Screened cluster equation of state for hydrogen-helium mixtures

V. Ballenegger*, D. Wendland and A. Alastuey*

* Université de Bourgogne-Franche-Comté, Besançon, France

★ Ecole Normale Supérieure de Lyon, Lyon, France

- Thermal excitations and effects of interactions
- Screening effects:

Deviations to the Debye potential $\phi(\vec{r}) = \frac{e^{-\kappa|\vec{r}|}}{|\vec{r}|}$ due to quantum effects

→ modifications of atomic/molecular spectra at finite density

Computation of the EOS Conclusions of
Grand-potential:
$$\Omega(V, T, \{\mu_{\gamma}\}) = -k_{\rm B}T \ln \Xi$$
 (Ξ = grand-canonical partition function
Feynman-Kac **path integral:**
 $\langle \vec{r}_1, \vec{r}_2 | e^{-\beta H_N} | \vec{r}_1, \vec{r}_2 \rangle = \int \mathcal{D}[\vec{r}_1(\cdot)] \mathcal{D}[\vec{r}_2(\cdot)] e^{-\beta V(\mathcal{L}_1, \mathcal{L}_2)}$
 $\sum over all closed paths (loops)$
in imaginary time s
 $\int \vec{r}_1^T$
 $\vec{r}_1(s)$ $\int \vec{r}_2^T$
 $\langle \vec{r}_2(s)$
 $\langle \vec{r}_1, \vec{r}_2 | e^{-\beta H_N} | \vec{r}_1, \vec{r}_2 \rangle = \int \mathcal{D}[\vec{r}_1(\cdot)] \mathcal{D}[\vec{r}_2(\cdot)] e^{-\beta V(\mathcal{L}_1, \mathcal{L}_2)}$
classical Boltzmann factor
 $V(\mathcal{L}_1, \mathcal{L}_2) = \int_0^1 \frac{e_{\gamma_1} e_{\gamma_2}}{|\vec{r}_1(s) - \vec{r}_2(s)|} ds$
 $= Coulomb interaction$
 $averaged along the paths$

 $\langle \vec{r}_2, \vec{r}_1 | e^{-\rho r_N} | \vec{r}_1, \vec{r}_2 \rangle \longleftrightarrow \vec{r}_1 \checkmark \vec{r}_2$

(quantum exchange)

Equivalence:

Quantum plasma \longleftrightarrow classical plasma of charged loops

Results oo

Screened cluster expansion

Eliminate all Coulomb divergencies in the thermodynamic limit (Abe-Meeron resummations)

A fugacity factor $z_{\gamma} = e^{\beta \mu \gamma}$ is associated to every particle in every loop:

$$\beta P = \sum_{\gamma} C_{\gamma}^{(1)}(T,\kappa) Z_{\gamma} + \sum_{\gamma_{1},\gamma_{2}} C_{\gamma_{1},\gamma_{2}}^{(2)}(T,\kappa) Z_{\gamma_{1}}Z_{\gamma_{2}} + \sum_{\gamma_{1},\gamma_{2},\gamma_{3}} C_{\gamma_{1},\gamma_{2},\gamma_{3}}^{(3)}(T,\kappa) Z_{\gamma_{1}}Z_{\gamma_{2}}Z_{\gamma_{3}} + \dots$$

Screened cluster functions

Analogous to virial functions, but at finite density

Fugacity dependence via $\kappa = \sqrt{4\pi\beta\sum_{\gamma}e_{\gamma}^2 Z_{\gamma}} = \lambda_{\rm D}^{-1}$

Screened cluster expansion

Fugacity expansion (Mayer diagrams):

Eliminate all Coulomb divergencies in the thermodynamic limit (Abe-Meeron resummations)

A fugacity factor $z_{\gamma} = e^{\beta \mu \gamma}$ is associated to every particle in every loop:

$$\beta P = \sum_{\gamma} C_{\gamma}^{(1)}(T,\kappa) Z_{\gamma} + \sum_{\gamma_{1},\gamma_{2}} C_{\gamma_{1},\gamma_{2}}^{(2)}(T,\kappa) Z_{\gamma_{1}}Z_{\gamma_{2}} + \sum_{\gamma_{1},\gamma_{2},\gamma_{3}} C_{\gamma_{1},\gamma_{2},\gamma_{3}}^{(3)}(T,\kappa) Z_{\gamma_{1}}Z_{\gamma_{2}}Z_{\gamma_{3}} + \dots$$

Screened cluster functions

Analogous to virial functions, but at finite density

Fugacity dependence via $\kappa = \sqrt{4\pi\beta\sum_{\gamma}e_{\gamma}^2 Z_{\gamma}} = \lambda_{\rm D}^{-1}$

oduction o	Computatio	n of the EOS ○○○●	Results ○○	Conclusions o
Screene	d cluster f	unctions		
	С _/ (<i>Т,к</i>): id	arisation effect (at all orders in the	e charge e)	
	C⁽²⁾_{γ1,γ2}(<i>T,κ</i>) :	all 2-particle effects.	 – interactions between 2 ionised – atoms H, He⁺ (at finite density) 	charges y)
	C⁽³⁾ _{γ1,γ2,γ3} (<i>T,κ</i>):	all 3-particle effects.	 atoms/mols: He, H₂+, H⁻ atom-charge interactions, etc. 	

Cluster functions given by formally simple path integral formulae.

Path integral approach	Mayer diagrams	Direct space: <i>r</i> , <i>s</i>	all orders in the charge e
Thermo. Green fct. approach	Feynman diagrams	Fourier space: k , ω	perturbative wrt charge e

Computation of all diagrams \leq 3 particles :

Int

- → Tabulation of the 21 cluster fcts
- → SC EOS at 3rd order for H-He mixtures

Cluster functions given by formally simple path integral formulae.

Path integral approach	Mayer diagrams	Direct space: <i>r</i> , <i>s</i>	all orders in the charge e
Thermo. Green fct. approach	Feynman diagrams	Fourier space: k , ω	perturbative wrt charge e

Computation of all diagrams \leq 3 particles :

- → Tabulation of the 21 cluster fcts
- → SC EOS at 3rd order for H-He mixtures

Deviations at finite density due to broadening and shifts in the atomic spectrum.

Deviations at finite density due to broadening and shifts in the atomic spectrum.

II. Pressure isochore in a H-He mixture

Results oo

Conclusions •

Conclusions

Screened cluster EOS

at 3rd order

It accounts for all 1, 2 and 3-particle effects in a quantum plasma.

- **Few-particle cluster functions** calculated with a PIMC code.
 - $\rightarrow \rho$ -dependence of virial coeffs
 - \rightarrow 2-particle (H, He⁺) and 3-particle (He, H₂⁺, H⁻) cluster functions

Effective interaction φ (\approx RPA potential) which includes quantum corrections to Debye screening.

No double-counting of bound/scatt. states contributions to thermodynamics

- no arbitrary regularisation for internal partition fcts
- no modelization for atom-charge interactions

Modular: easy to add/remove effects in Ω .

Perspectives

- Guide to more phenomenological theories at higher density
- 4-particle cluster fct: exact H-H interactions exact partition function for H₂ molecule

Validity conditions

- not too strong coupling and degeneracy
- non relativistic
- ~ OK for solar conditions