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An extension to the P3M algorithm for electrostatic interactions is presented that allows to
efficiently compute dipolar interactions in periodic boundary conditions. Theoretical estimates for
the root-mean-square error of the forces, torques, and the energy are derived. The applicability of the
estimates is tested and confirmed in several numerical examples. A comparison of the computational
performance of the new algorithm to a standard dipolar-Ewald summation methods shows a
performance crossover from the Ewald method to the dipolar P3M method for as few as 300 dipolar
particles. In larger systems, the new algorithm represents a substantial improvement in performance
with respect to the dipolar standard Ewald method. Finally, a test comparing point-dipole-based and
charged-pair based models shows that point-dipole-based models exhibit a better performance than
charged-pair based models. © 2008 American Institute of Physics. �DOI: 10.1063/1.3000389�

I. INTRODUCTION

Dipolar interactions are important in many soft-matter
systems ranging from dispersions of magnetic micro- and
nanoparticles �ferrofluids� and electrorheological fluids to
magnetic thin films and water.1–6 Numerical simulations play
a central role in explaining and unraveling the rich variety of
new and unexpected behavior found in recent theoretical and
experimental studies on dipolar systems.7,8 Especially for
systems which possess point-dipolar interactions such as di-
polar model systems used in analytical theories, or ferroflu-
ids, a numerical algorithm based on truly dipolar interactions
is needed.5,6 Periodic boundary conditions are frequently
used in these simulations in order to approach bulk systems
within the limits of currently available computers �see Ref. 9
for a detailed discussion about the adequacy of such methods
to describe electrostatic systems�. If a system of N particles
with positions �ri�i=1

i=N in a cubic box of length L that carry
point dipoles ��i�i=1

i=N is considered, then the total electrostatic
energy under periodic boundary conditions is given, in
Gaussian units, by

U =
1

2�
i=1

N

�
j=1

N

�
n�Z3

�v�rij + nL,�i,� j� , �1�

where rij =ri−r j, and

v�rij,�i,� j� � ��i · �ri
��� j · �rj

�
1

	rij	

=
�i · � j

	rij	3
−

3��i · rij��� j · rij�
	rij	5

�2�

is the dipolar pair interaction for point dipoles. The inner-
most sum runs over all periodic images of the system, iden-

tified by the shifting integer vector n. The prime in the sum
in Eq. �1� indicates that the i= j term must be omitted for
n=0. Note that the dipolar sum is conditionally converging10

and its precise value depends on the summation order. In
what follows we assume Eq. �1� to be summed over spherical
shells �spherical order of summation�.10,11

The force Fi and the electrostatic field Ei acting on a
particle i can be obtained by differentiating the potential en-
ergy U with respect to ri and �i, respectively, i.e.,

Fi = − �ri
U , �3�

Ei = − ��i
U . �4�

In the case of dipoles, these quantities are related via
F�r�=�r�� ·E�r��. For point dipoles, the torque �i acting on
particle i can be related to the electrostatic field at the posi-
tion of the particle as

�i = �i � Ei. �5�

Performing the direct summation of the interactions �Eq.
�1�� is impracticable beyond a few particles due to the slow
convergence of the innermost sum and the quadratic scaling
with the total number N of particles in the outer sums. How-
ever, algorithms have been proposed to speed up the compu-
tation of dipolar interactions: the dipolar-Ewald sum,12,13 the
dipolar Lekner sum,6 the �smooth� particle-mesh Ewald
�PME and SPME� methods,14 and multipole methods
�MMs�: fast MM and cell MM.15–18 For a general overview
of these algorithms, see the reviews in Refs. 6 and 19.

Although the Ewald summation is significantly better
than direct summation from a computational point of view, it
still exhibits an unfavorable O�N3/2� scaling with the number
of particles.20 By contrast, MMs scale linearly, but have a
large prefactor in the O�N� scaling. In the case of point
charges, MMs have been found to be superior to mesh meth-a�Electronic mail: jcerda@fias.uni-frankfurt.de.
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ods only for very large systems N�100 000 �see discussion
in Refs. 21 and 22�. For systems of moderate size, optimal
algorithms are those that take advantage of the fast Fourier
transform �FFT� in order to compute the Fourier contribution
to the Ewald sum, which are commonly known as particle-
mesh methods: PME, SPME, and particle-particle-particle
mesh �P3M�, which is introduced in this article. These meth-
ods are all O�N log N�, i.e., they exhibit a nearly linear scal-
ing with the number of particles.

When computing Coulomb interactions, the P3M
method23 achieves the highest accuracy among the particle-
mesh methods, thanks to its use of the optimal lattice Green
function that is designed to minimize root-mean-square �rms�
errors.24,25 The PME and SPME algorithms have already
been generalized to compute dipolar interactions.14 In this
paper we perform a similar generalization, but for the P3M
algorithm. An advantage of the P3M approach is that it pro-
vides theoretical estimates for the rms accuracy of the forces,
torques, and energy as by-products. These estimates give
valuable information about the accuracy of the algorithm
without having to perform tedious benchmarking, and they
allow for the tuning of the algorithm to yield minimal com-
puting time at a given level of accuracy. No such theoretical
error estimates are currently known for the dipolar PME nor
SPME methods.

To verify the applicability and correctness of the method
presented in this article and to be able to perform the numeri-
cal tests, the method was implemented in the simulation
package ESPRESSO,26,27 and it will be contained in one of the
coming releases of the software.

The outline of this paper is as follows. The basic formu-
las for the Ewald summation of dipolar interactions are re-
called in Sec. II A. In Sec. II B, Hockney and Eastwoods’s
P3M algorithm is extended to compute dipole-dipole interac-
tions. A correction term that must be applied to any dipolar
energy when computed via particle-mesh methods is derived
in Sec. II C. Theoretical estimates for the rms error of forces,
torques, and energy as computed by P3M are presented in
Sec. III. Numerical tests of the accuracy of the error esti-
mates are made in Sec. IV. In Sec. V several issues related to
the computational efficiency of the method are discussed:
performance of the method when compared to the traditional
dipolar-Ewald sums, suitable approaches to make a fast
implementation of the method in constant-pressure simula-
tions, and a comparison of the efficiency of dipole-based and
charge-based models to mimic dipolar systems. Technical
details for building up the P3M dipolar method are given in
Appendix A, while Appendix B derives and discusses the
rms error estimates.

II. THE DIPOLAR P3M METHOD

In this section the dipolar P3M algorithm is presented by
first recalling the basics of the dipolar-Ewald summation in
which the new method has its roots �see Sec. II A�. The
details of the new algorithm are presented in Sec. II B. The
effect of discretization errors in Madelung self-interactions
�those of a particle with its periodic images and itself� is
discussed, and a correction term to remove a bias in the

energy is derived in Sec. II C. The different Fourier trans-
forms as well as the domains to which they apply are defined
in Table I. In the following, we assume a cubic box, but the
generalization to triclinic boxes is straightforward, see, for
instance, Ref. 14 for an implementation in PME and SPME
algorithms.

A. Ewald summation with dipolar interactions

The fundamental idea of the Ewald summation �and its
advanced implementations such as the particle-mesh meth-
ods PME, SPME, and P3M� is to calculate energies, forces,
and torques by splitting the long-ranged dipolar pair interac-
tion into two parts,

v�r,�i,� j� = ��i · �ri
��� j · �rj

����rij� + ��rij�� , �6�

where ��r� contains the short-distance part of the Coulomb
interaction and ��r� contains its long-distance part ���r�
must moreover be smooth everywhere and regular at the ori-
gin�. The standard way to perform this splitting is to set

��r� �
erfc��r�

r
, r = 	r	 , �7�

��r� =
erf��r�

r
, �8�

although other choices are possible.28–31 The inverse length
�, which is often referred to as the Ewald �or splitting� pa-
rameter, weighs the importance of one term with respect to
the other and can be chosen so as to optimize the perfor-
mance. The interactions associated with the function � are
short ranged, and they can hence efficiently be summed nu-
merically. The interactions associated with the function � are
long ranged in real space, but short ranged in the reciprocal

TABLE I. Definitions of the various transforms between real space and
reciprocal space: Fourier transform of a nonperiodic function �first line�;
Fourier series of a periodic function �second line�; and finite Fourier trans-
form of a mesh-based function �third line�.

Period Transform to real space Domain

None
f�r� =

1

�2��3

R3

f̆�k�eik·rdk
r�R3

L
f�r� = FT−1� f̂� =

1

L3 �
k�K3

f̂�k�eik·r

r�V

L

fM�rm� = FFT−1� f̃M� =
1

L3 �
k�M̃3

f̃M�k�eik·rm

r�M3

Period Transform to reciprocal space Domain

None
f̆�k� =


R3

f�r�e−ik·rdr
k�R3

None
f̂�k� = FT�f� =


L3

f�r�e−ik·rdr
k�K3

2�

h
f̃M�k� = FFT�fM� = h3 �

rm�M3

fM�rm�e−ik·rm

k�M̃3
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Fourier space, and can therefore be efficiently computed in
that latter space. The decomposition of the potential leads to
the well-known Ewald formula for the electrostatic energy of
a system of dipoles �see details in Refs. 6, 10, 11, and 32�,

U = U�r� + U�k� + U�self� + U�surf�, �9�

where the real-space energy U�r�, the reciprocal-space energy
U�k�, the self-energy U�self�, and the surface U�surf� contribu-
tions are

U�r� =
1

2 �
i,j=1

N

�
n�Z3

���i · �ri
��� j · �rj

���rij� , �10�

U�k� =
1

2V
�

k�0

k�K3

	�̂�k� · ik	2�̆�k� , �11�

U�self� = −
2�3

3��
�
i=1

N

�i
2, �12�

U�surf� =
2�

�2�� + 1�V�
i=1

N

�
j=1

N

�i · � j , �13�

where V=L3 is the volume of the box and �� is the dielectric
constant of the medium surrounding the replica boxes: ��
=1 for vacuum and ��=	 for metallic boundary conditions.
Because of the periodic boundary conditions, wave vectors
k�K3 are discrete where K3��2�n /L :n�Z3�. In Eq. �11�,
�̂�k� is the Fourier transform of the periodic dipole density,

��r� = �
i=1

N

�i
�r − ri�, r � V , �14�

which reads

�̂�k� � FT����k� = �
i=1

N

�ie
−ik·ri. �15�

In Eq. �11�, the Fourier transform �̆�k� of the reciprocal in-
teraction �8� is

�̆�k� =
 ��r�e−ik·rdr =
4�

k2 e−k2/4�2
. �16�

The term U�self� subtracts the unwanted self-energies that
are included in the reciprocal energy U�k�, where the self-
energy of a dipole is defined as the reciprocal interaction of
the dipole with itself: limr→0�− 1

2
���i ·�r�2��r�. It should be

remarked that the expression given in Eq. �13� for the surface
term is valid only when a spherical order of summation is
used in the calculation of the direct sum,10,11 Eq. �1�. In that
case, Eqs. �1� and �9� lead to identical values, provided that
the interaction energy of the dipoles with the surrounding
medium of dielectric constant �� at infinity is added to Eq.
�1� ���=1 was assumed when writing �1��. Notice that the
surface term vanishes if metallic boundary conditions ���
=	� are used.

Ewald expressions for the force and electric field acting
on a dipole i follow from Eqs. �3�, �4�, and �9�,

Fi = Fi
�r� + Fi

�k�, �17�

Ei = Ei
�r� + Ei

�k� + Ei
�self� + Ei

�surf�, �18�

where the superscripts �r� and �k� denote the real-space and
reciprocal-space contributions. Notice that there is no self-
contribution nor surface contribution to the force because the
self- and surface-energy terms �Eqs. �12� and �13�� are inde-
pendent of the particle positions. By Eq. �5�, the torque on
dipole i follows directly from the electric field: �i=�i�Ei.
The reader is referred to Ref. 13 for fully explicit Ewald
formulas for the real-space and reciprocal-space contribu-
tions to the force and torque. For further reference, it is
worth noting that the reciprocal-space contributions to the
force and electrostatic field can be written as

Ei
�k� = FTk�0

−1 �Ê�k�� = FTk�0
−1 �ik��̂�k� · ik��̆�k�� , �19�

Fi
�k� = FTk�0

−1 �ik��i · ik���̂�k� · ik��̆�k��

= �i,xFTk�0
−1 �Êx

�k�ik� + �i,yFTk�0
−1 �Êy

�k�ik�

+ �i,zFTk�0
−1 �Êz

�k�ik�

= �i,xFTk�0
−1 �Ê�k�ikx� + �i,yFTk�0

−1 �Ê�k�iky�

+ �i,zFTk�0
−1 �Ê�k�ikz� , �20�

where the inverse Fourier series FT−1�¯� is defined in Table
I �the k=0 term must be excluded in the back transforma-
tion�, and the components of the Fourier transform of the

electrostatic field are Ê�k�= �Êx
�k� , Êy

�k� , Êz
�k��, and �i

= ��i,x ,�i,y ,�i,z� is the dipole moment of particle i. The last
equality for the force arises from the fact that F�r�
=�r�� ·E�r��= �� ·�r�E�r� in electrostatics ���E=0�.

From a computational point of view, the Ewald method
requires therefore to first Fourier transform the dipole distri-
bution to the reciprocal space, then to solve the Poisson
equation in reciprocal space �which reduces to a simple mul-
tiplication by �̆�k��, and finally to Fourier back transform the
results to real space.

B. Algorithmic details of the mesh calculations

What distinguishes the particle-mesh methods from the
Ewald summation is that while Ewald summation uses the
standard Fourier series to compute the reciprocal-space con-
tribution, particle-mesh methods use FFT, thereby reducing
the computational effort from O�N3/2� to O�N log N�. How-
ever, since FFT is a mesh transformation, it is necessary to
�1� map the dipole moments from continuous positions onto
lattice points �which will be referred to as dipole assignment
to the mesh sites�; �2� FFT the mesh and solve the Poisson
equation on the �reciprocal� mesh; �3� Fourier transform the
mesh back to real space, and interpolate the results onto the
continuous dipole positions.

The computation of the real-space contribution U�r� in
the Ewald formula is kept unchanged, and the reader is re-
ferred to Ref. 13 for explicit formulas. In the following, we
discuss in detail the mesh calculation in the case where the
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ik-differentiation scheme is used. Other differentiation
schemes can be easily implemented, see Ref. 24 for details.

The mesh is assumed to be a cubic FFT mesh with the
lattice spacing given by h=L /NM, where NM stands for the
number of mesh points in each direction. We denote by M3

the set of all points belonging to the mesh: M3��nh :n
�Z3 ,0�nx,y,z�NM�. An index M is attached to any quantity
defined at mesh points only, e.g., the mesh-based dipole den-
sity M�rm� or the mesh-based electric field EM�rm�, rm

�M3. The inverse fast Fourier transform FFT−1� f̃� corre-
sponds to a truncated Fourier series over wave vectors in one
Brillouin zone �see Table I�. By convention, this zone is

taken to be the set of wave vectors M̃3��2�n /L :n
�Z3 , 	nx,y,z	�NM /2�, which we call the “reciprocal mesh” or
first Brillouin zone. The number of mesh points per direction
NM should preferably be a power of 2 because in that case
the FFTs are computed more efficiently. Notice that with this
definition, the reciprocal mesh is symmetric: if wave vector k
belongs to the mesh, so does −k.

1. Dipole assignment

The dipole density �M�rm� on the mesh is determined
from the N dipolar particles ��ri ,�i�� by the assignment func-
tion W�r� that maps the particles from their continuous posi-
tions to the mesh,

�M�rm� =
1

h3 �
i=1

m.i.c.

N

�iW�rm − ri� , �21�

where minimum image convention �m.i.c.� is used when
computing relative distances rm−ri. We use the same assign-
ment functions W�r� as defined by Hockney and Eastwood23

in the original P3M method for Coulomb interactions, which
are �shifted� B-splines and are tabulated in Ref. 24. The as-
signment functions are classified according to the number P
of nearest grid points per coordinate direction over which the
dipole is distributed. The quantity P is referred to as the
assignment order parameter. A formal expression
for Hockney and Eastwood’s assignment functions is
W�P��r�=W�P��x�W�P��y�W�P��z�, where

�22�

and �� −1
2 , 1

2
� is the characteristic function, i.e., the function

that is 1 within this interval and 0 outside.

2. Solving the Poisson equation

The reciprocal electrostatic energy and electrostatic field
are computed at each mesh point rm by approximating Eqs.
�11� and �19� by

UM
�k� =

1

2V
�

k�M̃3

k�0

	�̃M�k� · D̃�k�	2G̃�k� , �23�

EM
�k��rm� = FFTk�0

−1 �ẼM
�k��

= FFTk�0
−1 �D̃�k���̃M�k� · D̃�k��G̃�k���rm� . �24�

Here, �̃M�k� is the FFT of the dipole density �M�r� on the
mesh. The k=0 term is excluded in the inverse transform
FFT−1 of all mesh-based quantities as in reciprocal Ewald
terms, Eqs. �11�, �19�, and �20�. The function

D̃�k� = ik, k � M̃3, �25�

is the Fourier expression of the gradient operator on the re-

ciprocal mesh. G̃�k� is the lattice Green function, also known
as the influence function, and it is defined below at the end of

Sec. II B �see Eq. �30��. It should be remarked that both D̃�k�
and G̃�k� are periodic in K̃3, with the period given by the first

Brillouin cell M̃3, i.e., period 2� /h.
Note that Eqs. �23� and �24� correspond to the reciprocal

Ewald formulas recalled in Sec. II A, but are modified in two
ways: the FT of the dipole density is replaced by a FFT of
the mesh dipole density and the �continuous� reciprocal in-
teraction �̆�k� is replaced by a discrete lattice Green function

G̃�k�. A fundamental idea in the P3M method is that the
lattice Green function is not simply taken as the continuum
Green function �̆�k�, but it is considered as an adjustable
function whose form is determined by the condition that the
mesh-based calculation gives results as close as possible, in a
least-squares sense, to the results of the original continuum
problem �see below Sec. II B 4 for more details�.

3. Back interpolation

The mesh-based electrostatic field is finally interpolated
back to the particle positions ri �and possibly also to any
other point in the simulation box� using the same assignment
function W�r� and the m.i.c.,

E�k��ri� = �
rm�M3

m.i.c.

EM
�k��rm�W�rm − ri� . �26�

Once the electric field is known, the torques are obtained by
Eq. �5� and the electrostatic energy of dipole i is given by

Ui
�k� = − �i · E�k��ri� . �27�

Note that if only the total electrostatic energy is needed, it
can be obtained via Eq. �23� which does not need any inverse
Fourier transform nor back interpolation.

The force acting onto a particle i can be obtained by
analogy with Eq. �20� as

F�k��ri� = �
rm�M3

m.i.c.

W�rm − ri���i,xFFTk�0
−1 �ẼM,x

�k� D̃�k��

+ �i,yFFTk�0
−1 �ẼM,y

�k� D̃�k��

+ �i,zFFTk�0
−1 �ẼM,z

�k� D̃�k��� , �28�

where the reciprocal mesh electrostatic field is ẼM
�k�

= �ẼM,x
�k� , ẼM,y

�k� , ẼM,z
�k� �. In the last formula the differential opera-
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tor and the electrostatic field can be permuted as in Eq. �20�.
The differentiation used in step 2 and in Eq. �28� �the

so-called ik-differentiation or force-interpolation scheme

which consists in multiplying the reciprocal mesh by D̃�k�
= ik� is the most accurate variant when combined with the
assignment scheme employed in Sec. II B 1. Note, however,
that to compute the forces and electric field vectors, it re-
quires the back-FFT of vectorial quantities. By contrast, in
the analytical differentiation scheme as used in the SPME
algorithm, the forces and electrical field vectors are derived
in real space from the back-transformed potential mesh with
the subsequent saving of FFTs. Analytical differentiation
leads, however, to forces that violate Newton’s third law and
hence that do not conserve momentum. A global correction
can be applied to restore conservation of the total momen-
tum, but its effects on the physics of the system are difficult
to assess. An algorithm that uses analytical differentiation
without introducing such spurious forces is currently under
study.

4. The lattice Green function

The optimal lattice Green function to compute dipolar
interactions can be found by minimizing the rms error in the
�reciprocal� pair interaction T�k� between two unit dipoles in
the simulation box,

Qint
2 �T�k�� ª

1

h3�4��2V



h3
dr1


V

dr2
 d�1
 d�2

�T�k��r1,�̂1,r2,�̂2� − T�ex,k��r1,�̂1,r2,�̂2��2,

�29�

where T�ex,k��r1 ,�1 ,r2 ,�2� is the exact �reciprocal� dipolar-
Ewald interaction �energy, electrostatic field, force, or
torque� between two dipoles and T�k��r1 ,�1 ,r2 ,�2� is the
P3M pair interaction. The quantity Qint

2 defined in Eq. �29� is
the squared error of the P3M interaction averaged over all
positions and orientations of the two dipoles in the simula-
tion box. Notice that the average over r1 has been restricted
to a single mesh cell h3 thanks to the periodicity of the sys-
tem.

The optimal influence function which result from the
minimization of Eq. �29� is found to be �see Appendix A�

G̃opt�k� =
�m�Z3��D̃�k� · ikm�S�Ŭ�km��2�̆�km��

�D̃�k��2S��m�Z3�Ŭ�km��2�2
, �30�

where km�k+ �2� /h�m, Ŭ�k��W̆�k� /h3, and W̆�k� is the
Fourier transform of the assignment function defined in Eq.
�22�,

W̆�k� = h3� sin� 1
2kxh�sin� 1

2kyh�sin� 1
2kzh�

� 1
2kxh�� 1

2kyh�� 1
2kzh� P

. �31�

The influence function for dipolar forces is obtained by
setting S=3 in the previous expression. The value S=2 refers
to the optimal influence function for the dipolar torques, en-
ergy, and the electrostatic field.

The form of these influence functions resembles the in-
fluence function obtained by Hockney and Eastwood for
Coulomb forces �S=1�. It should be remarked that the use of
the different influence functions to compute the forces and
torques does not imply any noticeable time overhead because
influence functions are computed and stored at the beginning
of the simulation, and they remain unaltered throughout the
whole simulation.

When implementing the method, it is important that the
reciprocal mesh is symmetric to avoid systematic biases on
the computed quantities �see Appendix B�.33

C. Madelung self-interactions and correction term for
the energy

FFTs greatly accelerate the calculation of the Ewald re-
ciprocal interactions, but have the drawback of introducing
discretization errors in the computed quantities. On the one
hand, these errors arise from truncation of the Fourier series,
as wave vectors greater than 2� /h are discarded in the mesh
calculation, and on the other hand from aliasing, which is
caused by band folding in Fourier space due to undersam-
pling of the continuous dipole distribution.23 The discretiza-
tion errors do not necessarily average to zero, so P3M quan-
tities may be biased. This is the case for the reciprocal
energies computed on the mesh, which need hence to be
corrected by applying a shift which is determined below �Eq.
�37��. No similar correction needs to be applied to P3M
forces and torques.

1. Madelung self-interaction

The bias in the P3M energies originates from the fact
that the Madelung and self-interactions are not fully ac-
counted for in the mesh calculation. For Coulomb interac-
tions, the issue has been discussed in detail by
Hünenberger34 and Ballenegger et al.35 The exact Madelung
interaction �energy, force, or torque� is defined as the inter-
action of a dipole with all its images in the periodic replicas
of the simulation box,

UMadelung
�ex� ��� =

1

2 �
n�Z3

n�0

v�nL,�,�� , �32�

where the sum over images must be performed in concentric
shells and the vacuum boundary condition ���=1� is em-
ployed in Eq. �32�. The Madelung energy depends only on
the dipole moment � and the length L of the cubic simula-
tion box. Due to the specific form of the dipolar interaction
�2�, the sum in Eq. �32� vanishes, as proven by de Leeuw et
al.10 Consequently, the exact Madelung dipolar energy, force,
and torque are zero. Notice that the use of the Ewald sum-
mation �9� to compute the Madelung energy �32� leads to the
relation

UMadelung
�ex,r� ��� + UMadelung

�ex,k� ��� −
2�3�2

3��
+

2��2

3L3 = 0. �33�

However, if this energy is computed with the P3M algorithm,
for example, by putting a single dipolar particle in the simu-
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lation box, the obtained energy U�r ,�� differs from zero
because the dipolar interactions with the images of the dipole
are only approximately accounted for. Furthermore, the �re-
ciprocal� interaction of the dipole with itself, which is in-
cluded in the mesh calculation of U�k��r ,��, is also only
approximately accounted for because of the discretization er-
rors. The later subtraction of the exact self-energy by the
term U�self�=−2�3�2 / �3��� will therefore not exactly com-
pensate the unwanted self-interaction. These two effects are
responsible for a systematic bias in the P3M energies because
the discrepancy between the exact and P3M values does not
vanish on average. We call the sum of the Madelung and
self-interaction the “Madelung self-interaction” �MS�. More
precisely, it is defined as the sum of the direct- and
reciprocal-space contribution to the energy �or force or
torque� in a one particle system, namely,

UMS�r,�� � UMadelung
�r� �r,�� + UMadelung

�k� �r,�� �34�

�with this definition, UMS is independent of the choice of the
boundary condition ���. Contrary to the exact MS energy,
which reads, from Eq. �33�,

UMS
�ex���� = UMadelung

�ex,r� ��� + UMadelung
�ex,k� ���

= �2� 2�3

3��
−

2�

3L3 , �35�

the MS energy in P3M �34� depends, in general, both on the
position and on the orientation of the dipole moment because
of the mesh calculation.

2. Correction term for the P3M energy

The error in the P3M energy of a dipolar particle located
at r with dipole moment � in direction �̂ is

�U�r,�� = �2�UMS�r,�̂� − UMS
�ex���̂�� , �36�

where we factored out the magnitude �2. This error does not
vanish when averaged over all positions and orientations of
the dipolar particle. The sum of these average errors for all
dipoles ��i�i=1,. . .,N provides the correction term

�U�corr�� = − M2��U�r,�̂�� �37�

that must be added to the P3M energies to remove the bias �at
least on average�. In Eq. �37�,

M2 � �
i=1

N

�i
2, �38�

and the average error ��U�r , �̂�� is easily determined ana-
lytically. Indeed, we have

��U�r,�̂�� = �UMS
�k� �r,�̂�� −

2�3

3��
+

2�

3L3 , �39�

where we used Eqs. �36� and �35� and the fact that there is no
real-space contribution to the MS energy in the P3M calcu-
lation when the m.i.c. is used. The average reciprocal-space
MS energy is calculated in Appendix B 2 and reads

�UMS
�k� �r,�̂�� =

1

6V
�

k�M̃3

k�0

D̃2�k�G̃�k� �
m�Z3

Ŭ2�km� , �40�

with km�k+ �2� /h�m.
In conclusion, the corrected formula for the P3M energy

is

UP3M = U�r� + UM
�k� + U�self� + U�surf� + �U�corr�� . �41�

Note that the correction term only needs to be computed
once at the beginning of the simulation, hence it is inexpen-
sive in CPU cost, but its usage can improve the accuracy of
the dipolar P3M energies by several orders of magnitude
�e.g., inset of Fig. 3� depending on the values of the mesh
size NM and the Ewald splitting parameter �.

3. Madelung-Self forces and torques

Since each dipole in P3M is subject to a position- and
orientation-dependent MS energy UMS�r ,��, it can be ex-
pected from relations �3� and �4� that it will also experience
a MS force and a MS torque. The P3M force is obtained from
the mesh using Eq. �28� �instead of Eq. �3��, and it is proven
in Appendix B 2 that the MS force cancels out. Conse-
quently, P3M conserves the momentum in difference to
SPME, for example. In the same appendix, it is also shown
that a nonvanishing MS torque does arise in the mesh calcu-
lation. However, on average this MS torque vanishes and
does therefore not result in a systematic bias to the torques.

The results on MS interactions are summarized in Table
II. The fluctuating errors in MS interactions have an impact
on the accuracy of the computed quantities. The rms error
estimates for P3M energies and torques are therefore more
difficult to obtain than the one for forces �see Sec. III�.

We stress that MS interactions are common to all
particle-mesh methods, and the explicit expression for the
possible biases �such as the energy correction �37�� depends
on the details of each algorithm. This is the first work, to-
gether with Ref. 35, in which the effect of the MS interac-
tions is thoroughly assessed in a particle-mesh method.

TABLE II. Exact versus P3M MSs. The mean and rms errors of MS inter-
actions are computed by taking an average over all positions and orienta-
tions of the dipole moment.

Energy Force Torque

Exact MSs

2�3

3��
−

2�

3L3 0 0
P3M MSs Equation �B14� 0 Equation �B11�
Average error Equation �39� 0 0
rms error Equation �B49� 0 Equation �52�
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III. ERROR ESTIMATES FOR THE DIPOLAR P3M
ALGORITHM

In this section, theoretical error estimates for the rms
error of the energy, forces, and torques for the P3M algorithm
are presented. The accuracy of the P3M method depends on
the chosen values for the parameters of the method: the
Ewald splitting parameter �, the real-space cutoff distance
rcut, the mesh size NM, and the assignment order P, as well as
on parameters of the system: the number of particles N, the
box length L, and the sum over all squared dipole moments
M2.

It is very useful to have formulas that are able to predict
the error associated with a set of parameter values. Not only
do such formulas enable the user to control the accuracy of
the calculation but they also allow for an automatic tuning of
the algorithm, so that it can run at its optimal operation point,
thus saving computer time.

A measure of the accuracy is given by the rms error
defined by

�T ��� 1

N
�
i=1

N

�T�i� − T�ex��i��2� , �42�

where T�i� is the value of T �for example, electrostatic field,
force, torque, or energy� associated with particle i as ob-
tained from the P3M method, and T�ex��i� is the exact value
as defined by the direct summation formulas �Eqs. �1�, �3�,
and �4��. The angular brackets denote an average over par-
ticle configurations. In Eq. �42�, i is a short-hand notation for
�ri ,�i�. In the case where the total electrostatic energy U is
measured, the rms error is defined by

�U � ���U − U�ex��2� , �43�

where U is the corrected P3M energy �41� and U�ex� is the
exact energy �1�.

Equations �42� and �43� are calculated analytically in
Appendix B to get useful error estimates as functions of the
various parameters. The calculation is done under the as-
sumption that the positions and orientations of the dipoles
are distributed randomly. In Sec. IV it is shown that our rms
error estimates still accurately predict the errors for dipolar
systems in which the dipoles are strongly correlated. For
random systems, the average over configurations reduces to

�¯� �
1

VN

1

�4��N
 ¯
¯d1 ¯ dN , �44�

where �¯di denotes integration over all positions and orien-
tations of particle i.

As shown in Appendix B, the rms error arises from two
distinct contributions: errors in the interaction of a particle i
with a particle j� i �including the images of particles j in the
periodic replicas of the simulation box� and errors in the
Madelung-Self interactions of each particle. The first contri-
bution is denoted by the subscript int, while the latter contri-
bution is denoted by the subscript MS. In Appendix B, the
following three rms error estimates for the dipolar P3M
method are derived.

A. Error in the dipolar forces

The rms error estimate for dipolar forces is given by

��F�2 � ��F�r��2 +
M4

N
Qint

2 �F�k�� , �45�

where �F�r� is the real-space error,13

�F�r� � M2�V�4rcut
9 N�−1/2�13

6
Cc

2 +
2

15
Dc

2

−
13

15
CcDc�1/2

e−�2rcut
2

, �46�

Cc � 4�4rcut
4 + 6�2rcut

2 + 3, �47�

Dc � 8�6rcut
6 + 20�4rcut

4 + 30�2rcut
2 + 15, �48�

and Qint
2 �F�k�� is given by the general expression Qint

2 �T�k��, in

which the optimal influence function G̃opt�k� is used, namely,

Qint
2 �T�k�� =

a

9V2 �
k�M̃3

k�0

� �
m�Z3

	km	2S��̆�km��2

−
��m�Z3�D̃�k� · ikm�S�Ŭ�km��2�̆�km��2

�D̃�k��2S��m�Z3�Ŭ�km��2�2 � ,

�49�

using the parameters �S=3, a=1� for dipolar forces. The
short-hand notation km�k+ �2� /h�m is used.

B. Error in the torques

The rms error estimate for dipolar torques is

����2 � ����r��2 +
M4

N
Qint

2 ���k�� +
�i�i

4

N
QMS

2 ���k�� , �50�

where the real-space contribution ���r� is

���r� � M2�V�4rcut
7 N�−1/2� 1

2Bc
2 + 1

5Cc
2�1/2e−�2rcut

2
, �51�

with Bc�2�2rcut
2 +1 and Qint

2 ���k�� is given by Eq. �49� using
�S=2, a=2�. The expression for Qms

2 ���k�� reads

QMS
2 ���k�� =

1

6V2 �
k�M̃3

k�0

�
k��M̃3

k��0

G̃�k�G̃�k��h�D̃�k�,D̃�k���

�
t�Z3

�
l�Z3

�
m�Z3

�Ŭ�kt�Ŭ�kl��Ŭ�ktm�Ŭ�klm� �� ,

�52�

where

h�a,b� � �2�a · b�2 −
1

5
� 	a + b	4 + 	a − b	4

2
− a4 − b4� ,

�53�

and k��k+ �2� /h�� and k���k+ �2� /h���+��.
The expression in Eq. �52� is certainly cumbersome, it

involves a 15-fold sum which renders the expression difficult
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to evaluate. A very easy way to substantially reduce the time
needed to compute Eq. �52� is to skip the inner loops when-
ever their maximal value is smaller than a desired accuracy.
An additional reduction in the computer time by roughly a
factor of 64 can be obtained if one takes into account that

aside of the function h�D̃�k� , D̃�k��, the remaining coeffi-
cients are symmetric with respect to the sign inversion of
each one of the components of the vectors k and k�. In fact,
it is shown in Sec. IV that in practice the optimal perfor-
mance point can be located with sufficient accuracy when
��i�i

4 /N�QMS
2 ���k�� is completely neglected in Eq. �50�.

C. Error in the total energy

The rms error estimate for the total dipolar energy is

��U�2 � ��U�r��2 + 2M4Qint
2 �Unc

�k�� + ���Unc,MS
�k� �2�

− ��U�corr���2, �54�

where Unc is the noncorrected energy �obtained by dropping
�U�corr�� in Eq. �41�� The real-space contribution �U�r� is

�U�r� � M2�V�4rcut
7 �−1/2� 1

4Bc
2 + 1

15Cc
2 − 1

6BcCc�1/2e−�2rcut
2

. �55�

The value of Qint
2 �Unc

�k�� is given in Eq. �49� using �S
=2, a=1 /4�. The reduction in the error due to the use of the
energy correction term ��U�corr���2 can be computed straight-
forwardly from Eq. �37�. Finally, the contribution to the error
arising from the Madelung self-energy ���Unc,MS

�k� �2� is quite
involved and computationally intensive, and thus of little use
for the purpose of tuning the algorithm to its optimal perfor-
mance point. Nonetheless, it is shown in Sec. IV that a rea-
sonable estimate of the error in the energy is obtained by
dropping out the last two terms ���Unc,MS

�k� �2� and −��U�corr���2

in Eq. �54� because both terms tend to cancel out mutually.
The determination of the optimal performance point of the
algorithm for the energy can be done in just a few seconds
using this last approach. The exact expression for
���Unc,MS

�k� �2� is given by Eq. �B49� in Appendix B.

IV. NUMERICAL TESTS

In this section, the reliability of the theoretical error es-
timates derived in Sec. III is tested. These theoretical esti-
mates will be compared to numerical errors obtained using
Eq. �42� on configurations of a test system. The exact nu-
merical values T�ex��i� needed to use Eq. �42� �or Eq. �43� in
the case of the total energy� are obtained by a well converged
standard dipolar-Ewald sum in which all quantities are com-
puted with a degree of accuracy 
�10−10. The dipolar-
Ewald sum has been thoroughly tested previously against
direct sum calculations to ensure its accuracy. On the other
hand, the numerical P3M forces, torques, and total electro-
static energy have been obtained using the implementation of
the dipolar P3M method in the simulation package
ESPRESSO.26 The calculations of the error estimates have
been done by truncating the aliasing sums over m
= �mx ,my ,mz��Z3 at 	m�	�2 for P=1 and at 	m�	�1 for
assignment orders P�1. All the quantities in this section are
calculated using an arbitrary length unit L and dipole mo-
ment unit M. Therefore, for instance, energies and energy

errors are given in units of M2 /L3. Hereby, the theoretical
rms error estimates will be plotted as lines, whereas numeri-
cal rms errors will be depicted by circles.

The first test system consists of N=100 particles with
dipole moment of strength �=1 randomly distributed in a
cubic box of length L=10. Figures 1 and 2 show the rms
error for forces and torques as a function of the Ewald split-
ting parameter � for a mesh of NM =32 points per direction.
The real-space cutoff parameter is set to rcut=4 in all plots
unless specified otherwise. From the top to the bottom, the
order of the assignment function is increased from P=1 to 7.
Figure 1 shows that the theoretical rms error estimate �Eq.
�45�� gives a good description of the numerical rms error in
the whole range of values of the Ewald splitting parameter �.
In the inset of Fig. 1, a similar comparison is presented for
different mesh sizes. From top to bottom the number of mesh
points per direction is NM � �4,8 ,16,32,64�, and the assign-
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FIG. 1. The rms error �F of the forces �circles� for a system of 100 ran-
domly distributed dipoles with NM =32 mesh points and real-space cutoff
rcut=4. Box size L=10. From top to bottom, the order of the charge assign-
ment function P is increased from 1 to 7. The solid lines are the theoretical
estimates �Eq. �45��. In the inset, the order of the assignment function is
P=3, and the number of mesh points per direction is varied �from top to
bottom�: NM � �4,8 ,16,32,64�.
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ment function is P=3. A remarkable agreement between the
theoretical error estimate and the numerical measured error is
observed.

Figure 2 shows that for torques, the rms estimates, Eq.
�50�, give also a good description of the numerical rms error
for torques in the whole range of �’s. The inset in Fig. 2
shows that if the MS contribution is not included in the error
estimate for the torques, Eq. �52�, then large mismatches are
observed at large �’s. Nonetheless, it should be noted that
the optimal performance point can be roughly located even
when the fluctuating errors in the MS torques are neglected.
This behavior was confirmed for all cases studied in this
work. Thus, skipping the time consuming evaluation of the
MS contribution �Eq. �52�� is a fast and reasonably accurate
way to determine the optimal performance point for the
torques.

For the forces and torques, even the numerically com-
puted estimate of the rms error of a single configuration is an
average over the different dipoles �see Eq. �42��. However,
for the rms error of the total energy �43�, it is a single value.
To obtain useful statistics, it is therefore necessary to average
over a set of configurations.

Figure 3 shows a comparison of the rms error for the
energy as a function of the Ewald splitting parameter for a
mesh of NM =32 points per direction. The agreement between
the theoretical and numerical rms errors is remarkable. The
inset plot in Fig. 3 shows that substantial errors arise when
the energy correction term �Eq. �37�� is not taken into ac-
count �dashed lines�. The improvement brought by the cor-
rection term decreases when the mesh size NM is increased
�at fixed number of particles N�. Similarly to the case of
torques, a fast, although approximate, error estimate for the
energy can be obtained by dropping out the MS and the
correction term contributions in Eq. �54�, i.e.,

��U�2 � ��U�r��2 + 2M4Qint
2 �Unc

�k�� . �56�

This approach predicts quite reasonable errors �compare
solid and dashed lines in Fig. 4� and has the big advantage of
being several orders of magnitude faster than the full exact
error given in Eq. �54�. It works reasonably well because it
turns out that the MS error term ���Unc,MS

�k� �2� for the energy
is quite close to the correction error term ��U�corr���2, and
therefore they almost cancel out completely in Eq. �54�.
Therefore, it is suggested to use Eq. �56� in place of Eq. �54�
to roughly localize the optimal performance point of the al-
gorithm for the energies.

In addition, Fig. 4 shows that the theoretical estimates
capture the correct dependence of the rms error on the num-
ber of particles N and their dipole moments 	�	. Various
numbers of particles and dipole moments were considered:
�N=1000, 	�	=1�, �N=2000, 	�	=5�, and �N=4000, 	�	
=25�.

The behavior of the error estimates for the forces,
torques, and energy in the previous figures shows that the
optimal performance points of torques and energy occur
roughly at the same value of the Ewald splitting parameter �.
Notice that when the parameters of the algorithm are fixed,
the highest accuracy is usually obtained for torques, followed
by the forces and the least accurate calculation corresponds
to the energy. The optimal performance point for forces is
usually shifted slightly to higher values of the Ewald split-
ting parameter � with respect to the optimal performance
point for torques and the energy. The shift increases with the
number of mesh points NM and the assignment order P. Far
from the optimal point, the behavior of the three error esti-
mates is, as expected, quite different. The fact that the opti-
mal point of energies is quite similar to the optimal point for
torques, which in turn is also not very far from the optimal
performance point for forces can be used to do a very fast
tuning of the algorithm for the three quantities: first, the op-
timal performance point for forces is located using the rms
theoretical estimate for forces �which is an immediate calcu-
lus�. In a second step, this optimal point is used as a starting
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point to seek the optimal performance point for torques. In
the third stage, the optimal rms error associated with the
energy can then be straightforwardly evaluated using the er-
ror formulas for the energy �56� looking in the neighborhood
of the optimal performance point � obtained for torques.

The strongest simplification done to derive the theoreti-
cal estimates is the assumption that dipole particles are un-
correlated. Nonetheless, tests were performed that have
shown that the theoretical error estimates are very robust
against particle correlations. In Fig. 5 the performance of the
theoretical estimates is tested for systems in which strong
correlations exist among the particles. A comparison of the
theoretical rms estimates for random conformations to the
numerical rms errors obtained for forces and torques in a
typical ferrofluid simulation36 of 1000 particles with a diam-
eter ��1.58 is performed. The dipolar interaction between
particles is characterized by a dipolar coupling parameter �
=3 and a volume fraction �v=0.3 �which roughly corre-
sponds to box size L=19 and M2�11 858�. To add an extra
degree of correlation among particles, the system is under
the influence of an external magnetic field along z axis char-
acterized by a Langevin parameter �L=2, i.e., the character-
istic energy induced by the magnetic field is twice the ther-
mal energy. This system exhibits dipolar chaining, and hence
a high degree of anisotropy. Figure 5 shows that, even for
this highly correlated system, the measured errors �P3M
method with NM =32 and P=7� are close to the theoretical
estimates for randomly positioned particles. The agreement
is particularly remarkable near the optimal value of �. Other
tests have shown similar behavior. Therefore, the theoretical
estimates provide a very good guidance for the location of
the optimal performance point of the algorithm in the case of
correlated systems as well. When the theoretical rms error
estimates derived for uncorrelated systems are used to pre-
dict errors in nonrandom systems, it has been observed that
the error estimates for dipoles perform better than the error
estimates for charges. This difference could be due to the fact

that dipolar particles have rotational degrees of freedom
which can further reduce the effective degree of correlation
with respect to a similar system made of charges.

Finally, tests have shown that the optimal influence func-
tions as defined in Eq. �30� �S=3 for forces and S=2 for
dipolar torques and energy� can be used interchangeably with
very little impact of the accuracy of the results, especially in
proximity to the optimal value of �. This is due to the expo-
nential decay of the reciprocal interaction �̆�k� �see Eq.
�16��, which renders all terms m�0 negligible in the nu-
merator of Eq. �30�. Hence, in the tested cases, the dipolar
influence functions are given in good approximation by

G̃�k� = �̆�k�
Ŭ2�k�

� �
m�Z3

Ŭ2�k + m
2�

h
2 , �57�

which is actually the optimal lattice Green function for com-
puting the Coulomb energy.35 The latter function has a broad
applicability because it incorporates the main effect of the
P3M optimization, which is to reduce the �continuous� recip-
rocal interaction by some fraction, to compensate for aliasing
effects that are inherent to the mesh calculation.

V. COMPUTATIONAL PERFORMANCE

A. Comparison against dipolar-Ewald sums

Due to the replacement of the Fourier transforms by FFT
routines, see Eqs. �24� and �28�, the P3M algorithm is not
only fast but its CPU time shows a favorable scaling with
particle number. If the real-space cutoff rcut is chosen small
enough �so that the real-space contribution can be calculated
in order N�, the complete algorithm is essentially of order
N log�N�, as shown in Fig. 6. In this figure, a comparison of
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FIG. 5. Comparison of the theoretical rms estimates of forces and torques
predicted for random conformations vs the numerical rms errors for a typical
conformation in a simulation of a ferrofluid system �Ref. 36�. Number of
particles N=1000, diameter �=1.58, dipolar coupling parameter �=3, and
volume fraction �v=0.3. The particles are under the influence of an external
magnetic field along the z axis characterized by a Langevin parameter
�L=2.0.
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FIG. 6. Time required to compute forces and torques as a function of the
number of particles in the system using a typical desktop computer. The
computing time t is given in seconds. Circles denote the optimal dipolar-
Ewald method, and squares the new dipolar P3M method. In both cases,
their respective parameters have been tuned to give maximum speed at fixed
force accuracy. The accuracy is set to �F=10−4. The density of particles is
=N /V=0.1. Lines with slopes 1 and 3/2 are plotted to guide the eye. The
inset plot shows the relative speed of dipolar-P3M method compared to the
fastest dipolar-Ewald sum as a function of the number of particles in the
system.
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the presented dipolar-P3M and dipolar-Ewald sum methods
at fixed level of accuracy for the dipolar force �F=10−4 is
shown. Parameters in both methods have been chosen to
minimize computational time given the imposed accuracy,
with the only constraint that the algorithm must satisfy the
m.i.c. �rcut�L /2�. Figure 6 and additional tests performed at
�F=10−6 point out that the dipolar-P3M algorithm is faster
than the dipolar-Ewald sum for N�300. The inset in Fig. 6
shows the relative speed of the P3M to the Ewald method as
a function of the number of particles in the system.

B. Constant-pressure dipolar-P3M simulations

The P3M method relies on the use of the influence func-

tion G̃�k� which depends on the box parameters, L in our
cubic geometry. This means that in ensembles where the vol-
ume is not a fixed quantity, the recalculation of the influence
functions is needed whenever L is changed. The repetitive

update of G̃�k� via Eq. �30� or Eq. �57� can be computation-
ally expensive. In the case of Coulomb systems, the use of
P3M algorithms for constant-pressure simulations has been
studied by Hünenberger34 for both isotropic and anisotropic
coordinate scalings. The closest approach in our case to the
method proposed in Ref. 34 for the isotropic scaling from a
system with size L�1� to a system with size L�2� would consist
on using the transformations

��1�L�1� = ��2�L�2�, �58�

��1�rcut,�1� = ��2�rcut,�2�. �59�

Indeed, due to the equality given in Eq. �58� the following
simple relation between optimal influence functions is
obeyed:

G̃�1� = �L�1�

L�2�
2

G̃�2� �60�

if the mesh size NM and influence order P are unaltered.
Under such conditions, it is simple to show from Eq. �49�
that the condition �58� ensures that if ���1� ,L�1�� minimize
Qint

2 �T�k�� also does ���2� ,L�2��, where the relation between
the value of both minima is

Qint
2 �T�k���1� = �L�1�

L�2�
−�2S+2�

Qint
2 �T�k���2�. �61�

It can be analogously shown that the equality given in Eq.
�59� leads to a similar scaling for the real-space errors. Thus,
recalling the expressions for the rms error estimates �Eqs.
�45�, �50�, and �54��, the relation between the total errors of
both systems is

�T�1�

�T�2�
= �L�2�

L�1�
b

, �62�

where b=4 for the forces and b=3 for torques and energies.
Therefore this approach keeps the level of accuracy set

initially when we increase the size of the system, L�1��L�2�.
There is, however, one caveat: if the size increases too much,
it can happen that the set of parameters obtained from the

previous scaling rules �same NM, same P, �, and rcut deduced
from Eqs. �58� and �59�� may not correspond anymore to the
optimal point of operation of the algorithm. A practical
method for dealing with constant �isotropic� pressure simu-
lations is then the following: via the analytical error esti-
mates determine the optimal values of the parameters for the
smallest box-size one expects to have to simulate Lmin, use
Eqs. �58� and �59� to obtain the � and rcut for the current size
L of the system, as well as Eq. �60� to transform from the
influence function calculated for Lmin to the one needed for
L. If L�Lmin, recompute the influence function via Eq. �30�
or Eq. �57�. If L�Lmin, use the error estimates to check if the
current algorithm parameters �NM, P, and rcut� are still the
most optimal ones for speed purposes and the selected level
of accuracy.

Unfortunately, in the case of anisotropic coordinate scal-
ings an approach for dipoles similar to the one suggested by
Hünenberger34 can be as costly as evaluating again the whole
influence function. No fast alternative to the recalculation of
the whole influence function seems to exist for this case.

C. Dipoles versus charge-based system
representations

The most simple approach for producing dipoles would
be to use a pair of opposite charges, separated by some small
distance. This would be simple, and one could use all the
existing methods for simulating pure Coulomb systems. It is
therefore desirable to provide guidance about the practical
usefulness for molecular dynamics �MD� simulations of
models and algorithms based in true point-dipole representa-
tions, as, for instance, the dipolar-P3M presented in this
work.

In this section we compare two different models that are
intended to represent the same physical system �a ferrofluid�:
a set of N particles embedded into a cubic box of volume V
that interact via dipole-dipole interaction �periodic boundary
conditions used� plus a repulsive soft-core repulsion
�Weeks–Chandler–Andersen �WCA� potential37�, which it is
of the other of kBT when the distance between centers is
equal to one diameter �.

The model relying on true point dipoles38,39 uses a
Langevin thermostat for both translational and rotational de-
grees of freedom of the particles, and the dipolar-P3M
�ik-differentiation� algorithm is used to account for the long-
range interactions. The dipole moments have been set to �
=1 and kBT=1.

For the charge-based model, we have taken the most
simplistic approach for MD simulations: the dipole is mim-
icked via two point charges +q and −q which are separated
by a distance d such that p= 	q	d=� �Gaussian units�. The
movement of the two charges inside the particle is con-
strained by a finitely extensible nonlinear elastic model
�FENE� potential between the charges and the center of the
particle to force the charges to move with the particle, plus a
WCA and an angular potential acting between both charges
in order to stabilize the dipole,

VFENE�rqc� =
− Kfrmax

2

2
ln�1 − � rqc

rmax
2 , �63�
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V��� =
Ka

2
�� − �o�2, �64�

VWCA�rqq�

= �4��� rqq

d
12

− � rqq

d
6

+
1

4
 , for rqq � 21/6d

0, for rqq � 21/6d ,
� �65�

where rqc is the distance of a charge to the center of the
particle, rqq is the distance between both charges, and � the
angle �in radians� formed by the two charges and the center
of the particle. The chosen parameters for the three potentials
are rmax=0.8d, kf =2000kBT, Ka=1000kBT, �o=�, and �
=1000kBT. The same Langevin thermostat for the dipole-
based model is used for the charge model, but without rota-
tional degrees of freedom. In this case, the long-range inter-
actions are computed using the Coulomb-P3M method
�ik-differentiation�.13,24,40

Both models have been simulated via the simulation
package ESPRESSO,26,27 which uses a velocity Verlet integra-
tor. The parameters of the Coulomb and dipolar P3M algo-
rithms have been tuned in each case to the optimal values to
yield maximum speed for a force accuracy �F=10−4. Figure
7 shows the relative speed of the dipole-based method with
respect to the charge-based model as a function of the num-
ber N of particles in the system. The relative speed has been
computed by measuring the times t� and tq that the dipole
and the charge models, respectively, need to integrate 20 000
time steps. For the charge model two different separations
between charges d have been sampled because the optimal
value of the Coulomb-P3M parameters �NM, P, rcut, �� are
observed to depend on d. In general, the smaller d, the
lengthier the calculation of the long-range forces in the
charge-based model. The case d=� /2 has been chosen be-
cause it represents the limiting case for mimicking dipoles.
For d�� /2 the distance between two charges belonging to a

same particle can be larger than the distance between charges
belonging to different particles, and thus the charge model
should be expected to be a poor approach to the dipolar
interaction. The case d=� /10 represents a more likely value
of d. The comparison in Fig. 7 shows that the dipole-based
model shows, in general, a better performance than the
charge-based model for both d=� /2 and d=� /10. The rela-
tive performance of the dipole model is observed to increase
with the reduction in the distance between charges d. The
advantage of the dipole-based model with respect to the
charge-based model under the constrain that both models
should deliver the same force accuracy �F=10−4 must be
related to the fact that the time needed to compute several
extra FFTs required by the dipole-based model plus the han-
dling of the dipole rotations is, in general, smaller than the
extra time needed by the charge model to deal with 2N elec-
trostatic centers as well as the constrained movement of the
charges inside the particle.

Finally, it should be remarked that the time step dt
needed to run adequately the MD simulations for the charge-
based model has been found to be around two orders of
magnitude smaller than for the dipole-based model when d
=� /10, while similar time steps are possible for d=� /2. In
principle this implies that for realistic charge-based model
mimicking dipoles, d�� /2, extra steps are needed to span
the same physical time. Nonetheless, this difference in the
values of the time steps could be due to the type of charge
model used in the current comparison. A test of the perfor-
mance of the dipolar-P3M algorithm with all possible charge-
based models is not possible, but the present comparison
illustrates that dipole-based models are reliable tools for
simulating dipolar systems.

VI. CONCLUSIONS

In this work, an extension of the P3M method of
Hockney–Eastwood to the case of dipolar interactions is pre-
sented, using the ik differentiation scheme. This variant is
expected to be the most accurate particle-mesh based algo-
rithm. Optimal influence functions that minimize the errors
for dipolar forces, torques, and energy have been derived. We
have shown that Madelung and self-interaction terms will
arise in any particle-mesh method. We have derived esti-
mates of these MS terms for the energy, force, and torques,
and proved that, for the ik-differentiation scheme, the force
MS term is zero while the other terms are not. These MS
interactions are responsible for a bias in the P3M energy,
which we suppressed by shifting the energies appropriately.
Using these results we derived accurate rms error estimates
for the energy, forces, and torques. The validity of these es-
timates is demonstrated numerically by computing the errors
for test systems with our P3M implementation, using various
parameter sets, and comparing them to our analytical esti-
mates. We have further demonstrated that using our simpli-
fied error formulas, the optimal � for any parameter combi-
nations �NM ,rcut , P� can be accurately found. Consequently,
these formulas enable to determine the parameter combina-
tion that yields the optimal performance for any specified
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FIG. 7. Relative speed of the dipole-based model to the charge-based model
as a function of the logarithm of the number of particles in the system �see
details for the models in text, Sec. V C�. t� and tq are the times needed by
the dipole-based and charge-based models, respectively, to integrate 20 000
time steps. In all systems the number density is N /V=0.1, and the algorithm
parameters has been set for each system to the optimal values to yield
maximum speed at fixed force accuracy �F=10−4.
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accuracy. This can be conveniently done prior to running an
actual simulation.

Although the derivation of the rms error assumed uncor-
related positions and orientations of the dipoles, we numeri-
cally showed that our estimates are sufficiently accurate also
for highly correlated systems.

The timing comparison between our dipolar-P3M algo-
rithm and the standard dipolar-Ewald sum shows that the
performance of the P3M is superior to the standard Ewald
method in systems consisting of more than 300 dipoles, and
we see the expected �almost� linear scaling for large particle
numbers. A protocol to speed up dipolar-P3M calculations
for constant-pressure simulations is presented in Sec. V B. In
addition, the test comparing a dipole-based model with a
charge-based model to mimic simple ferrofluid systems
shows that the use of dipole-based models can be advanta-
geous.

The somewhat tedious calculations necessary to derive
our results have been collected in the appendices for the
interested reader.
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APPENDIX A: BUILDING UP THE P3M DIPOLAR
ALGORITHM

1. The optimal influence function

In this appendix the analytical expressions for the opti-

mal influence functions G̃ are derived �see Eq. �30��, and the
measure Qint of the error for forces, torques, and the energy
is provided �see Eq. �29��. The derivation is done in close
analogy to the derivation for the Coulomb case by
Hockney–Eastwood.23

The Parseval theorem for Fourier series,



V

	f�r�	2dr =
1

V
�

k�K̃3

	 f̂�k�	2, �A1�

allows to rewrite the measure of the error Q2�T�k��, Eq. �29�,
for a system containing two dipolar unit particles �r1 , �̂1�
and �r2 , �̂2� as

Qint
2 �T�k�� =

1

h3�4��2V2 �
k�K̃3

k�0



h3

dr1

�1

d�1

�2

d�2

�	T̂�k��r1,k,�̂1,�̂2�	2 + 	T̂�k,ex��k,�̂1,�̂2�	2

− 2T̂�k��r1,k,�̂1,�̂2� · �T̂�k,ex��k,�̂1,�̂2���� ,

�A2�

where we recall that function T�k,ex��r1 ,r2 , �̂1 , �̂2�
=T�k,ex��r2−r1 , �̂1 , �̂2� is the �reciprocal� dipolar-Ewald in-
teraction between two unit dipoles �this interaction corre-
sponds to the dipolar interaction of dipole 2 with dipole 1
and with all the periodic images of dipole 1� and that
T�k��r1 ,r2 , �̂1 , �̂2� is the corresponding interaction as com-
puted with the P3M algorithm. Equation �A2� involves the
Fourier transforms of these functions over r2, at fixed posi-
tion r1. The Fourier transform of the P3M interaction

T̂�k��r1 ,k , �̂1 , �̂2� depends on the position of dipole 1 within
a mesh cell, while the Fourier transform of the exact inter-
action is independent of r1 because of translational invari-
ance.

The functions T̂�k� are linked to the mesh-based functions

T̃M
�k��FFT�TM

�k�� by the simple relation

T̂�k��k� = T̃M
�k��k�Ŭ�k� , �A3�

which is proven below in Appendix A 2.

In turn, T̃M
�k� can be calculated from Eqs. �23�, �24�, and

�28� and the fact that the FFT of the mesh density Eq. �21�
for a single particle system �r1 ,�1� is �see Ref. 35�

�̃M�k� � FFT��M�rm�� =
1

h3 �
n�Z3

�1W̆�kn�e−ikn·r1, �A4�

where kn�k+ �2� /h�n. Thus, for the present P3M algorithm

the functions T̂�k� are

Ê�r1,k,�1� = − D̃�k��̂P3M�r1,k,�1� , �A5�

F̂�r1,k,�1,�2� = − D̃�k���2 · Ê�k,�1�� , �A6�

�̂�r1,k,�1,�2� = �− D̃�k� � �2��̂P3M�r1,k,�1� , �A7�

Ûd�r1,k,�1,�2� = �− D̃�k� · �2��̂P3M�r1,k,�1� , �A8�

where

�̂P3M�r1,k,�1� = Ŭ�k�G̃�k��− D̃�k� · �1�

�
m�Z3

Ŭ�km�e−ikm·r1, �A9�

and Ŭ�k��W̆�k� /h3, km�k− �2� /h�m, with D̃�k� defined in
Eq. �25�. The quantity �̂P3M�r1 ,k ,�1� is the Fourier trans-
form �over r2� of the electrostatic potential created at r2 by a
dipole �1 at r1 according to the P3M algorithm. Because of
the presence of the mesh, that potential is not translationally
invariant and depends on the position of r1 relative to the
mesh.

Once the functions T̂ are known, the next step involves

the calculus of the exact functions T̂�ex� for the same system.
It is straightforward to show that in the case of a system
containing two particles, the exact functions are

F̂�ex��k,�1,�2� = �ik · �2��ik · �1�ik�̆�k� , �A10�

�̂�ex��k,�1,�2� = ��2 � ik��ik · �1��̆�k� , �A11�
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Ûd
�ex��k,�1,�2� = − �ik · �1��ik · �2��̆�k� , �A12�

where �̆�k� is defined in Eq. �16�. In exact calculations, as
one would expect, only the relative distance between both
particles �k coordinate in the reciprocal space� is relevant.

Once the values of T̂ and T̂�ex� are known, it is possible
to simplify the expression �A2� and arrive at the following
expression for the rms error of the reciprocal-space compo-
nents:

Qint
2 �T�k�� =

a

9V2 �
k�M̃3

k�0

dk�G̃2�k�	D̃�k�	2S� �
m�Z3

Ŭ2�km�
+ �

m�Z3

	km	2S��̆�km��2

− 2G̃�k� �
m�Z3

�ikm · D̃�k��SŬ2�km��̆�km�� .

�A13�

The set of parameters �S=3, a=1� leads to the measure of
the error in forces, �S=2,a=2� corresponds to the case of
torques, and �S=2,a=1 /4� must be used for the dipolar en-
ergy. In the case of the dipolar electrostatic field E, the val-
ues of the parameters are �S=2,a=3�.

The optimal influence functions for the different dipolar
quantities �force, torque, and energy� can be now obtained by

minimizing Eq. �A13� with respect to G̃,

� 
Qint
2 �T�


G̃
�

G̃opt

= 0. �A14�

The optimal influence function expressions obtained are
summarized in Eq. �30�. Notice that the influence function
optimized for torques is the same as that for the energy,
which is a consequence that for both cases it is necessary to
optimize the dipolar electrostatic field since that the dipolar
energy for a particle is Ud=−� ·E and its torque is �=�
�E.

It should be noted that the influence functions are calcu-
lated to minimize only errors in P3M pair interactions, ne-
glecting errors in MS interactions. In the case of forces, no
further improvement can be expected because the MS forces
are zero, but for torques and energies further optimization is
in principle possible. The benefit of such a full optimization
is, however, expected to be small in typical systems because
of the different scaling �with respect to the number of par-
ticles and dipole moments� exhibited by these two sources of
errors �see Appendix B 3�.

2. Technical proof of Eq. „A3…

The Fourier series of a function T�k��k� can be written
using the mapping-back relation �see Eqs. �26� and �28�� as

T̂�k��k� = 

V

dr �
rm�M3

m.i.c.

TM
�k��rm�W�r − rm�e−ik·r

= �
rm�M3

TM
�k��rm�W̆�k�e−ik·rm, �A15�

where the second equality follows from a change in variable
�shift theorem� and the fact the W�r� decays to zero on a
distance shorter than half the box length. If we replace

TM
�k��rm� by the equivalent expression FFT−1�T̃M

�k��, we obtain

T̂�k��k� =
W̆�k�

V
�

k��M̃3
�

rm�M3

T̃M
�k��k��e−i�k−k��·rm. �A16�

In order to do a further simplification, it is necessary to
rewrite the sum over the mesh points rm as a continuous
integral with the help of the sampling function ��r� defined
as

��r� � �
rm�M3


�r − rm� =
1

h3 �
m�Z3

e−i�2�/h�m·r. �A17�

Thus Eq. �A16� can be rewritten as

T̂�k��k� = Ŭ�k� �
k��M̃3

�
m�Z3

T̃M
�k��k��

1

V



V

dre−i�k+�2�/h�m−k��·r

�A18�

where we used Ŭ�k�=W̆�k� /h3. The integral in Eq. �A18�
divided by the volume is equal to a Kronecker delta

k+�2�/h�m,k� which allows us to obtain the result

T̂�k��k� = Ŭ�k� �
k��M̃3

�
m�Z3

T̃M
�k��k��
k+�2�/h�m,k� �A19�

which leads to Eq. �A3�.

APPENDIX B: DERIVATION OF THE RMS ERROR
ESTIMATES

1. Errors in pair interactions and MSs

An important point in the calculation of the rms errors is
to recognize that the error

�T�i� � T�i� − T�ex��i� �B1�

on quantity T�i� �energy, force, or torque of a single particle
i� can be understood to arise from two distinct contributions:
the interaction of a particle i with all other particles j� i
�including the images of particles j in the periodic replicas of
the simulation box�, hereby denoted by the subscript int, and
the MS �see Sec. II C�. Thus,

T�i� = Tint�i� + TMS�i� , �B2�

T�ex��i� = Tint
�ex��i� + TMS

�ex��i� , �B3�

and therefore the error is

�T�i� = �Tint�i� + �TMS�i� , �B4�
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=�
j�i

�Tint�i, j� + �TMS�i� . �B5�

In Eq. �B5�, �Tint�i , j� is the error in the pair interaction of
particle i with particle j �including the interactions of i with
the images of particle j� i�. �TMS�i� is the error in the MS
energy, force, or torque of particle i. Explicit expressions for
TMS�i� can be found in Sec. II. The strength of a dipolar
interaction is proportional to the product of the dipole mo-
ments of the two particles. Setting

�Tint�i, j� = �i� j�int�i, j� , �B6�

�TMS�i� = �i
2�MS�i� , �B7�

Eq. �B5� can be rewritten as

�T�i� = �i�
j�i

� j�int�i, j� + �i
2�MS�i� . �B8�

By definition, �int�i , j� and �MS�i� give the direction and mag-
nitude of the error for two unit dipoles �i stands for �ri , �̂i��,
for pair interaction and MS, respectively. The decomposition
�B8� of the error into an interaction and MS contribution is a
central point in the calculation of the rms errors because both
contributions are uncorrelated and lead to a different scaling
with respect to the dipole moments �see further Appendix B
3�.

2. Mean MS values of the quantities

In this section we prove several expressions related to
the mean values of the Madelung self-forces, torques, and
energies used in Sec. II C.

a. Derivation of FMS
„k…

„r ,�…=0

The reciprocal contribution of the MS force of a particle
is

FMS
�k� �r,�̂� =

1

V
�

k�K̃3

k�0

eik·rF̃�r,k,�1 = �,�2 = �� , �B9�

which using Eq. �A6� reduces to

=
1

V
�

k�K̃3

k�0

�D̃�k� · ��2�− D̃�k��Ŭ�k�

G̃�k� �
m�Z3

Ŭ�km�e−i�2�/h�m·r = 0. �B10�

The previous sum is zero because each k term cancels out
with the corresponding −k term �provided the lattice that is
used is symmetric�. Madelung self-forces vanish therefore
identically.

b. Derivation of Š�MS
„k…

„r ,�…‹=0

The MS torque for a single particle can be written as

�MS
�k� �r,�� =

1

V
�

k�K̃3

k�0

eik·r�̂�r,k,�1 = �,�2 = �� , �B11�

where �̂ is given by Eq. �A7�. Writing explicitly the average,
the following expression is obtained:

��MS
�k� �r,��� =

1

4�V2

V

dr

��

d�� �
k�K̃3

k�0

eik·r�D̃�k� · ��

�− D̃�k� � ��Ŭ�k�G̃�k� �
m�Z3

Ŭ�km�e−ikm·r = 0.

�B12�

This average torque vanishes because



��

d���D̃�k� � ���D̃�k� · �� = 0. �B13�

c. Calculus of ŠUMS
„k…

„r , �̂…‹ leading to Eq. „40…

The MS energy for a single unit dipole particle can be
obtained from Eq. �A8� by setting �1=�2= �̂, r1=r and
evaluating the back-Fourier transform at the point r2=r,

UMS
�k� �r,�̂� =

1

2V
�

k�K̃3

k�0

eik·rŬd�r,k,�1 = �̂,�2 = �̂�

=
1

2V
�

k�K̃3

k�0

eik·r�D̃�k� · �̂�2Ŭ�k�G̃�k�

�
m�Z3

Ŭ�km�e−ikm·r, �B14�

where km�k+ �2� /h�m. Applying the average defined in
Eq. �44� and using the identity

1

V



V

dre−ir·�2�/h�m = 
m,0, �B15�

where 
 is a Kronecker symbol, and the angular integral

1

4�



��

d���D̃�k� · ��2 =
1

3
D̃�k�2�2 �B16�

lead to

�UMS
�k� �r,�̂�� =

1

6V
�

k�K̃3

k�0

D̃2�k�Ŭ2�k�G̃�k� . �B17�

The functions D̃�k� and G̃�k� are periodic over the Brillouin
cells, which allows to rewrite the mean value of the MS
energy for a single dipole particle as Eq. �40�.
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3. Scaling of the rms errors

In this section, the scaling of the rms error estimates for
the forces and torques with respect to N and ��i� is derived
using general arguments. The results of the present section
also apply to the error of the energy of single particles, but
not directly to the error of the total energy because it in-
volves all possible pair interactions and an extra correction
term �37�. The error of the total energy will be discussed
apart in Appendix B 5.

First, it should be noticed that the surface terms �Eq. �13�
and last term in Eq. �18�� do not lead to any error because
they are computed exactly. Therefore from now metallic
boundary conditions ���=	� are assumed, and surface terms
are discarded. Assuming the system to be relatively large,
Eq. �42� can be approximated as

�T �� 1

N
�

i

���T�i��2� �B18�

by following the line of reasoning of Ref. 40.
According to Eq. �B8�, the error �T�i� arises from errors

in pair interactions and error in MSs. With the energy shift
�37�, the P3M algorithm is such that the error is zero on
average ���T�i��=0�, as it should. This implies

��MS�i�� = 0, �B19�

��int�i,j�� = 0. �B20�

The stronger statement that the average error of the pair in-
teraction still vanishes even if dipole i is kept fixed,

1

4�V



V

dr j
 d� j�int�i, j� = 0, �B21�

holds because the angular integral clearly vanishes �the inte-
grand is odd in � j�. The property �B21� implies, in particular,
that

��int�i, j� · �MS�i�� = 0, �B22�

��int�i, j� · �int�i,k�� = 
 j,k��int
2 �i, j�� . �B23�

The mean-square error ��T�i�2� in Eq. �B18� becomes

��T2�i�� = ���i�
j�i

� j�int�i, j� + �i
2�MS�i�2

�

= �i
2���

j�i

� j�int�i, j�2� + �i
4��MS

2 �i��

= �i
2�

j�i

� j
2��int

2 �i, j�� + �i
4��MS

2 �i�� , �B24�

where the second equality follows from Eq. �B22� and the
third equality from Eq. �B23�. The mean-square errors of the
pair interaction and MS,

��int
2 �i, j�� = Qint

2 �T� , �B25�

��MS
2 �i�� = QMS

2 �T� , �B26�

do not depend on the chosen pair of particles �i , j� by defi-
nition of the configurational average. The mean-square error

on particle i reduces �using �M2−�i
2��M2� to

��T2�i�� � �i
2M2Qint

2 + �i
4QMS

2 . �B27�

Eventually, it is found that the rms �total� error �B18� can be
expressed as

�T2 �
M4Qint

2 + �i
�i

4QMS
2

N
, �B28�

where, using Eq. �B25�,

Qint
2 �T� =

1

�4��2h3V



h3
dr1


V

dr2
 d�1
 d�2�int
2 �1,2�

�B29�

is the mean-square error in the pair interaction between two
unit dipoles �see Eq. �B6�� and

QMS
2 �T� =

1

�4��h3

h3

dr1
 d�1�MS
2 �1� �B30�

is the mean-square error in the MS of a unit dipole �see Eq.
�B7��. Notice that the average over r1 in Eqs. �B29� and
�B30� can be restricted to a single mesh cell h3 thanks the
periodicity of the system.

The result �B28� exhibits the scaling of the rms error �T
with respect to the number of particles and the magnitudes of
the dipole moments.

It is important to stress that our result for the scaling of
�T takes into account not only the contributions from errors
in pair interactions but also errors in MS. When using stan-
dard dipolar-Ewald sums, rms errors in MS interactions are
negligible �at least if the energies are correctly shifted41�, and
Eq. �B28� reduces to the expression found in Ref. 13 for the
scaling of the error. By contrast, the errors due to MS dipolar
interactions play an important role when using particle-mesh
methods because of the loss of accuracy brought by the dis-
cretization of the system onto a mesh.

4. Explicit formulas for the rms errors

To use the error estimate �B28�, we need to know the
mean-square errors Qint

2 and QMS
2 , which measure, respec-

tively, errors in the pair interaction Tint�i , j� and errors in the
Madelung-Self interactions TMS�i�. These errors depend on
the details of the method employed to compute them �here
the P3M algorithm�, but are independent of the simulated
system. In this section explicit theoretical expressions for
these errors are derived. These expressions are functions of
the “methodological” dimensionless parameters ��L, rcut /L,
NM =L /h, and P�. It should be recalled that surface terms are
discarded by setting metallic boundary conditions because
these terms do not play any role in the error estimates.

The quantity T �=force, electrostatic field, torque, or en-
ergy� is computed as a sum of a real-space contribution T�r�

and a reciprocal-space contribution T�k�+T�self� �T�self� van-
ishes in the case of the force, see Eqs. �9�, �17�, and �18��. If
the errors in these two contributions are assumed to be sta-
tistically independent, it can be written with Eqs. �B28� and
�B29� in mind,
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��T�2 � ��T�r��2 + ��T�k��2, �B31�

where �T�r� is the rms error arising from the real-space con-
tribution and �T�k� is the rms error arising from the
reciprocal-space contribution. These two rms errors are given
by Eqs. �B28�–�B30�, in which the mean-square errors Qint

2

and QMS
2 are computed with the direct-space and reciprocal-

space, respectively, contributions to �T�i� only.

a. Error estimates for real-space contributions

Introducing decomposition �B4�, the real-space contribu-
tion to the rms error �B31� splits into two terms,

��T�r��2 = ��Tint
�r��2 + ��TMS

�r� �2, �B32�

where �Tint
�r� is the rms error of �real� pair interactions and

�TMS
�r� is the rms error of �real� Madelung interactions. No

cross term appears in Eq. �B32� because of property �B22�.
��TMS

�r� �2 is negligible due to the fast decay of the real-space
contribution. Thus, ��TMS

�r� �2=0, and the real-space rms errors
of the P3M method approximately coincide with those de-
rived for the dipolar-Ewald sum method13 because real-space
contributions are evaluated identically in both methods.
These error estimates are given by Eqs. �46�, �51�, and �55�
�see also Ref. 13�. Notice the exponential decay
exp�−�2rcut

2 � of the error with the real-space cutoff distance
rcut.

b. Error estimates for reciprocal-space contributions

Introducing decomposition �B4�, the reciprocal contribu-
tion to the rms error �B31� splits into two terms,

��T�k��2 = ��Tint
�k��2 + ��TMS

�k� �2, �B33�

where �Tint
�k� is the rms error of �reciprocal� pair interactions

and �TMS
�k� is the rms error of �reciprocal� MS. No cross term

appears in Eq. �B33� because of property �B22�. By Eq.
�B28�, these two contributions scale like

��Tint
�k��2 =

M4

N
Qint

2 �T�k�� , �B34�

��TMS
�k� �2 =

�i�i
4

N
QMS

2 �T�k�� , �B35�

where Qint
2 �T�k�� �respectively, �QMS

2 �T�k���� is the contribution
to the mean-square error ��B29�� �respectively, Eq. �B30��
associated with the reciprocal interaction T�k�. The problem
of predicting the rms errors of the P3M algorithm is now
reduced to finding explicit expressions for the functions
Qint

2 �T�k�� and QMS
2 �T�k��. The detailed calculation of these

quantities is performed in Appendix A 1 for the pair interac-
tions and Appendix B 4 b for the MS. For the total energy
see Appendix B 5.

1. rms error in pair interactions: �Tint
�k�. The lattice

Green function G̃�k� is determined in the P3M method by the
condition that it minimizes the rms error �Tint

�k� of the �recip-
rocal� pair interaction. The minimization of this rms error
was performed in Appendix A 1, where is it shown that the
minimal errors are given by Eq. �49�, where in the case of
forces, we have to use the set of parameters �S=3, a=1�,

for torques �S=2, a=2�, and �S=2, a=1 /4� for the energy.
It should be noticed that Eq. �49� reduces to the rms error
corresponding to Coulomb forces when the parameters are
set to �S=1, a=1� and the factor of 1/9 is dropped.24 When
the optimal lattice Green function �30� is used, the �recipro-
cal� rms error in pair interaction is given by inserting
Eq. �49� into Eq. �B34�.

2. rms error in Madelung-Self interactions: �TMS
�k� . From

Eqs. �B35� and �B30�, the rms error in MSs involves the
quantity

QMS
2 �T�k�� = ��TMS

�k� �r,�̂� − TMS
�k,ex��r,�̂��2� , �B36�

where TMS
�k� �r , �̂� is the P3M MS defined in Sec. II C for a

unit dipole. The exact MS TMS
�k,ex��r , �̂� is nonzero only in the

case of the energy. Since the P3M MS force is identically
zero �see Appendix B 2� the rms error vanishes for this quan-
tity,

�FMS
�k� = 0. �B37�

According to Eq. �B11�, the rms error of MS torques is given
by

QMS
2 ���k�� = ���MS

�k� �r,�̂��2�

=
1

4�V3

V

dr

��

d�� �
k�K̃3

k�0

�
k��K̃3

k��0

�D̃�k� · �̂�2

�D̃�k�� · �̂�2��− D̃�k� � �̂� · �− D̃�k��

��̂��Ŭ�k�G̃�k�Ŭ�k��G̃�k��

� �
m�Z3

Ŭ�km�e−ikm·r
� �

n�Z3

Ŭ�kn��e−ikn�·rei�k+k��·r,

where km�k+ �2� /h�m and kn��k�+ �2� /h�n. The integral
in Eq. �B15� and the angular integral



��

d���a · ���b · ����a � �� · �b � ���

=
2��4

3
h�a,b� , �B38�

where h�a ,b� is given by Eq. �53�, lead to

QMS
2 ���k�� =

1

6V2 �
k�K̃3

k�0

�
k��K̃3

k��0

h�D̃�k�,D̃�k���

Ŭ�k�G̃�k�Ŭ�k��G̃�k��

� �
m�Z3

Ŭ�km�Ŭ�km� � . �B39�

Finally, using the fact that D̃�k� and G̃�k� are periodic over
the Brillouin cells, the mean-square MS torque for the
reciprocal contribution reduces to the expression given in
Eq. �52�.
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5. rms error for the total corrected energy

A theoretical estimate can be derived for the rms error of
the total energy �UP3M in Eq. �43�. Hereby in order to avoid
confusions the values related to noncorrected energies will
be identified with a subindex �nc�. As in the case of forces
and torques the error is split into real and space contribu-
tions,

��UP3M�2 = ��UP3M
�r� �2 + ��UP3M

�k� �2. �B40�

As in the case of forces and torques, the fast decay of the
real-space interaction makes the MS contribution arising
from the real-space negligible. Thus, the value of ��U

P3M
�r� �2

is the same as in Ewald calculations13 �see Eq. �55��.
The rms error of the reciprocal part of the energy is by

definition

��UP3M
�k� �2

ª ��UP3M
�k� − U�k��2� , �B41�

where U�k� is the exact reciprocal-space energy given by Eq.
�11�. The energy correction term �37� is fully associated with
the calculations in the reciprocal space when m.i.c. is used.
Thus, Eq. �B41� can be rewritten in terms of �U�corr�� and the
reciprocal-space error of the noncorrected energy �Unc

�k� as

��UP3M
�k� �2

ª ���Unc
�k� + �U�corr���2� �B42�

=���Unc,int
�k� + �Unc,MS

�k� + �U�corr���2� , �B43�

applying that

��Unc,int
�k� � = 0, �B44�

��Unc,int
�k� �Unc,MS

�k� � = 0, �B45�

the rms error for the reciprocal contribution is

��UP3M
�k� �2

ª ���Unc,int
�k� �2� + ���Unc,MS

�k� + �U�corr���2� .

�B46�

If the relation ��Unc,MS
�k� ��−�U�corr�� is used, then

��UP3M
�k� �2

ª ���Unc,int
�k� �2� + ���Unc,MS

�k� �2� − ��U�corr���2,

�B47�

which shows that the correcting term �U�corr��, in addition to
removing the systematic bias in the reciprocal energies, also
reduces the fluctuating errors of the reciprocal-space self-
energies by an amount −��U�corr���2. In the following sections
�Appendices B 5 a to B 5 c� it is shown that

���Unc,int
�k� �2� = 2M4Qint

2 �Unc
�k�� �B48�

and ���Unc,MS
�k� �2� is given by

���Unc,MS
�k� �2� = M4���UMS�r,�̂���2 − 2UMS

�ex��r,�̂��UMS�r,�̂��

+ �UMS
�ex��r,�̂��2� + ��

i=1

N

�i
4���UMS�r,�̂��2�

− ��UMS�r,�̂���2� , �B49�

where the mean P3M MS energy of a unit dipole particle

�UMS�r , �̂�� is Eq. �40�, the exact MS energy UMS
�ex��r , �̂� is

Eq. �35�, and �U�corr�� is given by Eq. �37�.
On the other hand, in Appendix B 5 c is shown that the

mean-square MS energy of a unit dipole in the P3M calcula-
tion is

��UMS�r,�̂��2� =
1

120V2 �
k�M̃3

k�0

�
k��M̃3

k��0

G̃�k�G̃�k��f�D̃�k�,D̃�k���

�
t�Z3

�
l�Z3

�
m�Z3

�Ŭ�kt�Ŭ�k1��Ŭ�ktm�Ŭ�klm� �� ,

�B50�

where

f�a,b� = � 	a + b	4 + 	a − b	4

2
− a4 − b4 , �B51�

with k��k+ �2� /h�� and k���k+ �2� /h���+��. Similar
techniques to the ones used in the case of torques can reduce
by several orders of magnitude the computational effort, ren-
dering its exact calculation feasible, although for practical
purposes to determine the rms energy error, it is advisable to
use the approach stated in Sec. III C.

a. Derivation of Š„�Unc,int
„k…

…

2
‹

In this section, the mean-square value of the pair energy
of the noncorrected interactions is derived. Using Eq. �B8�
the pair energy of a system of N particles can be written as

���Unc,int
�k� �2� = �

i

N

�
j

N

�
k�i

N

�
l�j

N

�i� j�k�l��int�i,k� · �int�j,l�� ,

�B52�

applying

��int�i,k� · �int�j,l�� = �
i,j
k,l + 
i,l
k,j���int
2 �i,k�� , �B53�

the rms error can be written �using the approach �M4

−�i�i
4��M4� as

���Unc,int
�k� �2� = 2�

i

N

�
k�i

N

�i
2�k

2��int
2 �i,k�� �B54�

�2M4��int
2 �1,2�� , �B55�

where ��int
2 �1,2��=Qint

2 �Unc
�k�� �see Eq. �B29��.

b. Derivation of Š„�Unc,MS
„k…

…

2
‹

In this section, the mean-square value of the MS energy
of the noncorrected interactions is derived. For a system of N
particles it can be expressed in terms of the noncorrected
P3M and exact MS energies of each particle, Unc,MS

�k� �i� and
UMS

�ex��i�, respectively, as
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���Unc,MS
�k� �2� =���

i

N

�Unc,MS
�k� �i� − UMS

�ex��i���
��

j

N

�Unc,MS
�k� �j� − UMS

�ex��j����� , �B56�

where the asterisk denotes complex conjugate, UMS
�ex��i�

=�i
2UMS

�ex��r , �̂� with UMS
�ex��r , �̂� given in Eq. �35�, and

Unc,MS
�k� �i� = �i

2Unc,MS
�k� �r,�̂� =

�i
2

2
FTk�0

−1 �Ũd
p3m�ri,k,�̂�� ,

�B57�

notice that the surface energy terms have been dropped be-
cause they would be the same and would just cancel out.
Some algebra, and a careful separation of the terms i� j
from the i= j terms, leads to Eq. �B49�.

c. Proof of Š„UMS
„k…

„r , �̂……

2
‹

Taking the square of Eq. �B14� and using the average
given in Eq. �44� we get

��UMS
�k� �r,�̂��2�

=
1

16�V3

V

dr

��

d�� �
k�K̃3

k�0

�
k��K̃3

k��0

�D̃�k� · �̂�2

�D̃�k�� · �̂�2Ŭ�k�G̃�k�Ŭ�k��G̃�k��

� �
m�Z3

Ŭ�km�e−ikm·r� �
n�Z3

Ŭ�kn��e−ikn�·rei�k·r+k�·r�.

�B58�

The integral in Eq. �B15� and the angular integral



��

d���a · ��2�b · ��2 =
2��4

15
f�a,b� , �B59�

where f�a ,b� is given in Eq. �B51�, lead to

��UMS
�k� �r,�̂��2�

=
1

120V2 �
k�K̃3

k�0

�
k��K̃3

k��0

f�D̃�k�,D̃�k���

Ŭ�k�G̃�k�Ŭ�k��G̃�k��� �
m�Z3

Ŭ�km�Ŭ�km� � . �B60�

Finally, taking into account that D̃�k� and G̃�k� are periodic
over the Brillouin cells, the final expression for the rms MS
energy is Eq. �B50�.
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