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Measuring the obliquity of Mercury is crucial to determine its internal structure, in particular its polar inertial momentum C. The well-known Peale’s experiment [8] tells us thatthis quantity,
combined with the measurements of the longitudinal librations, gives the size of Mercury’s molten core. The inversion of the obliquity is classically made thanks to Peale’s formula. This
formula considers the gravity coefficientsJ2 andC22, and assumes the inclination of Mercury and its node velocity to be constant with respect to a Laplace Plane that must be carefully
determined.
We here propose an alternative formula, that is Laplace-Plane free, and considers additional coefficients likeJ4, and secular variations of Mercury’s dynamics. We are in good agreement with
Peale’s formula. This allows us to estimate the accuracy of the theoretical modelization of Mercury’s obliquity, and toquantify the influence of usually neglected effects.

The problem

The obliquity of Mercury is usually inverted with Peale’s formula [7]:
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Problems:

• The orbital elementsι, �, e are not constant (not enough accurate for
inversion of s/c measurements)

• Defined with respect to a Laplace Plane whose definition is notrobust

• Other harmonics are now known (Tab.1)

TABLE 1: The gravity field of Mercury (Smith et al. 2012 [9]).

C20 = −J2 (−5.031± 0.02)× 10−5

C22 (8.088± 0.065)× 10−6

C30 = −J3 (−1.188± 0.08)× 10−5

C40 = −J4 (−1.95± 0.24)× 10−5

So we propose to revisit the determination of this obliquityin trying to con-
sider new effects, like time, tides and the gravity field of Mercury.

A new analytical formula

To validate our numerical approach we rederive a variant of Peale’s formula
but including the higher order harmonicsC30 andC40. In this simplified
approach we:

1. neglect the planetary perturbations,

2. neglect the influence of the rotation on the orbit,

3. neglect the polar motion of Mercury,

4. express the resonant argument (Mercury is in 3:2 spin-orbit resonance),

5. average over the short periods of the system,

6. determine the dynamical equilibrium,

and we get the following formula, consistent with Peale’s:
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A numerical formula

The idea is here to consider the secularvariations of the orbital elements
in a numerical model. For that, we express the orbital elements as sums of
trigonometric series, obtained after fit on real ephemerides.
A numerical fit of long-term simulations of the rotation of Mercury allows
us to write
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with
ai =

c

αc + βC20 + γC22 + δ
,

whereK is the obliquity with respect to the ecliptic,I the inclination, and
σ3 the resonant argument associated with the precessional motion, often as-
sumed to be null. From these quantities the instantaneous obliquity ǫ(t) can
be straightforwardly derived.

Results

The Fig.1 represents the time evolution of the obliquity of Mercury, we can
see free librations that are expected to be damped, and shorter period varia-
tions. Moreover, we see a slope that Peale’s formula does notpredict.
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FIGURE 1: Long-term evolution of Mercury’s obliquity.

We also use our formula to predict the influence of tides, using (see e.g.
[10])
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and we get short-period variations of≈ 100 mas (Fig.2).
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FIGURE 2: Short-term evolution of the obliquity, in considering
tides. The slope is due to the secular variations of the orbital ele-
ments.

Using our initial conditions obtained with our numerical formulae to in-
tegrate the full equations of the problem shows a small dependency on
J3 = −C30 (Fig.3).
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FIGURE 3: Influence ofJ3.

In our study we investigated the influence of different effects on the obliquity
of Mercury, i.e. their influence on the determination of the polar moment of
inertiaC. We summarize the results in Tab.2.

TABLE 2: Influence on the mean obliquity of usually neglected
effects.

C30 ≈ 250 mas
Tides ≈ 100 mas
Polar motion ≈ 80 mas [4]
Short-period librations < 20 mas [1]
Secular drift ≈ 10 mas over 20 years
C40 negligible

Inverting the observed obliquity

From Earth-based radar observations of the spin-pole direction of Mercury
(Margot et al. [2, 3]) we see that the planet is actually at theCassini state 1,
and thatǫ = 2.04 ± 0.08 arcmin. Using Peale’s formula, Margot et al. [3]
getc = 0.346± 0.014.

TABLE 3: Inverting Margot’s obliquity.

Formula c = C/(mR2)
Peale’s 0.346± 0.014
Analytical 0.34621± 0.01358
Numerical 0.34576± 0.01349
Analytical+J3 0.34550± 0.01357
Numerical+J3 0.34506± 0.01348

We converge!
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Further reading

This study is extensively detailed in (Noyelles & Lhotka 2013 [6]).
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