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Measuring the obliquity of Mercury Is crucial to determitg internal structure, in particular its polar inertial memtum C. The well-known Peale’s experiment [8] tells us thest quantity,
combined with the measurements of the longitudinal lilors| gives the size of Mercury’s molten core. The inversibthe obliquity is classically made thanks to Peale’s foraul his
formula considers the gravity coefficienfs and Cy, and assumes the inclination of Mercury and its node vsldoitbe constant with respect to a Laplace Plane that must feduds
determined.

We here propose an alternative formula, that is Laplacaediiee, and considers additional coefficients ligeand secular variations of Mercury’s dynamics. We are indgagreement with
Peale’s formula. This allows us to estimate the accuracliethlieoretical modelization of Mercury’s obliquity, andoigantify the influence of usually neglected effects.
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In our study we investigated the influence of different alem the obliquity
The problem Results of Mercury, i.e. their influence on the determination of tledap moment of
) ) iInertiaC'. We summarize the results in Tab.2.
4
The obliquity of Mercury is usually inverted with Peale’stiwula [7]: The Fig.1 represents the time evolution of the obliquity arivury, we can TABLE 2: Influence on the mean obliquity of usually neglected
| see free librations that are expected to be damped, ancesperiod varia- effects
o c§sin e tions. Moreover, we see a slope that Peale’s formula doggradict. |
c§)cos L+ 2n (%6 1126363) Coy —n (1 — e?) —3/2 Co 4 C30 ~ 250 mas
2 09 | | | | | Tides ~ 100 mas
Problems: Polar motion ~ 80 mas [4]
e The orbital elements, §?, e are not constant (not enough accurate fo 2.08 | 1 Short-period librations < 20 mas [1]
Inversion of s/c measurements) o 207 | Secular drift ~ 10 mas over 20 years
e Defined with respect to a Laplace Plane whose definition isatmtst s | Cap negligible
e Other harmonics are now known (Tab.1) E
- S 205
TABLE 1: The gravity field of Mercury (Smith et al. 2012 [9]). ° 204y
2.03 . : :
Cop = —Jo| (—5.031 £ 0.02) x 1077 Inverting the observed obliquity
C99 (8.088 £ 0.065) x 107Y “O%000 4000 3000 2000 1000 O 1000
C3p= —J3| (—1.188 £ 0.08) x 10~ Time from J2000 (y)
Cuo= —Jy| (—1.95+0.24) x 107 From Earth-based radar observations of the spin-polettreof Mercury
FIGURE 1: Long-term evolution of Mercury’s obliquity. (Margot et al. [2, 3]) we see that the planet is actually at@hassini state 1,

and thate = 2.04 4+ 0.08 arcmin. Using Peale’s formula, Margot et al. [3]

So we propose to revisit the determination of this obligintyrying to con-
getec = 0.346 + 0.014.

sider new effects, like time, tides and the gravity field ofriMey.

We also use our formula to predict the influence of tides, qu¢see e.g.

[10]) g
_ 3 TABLE 3: Inverting Margot’s obliquity.
A new analytical formula Con#) = Cttic _ §k2ﬂ (E) e cos M. |
) 2"m\a Formula c=C/(mR?)
3 M [R\’ Peale’s 0.346 + 0.014
. . . . staltic .

To validate our numerical approach we rederive a varianealds formula C(t) = Cop™" + ko (;) e cos M, Analytical 0.34621 £ 0.01358
but including the higher order harmoni€g, and Cy. In this simplified ; Numerical 0.34576 £ 0.01349
: . 3. M (R Analytical 4 J5 | 0.34550 + 0.01357
approach we | C(t) = CS1C _ Zfy— (—) emR* cos M, |\|um{>rical+J3 0.34506 + 0.01348

1. neglect the planetary perturbations, 2 "m \a 3|V °

2. neglect the influence of the rotation on the orbit, and we get short-period variations®sf100 mas (Fig.2).

. We converge!
3. neglect the polar motion of Mercury, 4 J
. . .u 20662 T T T T T T T T T . . . L
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FIGURE 2. Short-term evolution of the obliquity, in considering
tides. The slope is due to the secular variations of the alrble- Refer ences
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