

A numerical algorithm to find the equilibrium of a conservative system

UNIVERSITY OFNAMUR **NB**

Namur Center for Complex

B. Noyelles, N. Delsate & T. Carletti NAXYS - University of Namur, Belgium

e-mail: Benoit.Noyelles@imcce.fr nicolas.delsate@fundp.ac.be timoteo.carletti@fundp.ac.be

American Astronomical Society - Division on Dynamical Astronomy Mt. Hood, Oregon, 6 - 10 May 2012

Why this algorithm?

• Aim: determine the exact location of a dynamical equilibrium (forced oscillations only) corresponding to a resonance

This algorithm has been used in some works yet:

- Problem: accurate (realistic) simulations give some parasitical (free) librations supposed to be damped
 - the initial conditions given by analytical studies are not accurate enough
- Solution: this algorithm use NAFF^[4] (Numerical Analysis of the Fundamental Frequencies) for the identification of the free and forced oscillations, the former being iteratively removed from the solution by carefully choosing the initial conditions.
- - Rotation problem ^[3,5,7]
 - Exoplanetary dynamics ^[1]
 - Dynamics of a probe around Vesta ^[2]

• ...

Here^[6] we provide the convergence proof and give the quadratic convergence in the Hamiltonian case.

	The .	An example				
• Step 1, n=0	Step 0 Initialisation	• Choose an initial condition \vec{x}_0 close to the equilibrium (e.g. using an analytical solution) and set n=0	Earth-Moon Spin-Orbit resonance: $H(y, \sigma, L, \lambda) = \frac{y^2}{2}$ The angular f momentum f s			
oscillations.	Step 1 Integration	• Obtain the evolution of \vec{x} with respect to the time: $\vec{x}(t)$	$-\epsilon \left[\alpha_1 \cos(2\sigma + \lambda) + \alpha_2 \cos(2\sigma) \right] $ $+\alpha_3 \cos(2\sigma - \lambda) $ $-\epsilon \left[\alpha_1 \cos(2\sigma - \lambda) \right] $			
• Step 1, n=1	Step 2	• Express the variable \vec{x} of the problem by a quasi-periodic decomposition	$+\alpha_4 \cos(2\sigma - 2\lambda) + \alpha_5 \cos(2\sigma - 3\lambda) + L - y$ $\frac{\lambda \text{angle}}{The model}$			

Image: state stat	Identification Step 3 New Initial	• Isolate the free (to remove) and the forced (to keep) oscillations • Remove the free oscillations from the initial conditions \vec{x}_n to obtain the new initial conditions \vec{x}_{n+1}	• Step 0: the averaged Hamiltonian $\overline{H}(y, \sigma, L, -) = \frac{(y-1)^2}{2} - \epsilon \alpha_2 \cos(2\sigma) + L$ gives the first initial condition: $y_0 = 0$, $\sigma_0 = 0$ • Step 1 (numerical integration) + Step 2 (NAFF) Frequency decomposition of y(t)				
• Step 1, n=2	Conditions	$\vec{x}_{n+1} = \vec{x}_n - \sum_{i \in \text{Free terms}} \text{Ampl}_i \cos(\text{Phase}_i)$ • Increase n: n=n+1 • Go to Step 1 until $\ \vec{x}_{n+1} - \vec{x}_n\ < \varepsilon_{IC}$ or until $\text{Ampl}_i < \varepsilon_{\text{Ampl}} \forall i$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
Convergen Let $\dot{\vec{X}} = f(\vec{X}) + g(\vec{X}, \vec{X})$		$y_1 = y_0 - 8.01050010^{-5} \cos(0.000008) = 0.999920$ $\sigma_1 = \sigma_0 - 3.06110710^{-3} \cos(1.570796) = 3.10699110^{-10}$ • Some iterations of the algorithm n I.C. Ampl free term ω^{\bullet}					
	$\phi_{0m}(\vec{X})e^{\imath\nu mt} +$	$\sum_{0,m\in\mathbb{Z}}\phi_{lm}(\vec{X})e^{i(\omega l+\nu m)t} := S(t;\vec{X}) + L(t;\vec{X})$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

and the fixed point \vec{X}_{∞} such as $\phi(t; \vec{X}_{\infty}) = S(t; \vec{X}_{\infty})$. Assuming an Hamiltonian framework and an initial condition \vec{X}_0 such as $|\vec{X}_0 - \vec{X}_\infty| < 1$. Then, the algorithm gives a sequence $(\vec{X}_n)_n$ where $\vec{X}_n \longrightarrow \vec{X}_\infty$ and the convergence rate is quadratic $|\vec{X}_{n+1} - \vec{X}_{\infty}| \propto |\vec{X}_n - \vec{X}_{\infty}|^2$ Idea of proof (one dim. to simplify)

We have to prove that x_{∞} is an attractor:

$$|f'(x_{\infty})| < 1 \iff \lim_{x \to x_{\infty}} \frac{\partial_x S(0;x) / \partial_x L(0;f(x))}{\partial_x S(0;f(x)) / \partial_x L(0;f(x)) + 1} = 0$$

Using the d'Alembert rule we can state that (x close to x_{∞})

 $S(0;x) \sim x_{\infty} + a|x - x_{\infty}| + \dots$ and $L(0;x) \sim x_{\infty} + b\sqrt{|x - x_{\infty}| + \dots}$

Then, $\partial_x S(0;x) / \partial_x L(0;f(x)) \xrightarrow[x \to x_{\infty}]{} 0$ and the convergence rate is quadratic.

	1	У	0.999	919 903	5		1.11	0010	\times 10	4	2.0100		IU	
	L	σ	3.106	991 05	9 imes 10	$)^{-10}$	2.96	i <mark>9 53</mark> 2	$ imes 10^{-1}$	-8 2	2.6168	870 ×	10^{-2}	
		У	0.999	919 90	4		1.26	64 1 96	$ imes 10^{-1}$	-15	2.6168	$360 \times$	10^{-2}	
	2	σ	3.490	283 08	5 imes 10	$)^{-15}$	4.83	80 976	$ imes 10^{-1}$	-14	2.6168	$860 \times$	10^{-2}	
		-in	al re	sult	SW.	r.t	first	int	egra	atio	n			
e						· · · · · ·	⊐ — I.C. (n=0)						
	1.3 1.2		1. 1 1		1 11 11	1	— I.C. (í í					-0.3 0.2	
	1 1												0.2	
	> 1	MARN	MAMANAA	MAMAAAAAA	IMAAAAA	AAMAAA		AMAANA	AMAAMAA	MMM		AMALMAN	0.1	Ŀ
	0.9								INNIN				-0.1	
	0.8-				,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								-0.2	>
	0.7	ĬĬ	1 11 11	1. I I	ĬĬ	1 1		╹╟╹║║					-0.3	
	0.6		D 100	150	200 2	250 3	_] [300 0	50	100	150	200	250		ŀ
	Re	efere	nces :											
		-		_						-				

[1] Couetdic J. et al (2010), Astronomy and Astrophysics, 519 [2] Delsate N. (2011), Planetary and Space Science, 59 [3] Dufey J. et al. (2009), Icarus, 203 [4] Laskar J. (1993), Celestial Mechanics and Dynamical Astronomy, 56 [5] Noyelles B. (2009), Icarus, 202 [6] Noyelles et al., arXiv:1101.2138 [7] Robutel P. et al. (2011), Icarus, 211