EFFECT OF PRESSURE COUPLING ON THE ROTATION OF MERCURY
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We present an adaptation of the Poincaré model of core-mantle interaction to Mercury, seen as composed of a rigid mantle and an elliptical liquid core. Thanks to a Hamiltonian formulation, we
perform extensively both an analytical (Lie transforms) and a numerical analysis of this 4-degree of freedom problem. This allows us to highlight a long-term behavior of the obliquity, the
consequences of the proximity of a resonance between the spin frequency of Mercury and the free core nutation, and also the influence of the polar flattening ot the core.
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Modeling the interior of Mercury

In the framework of the ESA space mission Bepi-Colombo, planned to be
launched in 2014 and to reach Mercury 6 years later, we model the rotation of
Mercury so that its observations could be inverted to get data on Mercury’s
oravity field. Radar observations of the longitudinal librations of Mercury
suggest the existence of an at least molten core below a rigid mantle. In pre-
vious studies we assumed the mantle to be spherical, while we here consider
it as elliptic (see Fig.1).
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FIGURE 1: Our representation of Mercury’s interior.

As a consequence, the fluid constituing the core exerts a pressure coupling
at the core-mantle boundary. We use the model of Poincaré to study the
dynamics of the system, that assumes the fluid to be inviscid with constant
uniform density and vorticity. A simple velocity field inside the core is as-
sumed, adding a 4th degree of freedom to a model of rigid rotation of the
mantle. Moreover, we consider that the rotation of Mercury is perturbed by
the Sun. Under these assumptions, the Hamiltonian of the system reads:
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€1, €9 and 0 are assumed to be known, so we let the parameters e3 and €4
vary, i.e. the shape of the triaxial core.

Characterization of the problem

A 4-d.o.f. system can mathematically be characterized by 4 proper periods
of free librations around the equilibrium, that is here the Cassini State at

the 3 : 2 spin-orbit resonance. Mercury is assumed to be close to this equi-
librium thanks to dissipative effects. Expressing the 4 proper periods is a
way to represent the response of the system to external sollicitations (here
the gravitational torque of the Sun). We calculated the numerical values of
these periods both with a full numerical code and with Lie transtorms with

ogood agreement. The results are given in Tab.1:
-

TABLE 1: The proper periods of the system.

€3/€1 0 0.1 1 3 3
€4/€9 0 0 1 3 0
Ty (v) 12.05800 12.05775 12.05772 12.05777 12.05773
T, (v) 61577 (large) 1636.43 121491 1216.09
Tw (y) 33782 33782 337.87 338.14 338.20
T, (d) —  Db8.630  58.619  58.585  58.585

These periods have roughly these physical meanings :

e [, period of the free longitudinal librations,

e [} period of the free librations of the obliquity of Mercury,
e [,,: period of the free polar motion of Mercury,

e [’.: period of the free oscillations of the core.

We can see from their numerical values that the period 7°,, associated with
the core, is close to a resonance with the spin frequency of Mercury. This in-
duces a slow convergence of the algorithm of Lie transforms, and dynamical
effects that should raise the response of Mercury to 58-d periodic excitations.
We see that the system is closer to the resonance when the polar flattening
of the core €3 is small. We can also see that the periods T}, associated with
longitudinal librations is quite constant, this induces that the shape of the
core cannot be detected in the longitudinal librations of Mercury. Finally,
the periods of the free librations in obliquity depends also on €3 as be can
also seen on Fig.2. When €5 increases, T;, tends to the rigid value of 1,070
years.
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FIGURE 2: Evolution of the proper period T3, associated with

the obliquity. It seems to obey a law alike T3, o 63_5/4.

Results

We here express the observables outputs of the system, i.e. the orientation
of the mantle (and not of Mercury). As predicted from the variations of Ty,
the longitudinal librations are independent of the shape of the core if we
assume its size as known. We here plot the obliquity of the mantle (Fig. 3),
the polar motion (Fig. 4), and the wobble of the core (Fig.5).
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FIGURE 3: Variations of the orbital obliquity € of the mantle
of Mercury for different shapes of the core. Two behaviors can
be distinguished: when the core is spherical (es = ¢4 = 0), and
when it is not.
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FIGURE 4: Polar motion of the mantle. It is very small and
quite independent of the shape of the core.
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FIGURE 5. Wobble of the core J.. We can see that for a spher-
ical core (e3 = €4 = 0) the visual aspect is very different from
the other cases. Moreover, a long-term visualisation of J. shows
a slope, 1.e. a secular increase of the wobble of the core, while
the other cases (out of the resonance) do not show it.

The polar motion of Mercury is very small and do not exhibit significant
variations due to the shape of the core. On the contrary, the wobble of the
core has an amplitude decreasing when the polar flattening €3 increases. The
obliquity has 2 possible behaviors: when the core is spherical, and when 1t
1s not. From a mathematical point of view, what can be seen is whether the
system is resonant (resonance between the proper frequency of the core 1/T,
and the spin frequency) or not.

Conclusion

This problem is of high interest from a mathematical point of view since it
induces a resonance involving the core. From a physical point of view, we
show that if the Poincaré model is valid, then the shape of the core cannot be
detected from observations of the rotation of Mercury. The polar flattening
of the core has an impact on the motion of the fluid, that could be indirectly
detected (through the magnetic field?).
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