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The rotation of Mercury Is a unigue case In the Solar Systerestihis planet is locked into a 3:2 spin-orbit resonansaoitational period being exactly two thirds of the orbitako In this
study, we simulate the despinning of Mercury, with or withadluid core, and with a frequency-dependent tidal modelleyaal. The tidal model is based on the Darwin-Kaula expanio
the torque, and incorporates the viscoelastic (Maxwebpumd at low forcing frequencies and a predominantly ineldagndrade) creep of the mantle at higher frequenciess ¢tombined
with a statistically relevant set of histories of Mercurgscentricity. As was suggested by Makarov (2012), the noadlel has a dramatic influence on the behaviour of spin nestorear
spin-orbit resonances. Specifically, the probabllitiesayture into high-order resonances are greatly enhangggesting a swift entrapment within less than 20 Myr, whiaswvell before
differentiation. Exploring several possible scenarios,afrive at a conclusion that, most probably, the preseg@r2state was achieved by entrapment of an initially prdgi@ld Mercury.
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Therotation of Mercury
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FIGURE 1: The resonant rotation of Mercury.

Theexisting literature: 3 scenarios

1.A prograderigid Mercury Probability of capture into the 3:2 spin-orbit

resonance sz 7% [4] with a constant eccentricityx{ 0.206), ~ 55%
If we consider the secular variations of eccentricitiesuzidg multiple
crossings [1]

2.A prograde Mercury with a liquid core Mercury likely to be trapped
Into the 2:1 resonance instead of the current 3:2 [8, 2]

3.A Mercury oncein synchronousrotation [9] considered that the asym-

metric distribution of impact craters was the signature gfast syn-
chronous rotation, destabilized by an impact.

These scenarios use the Constant Time Lag (CTL) tidal medeth can
not be applied to terrestrial planets of considerable wdes. A mathe-

matical consequence of that model istable state of pseudosynchronous

rotation

: 3
0 = n + 6ne” + éne4 + O(eY),

on which the previous studies are based. We propose totrénesn in using
a realistic tidal model.

Thecentral point: arealistic tidal model

This tidal torque Is a combination of the Maxwell model at lraguencies
and Andrade at higher frequencies:
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e 74, 7). Andrade and Maxwell times,
e 1. Unrelaxed rigidity,
e [J(x)]: complex compliance,
e . Andrade parameter{ 0.2).
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FIGURE 2. Frequency-dependence of the tidal torque. This kink shap
strongly enhances the probabilities of capture.

Scenario 1. A prograderigid Mercury

We revisit the despinning of Mercury in considering the s&ceccentricity
variations.
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FIGURE 3: How the realistic tidal model and the Maxwell timg affects
the probability of capture. A long,, corresponds to a cold Mercury.

The consequence of our tidal model is that Mercury is usuediyped into
the 3:2 resonance during its first crossing. Moreover, tlseate of a sta-
ble pseudo-synchronous rotation makes several crossmysseible, and if
Mercury Is not trapped into the high order resonances, thialls into the
synchronous one. We also see that a pretty hot Mercury (Mreotvell time
7)) IS more likely to fall into the 2:1 resonance than into therent 3:2.

Scenario 2. A prograde Mercury with a core

We also considered a differentiated Mercury In includingeemantle fric-
tion following [5]:
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We find that the 2:1 resonance is certain for the current éxacey (0.206),
so for the current configuration to be possible, the ecagtytrof Mercury
should have been pretty low.
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FIGURE 4: Probability of capture including core-mantle frictioarsus the
eccentricity.

Scenario 3. If Mercury was synchronous

The distribution of craters, following MESSENGER data [8liggests an
East-West assymmetry, that could be consistent with a gpashsonous ro-
tation.

(

CDF( 3)
o
o

‘gO.S*

FIGURE 5: Sample CDF (broken line) and expected population CDF
(smooth line) of angular distances of large and confiderghgcted impact
craters on the surface of Mercury from (a) the presumablgaiab direction
and (b) East direction.

However, the absence of pseudosynchronous stable rotatjomres the im-
pact to be energetic enough to make Mercury reach the 3:R2aese. This
Implies a crater bigger than 600 km, while the use of the CTdehcequires
only a crater of 300 km.
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Conclusion

The Scenario 1 of an initially prograde and cold Mercury is thost likely
to result in the current 3:2 spin-orbit resonance. The aapiould have
thus occured in less than 20 Myr.
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