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Thermodynamics of atomic and ionized hydrogen: Analytical results versus
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We compute thermodynamical properties of a low-density hydrogen gas within the physical picture, in which the
system is described as a quantum electron-proton plasma interacting via the Coulomb potential. Our calculations
are done using the exact scaled low-temperature (SLT) expansion, which provides a rigorous extension of the
well-known virial expansion—valid in the fully ionized phase—into the Saha regime where the system is partially
or fully recombined into hydrogen atoms. After recalling the SLT expansion of the pressure [A. Alastuey et al.,
J. Stat. Phys. 130, 1119 (2008)], we obtain the SLT expansions of the chemical potential and of the internal
energy, up to order exp(−|EH|/kT ) included (EH � −13.6 eV). Those truncated expansions describe the first
five nonideal corrections to the ideal Saha law. They account exactly, up to the considered order, for all effects
of interactions and thermal excitations, including the formation of bound states (atom H, ions H− and H2

+,
molecule H2, . . .) and atom-charge and atom-atom interactions. Among the five leading corrections, three are
easy to evaluate, while the remaining ones involve well-defined internal partition functions for the molecule
H2 and ions H− and H2

+, for which no closed-form analytical formula exist currently. We provide accurate
low-temperature approximations for those partition functions by using known values of rotational and vibrational
energies. We compare then the predictions of the SLT expansion, for the pressure and the internal energy, with,
on the one hand, the equation-of-state tables obtained within the opacity program at Livermore (OPAL) and, on
the other hand, data of path integral quantum Monte Carlo (PIMC) simulations. In general, a good agreement
is found. At low densities, the simple analytical SLT formulas reproduce the values of the OPAL tables up to
the last digit in a large range of temperatures, while at higher densities (ρ ∼ 10−2 g/cm3), some discrepancies
among the SLT, OPAL, and PIMC results are observed.
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I. INTRODUCTION

As the lightest and most simple element, hydrogen is
important both theoretically and for practical applications. It is
also the most abundant element in the universe, and a precise
knowledge of its thermodynamical properties is needed by as-
trophysicists over a wide range of pressures and temperatures.
In that context, the derivation of accurate tables for thermody-
namical functions is quite useful. This motivated the celebrated
opacity program at Livermore (OPAL), which, in addition,
provides tabulations of the opacity as a function of temperature
and density, a key ingredient for astrophysical diagnosis.

The OPAL equation-of-state tables [1] have been derived
from the activity expansion (ACTEX) method, first introduced
in Ref. [2] and implemented through successive papers [3].
That approach is built within the physical picture, where
hydrogen is described in terms of a quantum plasma made
with protons and electrons interacting via the 1/r Coulomb
potential. For a given set of thermodynamical parameters,
one proceeds to suitable estimations of the expected relevant
contributions in the activity expansions determined by simple
physical arguments. This allows one to account for complex
phenomena arising from the formation of chemical species and
their interactions. The resulting OPAL tables are very reason-
ably accurate over a wide range of temperatures and densities,
as checked through comparisons to quantum Monte Carlo
simulations [4] and to high-pressure shock experiments [5].

Aside from the OPAL tables, exact asymptotic expansions
can be used to provide reliable numerical data. It turns out that
such an expansion, the so-called scaled low-temperature (SLT)
expansion, has been recently derived in the Saha regime [6],
where hydrogen reduces to a dilute partially ionized atomic
gas. That regime is of particular astrophysical interest since it
is observed, for instance, in the Sun interior. The main purpose
of that paper is to derive, from the SLT expansion, simple and
very precise estimations of the contributions of all the mech-
anisms at work in the Saha regime to any thermodynamical
function. Our calculations avoid approximations introduced
in the ACTEX approach, and they are written in terms of
tractable analytic formulas which are quite easy to handle
for determining the quantities of interest at any temperature
and any density. No interpolation has to be performed as in
other purely numerical tables like OPAL. The corresponding
high-accuracy and thermodynamically consistent calculations
should be quite useful for various applications, in particular
the interpretation of recent seismology measurements in the
Sun [7].

In the physical picture, the equation of state is studied by ap-
plying methods of quantum statistical mechanics to Coulombic
matter. Various analytical methods have been developed for
this purpose, such as effective potential methods [8–11],
many-body perturbation theory [12,13], and Mayer diagrams
in the polymer representation of the quantum system [14–16].
Numerical techniques have also been elaborated, in particular,
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density functional theory molecular dynamics [17–19] and
path-integral Monte Carlo (PIMC) simulations [20]. In the
present work, we use a suitable extension [21]—needed for
dealing with a partially recombined phase—of the quantum
Mayer diagrams method introduced previously to derive in
particular the virial expansion of the equation of state up
to order ρ5/2 in the density, both in the absence [14,22,23]
and presence [24] of a magnetic field. This framework avoids
the problems associated with the more widely used chemical
approach [25–29] in which bound states (atoms H, molecules
H2, ions H−, H2

+, . . .) are treated as preformed constituents
that are assumed to interact via some given effective potentials
[30,31] with the ionized charges and between themselves.
The SLT expansion [6] solves the difficult problem of dealing
consistently and exactly with screening and bound states in the
Saha regime within the physical picture. Effect of atom-atom
interactions and screened interactions between ionized charges
and atoms appear, for instance, in our calculations, without
introducing any intermediate modelization, as a consequence
of the basic Coulombic interactions between the electrons and
protons. They are embedded in functions h2(β) and h4(β)
defined in Sec. II D. In the SLT expansion, the internal partition
functions of all bound entities are finite thanks to a systematic
account of collective screening effects. That expansion exhibits
no missing term, nor double counting, for instance, between
contributions associated to a hydrogen molecule or to two
hydrogen atoms, despite the atoms may form a molecule at
short distances.

The Saha regime corresponds to low-temperature and
sufficiently low densities, so the most abundant chemical
species are ionized protons, ionized electrons, and hydrogen
atoms in their ground state. The corresponding thermal
ionization equilibrium H � e + p is well described in first
approximation by the mass-action law for ideal mixtures [32]

ρ id
at

ρ id
p ρ id

e

=
(

2πh̄2β

m

)3/2

e−βEH , (1)

which relates the number density ρ id
at of hydrogen atoms in

their ground state with energy EH = −me4/(2h̄2) � −13.6 eV
to the number densities ρ id

p and ρ id
e of ionized protons and

electrons with ρ id
p = ρ id

e because of charge neutrality. In
ionization equation (1), β is the inverse temperature, while
mp and me are the proton and electron masses, and m =
mpme/(mp + me) is the mass of the reduced particle. All
ideal densities can be computed in terms of the sole total
electron or proton density ρ = ρ id

e + ρ id
at = ρ id

p + ρ id
at and of

the temperature-dependent density

ρ∗ = exp(βEH)

2
(
2πλ2

pe

)3/2 with λpe = (βh̄2/m)1/2, (2)

which naturally emerges in ionization equation (1). The
resulting Saha equation of state (EOS) follows from adding
the partial pressures of the three ideal gases in the mixture,
and it reads

βPSaha = ρ + ρ∗[
√

1 + 2ρ/ρ∗ − 1] . (3)

Temperature-dependent density ρ∗ controls the crossover
between full ionization and full recombination, as illustrated
by the respective behaviors βPSaha ∼ 2ρ for ρ � ρ∗ and

βPSaha ∼ ρ for ρ � ρ∗. As recalled in Sec. II, within the
physical picture, the Saha predictions have been proved
to be asymptotically valid in a suitable scaling limit in
the grand-canonical ensemble [33], where temperature T is
decreased while chemical potentials μp and μe go to EH with
a linear dependence in T . The corresponding density decreases
exponentially fast with T , in order to keep the same energy-
entropy balance and, hence, the same ionization degree. The
identification of that scaling limit opened up the possibility to
construct systematic expansions beyond Saha theory [6]. The
structure of the corresponding SLT expansion of the density
in terms of the chemical potential is described in Sec. II. The
successive terms depend on temperature-dependent functions
hk(β) which decay exponentially fast when T → 0 with
increasing decay rates. Their physical content is discussed
in relation with the formation of chemical species, interaction,
and screening effects.

In Sec. III, starting from the SLT expansion of density and
using standard thermodynamical identities, we derive the SLT
expansions of chemical potential, pressure, and internal en-
ergy. By construction, all expressions are thermodynamically
consistent, and similar expressions for other thermodynamical
quantities can be easily derived along similar lines. In those
SLT expansions, beyond the leading terms given by Saha
theory, each correction reduces to an algebraic function of ratio
ρ/ρ∗ times a temperature-dependent function which decays
exponentially fast when T → 0. We give the expressions of all
corrections up to order exp(βEH) included. Such corrections
account for various phenomena such as plasma polarization,
thermal atomic excitations, shift of the atomic energy levels,
formation of hydrogen molecules H2 and ions H− and H2

+,
and interactions between ionized charges and atoms.

As usual for asymptotic expansions, and aside from the
question of convergence in a strict mathematical sense, the
truncation of SLT expansions can be reasonably expected to
provide reliable quantitative informations on thermodynamics.
Here, since the characteristic energy scale |EH| involved in
SLT expansions is rather large, the corresponding calculations
should be reliable up to temperatures of the order 104

K for which the condition kT � |EH| is indeed fulfilled.
Furthermore, we stress that, though the SLT expansion is built
by considering a low-density and low-temperature scaling,
it can provide actually accurate predictions in a rather large
range of densities and temperatures that cover the fully ionized,
partially ionized, and atomic phases of the hydrogen gas.
Indeed, the SLT expansion reduces by construction to the
standard virial expansion when ρ � ρ∗ at fixed T [6]. Thus,
the SLT formulas remain valid in the fully ionized regime
where one may have T > TRydberg = |EH|/k = 157 801 K,
as long as the density is not too high, namely the coupling
parameter � = βe2/a must remain small.

If we keep all corrections to Saha leading terms up to order
exp(βEH) included, as provided by the SLT formulas, the
knowledge of the first four functions h1(β), h2(β), h3(β),
and h4(β) is required. If functions h1(β) and h3(β) are
explicitly known in closed elementary forms and can be
calculated exactly at any temperature, no similar formulas
for functions h2(β) and h4(β) are available since analytical
results on the three- and four-body quantum problem are
very scarce. In Sec. IV, we propose simple approximations of
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those functions which account for their exact low-temperature
forms, on the one hand, and incorporate the usual reliable
descriptions of the spectra of ions H−, H2

+ and of molecule
H2, on the other hand. Those approximations are sufficient for
computing thermodynamical properties of a partially ionized
hydrogen gas for temperatures up to about 30 000 K. More
refined calculations of functions h2(β) and h4(β) would be
required at higher temperatures, in particular for state points
where recombination into hydrogen molecules or ions give a
significant contribution.

In Sec. V, within previous simple representations of the
hk(β)’s, we study the importance of the various nonideal
corrections to Saha pressure and internal energy along various
isotherms and isochores. The predictions of our analytical SLT
formulas are compared to the OPAL tables which, up to now,
are expected to provide the most reliable numerical data in the
considered regimes. A very good agreement is found at low
densities, for all temperatures, if one corrects the OPAL tables
by using the exact ground-state energy of the hydrogen atom
with the reduced mass m in place of me [34]. When the density
is increased, our predictions differ somewhat from those of
the OPAL tables. We compare also our predictions to data
of quantum Monte Carlo simulations [4]. These comparisons,
together with a simple semiempirical criterion, allow us to
determine the validity domain of the SLT expansion in the
temperature-density plane (see Fig. 12). Final comments and
possible extensions are given in Sec. VI.

II. THE SCALED LOW-TEMPERATURE EXPANSION

A. The Saha regime in the grand-canonical ensemble

Within the physical picture, a hydrogen gas is viewed as a
system of quantum point particles which are either protons or
electrons, interacting via the instantaneous Coulomb potential
v(r) = 1/r . Protons and electrons have respective charges,
masses, and spins, ep = e and ee = −e, mp and me, σp = σe =
1/2. In the present nonrelativistic limit, the corresponding
Hamiltonian for N = Np + Ne particles reads

HNp,Ne
= −

N∑
i=1

h̄2

2mαi

	i + 1

2

∑
i �=j

eαi
eαj

v(|xi − xj |), (4)

where αi = p,e is the species of the ith particle and 	i is
the Laplacian with respect to its position xi . The system
is enclosed in a box with volume 
, in contact with a
thermostat at temperature T and a reservoir of particles
that fixes the chemical potentials equal to μp and μe for
protons and electrons, respectively. Because the infinite system
maintains local neutrality ρp = ρe in any fluid phase, the bulk
equilibrium quantities depend in fact solely on the mean,

μ = (μp + μe)/2, (5)

while the difference ν = (μe − μp)/2 is not relevant, as
rigorously proved in Ref. [35]. Consequently, the common
particle density ρ = ρp = ρe depends only on T and μ.

In the present framework, the EOS (3) has been proved to
become exact in some limit introduced by Macris and Martin,
who extended Fefferman’s work on the atomic phase of the
hydrogen plasma [36] to a partially ionized phase [33]. In
that limit, the temperature T goes to zero while the average

chemical potential μ of protons and electrons approaches the
value EH with a definite slope [33]. More precisely, let γ be the
dimensionless parameter defined through the parametrization

μ = EH + kT {ln(γ ) + ln[(m/M)3/4/4]} (6)

with M = mp + me. The state of the system then is equiva-
lently defined by either the usual set (T ,μ) of thermodynamical
parameters in the grand-canonical ensemble or the set (T ,γ ),
since both sets are univocally related. As proved in Ref. [33],
in the limit T → 0 at fixed γ , density ρ and pressure P behave
as (c > 0)

ρ = (
ρ id

p + ρ id
at

)
[1 + O(e−cβ)] = (

ρ id
e + ρ id

at

)
[1 + O(e−cβ )]

(7)

and

βP = (
ρ id

p + ρ id
e + ρ id

at

)
[1 + O(e−cβ )], (8)

where ideal densities reduce to

ρ id
p = ρ id

e = ρ∗γ (9)

and

ρ id
at = ρ∗ γ 2

2
. (10)

Notice that ideal densities (9) and (10) do satisfy the Saha
ionization equation (1) for the total proton/electron density
ρ = ρ∗γ (1 + γ /2). Moreover, the leading contribution to
pressure in formula (8) indeed describes an ideal mixture
of free protons, free electrons, and hydrogen atoms in their
ground state, which can be rewritten in the form Eq. (3).
Thus, discarding exponentially vanishing terms embedded in
O(e−cβ ), Saha predictions are rigorously recovered in the
scaling limit of Macris and Martin T → 0 at fixed γ . The
parameter γ may be fixed at an arbitrary positive value;
it controls the density and also the ionization ratio since
ρ id

p /ρ = 1/(1 + γ /2). Contrary to the zero-temperature limit
at fixed chemical potential used in the atomic and molecular
limit theorem [15,36,37] (see also Ref. [38] for further physical
considerations around that limit), we consider γ fixed and a
chemical potential that varies as T → 0 according to Eq. (6) so
the e-p plasma tends in the limit T → 0 to a partially ionized
hydrogen gas with a well-defined ionization ratio.

The Saha regime corresponds to quite diluted conditions,
since the densities of ionized particles and of atoms vanish
exponentially fast when β → ∞, with a rate determined by
the ground-state energy of the hydrogen atom EH � −13.6 eV.
The low-temperature condition, namely kT � |EH|, ensures
that atoms can form, while they maintain their individuality
thanks to a � aB , where a = (3/(4πρ))1/3 is the mean
interparticle distance and aB = h̄2/(2me2) is the Bohr radius.
Because of the high dilution, the system is both weakly
coupled and weakly degenerate. In particular, the ionized
charges are almost classical, and the corresponding screening
length reduces to its Debye expression κ−1 = [4πβe2(ρ id

p +
ρ id

e )]−1/2.
According to the above rigorous derivation, corrections to

Saha theory decay exponentially fast in the scaled limit T → 0
at fixed γ . Nevertheless, they cannot be explicitly computed
within the corresponding mathematical techniques, so one has
to use different tools as described further.
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B. About the interplay between recombination and screening

In the Saha regime, in addition to atoms, recombination
processes lead to the formation of molecules H2, ions H− and
H2

+, and also more complex entities like H2
−, H3

+, H3, and so
on. A controlled analysis of the corresponding contributions is
the central problem for deriving systematic corrections to Saha
theory. The well-known difficulty lies in a suitable account of
the individual contribution of a single chemical species at
finite temperature, which is free from the divergences arising
from Rydberg states. In the literature, in general, that problem
has been tackled within phenomenological prescriptions, in
particular those leading to the so-called Brillouin-Planck-
Larkin formula for atomic contributions [39,40]. The physical
idea underlying that phenomenological approach is that the
divergent contributions of Rydberg states are in fact screened
by the free charges present in the system. Accordingly, the
estimation of contributions from recombined entities cannot
be disentangled from that of screened interactions between
ionized charges.

A systematic procedure for dealing simultaneously with
recombination and screening has been constructed through
the combination of path integral and diagrammatical methods
[21]. This provided some kind of cluster representation for
equilibrium quantities in the grand-canonical ensemble. In the
quite diluted Saha regime, the statistical weight of a given
cluster made with Np protons and Ne electrons involves the
cluster partition function

Z(Np,Ne) = 2πλ2
Np,Ne

lim

→∞

1



Tr[exp(−βHNp,Ne

)]TMayer,

(11)

which is a truncated trace of Gibbs operator exp(−βHNp,Ne
)

built with bare Coulomb Hamiltonians, while λNp,Ne
=

(βh̄2/[Npmp + Neme])1/2 is the thermal de Broglie wave-
length of the cluster. The trace in Eq. (11) converges despite
the long range of the Coulomb interaction, thanks to a sys-
tematic truncation procedure which accounts for the screening
by ionized charges [21]. Roughly speaking, that procedure
amounts to subtract and add counterterms to the genuine Gibbs
operators, which involve nontraceable operators built with the
Coulomb potential. The Gibbs operator and the subtracted
counterterms give rise to the finite partition function (11) which
depends only on T and no longer on γ . The added counterterms
are recombined together with other divergent contributions
via chain resummations, which ultimately provide finite
contributions involving the screening length κ−1 associated
with the ionized charges present in the medium.

Remarkably, the familiar chemical species naturally emerge
from cluster partition function Z(Np,Ne), which is intrinsic
to the considered cluster in the vacuum. A given chemical
species made with Np protons and Ne electrons is associated
with bound states of bare Hamiltonian HNp,Ne

. In the zero-
temperature limit, it provides the leading contribution to
Z(Np,Ne) which behaves as

exp
(−βE

(0)
Np,Ne

)
(12)

apart from possible integer degeneracy factors and where
E

(0)
Np,Ne

is the groundstate energy of Hamiltonian HNp,Ne
. At

finite temperatures, Z(Np,Ne) involves not only contributions

from thermally excited bound states but also contributions
from diffusive states describing the dissociation of the consid-
ered chemical species.

Cluster partition functions Z(Np,Ne) can be viewed as
generalizations of Ebeling virial coefficients [9] introduced
for dealing with contributions from two-particle clusters. The
contributions of interactions between chemical species can
be expressed also in terms of cluster functions similar to
Z(Np,Ne), so all contributions related to the formation of com-
plex entities are properly taken into account. We stress that, as
far as thermodynamical properties are concerned, only the full
contribution of Z(Np,Ne) and of its related screened countert-
erms makes an unambiguous sense. The considered formalism
[21] avoids both arbitrary and uncontrolled definitions of
internal partition functions for chemical species, which are
key ingredients in phenomenological chemical approaches.1

C. Systematic corrections to Saha theory

Within the combination of path integral and diagrammatical
methods evoked above [21], systematic corrections to Saha
theory have been explicitly computed in Ref. [6]. A pedagog-
ical summary of both rather long papers is given in Ref. [41].
Here, leaving aside the tedious technical details involved in
the derivation, we can guess and explain the mathematical
structure of the corresponding expansion through simple
arguments based on the considerations exposed just earlier.

In the so-called screened cluster representation of particle
density ρ [21], any contribution reduces to a graph made with
particle clusters connected by screened bonds. The statistical
weight of a cluster made with Np protons and Ne electrons, re-
duces to, roughly speaking, the product exp[β(Np + Ne)μ] of
the particle fugacity factors times the cluster partition function
Z(Np,Ne) and times some dressing factor which accounts for
collective polarization effects. The integration over the relative
distances between particle clusters generate powers of the
Debye screening wave number κ , while dressing factors can be
also expanded in powers of κ . Since exp(βμ) is proportional to
both γ and exp(−β|EH|), while κ is proportional to both γ 1/2

and exp(−β|EH|/2), any contribution reduces to some integer
or half-integer power of γ times a temperature-dependent
function. The low-temperature behavior of that function results
from the competition between factors varying exponentially
fast, namely positive powers of exp(−β|EH|) arising from
fugacity factors, positive or negative powers of exp(−β|EH|/2)
arising from screened interactions and polarization effects,
and exploding Boltzmann factors exp(−βE

(0)
Np,Ne

) arising from
the contribution of bound entities with ground-state energy

1Of course, one might express the trace defining Z(Np,Ne) over
the complete basis made with the eigenstates of HNp,Ne

. This would
provide a convergent infinite sum of bound-state contributions, which
might be identified as an internal partition function. Nevertheless,
extending the analysis carried out in Ref. [42], one can rewrite
Z(Np,Ne) as a finite contribution plus another truncated partition
function, which would ultimately provide a different internal part.
For instance, various atomic partition functions can be extracted from
Ebeling virial coefficient [42], including the famous Planck-Larkin-
Brillouin expression.
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E
(0)
Np,Ne

< 0 in cluster partition functions. In the Saha regime,
namely T → 0 with γ fixed, the order of a given contribution
is determined by subtle inequalities involving E

(0)
Np,Ne

and EH.
The leading contributions to density ρ are easily identified
as arising from graphs made with single clusters carrying
either one particle (one proton or one electron) or two
particles (one proton and one electron), and they are of order
exp(−β|EH|). All the other contributions decay exponentially
faster, in agreement with the rigorous estimation of order
O(e−cβ) for the full deviation to Saha theory. Accordingly, the
corresponding SLT expansion for the dimensionless density
ρ/ρ∗ takes the following mathematical form Ref. [6]:

ρ/ρ∗ = γ + γ 2

2
+

∞∑
k=1

γ nkhk(β). (13)

In Eq. (13), the leading first two terms are the ideal
contributions predicted by Saha theory, while the sum accounts
for the corrections. In each correction with order k, power
nk is integer or half-integer while γ nk may be multiplied
by logarithmic terms. Furthermore, function hk(β) decays
exponentially fast in the zero-temperature limit, hk(β) ∼
exp(−βδk) when β → ∞, except for possible multiplicative
powers of β. We stress that expansion (13) is not ordered
with respect to powers of γ , i.e., the nk’s do not necessarily
increase with k, but it is ordered with respect to increasing
decay rates, 0 < δ1 < δ2 < . . ., of functions hk(β). In other
words, instead of γ , which is kept fixed here, the small
parameter is built with the temperature which is sent to zero.
That small parameter may be identified with exp(−β|EH|),
so the leading low-temperature behavior of each correction of
order k reduces to some positive real power δk/|EH| of that
parameter. Notice that each function hk(β) does not reduce
to its leading low-temperature form in general, but it also
involves contributions which decay exponentially faster than
exp(−βδk).

The SLT expansion (13) provides an exact relationship be-
tween the density and the chemical potential [recall definition
(6) of γ ] that is very useful in the Saha regime because the
series converges then rapidly and can be safely truncated. We
comment on the mathematical form and the physical content
of the first four corrections hk(β) in the next subsection. It will
then be shown in Sec. III how Eq. (13) can be used to compute
explicitly in the Saha regime any thermodynamical quantity
as a function of the natural physical variables ρ and T .

D. First corrections and their physical content

The first four functions hk(β) as well as the corresponding
nk’s, k = 1,2,3,4, are explicitly computed in Ref. [6], where
it is also shown that all other hk’s with k � 5 decay faster
than exp(βEH), i.e., δk > |EH| for k � 5. Thus, if we truncate
expansion (13) up to order exp(βEH) included, it is consistent
to only retain contributions which are at most of that order in
the first four hk’s. In the following, we recall the corresponding
expressions and we discuss their physical content.

1. Term k = 1: plasma polarization around ionized charges

That correction arises from a single cluster with one proton
(electron) where dressing many-body effects on its statistical

weight are computed at leading order. This provides the
fugacity factor exp(βμ) multiplied by the Debye screening
factor κ . Accordingly, we find n1 = 1 + 1/2 = 3/2 and δ1 =
−(EH + EH/2 − EH) = |EH|/2, once ρ has been expressed
in units of temperature-dependent density ρ∗ ∼ exp(−β|EH|).
The precise form of function h1(β) reads

h1(β) = (β|EH|)3/4

π1/4
exp(βEH/2), (14)

since Z(1,0) = Z(0,1) = 2 for a single proton or
a single electron, for which no truncation occurs,
namely [exp(−βH1,0)]TMayer = exp(−βH1,0) and
[exp(−βH0,1)]TMayer = exp(−βH0,1).

The present correction accounts for the familiar polarization
of the plasma surrounding an ionized charge. In the literature,
that mechanism was taken into account for the first time in
Ref. [43] through a suitable modification of Saha ionization
equilibrium (1). We have checked that the corresponding
correction to Saha theory can be exactly recovered by keeping
only the first term k = 1 in the SLT expansion (13).

2. Term k = 2: formation of molecules and atom-atom
interactions

That correction arises from a single cluster made with two
protons and two electrons and from two interacting neutral
clusters where each of them is made with one proton and
one electron. At leading order, dressing collective effects
in statistical weights can be neglected, while screening of
interactions between neutral clusters can be also omitted
since the corresponding bare interactions are integrable. Then,
power n2 is merely determined by the product of four fugacity
factors exp(βμ), which provides n2 = 4. Function h2(β)
reduces to

h2(β) = 1

64

(
2m

M

)3/2

Z(2,2) exp(3βEH)

+W (1,1|1,1) exp(3βEH), (15)

where W (1,1|1,1) is a suitable trace analogous to expression
(11) which now involves two Gibbs operators exp(−βH1,1)
associated with two proton-electron pairs, as well as their
bare Coulomb interactions. Factors exp(3βEH) arise from the
product of the four fugacity factors exp(βμ) and the rewriting
of ρ in units of ρ∗. In the zero-temperature limit, the leading
contribution in expression (15) is that of the molecular ground
state in Z(2,2) with energy EH2 = E

(0)
2,2. Notice that, because of

inequality 3EH < EH2 < 2EH, function h2(β) indeed decays
exponentially fast with the rate δ2 = |3EH − EH2 | � 9.1 eV.
That inequality ensures that molecules H2 are very scarce in
the Saha regime compared to atoms H, despite that they are
more stable energetically, Moreover, δ2 is indeed larger than
δ1 = |EH|/2 � 6.8 eV.

Molecular contributions are embedded in Z(2,2), which
is indeed finite thanks to the truncation procedure inherited
from screening, as well as the short-range part of atom-atom
interactions. Long-range atom-atom interactions, including
familiar van der Waals interactions, appear in W (1,1|1,1).
Notice that the screened counterterms related to the truncations
involved here provide contributions to expansion (13) which
decay faster than exp(βEH), and they arise in terms with
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k � 5. We stress that both molecular formation and atom-atom
interactions are properly taken into account, without any a
priori modelizations like in usual chemical approaches. Here
the corresponding contributions are expressed in terms of the
associated few-body Coulomb Hamiltonians, and they natu-
rally emerge through the fundamental quantum mechanisms
at work. In particular, the quantum mechanical operators
involved in both Z(2,2) and W (1,1|1,1) automatically and
correctly take care of the unavoidable mixing between the
contributions from two interacting atoms, on the one hand,
and from a single molecule, on the other hand.

3. Term k = 3: atomic excitations and charge-charge interactions

That correction arises from single clusters made with either
one or two particles. Contributions of two-particle clusters
are controlled by the product of two fugacity factors exp(βμ)
and of two-body cluster partition functions Z(2,0), Z(0,2),
and Z(1,1), while contributions from the one-particle clusters
reduce to one fugacity factor exp(βμ) multiplied by a factor
κ2 which accounts for polarization effects beyond the Debye
mean-field result of order κ . This leads to n3 = 1 + 1 = 1 +
2 × 1/2 = 2 and

h3(β) = −1

2
+

[
1 + 1

12
ln

(
4m

M

)]
(β|EH|)3/2

π1/2
exp(βEH)

+ 1

8π1/2

{
2Q(xpe) +

(
2m

mp

)3/2

×
[
Q(−xpp) − 1

2
E(−xpp)

]
+

(
2m

me

)3/2

[Q(−xee)]

− 1

2
E(−xee)]

}
exp(βEH), (16)

where the two-particle partition functions, Z(2,0), Z(0,2)
and Z(1,1) have been rewritten in terms of Ebeling’s func-
tions Q(x) and E(x) [9] with xpe = 2(β|EH|)1/2, xpp =
(2mp/m)1/2(β|EH|)1/2, and xee = (2me/m)1/2(β|EH|)1/2. The
ground-state contribution has been extracted from Z(1,1) and
it provides the leading atomic contribution γ 2/2 in Eq. (13).
Consequently, the leading low-temperature behavior of h3(β)
arises from the contribution to Q(xpe) of the first excited
state of an atom H with energy EH/4, so δ3 reduces to
δ3 = −EH/4 + EH = −3EH/4. That decay rate δ3 � 10.2 eV
is indeed larger than δ2 � 9.1 eV.

The present correction involves contributions of the atomic
excited states, as well as of interactions between two ionized
charges. The screened long-range part of such interactions are
precisely the counterterms related to the truncations ensuring
the finiteness of Z(2,0), Z(0,2), and Z(1,1) or, equivalently,
of the Ebeling function Q.

4. Term k = 4: formation of ions and atom-charge interactions

That correction arises from single three-particle clusters, a
two-particle cluster interacting with a one-particle cluster, and
a single two-particle cluster dressed by many-body effects. All
contributions provide the same power n4 = 3 of γ , as resulting
from either the product of three fugacity factors exp(βμ) or

the product of two fugacity factors exp(βμ) times a factor κ2

arising from polarization effects, namely n4 = 1 + 1 + 1 =
1 + 1 + 2 × 1/2 = 3. The corresponding function h4(β) reads

h4(β) = 3

64

{[
me(M + mp)

M2

]3/2

Z(2,1) +
[
mp(M + me)

M2

]3/2

×Z(1,2)

}
exp(2βEH) + S3(1,1) exp(2βEH)

+ 3

2
[W (1,1|1,0) + W (1,1|0,1)] exp(2βEH). (17)

The leading low-temperature behavior of h4(β) arises from
the ground-state contribution of ion H2

+ in Z(2,1), so δ4 =
EH2

+ − 2EH � 11.0 eV, which is indeed larger than δ3 �
10.2 eV.

Several phenomena contribute to the present correction.
First, formation of ions H2

+ and H− are embedded in partition
functions Z(2,1) and Z(1,2), respectively. Second, contribu-
tions of bare interactions between an atom H and a single
ionized charge are described by the functions W (1,1|1,0)
and W (1,1|0,1). Third, the function S3(1,1) accounts for
modifications of the atomic ground state due to the polarization
of the surrounding plasma, beyond the familiar Debye shift.

III. THERMODYNAMICAL FUNCTIONS

A. Chemical potential as a function of density

In physical systems, the natural thermodynamical parame-
ters are the temperature and the density. Thus, it is quite useful
to invert the SLT expansion (13), namely to determine γ (ρ,T ).
Then, by using standard thermodynamical identities, we are
able to compute consistently all thermodynamical quantities
as functions of T and ρ. In the present low-temperature
limit, the inversion can be performed in a perturbative way
as follows. First, if we neglect all the exponentially small
corrections embedded in the hk’s, the density reduces to its
Saha expression,

ρ/ρ∗ = γ + γ 2

2
. (18)

The inversion of that relation, which amounts here to solving
a simple second-order equation for γ , gives

γSaha(ρ,T ) = γS(ξ ) =
√

1 + 2ξ − 1 with ξ = ρ/ρ∗, (19)

which is the leading form of γ (ρ,T ) in the Saha regime. The
inversion of the full relation (13) is then achieved by writing
γ (ρ,T ) = γSaha(ρ,T ) plus a small correction which is treated
perturbatively. This leads to

γ (ρ,T ) =
√

1 + 2ρ/ρ∗ − 1 +
∞∑

k=1

ak(ρ/ρ∗)gk(β), (20)

where ak depends only on ξ = ρ/ρ∗, while gk depends only
on temperature. The ak’s can be determined in terms of γS(ξ )
and of its derivatives with respect to ξ . Each gk reduces
to a polynomial in the hl’s with 1 � l � k. Thus, the gk’s
decay exponentially fast when β → ∞, and they are ordered
with respect to increasing decay rates. The first five terms in
Eq. (20) are
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a1 = − γ
3/2
S

1 + γS
; a2 = − γ 4

S

1 + γS
; a3 = − γ 2

S

1 + γS
;

(21)

a4 = − γ 3
S

1 + γS
; a5 = γ 2

S (2γS + 3)

2(1 + γS)3

g1 = h1; g2 = h2; g3 = h3; g4 = h4; g5 = h2
1,

(22)

where γS is given by the simple algebraic function (19) of
ρ/ρ∗. All gk’s with k � 6 decay exponentially faster than
exp(βEH ).

Similarly to SLT expansion (13), the small parameter in
series (20) is the temperature or, equivalently, the exponentially
small factor exp(−β|EH|). Now, the fixed parameter is the ratio
ξ = ρ/ρ∗ which can take arbitrary values. The corresponding
expansion of chemical potential μ straightforwardly follows
by inserting series (20) into relation (6). Other thermodynam-
ical functions can be expanded in a similar way by using
thermodynamical identities, as explained further for pressure
and internal energy.

B. Pressure

We start from the standard relation in the grand-canonical
ensemble which expresses the density as the derivative of the
pressure with respect to the fugacity z = exp(βμ). According
to the variable change defined through relation (6), that identity
can be rewritten as

ρ = γ

2

∂βP

∂γ
, (23)

where the partial derivative is taken at fixed β. Replacing ρ

by its SLT expansion (13) into the right-hand side of identity
(23), we easily obtain

βP/ρ∗ = 2γ + γ 2

2
+

∞∑
k=1

2γ nk

nk

hk(β), (24)

where we have that ρ∗ depends only on β, while βP/ρ∗
vanishes for infinite dilution, namely for γ = 0. Replacing
each factor γ by the SLT inverted series (20), we recast
expression (24) as the SLT expansion of the pressure at fixed
ratio ρ/ρ∗, namely

βP/ρ∗ = βPSaha/ρ
∗ +

∞∑
k=1

βPk/ρ
∗. (25)

The leading term is nothing but the well-known Saha pressure
(3) in units of ρ∗. The general structure of the kth correction
reads

βPk/ρ
∗ = bk(ρ/ρ∗)αk(β), (26)

where αk is a polynomial in the hl(β)’s with l � k. Therefore,
for a fixed ratio ρ/ρ∗, corrections βPk/ρ

∗ decay exponentially
fast when β → ∞, while the corresponding decay rates
increase with k. The functions [bk(ρ/ρ∗),αk(β)] involved in
the first five corrections read

b1 = γ
3/2
S (γS − 2)

3(1 + γS)
; b2 = −γ 4

S (γS + 3)

2(1 + γS)
; b3 = − γ 2

S

1 + γS
;

b4 = −γ 3
S (γS + 4)

3(1 + γS)
; b5 = γ 2

S (2 − γ 2
S )

2(1 + γS)3
(27)

α1 = h1; α2 = h2; α3 = h3; α4 = h4; α5 = h2
1,

(28)

while next correction βP6/ρ
∗ decays faster than exp(βEH).

C. Internal energy

In the grand-canonical ensemble and for a finite volume

, we set 〈N〉 = (〈N p〉 + 〈Ne〉)/2 for the average common
number of protons and electrons. We then define, in the
thermodynamic limit, the internal energy per particles pair u =
limT L U/〈N〉. Standard thermodynamical identities provide
the relation

u = ∂

∂β

(
2βμ − βP

ρ

)
, (29)

where the partial derivative with respect to β is taken at fixed
density ρ. Inserting into identity (29) the expression (6) of the
chemical potential in terms of γ and β, we find

u =
(

2 − βP

ρ

)
EH + 3P

2ρ
+ 2

∂

∂β
ln γ − ρ∗

ρ

∂

∂β

βP

ρ∗ , (30)

where we have also used

∂

∂β
ρ∗ = (EH − 3kT /2)ρ∗, (31)

inferred from definition (2) of ρ∗. The insertion of expansions
(20) and (25) of γ and βP/ρ∗ into relation (30) provide the
corresponding SLT expansion of u. The partial derivatives with
respect to β give rise to functions h′

k(β) = dhk/dβ, which
decay exponentially fast at low temperatures with the same
decay rates as the hk(β)’s. Moreover, since ρ∗ depends on β,
coefficients ak(ρ/ρ∗) and bk(ρ/ρ∗) also provide contributions
to the partial derivatives with respect to β at fixed ρ. After
straightforward algebraic calculations, we eventually obtain

u = uSaha +
∞∑

k=1

uk (32)

with

uSaha = (1 + γSξ
−1)3kT /2 + (1 − γSξ

−1)EH, (33)

and

u1 = −γ
1/2
S (1 + γS)−1[(1 + γSξ

−1)kT + 2(1 − γSξ
−1)EH]

×h1(β), (34)

u2 = −γ 4
S ξ−1h′

2(β)/2 + γ 3
S (1 + γS)−1(1 + γSξ

−1/2)

× (
EH − 3

2kT
)
h2(β), (35)

u3 = −γ 2
S ξ−1h′

3(β) + γ 2
S ξ−1(1 + γS)−1

(
EH − 3

2kT
)
h3(β),

u4 = −2γ 3
S ξ−1h′

4(β)/3 + 2(1 + γSξ
−1)γ 2

S (1 + γS)−1

× (
EH − 3

2kT
)
h4(β)/3, (37)

u5 = (1 + γS)−3
(
3ξ kT + γ 2

S (3γS + 4)(2 + γS)−1 EH
)

× [h1(β)]2. (38)

Expression (33) of Saha internal energy can be easily
interpreted as follows. Let x id

p = ρ id
p /ρ, x id

e = ρ id
e /ρ, and x id

at =
ρ id

at /ρ be the respective molar fractions of ionized protons,
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ionized electrons, and hydrogen atoms. We can rewrite formula
(33) as

uSaha = (
x id

p + x id
e

)
3kT /2 + x id

at (EH + 3kT /2), (39)

so each ionized charge does provide a classical kinetic
contribution 3kT /2, while each atom does provide the kinetic
contribution 3kT /2 associated with motion of its mass center
plus the ground-state energy EH, as it should. Notice that the
low-temperature behavior of corrections (35) and (37) can be
similarly interpreted in terms of the contributions of molecules
H2 and ions H−, H2

+ respectively.
Other equilibrium quantities can also be derived from

previous expansions via thermodynamical identities, like
the specific heats, or the isentropic compressibility which
determines the sound speed. Such derivations are, of course,
consistent within the general framework of thermodynamics:
A given quantity can be computed following different routes
which all lead to the same expression.

IV. REPRESENTATIONS OF
TEMPERATURE-DEPENDENT FUNCTIONS

For practical applications of SLT expansions, we need
simple representations of functions hk(β) at finite tem-
peratures. Though asymptotic low-temperature behaviors of
such functions are exactly known for k = 1,2,3,4, explicit
analytic expressions at finite temperature are available only
for h1(β) and h3(β), thanks to our exact knowledge of
the whole spectrum of two-body Coulomb Hamiltonians
(see Sec. IV A). For functions h2(β) and h4(β), we construct
simple approximations which are expected to be sufficiently
accurate for temperatures up to 30 000 K (see Sec. IV B).
Eventually, we provide the corresponding numerical tables
and plots for all those functions.

A. Analytical expressions for one- and two-body functions

Function h1(β) is given by the simple formula (14) which
reduces to an elementary function of dimensionless parameter
βEH. Function h3(β) is given by expression (16) in terms
of Ebeling virial functions Q(x) and E(x), which have been
widely studied in the literature. In particular, entire series
expansions in powers of x have been derived [44,45],

Q(x) = −1

6
x −

√
π

8
x2 − 1

6

(
C

2
+ ln 3 − 1

2

)
x3 +

∞∑
n=4

qnx
n,

(40)

qn = √
π

ζ (n − 2)

2n�
(

n
2 + 1

) ,

where C = 0.57721 . . . is the Euler-Mascheroni constant and
ζ (s) is Riemann’s function, while

E(x) = 1

2
+

√
π ln 2

4
x2 + π2

72
x3 +

∞∑
n=4

enx
n ,

(41)

en = √
π (1 − 22−n)

ζ (n − 1)

2n�
(

n
2 + 1

)
with x replaced by xpe = 2(β|EH|)1/2, −xpp =
−(2mp/m)1/2(β|EH|)1/2, or −xee = −(2me/m)1/2(β|EH|)1/2.
Since x is proportional to 1/

√
T , such series can be viewed

as high-temperature expansions. A controversy has arisen
recently on Eq. (40), with Kraeft [46] and Kremp, Schlanges,
and Kraeft [13] maintaining that no linear term −x/6 should
be present. Starting from the definition of function Q(x)
see, for instance, Eq. (7.1) in Ref. [23], one can calculate
quite easily its high-temperature behavior by using the
Feynman-Kac representation [47] of the density matrix

〈r|e−βh|r〉 = 1

(2πλ2)3/2

∫
D(ξ ) eβe2

∫ 1
0 ds v(|r+λξ (s)|), (42)

where h is the Hamiltonian of a particle of mass m in the
attractive Coulomb potential −e2/r and ξ (s) is a Brownian
bridge distributed according to the Wiener measure DW (ξ ).
At high temperatures, the exponential can be linearized, and a
straightforward calculation confirms that the leading behavior
is indeed given by Ebeling’s result, −x/6. Asymptotic large-x,
i.e., low-temperature, expansions read

Q(x) = 2
√

π

[ ∞∑
n=1

n2

(
ex2/(4n2) − 1 − x2

4n2

)
− x2

8

]

− x3

6

(
ln x + 2C + ln 3 − 11

6

)
− x

12

− 1

60x
+ O

(
1

x3

)
(43)

for x > 0 (attractive case) and

Q(x) = −x3

6

(
ln |x| + 2C + ln 3 − 11

6

)
− x

12

− 1

60x
+ O

(
1

x3

)
(44)

for x < 0 (repulsive case). When x → −∞, a semiclassical
calculation [48] shows that exchange function E(x) decays
exponentially fast as

E(x) � 4√
3π

|x| exp

[
−3

2

(
π2 x2

2

)1/3
]

. (45)

As far as numerical calculations are concerned, high-
temperature series (40) and (41) are quite useful because
their radius of convergence is infinite. When x becomes very
large, calculations using large-x expansions (43)–(45) are,
of course, faster. Those low-temperature expansions can be
used in fact to compute h3(T ) from formula (16), up to the
Rydberg temperature |EH|/k � 157 800 K since |xab|, for
ab = ep, pp, ee, remains larger than 1. Figure 1 shows a plot
of functions Q(x) and E(x).

Notice that the first sum in the right-hand side of expression
(43) is nothing but the so-called Brillouin-Planck-Larkin
partition function

ZBPL(T ) =
∞∑

n=1

n2

(
e−βEH/n2 − 1 + βEH

n2

)
, (46)

which was introduced in the 1930s on the basis of heuristic
arguments as discussed in Refs. [49,50]. It turns out that
Q(xpe) = Q(T ) may be approximated by ZBPL(T ) if the
temperature is not too high [49,51]. Notice that the leading
asymptotic behavior of Q(T ) and ZBPL(T ) are identical as
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FIG. 1. (Color online) Plot of Ebeling direct and exchange
functions Q(x) (solid line) and E(x) (dashed line).

T → 0, whereas one has Q(T ) ∼ 1/
√

T versus ZBPL(T ) ∼
1/T 2 at high temperatures. The quality of that approximation,
and of two even simpler approximations, is shown in Fig. 2.
The relative error when approximating Q(T ) by ZBPL(T ) is
less than 3% for T � 25 000 K, while it reaches 30% at
50 000 K. Truncating the sum in ZBPL(T ) at n = 1 provides
actually a better approximation that exhibits an accuracy of
8% at 50 000 K (see Fig. 2). The latter approximation is
quite successful because contributions from diffusive states
and from terms associated with screening effects in Q(T ),
more or less cancel out the contributions from excited bound
states at the considered temperatures. We stress that our further
calculations do not use those approximations but rather the
exact expressions for Q(x) recalled earlier.
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FIG. 2. (Color online) Comparison of the Brillouin-Planck-
Larkin partition function (dashed line) to the exact virial function
Q(xpe(T )) (solid line) for temperatures up to 100 000 K. Truncating
the sum in ZBPL after the first term yields a quite good approximation
(dot-dashed line). The dotted line (constant value 1) corresponds to
keeping only the ground-state contribution exp(−EH/kT ).

B. Simple approximations for three- and four-body functions

Because of our rather poor knowledge of the whole spec-
trum of three- and four-body Coulomb Hamiltonians, closed
analytical expressions for h2(β) and h4(β) cannot be derived
at the moment. So here we proceed to simple estimations
of those functions, inspired by the above considerations on
Z(1,1), which should work reasonably well in the temperature
range considered here.

1. Case of h2(β)

The relative importance of the contributions of the various
operators involved in [exp(−βH2,2)]TMayer, the trace of which
defines partition function Z(2,2), can be readily estimated by
using the ground-state energies of Hamiltonians H2,2, H2,1,
H1,2, H1,1, H1,0, and H0,1. Up to 30 000 K, it is sufficient
to retain only contributions from exp(−βH2,2) and from
subtracted operators involving exp(−βH1,1) exp(−βH1,1). All
other combinations of Gibbs operators associated with prod-
ucts of molecular dissociation differing from two atoms,
like exp(−βH1,0) exp(−βH1,2) associated with (p,H−) or
exp(−βH0,1) exp(−βH2,1) associated with (e,H2

+), can be
safely neglected. After adding to Z(2,2) the contribution
of W (1,1|1,1) in the expression (15) of h2(β), we find
that terms which involve imaginary-time evolutions of Vat,at,
V 2

at,at, and V 3
at,at cancel out. This provides a simple estimation

of h2(β) as arising entirely from operator [exp(−βH2,2) −
exp(−βH1,1) exp(−βH1,1)].

Similarly to the case of Z(1,1), in the considered tem-
perature range, the main contributions from [exp(−βH2,2) −
exp(−βH1,1) exp(−βH1,1)] can be reasonably expected to
arise from the lowest-energy molecular bound states. In addi-
tion, we describe such states within the familiar picture where
the electrons are in their ground state, while global rotations
and vibrations of the molecule are taken into account within
a rigid-rotator model and a harmonic oscillator, respectively.
This leads to the approximation

h2(β) �
√

2m3/2

32M3/2
ZH2 exp(3βEH), (47)

where the molecular partition function ZH2 factorizes into [52]

ZH2 = exp
(−βEH2

)
Z

(rot)
H2

Z
(vib)
H2

(48)

with the vibrational part

Z
(vib)
H2

= 1

1 − exp
(−βε

(vib)
H2

) (49)

and the rotational part

Z
(rot)
H2

=
[ ∞∑

l=0

(4l + 1) exp
(−2l(2l + 1)βε

(rot)
H2

)

+ 3
∞∑
l=0

(4l + 3) exp
(−(2l + 1)(2l + 2)βε

(rot)
H2

)]
.

(50)

In formula (50), the first sum runs over rotational states of
parahydrogen and the second sum over rotational states of
orthohydrogen. The energy quanta ε

(vib)
H2

= kT
(vib)

H2
and ε

(rot)
H2

=
kT

(rot)
H2

associated to proton vibrations and global rotations are
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TABLE I. Spectroscopic data of some hydrogen bound states: ground-state energy E(0) (in atomic units) and rotational and vibrational
temperatures (in K). The values include neither relativistic nor radiative corrections.

H H− H2 H2
+ H2

− H3
+

E(0) −0.5 −0.527733147 −1.164663172 −0.597139063 −1.048274 −1.323 ± 0.002
T (rot) / / 85.26 41.87 50.42 (not useda)
T (vib) 5986.98 3150.78 2228.32
Ref. b c d e f

aFor the rovibrational partition function of H+
3 , see L. Neale and J. Tennyson, Astrophys. J. 454, L169 (1995).

bHandbook of Atomic, Molecular, and Optical Physics, edted by G. Drake (Springer, 2006).
cL. Wolniewicz, J. Chem. Phys. 99, 1851 (1993).
dJ. Ph. Karr and L. Hilico, J. Phys. B: At. Mol. Opt. Phys. 39, 2095 (2006).
eCalculated by V. Robert using a coupled cluster [CCSD(T)] approach including an extended basis set for hydrogen atoms (4s3p2d1f ).
fP. C. Cosby and H. Helm, Chem. Phys. Lett. 152, 71 (1988).

listed in Table I. We recall that the rotational partition function
reduces to the classical result

Z
(rot)
H2

∼ 2T

T
(rot)

H2

, (51)

when T � T
(rot)

H2
. Notice that more precise descriptions of

the lowest-energy excited states of H2, which do not neglect
rotation-vibration coupling as the rigid rotor approximation
(48), are available in the literature [53] but are not required for
our purpose.

Approximation (47) can be viewed as a suitable ex-
trapolation of the the exact low-temperature behavior of
h2(β), which includes both leading and sub-leading terms.
Up to 30 000 K, contributions of electronic excitations can
be omitted because the corresponding energy gaps are of
order 10 eV at least. Moreover, and similarly to the case of
Z(1,1), either diffusive states like those associated with the
dissociation of the molecule into two atoms or substracted
terms involved in the truncated operator [exp(−βH2,2)]TMayer
like exp(−βH1,1) exp(−βH1,1) provide contributions which
can be safely neglected in that relatively low-temperature
range. As detailed in Appendix, this has been checked within a
simplified model which is often used for describing the energy
levels of the molecule H2.

2. Case of h4(β)

Function h4(β), defined by formula (17), can be approxi-
mated within a construction similar to the above derivation for
h2(β). This provides

h4(β) � 3m
3/2
e (M + mp)3/2

64M3
ZH2

+ exp(2βEH)

+ 3m
3/2
p (M + me)3/2

64M3
ZH− exp(2βEH)

+ cat

8π3/2(β|EH|)1/2
exp(βEH), (52)

which is the analog of expression (47) for h2(β). Here, internal
partition functions for ions H2

+ and H−, which arise from
Z(2,1) and Z(1,2), read

ZH2
+ = 2 exp(−βEH2

+)Z(rot)
H2

+ Z
(vib)
H2

+ (53)

and

ZH− = 2 exp(−βEH− ), (54)

where the required spectroscopic data are given in Table I,
while the contribution of S3(1,1) exp(2βEH) has been replaced
by its low-temperature form with constant cat � 10.065 [6].

Similarly to formula (47), approximate expression (52)
incorporates both leading and subleading contibutions to the
low-temperature representation of h4(β). A similar accuracy
for that approximation can be reasonable expected up to a
few thousands kelvins, where ionic ground-state contributions
dominate. However, when temperature is increased up to 30
000 K, approximation (52) becomes surely less accurate than
its counterpart (47) for h2(β). Indeed, the binding energies of
ions H2

+ and H− are of order 2.6 and 0.7 eV, respectively,
so contributions of all terms which arise from diffusive
states, truncations defining Z(2,1) and Z(1,2), or interactions
involved in W (1,1|1,0) and W (1,1|0,1) can no longer be
neglected for T > 10 000 K. Nevertheless, the accuracy of
approximation (52) should be sufficient for our purpose,
because contributions to thermodynamics associated with
h4(β) remain quite small in the considered density-temperature
range.

C. Numerical values and plots

Using the exact representations for h1(β) and h3(β), as well
as the approximate forms of h2(β) and h4(β), we can compute
those functions easily and quickly. The corresponding plots,
in logarithmic units, are shown in Fig. 3, while numerical
values at some specific temperatures are given in Table II.
Functions h2(β) and h4(β) are computed only up to 30 000 K,
because their approximate expressions introduced in Sec. IV B
are expected to become inaccurate at higher temperatures.

At low temperatures, all functions are positive and increase
monotonously with T up to 30 000 K. Function h3 changes
sign near 90 000 K, while a change of sign in functions h2

and h4 might also happen at temperatures above 30 000 K. In
function h4, the contributions arising from ions H2

+ and H−
have the same order of magnitude and are much larger than the
third contribution in Eq. (52) which accounts for a shift in the
atomic ground state. For T < 30 000 K, all functions remain
quite small in relation with their exponential decay in the zero-
temperature limit. The hierarchy h1(β) � h2(β) � h3(β) �
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FIG. 3. (Color online) Plot of functions hk(β) for k = 1,2,3,4.
Note that β|EH| = TRydberg/T .

h4(β) is satisfied at very low temperature, in agreement with
the ordering of the corresponding low-temperature decay rates
δ1 < δ2 < δ3 < δ4. When the temperature is increased, the
relative differences between those functions are reduced. In
particular, h3 overcomes h2 near 1000 K, and h4 overcomes
h2 near 5900 K.

The ordering of the hk functions is connected to the relative
importance of the corresponding corrections to the ideal
Saha equation in the SLT limit T → 0. At finite temperature
and density, the ordering of the various corrections can
differ from the low-temperature ordering, not only due to
the temperature dependence of the hk functions but also
because those corrections involve also functions of ratio ρ/ρ∗
which depends on both temperature and density as shown by
formula (26). For instance, the corrections associated with h2

describing molecular formation and atom-atom interactions,
will dominate in a sufficiently dense atomic phase, despite the
fact that function h2 is much smaller than h1 (see Sec. V A).

V. COMPARISONS TO OPAL TABLES AND PIMC DATA

We compute numerically the various corrections to the ideal
Saha equation of state that appear in the SLT expansion of
the pressure [Eq. (25)] and of the internal energy [Eq. (32)]
and compare the predictions to the most accurate current
tabulations of those thermodynamical functions. The present

TABLE II. Numerical values of functions hk(β) (k = 1,2,3,4) at
different temperatures.

T (K) h1(β) h2(β) h3(β) h4(β)

2000 1.46 × 10−16 2.89 × 10−28 3.99 × 10−26 1.00 × 10−31

6000 1.70 × 10−5 2.73 × 10−12 6.08 × 10−9 3.01 × 10−12

10 000 2.23 × 10−3 7.40 × 10−9 2.11 × 10−5 4.94 × 10−8

20 000 6.84 × 10−2 5.12 × 10−6 8.09 × 10−3 9.26 × 10−5

30 000 1.88 × 10−1 6.41 × 10−5 4.24 × 10−2 1.35 × 10−3

calculations correct2 and complement the initial results for the
pressure published in Ref. [54].

A. General properties of the isotherms

We start by studying general properties of isotherms that
follow from the structure of the terms in SLT expansion
(25). Along a given isotherm, the various corrections to Saha
pressure depend on the ratio ρ/ρ∗ where the crossover density
ρ∗ is kept fixed. Because of the nonlinear dependence in ρ/ρ∗
of coefficients bk(ρ/ρ∗), their relative importance changes
drastically from low densities ρ � ρ∗ to high densities
ρ � ρ∗. For ρ � ρ∗, each bk(ρ/ρ∗) can be expanded in
powers of ρ/ρ∗, as well as Saha pressure (3) itself. This
leads to the well-known virial expansion of βP in powers
of ρ at fixed T [9,23,44,55,56], as shown in Ref. [54]. The
corresponding leading term entirely arises from Saha pressure
and describes full ionization of the plasma. First correction of
order ρ3/2, entirely provided by βP1, is the familiar Debye
contribution for a classical plasma of ionized protons and
electrons with density ρ. Saha pressure (3), βP3, and βP5

contribute to a second correction of order ρ2, which accounts
for atomic recombination as well as two-body interactions
between ionized charges. Ionic contributions embedded in βP4

are of order ρ3, while molecular ones embedded in βP2 are
of order ρ4, in agreement with the numbers of protons and
electrons involved in the ions H2

+ and H− and molecule H2.
For ρ of order ρ∗, beyond the leading contribution of

Saha pressure (3), the ranking of the various corrections is
essentially that of temperature-dependent functions hk(β).
However, notice that the a priori first correction βP1 vanishes
at ρ = 4ρ∗ and becomes positive for ρ > 4ρ∗. Therefore,
βP1 reduces to the familiar Debye contribution βPDebye =
−κ3/(24π ) only in the fully ionized region ρ � ρ∗, while
its structure begins to differ in the atomic region ρ > ρ∗ as a
subtle consequence of recombination processes. In the region
close to ρ = 4ρ∗, the first correction to Saha pressure is then
given by βP3 as illustrated below.

For ρ � ρ∗, Saha pressure reduces to the ideal pressure
of an atomic gas with density ρ since almost all charges are
recombined. According to the large-ρ/ρ∗ behavior of coeffi-
cients bk(ρ/ρ∗), the first correction to Saha pressure is now
given by βP2 which describes both molecular recombination
and atom-atom interactions. Since it increases as ρ2, that
correction would overcome Saha pressure at sufficiently high
densities. In fact, and as discussed further, this provides an
upper density for the validity of the SLT expansion. Notice that
while βP4 also increases faster than βPSaha ∼ ρ, i.e., as ρ3/2,
all other considered corrections increase more slowly than ρ.
This can be easily interpreted by noting that such corrections,
namely βP1, βP3, and βP5, are related to the presence of
ionized protons and electrons which tend to disappear at high
densities.

The previous analysis of the behavior of the pressure along a
given isotherm is summarized in Table III. Similar results hold

2In Ref. [54], formula (9) contains a typo and the full SLT curve in
Fig. 2 of Ref. [54] is incorrect due to an ill-placed parenthesis when
computing the correction k = 3.
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TABLE III. First correction to ideal Saha pressure along a low-
temperature isotherm.

Density First correction Physical origin

ρ � ρ∗ βP1 Debye plasma polarization
ρ � ρ∗ βP3 e-p interactions and excited H atoms
ρ � ρ∗ βP2 H2 molecules and H-H interactions

for the behavior of the internal energy per particle given by its
SLT expansion (32) together with the expressions (33)–(38).
In particular, at low densities, we find that the first correction to
the classical thermal energy 3kT of the fully ionized plasma is
indeed the Debye contribution which arises entirely from u1.
For densities ρ � ρ∗, u2 becomes the leading correction to
uSaha, since it increases as ρ while u4 grows only as ρ1/2,
u3 tends to a constant, and both u1 and u5 vanish. If we
replace h′

2(β) by its low-temperature form (3EH − EH2 )h2(β),
while we introduce the molar fraction of molecules H2 defined
by x id

H2
= ρ id

H2
/ρ, then the sum of leading and subleading

contributions in Eq. (32) can be rewritten as

(
xat + x id

H2

)3kT

2
+ xatEH + x id

H2
EH2 , (55)

where the molar fraction xat of atoms H accounts for the partial
recombination of protons and electrons into molecules H2, i.e.,
xat = x id

at − 2x id
H2

. Expression (55) shows that, for kT � |EH|
and ρ � ρ∗, the system reduces to an ideal mixture, made of
a small fraction of molecules H2 diluted in a gas of atoms H,
in their molecular and atomic ground states, respectively.

B. Isotherms at a few thousands kelvins

Because of the relatively large value of temperature scale
|EH|/k � 150 000 K and of the occurrence of exponentially
decaying factors, crossover density ρ∗ is extremely small
below a few thousand kelvins. For instance, at T = 300 K,
we find ρ∗ � 3.4 × 10−204m−3, which corresponds to tremen-
dously diluted conditions that are not physically accessible.
This means that a stable partially ionized atomic phase, which
exists when ρ is of the order of ρ∗, cannot be realized in
practice for hydrogen at such low temperatures. For instance,
under the standard conditions of the Earth’s atmosphere,
density ρ � 1026m−3 is so large with respect to ρ∗ that
SLT expansion breaks down, due to correction βP2 being
too large, in agreement with the emergence of molecules
H2 as the most important species. Even at T = 2000 K,
ρ∗ = 6.1 × 10−9m−3 still corresponds to quite diluted condi-
tions. Interesting physical systems with similar temperatures
in the range 1000K < T < 2000K are the atmospheres of
brown dwarfs. The corresponding densities lie in the range
1025m−3 < ρ < 1027m−3, so they are too large compared to
the corresponding ρ∗’s to use SLT expansions. In fact, as for
Earth’s atmosphere, hydrogen is essentially recombined into
molecules. Thus, we will not consider isotherms below T =
2000 K within SLT expansions, because the corresponding
density ranges of validity do not correspond to known physical
systems of interest. We note that the standard virial expansion
cannot provide as well any useful information on the hydrogen
gas when T < 2000 K, for the very same reason that the

ρ
ρ∗

present work

Sun photosphere

FIG. 4. (Color online) Logarithmic plot of deviations to Saha
pressure for pure hydrogen along isotherm T = 6000 K (ρ∗ =
2.12 × 1015 m−3). Crosses correspond to tabulated points of the
OPAL equation of state [1] (with corrected ground-state energy [34]).

fully ionized phase is not thermodynamically stable at low
temperatures for physically accessible densities.

When T increases up to a few thousands kelvins, the
atomic crossover density ρ∗ reaches higher values which
are encountered in some systems. For fixing ideas, we
consider isotherm T = 6000 K, which is typical of the Sun’s
photosphere and for which ρ∗ � 2.12 × 1015m−3. In Fig. 4,
we plot deviation δP = P − PSaha along that isotherm in the
range 109m−3 < ρ < 1027m−3, where δP does not exceed a
few percentages of PSaha. When ρ/ρ∗ � 105, the dominant
contribution is due to the polarization of the plasma around
ionized charges, embedded in correction P1. For ρ/ρ∗ � 10−2,
that contribution is negative and reduces to the familiar Debye
expression −κ3/(24π ) that appears in the virial expansion.
At ρ/ρ∗ = 4, correction P1 changes sign, as seen on expres-
sion (27) for coefficient b1(ρ/ρ∗). The plasma-polarization
correction thus is not given at high densities by the Debye
formula with a modified Debye length computed with the
density of ionized charges, as it could naively be expected
in a phenomenological approach. At densities ρ/ρ∗ � 105,
molecular contributions embedded in term P2 become the most
important correction, as expected at high densities. Since the
formation of molecules reduces the pressure, δP then becomes
negative again. When ρ/ρ∗ � 1011, the SLT expansion fails
to converge because molecular recombination can no longer
be treated perturbatively.

Contributions of the first excited atomic state, embedded
in correction P3, and contributions of the ions H2

+ and H−
embedded in P4, are essentially negligible along the whole
isotherm. For completeness, we mention that it is only near the
special density 4ρ∗ that P3 turns out to provide the dominant
correction, while P4 is the dominant correction near the density
105ρ∗ where corrections P1 and P2 compensate each other
and where P3 is negligible since there are almost no ionized
charges. At these special densities, the deviation to the Saha
pressure is about 10−9.

We can compare our results to those of the OPAL tables [1],
which are shown as crosses in Fig. 4. A very good agreement
is found for densities ρ/ρ∗ > 104. At lower densities, the
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TABLE IV. Pressure at typical temperature and density of Sun
photosphere.

Pressure

βPSaha/ρ 1 + 1.70 × 10−4

βP1/ρ 1.04 × 10−7

βP2/ρ −3.79 × 10−4

βP3/ρ −1.03 × 10−12

βP4/ρ −2.36 × 10−8

βP5/ρ −2.44 × 10−14

discrepancies are certainly due to the fact that extracting a
deviation to Saha pressure from the OPAL tables is a difficult
task when the deviation is of the order of 10−6. Indeed, the
values in the OPAL tables are given with at most six digits, and
a slight difference in the values of the fundamental constants,
like in the ground-state energy EH, can induce a small variation
of the Saha pressure PSaha that is comparable to the deviation
δP = P − PSaha itself.

A change of sign of δP is observed in the OPAL EOS around
density ρ/ρ∗ � 105 at 6 000 K, in agreement with our SLT
EOS: This sign change is induced by negative contributions in
P2 associated with molecular recombination overcoming the
plasma polarization correction P1. Notice that the nontrivial
variations of δP with two sign changes are brought to light
by simple physical interpretations within our approach. At
the point with density ρ � 1.47 × 1023m−3, typical of the
Sun’s photosphere shown in Fig. 4, electrons and protons are
almost fully recombined into hydrogen atoms since ρ � ρ∗,
and the various corrections to Saha pressure, which is itself
close to P

(id)
at , are given in Table IV. The full pressure is

below P
(id)
at because of molecular recombination. Moreover,

contributions of ions H2
+ and H− are still smaller than the

positive polarization contribution due to the ionized protons
and electrons despite the fact that their dilution is quite
large. Such subtle effects cannot be anticipated nor accurately
described with phenomenological approaches.

C. Isotherms between ten and thirty thousands kelvins

We consider various isotherms above T = 10 000 K up
to T = 30 000 K. The corresponding δP ’s are plotted in
Fig. 5, while the respective values of ρ∗ are given in Table V.
The OPAL values of δP are shown, moreover, on the plots
with symbols. As discovered in Ref. [34], the OPAL tables
were computed using the value EH = 1Ry � −13.60569 eV,
corresponding to an infinitely heavy nucleus, instead of
the correct value, EH = −me4/(2h̄2) � −13.59829 eV. That
inaccuracy in EH induces variations of the Saha pressure that
can be larger by an order of magnitude than the deviation
δP itself for state points in the crossover region between the
ionized and atomic phases. The OPAL deviations δP shown in
all figures of the present paper were determined by subtracting
from the OPAL values the ideal pressure PSaha computed with
EH = 1 Ry.

At the low temperatures 10 000 K and 15 000 K, we find
excellent agreement between our analytical SLT EOS and the
tabulated OPAL EOS in the considered density range. A small
discrepancy is observed only for the last highest-density point
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FIG. 5. (Color online) Logarithmic plots of deviations to Saha
pressure along isotherms from 10 000 K up to 30 000 K according
to the SLT EOS (solid and dashed lines) and to the tabulated OPAL
EOS (symbols).

on each of these two curves. This discrepancy at high density
(massic density 0.1 g/cm3) and low temperatures is due to the
fact that the system is close to being in a molecular phase.

At low densities, ρ/ρ∗ < 1, the agreement between both
equations of state is also excellent, even at rather high
temperatures. We note that the deviation δP is dominated in
that region by the Debye plasma polarization correction P1.
Although that correction changes sign at ρ/ρ∗ = 4, deviation
δP changes sign, for isotherms with T > 10 000 K, at a density
ρ/ρ∗ slightly higher than 4 because of negative contributions
arising from correction P3, which describes excited atoms and
charge-charge interactions.

We observe, in Fig. 5, discrepancies in region ρ/ρ∗ �
102 and T � 20 000 K. Those discrepancies are due to the
negative corrections P2 and P4, which shrink more strongly, in
our calculations, the region where deviation δP is positive
than in the OPAL EOS. We note that those corrections
may be somewhat overestimated since we computed in the
present work an approximation to functions h2 and h4 in
which only molecular and ionic bound-state contributions
are kept. The discarded truncation terms in h2 can provide
positive contributions at high temperatures, which describe in
particular atom-atom interactions. An accurate calculation of
functions h2 and h4 at temperatures higher than 20 000 K is
needed to provide fully reliable results at such temperatures
and densities. Tests have shown that the OPAL deviations δP

around ρ/ρ∗ � 102 are in fact fully explained by retaining
solely the Debye plasma polarization effect P1.

TABLE V. Atomic recombination density ρ∗ in m−3 and in g/cm3

at various temperatures.

T (K) ρ∗(m−3) ρ∗(g/cm3)

10 000 1.69 × 1020 2.83 × 10−10

15 000 5.98 × 1022 1.00 × 10−7

20 000 1.28 × 1024 2.14 × 10−6

25 000 8.65 × 1024 1.54 × 10−5

30 000 3.26 × 1025 5.45 × 10−5
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FIG. 6. (Color online) Deviations to Saha internal energy for
isotherms between 10 000 K and 30 000 K according to the SLT
EOS (solid and dashed lines). Points of the (corrected) OPAL EOS
are shown by symbols (up to density 0.1 g/cm3).

Deviations δu = u − uSaha of the internal energy per proton
are shown along several isotherms in Fig. 6. The variations of
δu at temperatures up to 10 000 K are fully controlled by the
two terms u1 and u2. At low densities (ρ/ρ∗ � 1), the plasma
polarization term u1 is dominant and negative. That correction
changes sign when the condition

ρ

ρ∗ = 4ε
1 + ε

(1 − ε)2
, ε = kT

2|EH | (56)

is met, as can be seen from Eq. (34). At high densities (ρ/ρ∗ �
104), δu becomes negative again because the term u2 becomes
dominant and the formation of molecules indeed lowers the
energy. When T > 10 000 K, term u3 comes into the game and
has the effect of enlarging the domain where the deviations δu

are positive, similarly to the case of the pressure deviations
δP .

D. Low-density isochores

A plot of pressure deviations δP along two low-density
isochores is displayed in Fig. 7 for temperatures between
2000 K and 100 000 K. The predictions of the OPAL
tables, which are available for many temperature points, are
also shown in those plots. At very low densities (isochore
10−8 g/cm3), our calculations agree very well with the
OPAL tables. When the temperature is high, the system is
fully ionized and the dominant correction to Saha pressure
arises from the Debye plasma polarization correction P1,
which behaves as −κ3/(24π ) ∝ T −3/2 when T → ∞. On
decreasing the temperature, correction P1, and, hence, also
δP , changes sign when the condition ρ/ρ∗ = 4 is met. The
deviation δP displays a second change of sign at a lower
temperature, because the correction P2 becomes dominant
due to the formation of hydrogen molecules in the system.
That correction P2 grows quickly when the temperature is
further lowered, and a point is reached where P2 is no longer a
small correction. This signals the formation of the molecular
phase, which is outside the scope of the present calculations.
Since the pressure of the ideal molecular gas is ρkT /2 and
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FIG. 7. (Color online) Deviations to Saha pressure along iso-
chores 10−8 g/cm3 (black line) and 10−3 g/cm3 [red (light gray)
line] according to the SLT EOS. Crosses correspond to values of the
(corrected) OPAL EOS. The red (light gray) dashed line shows the
effect of neglecting term P4 in the SLT EOS.

that of the ideal atomic gas is ρkT , the pressure deviation
|P − PSaha|/(ρkT ) should tend to 0.5 at low temperatures and
low densities, as is indeed observed for the OPAL deviations
in Fig. 7.

Along isochore 10−3 g/cm3 shown in Fig. 7, we can observe
some discrepancies between our predictions for the deviations
δP and those of the OPAL tables. When T < 10 000 K, the
differences are due to the formation of the molecular phase.
In region 20 000K < T < 30 000 K, deviation δP is positive
and is somewhat larger in the OPAL tables than predicted by
the SLT EOS. In that region, deviation δP is the result of
the sum of the first four SLT terms, with P2 and P4 partially
compensating P1 and P3. While the latter two terms are known
exactly, the former two terms are currently estimated in our
calculations by keeping only molecular and ionic bound states
(see Sec. IV B). Not surprisingly, accurate calculations of the
corresponding functions h2 and h4 in the temperature range
20 000–70 000 K, are required for a fully reliable description.
When T � 80 000 K, the SLT and OPAL predictions coincide.
At such high temperatures, the deviation δP is due to the sum
of the SLT terms P1, P3, and P5 associated with ionized protons
and electrons, and it reduces to the predictions of the standard
virial expansion.

A low-density isochore of the internal energy is shown in
Fig. 8, where the SLT EOS is compared to other equations
of state. At high temperatures, the system is fully ionized and
the variations of the internal energy per proton are mainly
controlled by the average thermal kinetic energy 3kT /2 of the
particles (dot-dashed line). When the temperature is reduced
to 10 000 K, a sharp drop of the internal energy is observed
due to the formation of the atomic phase. Reducing further the
temperature, a second drop in the potential energy occurs when
the molecular phase is formed. Since the SLT EOS accounts
perturbatively for all deviations to the ideal Saha equation
of state that describes the transition between the ionized
and the atomic phase, its validity domain is limited at low
temperature by the formation of the molecular phase, which is
a nonperturbative effect (see deviations at low temperatures in
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FIG. 8. (Color online) Internal energy per proton along isochore
10−8 g/cm3 according to the SLT EOS (black line), OPAL EOS
(crosses), and Saha EOS (dashed line). For the difference between
the two former and the latter curves, see Fig. 9. All energies are shifted
upwards by |EH2 |/2. The plot shows also curves |EH2 |/2 + 3kT (red
dot-dashed line) and 3kT (dotted line).

Fig. 8). On the scale of Fig. 8, the deviations δu = u − uSaha

between the SLT EOS or the OPAL EOS, and the ideal Saha
values are almost indiscernible. Those deviations are shown in
Fig. 9 for two isochores, 10−8 and 10−3 g/cm3. The agreement
on deviations δu between our analytical calculations and the
OPAL tables is impressively good. As in the case of the
pressure isotherms (see Fig. 5), δu changes sign twice: once
in the ionized-atomic transition, when condition (56) is met,
and once in the atomic-molecular crossover region. The only
significant disagreement between the SLT and OPAL EOS
along the very low density isochore (10−8 g/cm3) occurs
at low temperatures due to the formation of the molecular
phase, where the OPAL deviation δu tends to the difference in
energy per proton between the atomic and the molecular phase
[log10(EH2/2 − EH) � 0.35]. Along isochore 10−3 g/cm3,
rather small differences are observed only near the two sign
changes of δu, similarly to the deviations δP along the same
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FIG. 9. (Color online) Deviations to Saha internal energy for
isochores 10−8 g/cm3 (black line) and 10−3 g/cm3 [red (light gray)
line] according to the SLT EOS. Crosses denote tabulated points of
the (corrected) OPAL EOS.

isochore. Term u5 contributes sensitively to δu only when
T � 30 000 K.

E. Comparison to PIMC data

Results of quantum path integral Monte Carlo (PIMC)
simulations of a dilute e-p gas are available at six densities
between 10−3 g/cm3 and 0.15 g/cm3 and eight temperatures
between 5000 K and 250 000 K [4] (see state points in
Fig. 12). Very low densities, such as 10−6 g/cm3 as in the
Sun photosphere, are not within reach of PIMC simulations
because sufficient statistics cannot be collected in very diluted
conditions. Fortunately, the SLT expansion converges quickly
at such low densities, and it has been shown in the previous
section that the predictions of the SLT EOS coincide in this
regime with those of the (corrected) OPAL tables, if we exclude
the molecular phase which is outside the validity domain of
the SLT expansion.

Comparison of our results with the PIMC data is instructive
along the moderate density isochore 10−3 g/cm3; see Fig. 10.
The decrease of the pressure as the temperature is lowered
is shown in Fig. 10(a), with P varying from 2ρkT at high
temperature (fully ionized gas) to ρkT (atomic gas at around
15 000 K), and eventually down to ρkT /2 (molecular phase).
A small plateau corresponding to the atomic phase can also
be identified in Fig. 10(b) for the internal energy, though
it is much less visible than on isochore 10−8 g/cm3 (see
Fig. 8). The deviations δP and δu from the ideal Saha
values are shown in Figs. 10(a′) and 10(b′). The various sign
changes of these deviations predicted by the SLT formulas
can indeed be observed in the simulations. The uncertainties
of the simulation data at temperatures T � 15 000 K are
quite large, especially in the case of the pressure. Notice that
δP/(ρkT ) tends trivially to −1/2 in a dilute molecular phase,
so the simulation data do not contain much information in that
regime. In the crossover region between the atomic phase and
the fully ionized phase, the agreement on δP and δu between
the simulation data and the SLT and OPAL equations of state
is rather good. In the temperature range 10 000−25 000 K,
the predictions of the SLT EOS are within the error bars of
the PIMC results. At very high temperatures, T > 100 000 K,
the PIMC results for the energy deviation δu do not agree
fully with the SLT nor the OPAL EOS. The uncertainties
in the simulation results are maybe underestimated. When
T = 62 500 K, and to a lesser extent when T = 31 250 K, the
OPAL EOS agrees slightly better with the PIMC data than the
SLT EOS. This might be due to our inaccurate description of
functions h2 and h4 for such temperatures.

In Fig. 11, we compare our results along a denser isochore
at massic density 0.0125 g/cm3 (for which rs = a/aB =
6), where significant differences between the predictions of
the three approaches (SLT EOS, OPAL EOS, and PIMC
simulations) can be observed, especially in the case of the
pressure deviations. Disregarding the molecular phase at low
temperatures, deviations δP and δu remain small (less than
10%) along this isochore, so the SLT expansion should still
apply. Since the OPAL EOS agrees quite well with the PIMC
data for the energy deviations δu and the OPAL EOS is
thermodynamically consistent, the disagreement on the OPAL
pressures with the PIMC data when T � 30 000 K, i.e., in the
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FIG. 10. (Color online) Pressure (a) and internal energy (b) per electron-proton pair as a function of temperature along isochore 10−3 g/cm3,
according to SLT EOS [red (light gray) line], OPAL EOS (dashed line), and ideal Saha EOS (dotted line). Points with error bars are simulation
results of Ref. [4]. Plots (a′) and (b′) show deviations to the ideal Saha values along the isochore.

crossover region between the atomic and the molecular phase,
indicates probably that the errors on the PIMC pressures are
underestimated. Some disagreement between the OPAL (and
SLT) equations of state and the PIMC results is also observed
at 31 250 K and at high temperatures for T � 100 000 K.
As for the above lower-density isochore, some discrepancies
between the SLT EOS and the other data might be due to
inaccuracies in the calculation of functions h2(T ) and h4(T )
for temperatures above 30 000 K.

F. Validity domain

As exemplified in the previous sections, truncation of
the SLT expansion (25) at k = 5 gives accurate results as
long as the corresponding deviations δP = ∑5

k=1 Pk or δu =∑5
k=1 uk remain small compared to their ideal Saha value.

The validity of the SLT expansion is limited at high densities
along an isotherm, respectively at low temperatures along an
isochore, by the formation of the molecular phase, where βP2

then becomes larger than PSaha itself. We can estimate the
borderline of the validity domain by introducing the empirical
criterion |δP (Tv,ρ)| = PSaha/10. At high densities, or low
temperatures, ρ � ρ∗ so P2 becomes the leading correction
in δP . Criterion |P2|/PSaha = 0.1 then gives

ρc(T ) = ρ∗(T )

20|h2(T )| (57)

as a borderline for the validity domain in the (ρ,T ) plane. If
the temperature is low, function h2(T ) behaves as

h2(T ) ∼ 1

64

(
2m

M

)3/2

exp[(3EH − EH2 )/(kT )], (58)

and ρc(T ) reduces to a straight line in the (log ρ, β) plane
(see Fig. 12). The curve ρc(T ) defines quite precisely the
borderline of the validity domain in a large part of the phase
diagram, as checked by the comparison with the data of the
PIMC simulations. In particular, this is illustrated by the plots
in Sec. IV E and the state points denoted by crosses in Fig. 12.
At a given density, the SLT expansion converges only for
temperatures that are sufficiently high to avoid the formation
of the molecular phase. Some of the lower-temperature state
points in the PIMC simulations are, for instance, outside of
the validity domain of the SLT expansion, while others, like
those to the left of line ρc(T ) in Fig. 12, are within the
validity domain. When the density increases, the minimum
temperature required for the SLT expansion to converge also
increases. At density 0.1 g/cm3, the temperature must be
higher than 30 000 K. Since the exact behavior of h2(T ) above
30 000 K is currently not available, the precise position of the
borderline of the validity domain in the region of high densities
and temperatures is yet not fully known.

The crossover density ρ∗(T ) [Eq. (2)] between the fully
ionized and the atomic phase is also shown in Fig 12. That
line gives essentially the borderline of the validity domain
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FIG. 11. (Color online) Deviations (with respect to ideal Saha
values) of pressure (a) and internal energy per electron-proton pair (b)
as a function of temperature along isochore 0.0125 g/cm3, according
to the SLT EOS [red (light gray) line] and OPAL EOS (dashed line).
Points are simulation results of Ref. [4].

of the standard virial expansion, which holds only in the
weakly coupled (� � 1) fully ionized phase. The dashed line
in Fig. 12 shows state points where the coupling parameter
� = β2/a is equal to 0.5. That line lies quite close to ρ∗(T ).
In the narrow strip at high densities and temperatures between
the lines � = 0.5 and ρ∗(T ), the SLT expansion is expected to
converge only slowly because � is close to 1 (� � 0.7 in that
region).

Figure 12 shows that the SLT expansion provides an
accurate analytical knowledge of the thermodynamics of the
quantum e-p gas in a rather large range of densities and
temperatures that includes the fully ionized phase (ρ � ρ∗),
the partially ionized phase (ρ ∼ ρ∗), and the atomic phase
(ρ∗ � ρ < ρc).

VI. CONCLUSIONS

In this work, we extend the exact analytical knowledge
on the thermodynamics of hydrogen at low densities by
deriving the first five terms in the SLT expansion of the
internal energy [Eq. (32)], a result that complements the
corresponding expansions for the pressure [Eq. (25)] and
the chemical potential [Eq. (20)]. Similar expansions for
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FIG. 12. (Color online) Phase diagram of a pure hydrogen gas
at low densities. The crosses denote state points where simulation
results are available [4]. The crossover density ρ∗(T ) between the
plasma and the atomic phase (dot-dashed line) gives essentially the
borderline of the validity domain of the standard virial expansion,
which applies only in the plasma phase. The dashed line corresponds
to a plasma coupling parameter � = 0.5. The SLT expansion is valid
in both the plasma and atomic phases, up to the solid (blue) line ρc(T )
[Eq. (57)], which locates the crossover to the molecular phase. The
state point of the Sun photosphere and the track of the Sun adiabat
(dotted line) are also shown.

any thermodynamical quantity can be easily derived without
any loss of thermodynamic consistency. We performed also
extensive numerical calculations of isotherms and isochores
and compared in detail the predictions of the SLT formulas
with the numerical OPAL EOS and data of PIMC simulations.
Our analytical SLT formulas for the deviations to the ideal
Saha law can be evaluated numerically very easily and
quickly. As applying the SLT EOS is straightforward, no
extensive tabulation, with the associated loss of accuracy due
to interpolation, is required. A plot and a tabulation of the
functions hk(β) (k = 1,2,3,4) have been provided as guide to
help the user in applying numerically our formulas.

We emphasize the following points:
(1) The exact SLT expansion overcomes the restriction

ρ � ρ∗(T ) of the standard virial expansion and has a validity
domain that extends up to the density ρc(T ) in the atomic phase
(see Fig. 12).

(2) At low densities (ρ < 10−5 g/cm3), excellent agreement
is found between the predictions of the SLT EOS for the
pressure and the internal energy and the values in the OPAL
tables for pure hydrogen. Notice that if the density is very
low, the OPAL tables need to be corrected as explained in
Ref. [50]. As several important ingredients in the OPAL EOS,
which is available only in the form of precomputed tables, are
unknown, attempts have been made to emulate this equation
of state [57]. It is very satisfactory to see that the OPAL EOS
for pure hydrogen can be fully reproduced at low densities
by our simple analytical formulas. Furthermore, the physical
content of the various corrections of interest is enlightening, as
well as the subtle cancellations between some contributions.
No PIMC simulation results are available at such low densities
because the statistics becomes poor.
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(3) At higher densities, some small discrepancies can
be observed among the SLT EOS, the OPAL EOS, and
the simulation results. We plotted the pressure deviations
δP = P − PSaha and the energy deviations δu = u − uSaha

to the ideal Saha law to extract the variations of those
thermodynamical quantities that are due to nonideality. Those
deviations δP and δu show two sign changes, which are also
seen in the simulation data and which are fully explained by
our analytical formulas. For densities up to 10−3 g/cm3 and
temperatures up to 30 000 K, the SLT EOS and the OPAL EOS
are both within the error bars of the PIMC simulations.

(4) At densities around 10−2 g/cm3 and above, and for
temperatures above 30 000 K, there are some discrepancies
between the deviations, especially δP , calculated from the
PIMC data and those of the SLT and OPAL EOS. In that
range of temperatures, our present approximate expressions for
h2(β) and h4(β) are not reliable. Better estimations of those
functions, based on a numerical evaluation of path integral
formulas for the internal partition functions Z(2,2), Z(2,1),
and Z(1,2), would provide an interesting improvement of our
calculations, in particular in the region ρ � 10−3 g/cm3 and
T � 30 000 K.

As shown in Ref. [34], expansion (13) of particle density
in terms of chemical potential should remain valid in the
molecular regime, i.e., for ρ � ρc, provided the density is
not too high. The accurate knowledge of Z(2,2), Z(2,1),
and Z(1,2) within numerical path integration, together with
a numerical inversion of Eq. (13), should, therefore, provide a
precise description of the crossover transition from the atomic
gas to the molecular gas, much beyond the level of accuracy
of current calculations, including PIMC simulations [34].
The accurate calculations of Z(2,2), Z(2,1), and Z(1,2) via
numerical path integrations would include in particular the
contributions of atom-atom interactions. Such contributions
are not easy to determine within simple modelizations because
of the difficulty, intrinsic to quantum mechanics, in separating
them from purely molecular contributions.3 The accurate
knowledge of Z(2,2), Z(2,1), and Z(1,2) might also be useful
for improving chemical approaches, like the Saumon-Chabrier
theory [58], the MHD model [25], or the SAHA-S model [59].

The track of the Sun adiabat [60] stays well within the
validity domain of the SLT expansion. The presents results are,
therefore, of interest for astrophysics, where a very accurate
EOS is needed, for instance, to interpret recent seismology
measurements in the Sun [7,60]. The SLT expansion of other
thermodynamical properties, such the adiabatic exponent and
the sound speed, can be derived along similar lines. For real
applications to helioseismology, the present calculations must
be generalized to the case of a hydrogen-helium mixture within
similar tools, an a priori feasible task. The contributions of
other heavier elements might be determined within simple
ideal approximations since their dilution is very high. Notice
that relativistic effects associated with the electrons should be
also incorporated as discussed in Refs. [61,62].

3Notice that in Ref. [54], we proposed a simple approximation for
those contributions, which needs to be improved for tackling regimes
with T > 30 000 K.
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FIG. 13. (Color online) The truncated trace Zeff =
Tr[exp(−βHeff ) − exp(−βH0)] for a quantum particle in the
effective proton-proton potential of the H2 molecule (shown in the
inset), as obtained from a numerically exact path integral Monte
Carlo calculation (crosses), from the rigid rotor approximation
(A4) (solid line) and from Irwin’s partition function [53] (dashed
curve). The dissociation temperature of the H2 molecule is
Tdiss = V0/k = 55 459 K.

APPENDIX: A SIMPLIFIED MODEL

Let us consider a simple model which is often used for
describing the H2 molecule [63]. In that model, the two protons
separated by a distance R interact via a potential Veff(R) which
is inferred from the electronic ground-state wave function
for that fixed protonic configuration. The potential Veff(R) is
repulsive at short distances, attractive at large distances, and
minimum at R = R0 with Veff(R0) < 0. A plot of that potential,
obtained by fitting the data of Ref. [63] to the formula

Veff(R) = (1 + aR + bR2 + cR3)
exp(−R/dA)

R
− 6.5

d6
B + R6

(A1)

is shown in the inset of Fig. 13, while the values of the fitted
coefficients are given in Table VI. Equation (A1) is written
in atomic units: lengths are measured in units of the Bohr
radius and energies in units of the Hartree energy (1 Eh =
2 Ry). The zero of energy corresponds here to the state with
two hydrogen atoms infinitely far apart. The minimum of the
potential is located at R0 = 1.3924 (in atomic units) with value

TABLE VI. Parameters of potential (A1) that best fit the data of
Ref. [63] for the hydrogen molecule.

Coefficient Value (in a.u.)

a −0.52906
b −0.60479
c −0.37294
dA 0.64160
dB 2.64591
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V (R0) = −V0 = −0.175629 hartree. The dissociation energy
of the hydrogen molecule is Tdiss = V0/k = 55 459 K.

For our purpose, it is sufficient to consider that the protons
are spinless. A proper account of the spins would lead to the
usual coupling between spin and position variables, which in
turn induce a different counting of ortho- and parahydrogen
contributions; see, for instance, formula (50).

The Hamiltonian of the relative particle with mass m∗ =
mp/2 submitted to Veff(R) reads

Heff = − h̄2

2m∗ 	R + Veff(R). (A2)

Within that simplified model, the analog of the contribution
of [exp(−βH2,2) − exp(−βH1,1) exp(−βH1,1)] to h2(β) is the
truncated trace

Zeff = Tr[exp(−βHeff) − exp(−βH0)], (A3)

where H0 is the kinetic part of Heff .
Let E0 = EH2 − 2EH � −0.94188 V0 be the ground-state

energy of Heff . Instead of determining exactly all bound-
state energies of Heff by solving the corresponding radial
Schrodinger equation for various values of orbital number
l, we consider the usual rigid-rotor and harmonic well
approximations for describing global rotations and vibrations.
Then, on the one hand, the approximation analoguous to
Eq. (47) for h2(β) becomes

Zeff � exp(−βE0)
1

1 − exp
( − βε

(vib)
eff

) ∞∑
l=0

(2l + 1)

× exp
[−l(l + 1)βε

(rot)
eff

]
, (A4)

where ε
(rot)
eff = kT

(rot)
eff and ε

(vib)
eff = kT

(vib)
eff are the rotational and

vibrational quanta which can be determined respectively from
R0 and from the shape of Veff(R) around its minimum at R =
R0: T

(rot)
eff = 88.7 K and T

(vib)
eff = 6524 K. On the other hand,

we have performed a numerical calculation of Zeff within path
integral Monte Carlo methods applied to its Feynman-Kac path
integral representation [47],

Zeff = 1

(2π (λ∗)2)3/2

∫
dR

∫
DW(ξ )

×
[

exp

[
−β

∫ 1

0
dsVeff(R + λ∗ξ (s))

]
− 1

]
, (A5)

where ξ (s) is a Brownian bridge such that ξ (1) = ξ (0) =
0, DW(ξ ) is the normalized Wiener measure, and λ∗ =
(βh̄2/m∗)1/2. At low temperatures (T � Tdiss), the truncated
trace Zeff is dominated by the contributions arising from
bound states with negative energies since the corresponding
contributions grow exponentially fast when β → ∞. Figure 13
shows that the approximation (A4) (which amounts to keeping
only bound-state contributions evaluated within the rigid rotor
model) represents quite well the Monte Carlo values for
Zeff up to T � 30 000K. Thus, we can reasonably expect a
similar accuracy for approximation (47). We note that Irwin’s
partition function [53], which accounts for rotational-vibration
coupling in molecule H2 by summing explicitly on calculated
rovibrational energy levels, provides a better fit to the Monte
Carlo data for this simplified model, but Irwin’s partition
function is available only up to 16 000 K. At high temperatures
(30 000 K and above), a precise evaluation of the contributions
besides those of the bound states, i.e., contributions arising
from diffusive states as well as those due to the truncation
terms in h2(β), becomes mandatory.
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