a 5	=	$-\left(\alpha_1\dot{\omega}_1^2\cos\phi_1+\alpha_2\dot{\omega}_2^2\cos\phi_2\right)/2$

・ロト ・ 理 ト ・ ヨ ト ・

æ

Extrapolation of the inclination

$$\zeta(t) = \sin \frac{l(t)}{2} \exp i \mathfrak{Q}(t) = \sin \frac{l(t)}{2} (\cos \mathfrak{Q}(t) + i \sin \mathfrak{Q}(t)) = q(t) + i p(t)$$

$p(t) = \sin \frac{l(t)}{2} \sin \Omega(t)$		$q(t) = \sin rac{l(t)}{2} \cos \wp(t)$			
p(t)	\approx	$b_2 t^2 + b_1 t + b_0$	q(t)	\approx	$b_5t^2 + b_4t + b_3$
	\approx	$\beta_1 \sin(\dot{\Omega}_1 t + \Phi_1) + \beta_2 \sin(\dot{\Omega}_2 t + \Phi_2)$		\approx	$\beta_1 \cos(\dot{\Omega}_1 t + \Phi_1) + \beta_2 \cos(\dot{\Omega}_2 t + \Phi_2)$
b ₀	=	$\beta_1 \sin \Phi_1 + \beta_2 \sin \Phi_2$	b_3	=	$\beta_1 \cos \Phi_1 + \beta_2 \cos \Phi_2$
b ₁	=	$\beta_1 \dot{\Omega}_1 \cos \Phi_1 + \beta_2 \dot{\Omega}_2 \cos \Phi_2$	b ₄	=	$-\left(eta_1\dot{\Omega}_1\sin\Phi_1+eta_2\dot{\Omega}_2\sin\Phi_2 ight)$
b ₂	=	$-\left(\beta_1\dot{\Omega}_1^2\sin\Phi_1+\beta_2\dot{\Omega}_2^2\sin\Phi_2\right)/2$	<i>b</i> 5	=	$-\left(\beta_1\dot{\Omega}_1^2\cos\Phi_1+\beta_2\dot{\Omega}_2^2\cos\Phi_2\right)/2$

ヘロト 人間 とくほとくほとう

₹ 990

New initial conditions

$$\begin{array}{lll} \mathcal{K} & = & l + a_1 - 2a_2\cos\left(\Omega_2 - \Omega_1\right) + 2a_3\cos\left(2\Omega_2 - 2\Omega_1\right) - 2a_4\cos\left(\varpi_1 - \varpi_2\right) \\ & + & 2a_5\cos\left(2\varpi_1 - 2\Omega_1\right) - 2a_6\cos\left(3\Omega_2 - 3\Omega_1\right) + 2a_7\cos\left(4\Omega_2 - 4\Omega_1\right) \\ & + & 2a_8\cos\left(\varpi_2 - \varpi_1 + \Omega_2 - \Omega_1\right) + 2a_9\cos\left(\varpi_1 - \varpi_2 + \Omega_2 - \Omega_1\right) + 2a_{10}\cos\left(\varpi_1 + \varpi_2 - 2\Omega_1\right) \\ & - & 2a_{11}\cos\left(2\varpi_1 - 3\Omega_1 + \Omega_2\right) - 2a_{12}\cos\left(5\Omega_2 - 5\Omega_1\right) + 2a_{13}\cos\left(2\varpi_1 - 2\varpi_2\right) \\ & - & 2a_{14}\cos\left(\varpi_1 - \varpi_2 - 2\Omega_1 + 2\Omega_2\right) - 2a_{15}\cos\left(\varpi_2 - \varpi_1 - 2\Omega_1 + 2\Omega_2\right) \\ & - & 2a_{16}\cos\left(2\varpi_1 - 2\Omega_2\right), \\ \sigma_3 & = & 2a_{17}\sin\left(\Omega_2 - \Omega_1\right) - 2a_{18}\sin\left(2\Omega_2 - 2\Omega_1\right) + 2a_{19}\sin\left(3\Omega_2 - 3\Omega_1\right) \\ & - & 2a_{20}\sin\left(2\varpi_1 - 2\Omega_1\right) - 2a_{21}\sin\left(4\Omega_2 - 4\Omega_1\right) - 2a_{22}\sin\left(\varpi_2 - \varpi_1 + \Omega_2 - \Omega_1\right) \\ & - & 2a_{23}\sin\left(\varpi_1 - \varpi_2 + \Omega_2 - \Omega_1\right) + 2a_{24}\sin\left(2\varpi_1 - 3\Omega_1 + \Omega_2\right) + 2a_{25}\sin\left(5\Omega_2 - 5\Omega_1\right) \\ & + & 2a_{26}\sin\left(2\varpi_1 - \Omega_1 - \Omega_2\right) - 2a_{27}\sin\left(\varpi_1 + \varpi_2 - 2\Omega_1\right) + 2a_{28}\sin\left(-\varpi_1 + \varpi_2 - 2\Omega_1 + 2\Omega_2\right) \\ & + & 2a_{29}\sin\left(\varpi_1 - \varpi_2 - 2\Omega_1 + 2\Omega_2\right) - 2a_{30}\sin\left(2\varpi_1 - 4\Omega_1 + 2\Omega_2\right) - 2a_{31}\sin\left(6\Omega_2 - 6\Omega_1\right) \\ & + & 2a_{32}\sin\left(\varpi_1 + \varpi_2 - 3\Omega_1 + \Omega_2\right), \end{array}$$

with

$$a_{i} = \frac{C/(MR^{2})}{\alpha_{i}C/(MR^{2}) + \beta_{i}C_{20} + \gamma_{i}C_{22} + \delta_{i}}$$

An example of resulting obliquity

Checking Peale's formula Noyelles & Lhotka 2013

From obliquity $\epsilon = (2.04 \pm 0.08)$ arcmin

- Margot et al.(2012): $C/(MR^2) = 0.346 \pm 0.014$
- Analytical formula: $C/(MR^2) = 0.34712 \pm 0.01361$
- Numerical formula: $C/(MR^2) = 0.34576 \pm 0.01349$
- Analytical formula + J_3 : $C/(MR^2) = 0.34640 \pm 0.01361$
- Numerical formula + J_3 : $C/(MR^2) = 0.34506 \pm 0.01348$

イロン 不得 とくほ とくほ とうほ

The influence of usually neglected effects

Effect	Influence on obliquity			
Free librations	< 750 mas			
C_{30}	pprox 250 mas			
Polar motion	pprox 80 mas			
Tides	pprox 30 mas			
Short-period librations	< 20 mas			
Secular drift	pprox 10 mas over 20 years			
C_{40}	negligible			

イロト 不得 とくほ とくほ とう

æ

Plan

- 2 Mathematical formulation of the rotation
 - A rigid Mercury
 - Equilibrium and free periods
 - Introduction of a liquid core
 - The Poincaré-Hough model
- Our numerical treatment
- 4 Perspective and conclusions

< 🗇 🕨

(4) 臣() (4) 臣()

A rigid inner core? Veasey & Dumberry 2011,...

Conclusions

- We have exposed different aspects of the rotation of Mercury
- Different methods have been developed for this purpose
- We hope to get more clues on Mercury's interior
- Next step: an inner rigid core

★ 문 ► ★ 문 ►

Some bibliography...

- D'Hoedt S. & Lemaître A., 2004, The spin-orbit resonant rotation of Mercury: A two degree of freedom Hamiltonian model, Celestial Mechanics and Dynamical Astronomy, 89, 267-283
- D'Hoedt S. & Lemaître A., 2008, Planetary long periodic terms in Mercury's rotation: a two dimensional adiabatic approach, Celestial Mechanics and Dynamical Astronomy, 101, 127-139
- Dufey J., Lemaître A. & Rambaux N., 2008, Planetary perturbations on Mercury's libration in longitude, Celestial Mechanics and Dynamical Astronomy, 101, 141-157
- Noyelles B., Dufey J. & Lemaître A., 2010, Core-mantle interactions for Mercury, The Monthly Notices of the Royal Astronomical Society, 407, 479-496
- Noyelles B. & D'Hoedt S., 2012, Modeling the obliquity of Mercury, Planetary and Space Science, 60, 274-286
- Noyelles B. & Lhotka C., 2013, The influence of orbital dynamics, shape and tides on the obliquity of Mercury, submitted, arXiv:1211.7027
- Rambaux N., Lemaître A. & D'Hoedt S., 2007, Coupled rotational motion of Mercury, Astronomy and Astrophysics, 470, 741-747

・ロト ・ 理 ト ・ ヨ ト ・

3